2001 LAKE MONITORING STUDY

NATIONAL PETROLEUM RESERVE - ALASKA

Prepared for

Phillips Alaska, Inc. PO Box 100360 Anchorage, AK 99510-0360

October 22, 2001

2700 Gambell St. Suite 200 Anchorage, AK 99503

74-PAI01001.00

TABLE OF CONTENTS

Section 1	Introd	duction	1-1
	1.1 1.2	Background Approach	
Section 2	Metho	ods	2-1
	Wate	er Quality Sampling	
	2.2	In-Situ Water Quality	
	2.3	Water Level Measurements	
	2.4	Water Volumes	
Section 3	Resu	Ilts and Discussions	3-1
	3.1	Water Quality Sampling	
	3.2	In-Situ Water Quality	
	3.3	Water Level Measurements	
	3.4	Water Volumes	
Section 4	Conc	clusions	4-1
	4.1	Conclusions	
		4.1.1 Water Levels	
		4.1.2 Water Quality	
Section 5	Refer	rences	

Tables		Page
Table 2.1	Water Quality Measurement and Sample Locations	
Table 3.1	Water Quality Sampling Results	
Table 3.2	Horiba U-10 Water Quality Checker Manufacturer's Specifications	
Table 3.3	Water Withdrawal and Total Lake Volumes at Four Lakes in NPR-A	3-10
Table 3.4	Under Ice Water Volumes at Four Lakes in NPR-A.	3-11

Figures

Figure 1.1	2001 NPR-A Lake Monitoring, Study Lake Locations	1-3
Figure 3.1	Ice Thickness and Magnesium Concentrations at NPR-A Lakes, 2001	3-3
Figure 3.2	Graphs of Ice Thickness and In-Situ Water Quality Measurements	3-5
Figure 3.3	Plots of Ice Thickness and Free Water Availability	3-8
Figure 3.4	Water Surface Elevations at NPR-A Lakes, 2001	3-9

Appendices

Appendix A	Monitoring Plan
Appendix B	Laboratory Results
Appendix C	Plots and Graphs of Water Quality Results
Appendix D	Water Quality Data Collected During 1999 and 2000.

Acronyms and Abbreviations

BLM	Bureau of Land Management
ft	feet
GPS	Global Positioning System
mg/l	milligrams per liter
mS/cm	milli-Siemens per centimeter
NPR-A	National Petroleum Reserve – Alaska
NTU	Nephelometric Turbidity Units
PAI	Phillips Alaska, Inc.
ppm	parts per million

Current winter oil and gas exploration and development practices on the North Slope of Alaska include construction of ice roads and ice pads to facilitate vehicle and equipment mobilization and stable camp and work areas. The use of ice roads and pads allows winter exploration activity with little to no impact to underlying tundra as well as access to roadless developments such as Alpine. Construction of these ice roads and pads requires withdrawal of water from nearby lakes during winter. Water is sprayed along the ice roadway, where it freezes quickly on the surface of the tundra. Additional layers of water are added until the ice roads/pads are of sufficient thickness and width to support the heaviest equipment. Smaller amounts of water are pumped periodically from the lakes throughout the winter for ice road/pad maintenance purposes. During breakup, the ice melts, leaving the tundra relatively free of impact.

The purpose of the Lake Recharge Study is to fulfill the following stipulation contained in the Finding of No Significant Impact - Record of Decision (FONSI-ROD) prepared by the Bureau of Land Management (BLM) for Permit to Drill 3100.00 and Right-of-Way Permit 2884.01.

"Monitoring the effect of water use from lakes used for ice road construction. The concern exists in the case of multiple year use of lakes for ice road construction where the assumption is that recharging will be acceptable for the continuing use of these lakes. Applicant is to develop a monitoring plan to measure water volumes before use, measuring amounts used, and lake drawdown. An annual plan for water use will be required for the use of multi-year lake use after the first year of use."

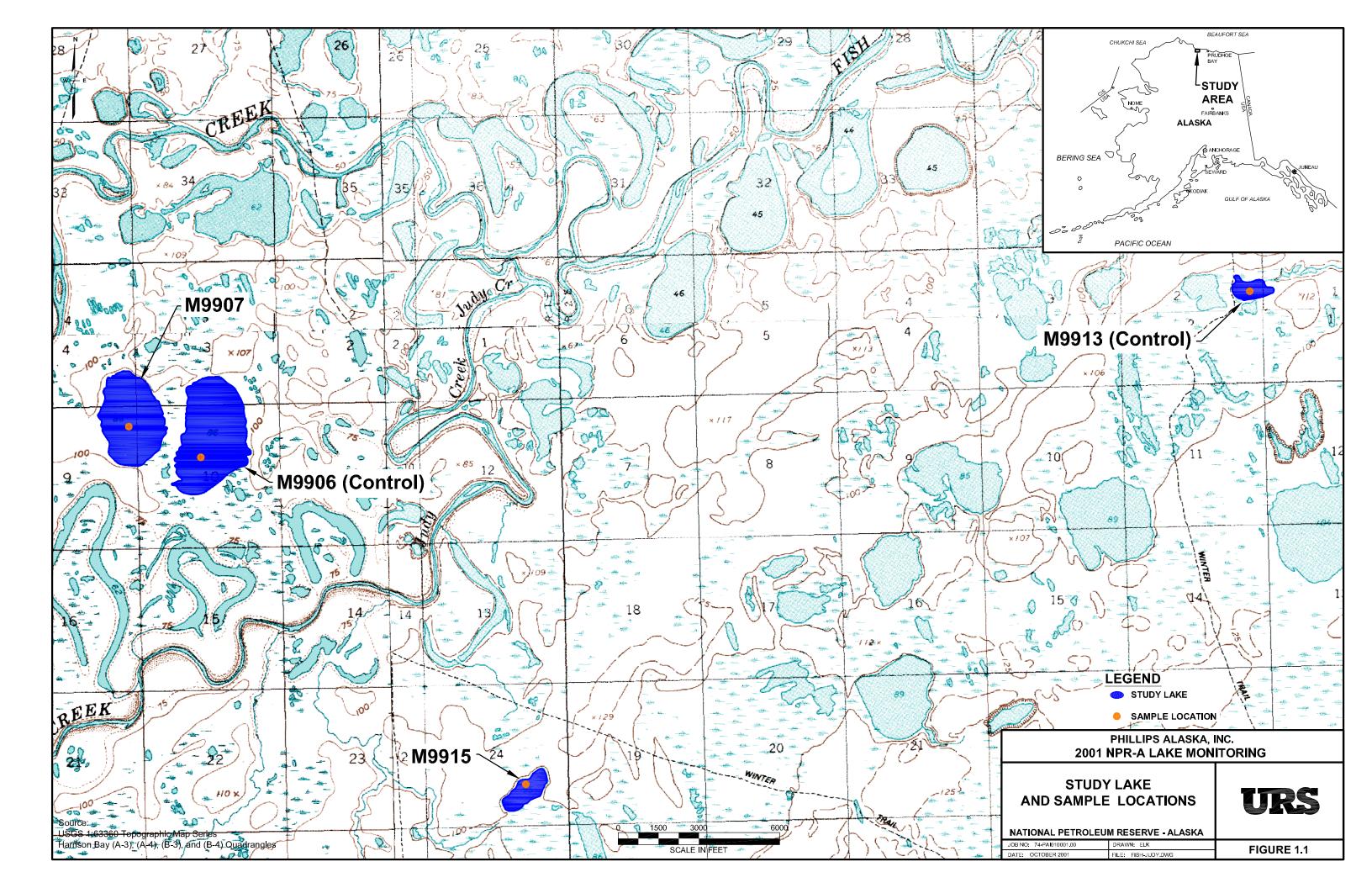
1.1 BACKGROUND

Concern exists that water withdrawal from North Slope lakes could lower water levels to such an extent that the lakes freeze completely or otherwise adversely impact fish overwintering habitat by disturbing bottom sediments, disrupting stratification or effecting water quality in the free water beneath the surface ice. A monitoring plan, that includes water level and water quality monitoring, was developed to address these concerns and is included in Appendix A.

In 1999 and 2000, Phillips Alaska, Inc. (PAI) conducted a study of the lakes in the eastern portion of NPR-A (National Petroleum Reserve - Alaska) to determine which lakes in that area could be used as water sources (see Fish Utilization of Lakes in Eastern NPR-A: 1999-2000, Final Data Report, November 2000, MJM Research). Data collection involved water quality sampling, fish sampling, and volumetric calculations. PAI also conducted a lake recharge study in 2000 that included two water source lakes and one unused lake as a reference (PAI 2001). The data from these previous studies were consulted to select lakes for the 2001 study that would be representative of the variety of lakes cited in the BLM December 2000 protocol for lake monitoring. The 2001 Monitoring Plan includes two of the previously studied lakes (M9906 and M9915) for this purpose as well as for data comparison.

1.2 APPROACH

The monitoring approach was developed in coordination with BLM to determine the amount of free water available under the ice and to assess the amount of recharge by the lakes in the summer, following water withdrawal during the winter construction season.


SECTIONONE

The water source lakes chosen for this study were selected to represent varied lake sizes and types and were paired with reference lakes that have similar physical characteristics. The two pairs of NPR-A lakes studied during 2001 include the following (Figure 1.1):

- M9907 (Pumped) and M9906 (Reference Lake)
- M9915 (Pumped) and M9913 (Reference Lake)

Initially, the Monitoring Plan included three lakes that were to be used for water sources during the 2001 NPR-A exploration program (i.e. pumped) plus three unused lakes to serve as references. However, one of the proposed lakes (M9909) and its associated reference lake (M9911) were dropped from the study when the ice road contractor announced that M9909 was not going to be needed for ice road construction and therefore no water would be withdrawn. These lakes were originally included in the study to be representative of fish bearing lakes in the area. Unfortunately, water withdrawal from potential replacement lakes had occurred before a suitable lake could be added to the study. The four remaining lakes included in this study are tundra lakes that do not support fish. For this reason, an analysis of fish overwintering habitat was not performed.

MJM Research obtained some water quality data during 1999 and 2000 that includes all four of the 2001 study lakes that were sampled during 1999 and two lakes (M9906 and M9915) that were included in their 2000 Recharge Study (MJM 2000b). These data are presented and compared in Sections 3.1 and 3.2.

The procedures described in the Monitoring Plan (Appendix A) were followed to the extent possible, with the exception of the reduction in the number of lakes studied, as described previously. The Monitoring Plan includes measurement of water volumes, water levels, and water quality. Four sampling trips were conducted to detect any measurable changes in water quality potentially caused by water withdrawal. These trips occurred as follows:

- Trip 1 on 6-Feb-01—prior to pumping water from the lakes,
- Trip 2 on 21-Mar-01—after pumping (10 days following pumping at M9907 and 13 days after pumping at M9915),
- Trip 3 on 27-Apr-01—immediately before ice road closure/prior to breakup, and
- Trip 4 on 12-Aug-01—in late summer to check status of lake recharge.

In January, PAI established sampling points at the deepest point of each lake using bathymetric information contained in the 2000 Recharge Study (MJM 2000b). These locations were recorded using a handheld global positioning system (GPS) and marked with survey lath for future reference. Table 2.1 includes these water quality measurement and sample locations.

Lake	Approx. Depth (feet)	Latitude (NAD 27)	Longitude (NAD 27)
M9906 (reference)	8	70° 14' 14.6'' N	151° 51' 21.06" W
M9907	8.5	70° 14' 26.3" N	151° 52' 38.2" W
M9913 (reference)	7.7	70° 15' 07.1" N	151° 32' 23.6" W
M9915	6.8	70° 12' 12.8" N	151° 45' 37.1" W

 Table 2.1: Water Quality Measurement and Sample Locations.

For the first three trips, the sampling point was accessed using a Tucker and/or snowmobile and the following procedures were followed:

- A 6-inch diameter ice auger was used to drill a hole through the ice
- Water samples were collected according to the procedures described in Section 2.1.
- In-situ water quality measurements were recorded according to the procedures described in Section 2.2
- Ice surface elevations and water surface elevations were surveyed and recorded
- Ice thickness and water depth were measured and recorded.

A helicopter and an inflatable boat were used to access the sampling point for the summer sampling trip and these procedures were followed:

- Shoreline staff gages were installed and used to record water surface elevations
- An inflatable boat and GPS were used to access sampling points
- The boat was anchored into position and water samples were collected according to the procedures described in Section 2.1.

SECTIONTWO

• In-situ water quality measurements and water depths were recorded according to the procedures described in Section 2.2.

Left: Augering a hole through the ice at a sampling location at the deepest part of the lake.

Above: Some equipment used during monitoring. Stadia rod used to measure freeboard distance between ice surface elevation and water surface.

2.1 WATER QUALITY SAMPLING

One grab water sample was collected from each lake and submitted for laboratory analysis. Using a plastic bailer or vertical water sampler and following URS standard environmental sampling procedures, grab samples were collected from below the ice and poured into specially prepared plastic sample jars that were provided by the contracted laboratory. A total of four primary samples plus one duplicate (quality control) sample was collected during each trip. Similar to the 2000 Recharge Study, each sample was analyzed for:

- Hardness as CaCO₃ (SM 3500/ICP)
- Calcium (EPA 200.7)
- Magnesium (EPA 200.7)
- Sodium (EPA 200.7)
- Potassium (EPA 200.7)
- Iron (EPA 200.7)
- Silicon (EPA 200.7)
- Chloride (EPA 300.0)
- Total Dissolved Solids (SM2540-C).

Left: Sampling at M9915 during April. Sampling methods included using a plastic bailer to collect a grab sample.

A summary of analytical results from each of the four sampling trips are included in Section 3.1. Appendix B contains detailed laboratory reports of these results. Appendix C includes a full set of plots and graphs of the monitoring results.

2.2 IN-SITU WATER QUALITY

A Horiba U-10 water quality meter was lowered into the ice hole to collect *in-situ* measurements including:

- Temperature
- Dissolved Oxygen
- pH
- Conductivity
- Turbidity.

Right: Lowering the Horiba U-10 Water Quality Checker into the ice hole to collect in-situ water quality measurements.

The Monitoring Plan indicates that, at lakes with greater than 7 feet of available water depth, *in situ* readings would be taken at the surface, middle and immediately above the bottom. However, in most instances during ice covered months, less than 7 feet of free water was available at the study lakes. Thus with one exception, measurements were recorded at mid-depth (free water depth) only and a detailed study of lake stratification was not performed.

Precautions were taken to ensure proper operation of the Horiba instrument in sub-zero temperatures. A one-point calibration was performed each day, using the calibration solution provided with the instrument. The Horiba was fitted with a 10-m cable which allowed the field

team to keep the digital readout portion of the instrument in the Tucker during the *in situ* analyses. The instrument probes were protected by quickly moving the instrument from the warm vehicle or a container of relatively warm water and immersing them in the lake water. Immediately after the water quality parameters were recorded, the probes were returned to the vehicle or container of water, thus limiting the probes' exposure to sub-zero ambient temperatures. Additionally, several chemical heat packets were kept inside of the instrument case and a back-up instrument was available.

Since the dissolved oxygen probe is the most susceptible to failure in sub-zero temperatures, additional back-up dissolved oxygen test kits were also available for verification purposes in instances when dissolved oxygen readouts appeared unreliable. CHEMets Colorimetric Test Kits are color coded field kits in the test range from 1 to 12 parts per million (ppm) that are commonly used for water testing. Testing using these kits was done at the sampling site and according to the manufacturer's directions.

2.3 WATER LEVEL MEASUREMENTS

Measurements of ice thickness and water depth were recorded and used to determine free water availability in both the pumped lakes and corresponding reference lakes. Lounsbury & Associates surveyed ice surface and in-hole water surface elevations to show any variation in lake levels. During winter, the water surface elevation in a hole drilled through the ice is assumed equivalent to the water surface elevation during ice-free conditions.

Following breakup in June, URS installed staff gages at the shore of the lakes to obtain water surface elevations. Staff gages were installed using standard level loop survey techniques. Each staff gage consists of a mounted 3-foot graduated staff attached to a 6-foot piece of angle iron pounded into the lake sediment. The elevation of each staff gage was established using temporary benchmarks established by Lounsbury & Associates in February, 2001.

Using this method, lake levels were recorded at total of three times; in June, August, and September 2001. Staff gage maintenance included re-surveying the gages in order to account for any disturbance or settling of the gage. Staff gages at lakes M9913 and M9915 were re-surveyed during the August event as they appeared to have been bent over. All four gages were re-surveyed in September as it was the last lake measurement for the summer.

Ice and water surface elevations, ice thickness, and water depth/available free water are reported in Section 3.

2.4 WATER VOLUMES

Based on the data collected, the effective water depth was calculated. The available water volume and the amount of lake recharge that occurred following water withdrawal can be assessed by comparing lake volumes throughout the season. Since none of the study lakes contained fish, available water volumes suitable for overwintering fish habitat was not evaluated.

Total water volumes for each lake were previously estimated by MJM Research using aerial photography for surface area, maximum depth, and assuming lake shape averages roughly the volume of a cone (MJM 2000). Water volumes withdrawn from each lake during the 2001

exploration season were recorded by the ice road construction contractors. PAI provided this data to URS for inclusion in this report (Section 3).

3.1 WATER QUALITY SAMPLING

Water quality sampling included analysis for hardness, calcium, magnesium, sodium, potassium, iron, silicon, chloride and total dissolved solids. Analytical results for the study period are summarized in Table 3.1. Graphs of the results are included in Appendix C.

Laboratory water quality results are included in Appendix B. The results were plotted and provided in Appendix C. In general, it appears that hardness, chloride, total dissolved solids, and the selected metal concentrations in the water from each set of paired lakes have similar trends. There is a continuous increase in analyte concentration between February and April, and then a significant decrease in concentrations to below February levels by late summer. This trend is upheld regardless of whether the lake was utilized for water withdrawal. Calculations confirm that analyte concentrations, as expected, were inversely proportional to liquid water volume, which decreased as the ice thickened. Figure 3.1 shows the plot of ice thickness and the plot for magnesium concentrations at each of the lakes throughout the study. Magnesium is shown to represent a typical trend for analyte concentrations.

Slight exceptions to this trend can be seen in the graphs for silicon, iron, and potassium. Silicon concentrations in the water sampled from Lake M9907 (pumped) decreased from 1.87 to 1.59 milligrams per liter (mg/l) between March and April, while all other lakes showed an increase at this time. This decrease of 0.28 mg/l is not considered significant since the silicon concentration remained greater than that of its reference lake, M9906, thereby indicating that silicon in the water at M9907 is not outside naturally occurring background concentrations.

In general, iron concentrations appear to increase until around breakup and then return to low levels by summer. M9906 and M9907 have relatively low iron concentrations (below 2.6 mg/l) and similar trends with the exception that iron concentrations in the water sampled from lake M9906 (reference) decreased slightly from 0.811 to 0.504 mg/l between March and April. For pumped lake M9915, the iron concentration appears to have increased more significantly after pumping (from 1.27 to 10.1 mg/l), when compared to the other lakes. It is possible that the increase is partially due to pumping since iron is known to precipitate out of the water column and settle on the bottom of lakes. Sediments containing iron can be relatively easy to stir up temporarily, during pumping and/or auguring a hole through the ice, especially in shallow lakes with little free water. However, the increase observed does not appear to be detrimental to overall water quality since the natural iron concentrations found in the reference lake, M9913, were at higher levels than lake M9915 by April (up to 17.5 mg/l for M9913 and 11.8 mg/l for M9915). Iron concentrations at all of the study lakes dropped to very low levels (below 0.06 mg/l) by August.

Potassium concentrations at the study lakes appear to increase over the winter, similar to the other metal concentrations, with the exception of one data point for reference lake M9913 in March. Potassium was not detected in this water sample. However, the detection limit for potassium was set relatively high, at 2.5 mg/l, indicating potassium may have been present in the sample at any concentration below this limit.

Comparing summer data for total dissolved solids, hardness, chloride, calcium, magnesium, and sodium with that from the previous two years (MJM 2000a, MJM 2000b, and PAI 2000), it appears that concentrations of these analytes vary somewhat from year to year, but are within the

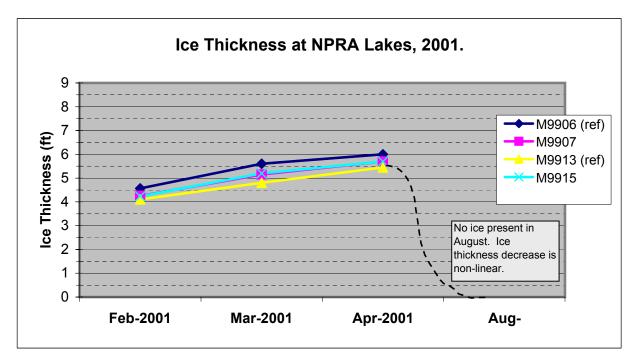
Lake	Date	CI	TDS	Hard	Са	Mg	Na	K (mg/L)	Fe	Si (mg/L)	Ice Thick
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)		(ft)
M9906	2/7/2001	52.5	354	295	95.9	13.5	21.2	3.0	0.186	0.6	4.6
reference	########	92.6	476	415	135	18.8	28.3	3.49	0.811	1.22	5.6
	########	101	641	528	171	24.7	36.8	3.68	0.504	1.4	6
	#######	15.2	136	86	27.7	4.11	6.21	0.697	0.0579	ND(.500)	0
M9907	2/7/2001	34.9	268	230	73.5	11.1	16.6	3	0.342	1.4	4.3
	########	61.9	364	314	100	15.5	22.7	3.25	1.05	1.87	5.2
	########	67.5	474	418	133	20.8	30.1	3.75	2.57	1.59	5.7
	########	13.8	164	86.3	27.3	4.40	6.58	0.884	0.0457	ND(.500)	0
M9913	2/6/2001	47.9	198	141	41.9	8.9	15.1	1.7	1.93	0.6	4.1
reference	########	95	344	209	61.7	13.2	22.7	ND(2.5)	4.5	1.11	4.8
	########	124	454	329	97.3	20.8	34.7	2.74	17.5	2.06	5.5
	#######	13.1	95	38.9	11.4	2.54	4.59	ND(.500)	0.203	ND(.500)	0
M9915	2/7/2001	64.1	232	162	48.1	10.1	17.9	2.2	1.27	0.5	4.2
	########	121	446	291	85.7	18.6	30.2	3.25	10.1	1.3	5.2
	########	166	528	386	112	26.0	42.0	3.02	11.80	2.24	5.7
	#######	11.8	90	32.9	9.43	2.27	3.92	0.508	0.312	ND(.500)	0

Table 3.1: Water Quality Sampling Analytical Results. 2001 NPR-A Lake Monitoring, Alaska.

Notes:

Elevations are based on assumed base elevation.

-- indicates "not measured"


ND indicates analyted not detected at detection limit shown in parentheses

February data is "before pumping"

March: "after pumping"

April: just "before breakup"

August is the "late summer" sampling to check for recharge.

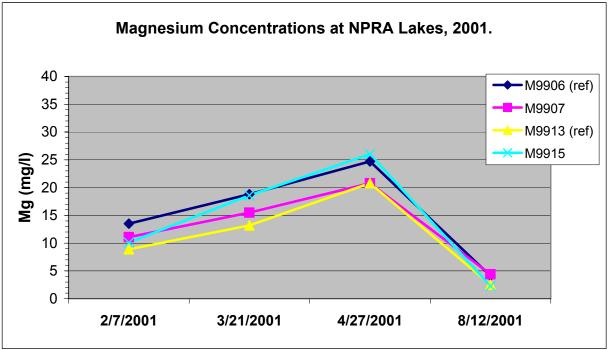


Figure 3.1: Ice Thickness and Magnesium Concentrations at NPR-A Lakes, 2001. Magnesium is presented to represent typical trend of analyte concentrations sampled at the lakes. Refer to Appendix C for a full set of plots, including each of the parameters analyzed. Note: Lakes M9906 and M9913 are references for Lakes M9907 and M9915, respectively.

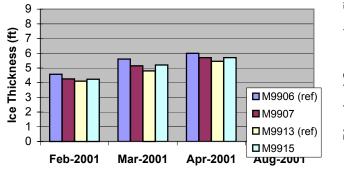
same order of magnitude. Over the three years, total dissolved solids ranged from 55 to 164 mg/l with the highest measurement recorded at M9907 during both 2000 and 2001. Hardness ranged from 32 to 89 mg/l. Chloride ranged from 8.2 to 32 mg/l. Calcium ranged from 9 to 35.5 mg/l. Magnesium ranged from 2.1 to 5.5 mg/l. Sodium ranged from 3.8 to 11.9 mg/l (MJM 2000a, MJM 2000b, and PAI 2000). A summary of 1999 and 2000 water quality data reported by MJM and PAI is provided in Appendix D.

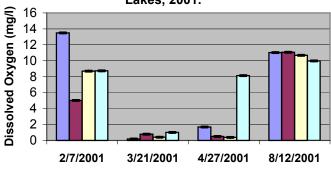
3.2 IN-SITU WATER QUALITY

In-situ water quality was measured with a Horiba U-10 Water Quality Checker. Measurements were recorded using the instrument's expanded resolution mode. These figures are accurate only to the repeatability of the instrument. According to the manufacturer, the Horiba U-10 instrument has the specifications shown in Table 3.2. Using this information, error bars showing the interval of confidence in the water quality measurements are included on the graphs.

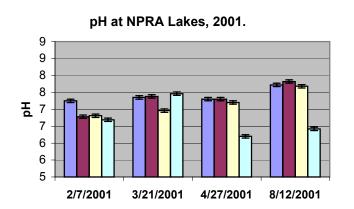
Parameter	Range	Standard Resolution	Expanded Resolution	Repeatability
pH	0 - 14 pH	0.1 pH	0.01 pH	+/- 0.05 pH
Conductivity	0 - 100 mS/cm	0.01 mS/cm	0.001 pH	+/- 1% of full scale (~0.01 mS/cm)
Turbidity	0 - 800 NTU	10 NTU	1 NTU	+/- 3% of full scale (~3 NTU)
Dissolved Oxygen	0 - 19.9 mg/l	0.1 mg/l	0.01 mg/l	+/- 0.1 mg/l
Temperature	0 - 50 °C	1 °C	0.1 °C	+/- 0.3 °C

 Table 3.2: Horiba U-10 Water Quality Checker Manufacturer's Specifications.


In general, there did not appear to be a significant change in water quality that could be directly attributable to water withdrawal. Natural processes, which as winter progressed, appeared to cause variations in the parameters measured, such as an increase in conductivity and a decrease in dissolved oxygen. Plots of ice thickness as well as turbidity, dissolved oxygen, conductivity, temperature, and pH are included in Figure 3.2.


Turbidity during the February sampling effort was low, with 0.0 Nephelometric turbidity units (NTU) recorded at three of the lakes and 6.0 NTU at M9913. In March, the meter recorded 10.0 NTU and a "yellowish water color" was observed at all of the lakes.

In April, turbidity recorded at pumped lake M9907 and reference lake M9913 indicated elevated levels when compared to previous measurements. No measurements could be obtained for turbidity at lakes M9906 and M9915 during April due to instrument failure. The instrument was calibrated successfully but the cause of the failure is unknown. Field visual observations indicated that these lakes had "a soft bottom, limited free water due to increased ice thickness (1.8 feet [ft] for M9906 and 1.1 ft for M9915), and very turbid water with suspended organic material". It was also noted that M9907 had "some suspended organics" and M9913 was "murky and had yellowish, water color". From these observations, it can be deduced that the turbidity at these lakes was noticeably higher than that observed during the previous field sampling events. By late summer, the turbidity at the study lakes ranged from 1 to 3 NTU. In summary, an increase in turbidity levels returned to low levels by August.


Dissolved Oxygen concentrations at NPRA Lakes, 2001. 16 14

Conductivity at NPRA Lakes, 2001.

3/21/2001

4/27/2001

30

25

20

15 10

5

0

-5

2/7/2001

Turbidity (NTU)

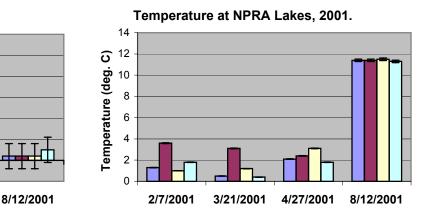


Figure 3.2: Ice thickness and in-situ water quality measurements recorded at two reference and two pumped lakes in NPR-A. Error bars are based on the instrument manufacturer's repeatability specifications. Note: Lakes M9906 and M9913 are references for pumped lakes M9907 and M9915, respectively.

3-5

SECTIONTHREE

Natural processes would result in an observed increase in lake turbidity during breakup, as runoff enters the lake. Turbidity during summer varies with the depth of the lake and the amount of wind disturbance. At freeze-up there is usually a dramatic drop in turbidity as ice cover eliminates wind disturbances. Turbidity does not usually increase as a result of thickening ice cover, like that measured between February and March and between March and April. It should be recognized that turbidity is not solely a function of suspended sediments: the meter calculates turbidity by measuring permeable diffused light, which can vary due to ice and snow cover, water color, and other factors. This and the fact that the meter did not appear to be recording accurate data at other lakes that day, suggests that the increase measured in reference lake M9913 during April was an anomaly.

For the less significant increase measured between February and March, the measurements may be considered too close within the confidence intervals specified by the accuracy of the instrument used. An additional factor to consider is the effect of boring a hole through the ice with an auger and the possibility of stirring up bottom sediments in cases where little free water is available. Obviously, this may occur equally at both reference and pumped lakes. However, neither field observations nor turbidity measurements indicated a noticeable difference in turbidity levels at pumped versus reference lakes such that any increases in turbidity could be directly attributable to water withdrawal activities.

The measurement of dissolved oxygen refers to the amount of gaseous oxygen dissolved in the water. Oxygen gets into the water by transmission from the surrounding air, aeration (rapid movement), and as a waste product of photosynthesis. The amount of oxygen that can be held by the water is a function of temperature, salinity, and pressure (i.e. gas solubility). Gas solubility decreases with increasing salinity/conductivity and with decreasing pressure. As expected, there was a notable decrease in dissolved oxygen between February and March (levels dropped to less than 1mg/l in all four lakes), when the most significant increase in ice thickness and corresponding increase in conductivity occurred. Dissolved oxygen levels remained relatively low in April (< 2 mg/l), with the exception of Lake M9915, which increased to 8.14 mg/l. By the late summer sampling event, all of the ice had melted and dissolved oxygen levels had increased to the 10-11 mg/l range. In general, dissolved oxygen appeared to change consistently between both reference and pumped lakes. The more significant dissolved oxygen increase measured in M9915 in April may have been due to introduction of oxygen during ice hole auguring, the range of instrument accuracy, and external factors such as pumping. Such increases in dissolved oxygen, that are within the lakes' natural range, are not considered to be a degradation of water quality.

Conductivity appeared to follow the trends of the metal concentrations, as would be expected due to its dependence on ion concentrations in the water. There was a general increase in conductivity between February and April followed by a significant decrease in August, to levels below those found in February. For the entire study, conductivity ranged between 0.077 and 0.920 mS/cm.

Temperature and pH measurements appeared within the normal range for freshwater lakes on the North Slope (Radian 1999). Values measured for pH ranged from 6.2 to 7.8 and water temperature ranged from 0.4 to 11.5 degrees Celsius throughout the study period.

Comparing summer data for dissolved oxygen, conductivity, temperature, and pH with that from the previous two years, it appears that *in-situ* measurements did not appear to vary greatly from

year to year. Dissolved oxygen measurements collected during summer were between 9.76 and 9.90 mg/l in 1999, 9.8 and about 11.83 mg/l in 2000, and 9.98 and 11.06 mg/l in 2001. Summer conductivity measurements ranged from 0.086 to 0.200 mS/cm in 1999, 0.192 to 0.295 in 2000, and 0.077 to 0.177 in 2001 (MJM 2000a and MJM 2000b). Summer temperatures ranged from 13.0 to 14.7 °C in 1999, 7.4 to 14.8 °C in 2000, and 11.3 to 11.5 °C in 2001 (MJM 2000a, MJM 2000b, and PAI 2000). Measurements for pH were slightly lower in most of the lakes in 2001, but all were within a range of 6.4 to 8.6 over the three-year period (MJM 200a and MJM 2000b) which is within the background range (Radian 1999). A summary of water quality data reported by MJM and PAI is provided in Appendix D.

3.3 WATER LEVEL MEASUREMENTS

Measurements of ice thickness and water depth were used to determine free water availability in both the pumped lakes and corresponding reference lakes. This was used to answer a question raised by BLM as to whether water withdrawal could be playing a part in advancing the freezing rate of pumped lakes. Upon viewing the plots of ice thickness and free water during the winter months (Figure 3.3), it appears that these measurements are effectively proportional and water withdrawal had no measurable affect in advancing the freezing rate of lake water.

Water surface elevations were measured to determine the ability for the pumped lakes to fully recharge following water withdrawal. Figure 3.4 depicts water surface elevation measurements for the entire study. During winter, the water surface elevation in a hole drilled through the ice is often assumed to be equivalent to the water surface elevation during ice-free conditions, all other factors being equal. This is a reasonable assumption as long as the ice is free floating: although the ice on the edges of the lake may be frozen to the ground, any ice over water is generally free to deflect such that it is, in effect, floating.

Following pumping, in March, both pumped lakes showed a decrease in surface elevation (0.1 ft at M9907 and 0.2 ft at M9915) when compared to elevations measured prior to pumping, in February. In contrast, the reference lakes remained at the same level or increased in elevation during this period. Additionally, the water levels at the pumped lakes decreased by an additional 0.1 ft by April, while the reference lakes remained at the same elevation.

Following breakup, in June, all of the lake levels increased and pumped lakes increased by a greater amount than the reference lakes (0.53 ft at M9907, 0.88 ft at M9915, and about 0.3 ft at each reference lake). This seems to indicate that the lake levels at the pumped lakes tend to retain more runoff water associated with breakup and hence recharge to levels greater than the levels measured in February.

By mid-August all of the lakes had lower water levels, indicating net water loss due to evaporation was greater than the net gain due to precipitation/recharge. Previous studies indicate that evaporation is a significant cause of water loss from lakes on the North Slope.

In early September, lake level changes were small and variable. M9907 decreased by 0.12 ft while its reference lake, M9906, increased by 0.02 ft. M9915 decreased by 0.01 ft and its reference, M9913, decreased by 0.1 ft.

Historically, August has the largest amount of rainfall of any month (based on monthly climate summary data at Kuparuk during 1971-2000) and averages 1.11 inch (0.09 ft). This, as well as

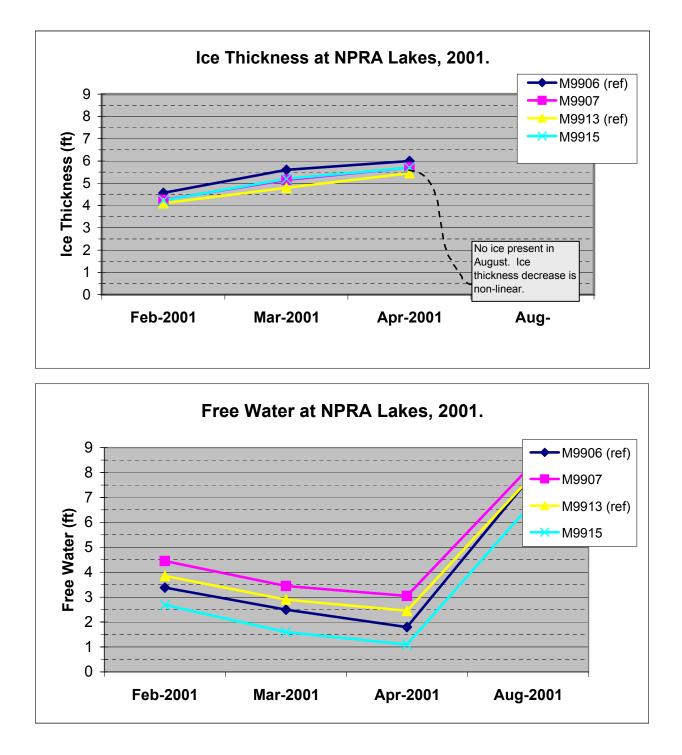


Figure 3.3: Plots of Ice Thickness and Free Water at two pumped lakes and two reference lakes in NPR-A. Note: Lakes M9906 and M9913 are references for pumped lakes M9907 and M9915, respectively.

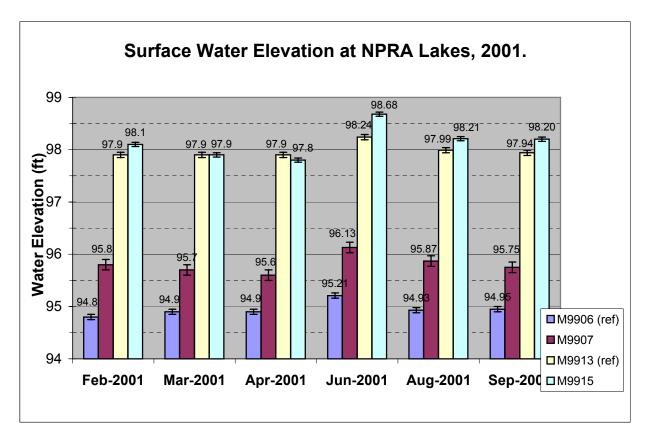


Figure 3.4: Surface Water Elevations at NPR-A Lakes, 2001. Note: Lakes M9906 and M9913 are references for pumped lakes M9907 and M9915, respectively.

the local effects of runoff and evaporation rates may contribute to measurable changes in lake levels. In addition, variation in shoreline staff gage readings may occur due to wind setup/setdown and wind induced waves. These natural effects combined with the lack of multiyear water level measurements, cause difficulty in determining whether water level variations can be attributed to water withdrawal for ice road construction and whether the lakes fully recharge (i.e. there are no pre-freezeup data for comparison).

3.4 WATER VOLUMES

PAI subcontractors utilized water from Lakes M9907 and M9915 for ice road and ice pad construction during winter 2001. A total of 205,800 gallons of water was pumped from M9907 and a total of 1,232,772 gallons was pumped from M9915. No water was withdrawn from the reference lakes, M9906 and M9913.

Water withdrawal at the lakes included in this study is summarized Table 3.3 below.

Lake Date		Date	Total Daily Water Withdrawn in 2000 (gallons)	Lake Volume ¹ (gallons)
M9906				
	Total		0	211,600,000
M9907		2/26/01	17,640	
111/101		2/27/01	188,160	
	Total		205,800	150,900,000
M9913				
	Total		0	17,000,000
M9915		2/28/01	64,680	
		3/5/01	136,080	
		3/6/01	257,376	
		3/7/01	588,168	
		3/8/01	186,468	
	Total		1,232,772	23,000,000

 Table 3.3: Water Withdrawal and Total Lake Volumes for Four Lakes in NPR-A.

¹Total lake volume is a rough calculation based on the volume of a cone, maximum depth, and surface area (MJM 2000).

Based on the data collected, the effective water depth and the water volumes were calculated. If these were fish-bearing lakes, similar calculations could be performed to determine the volume of water available for overwintering fish habitat. The following table shows the volume of available free water under the ice that was calculated from the measurements collected during each sampling effort.

Lake	Month	Free Water Depth (ft)	Volume Under Ice (gal)	Notes
	February	3.38	89,401,000	
M9906	March	2.5	66,125	Reference Lake
	April	1.8	47,610,000	
	August	8	211,600,000	
	February	4.45	79,000,600	
M9907	March	3.45	61,247,600	205,800 gallons pumped
	April	3.05	54,146,500	equals 0.33% of the volume
	August	8.5	150,900,000	under the ice.
	February	3.85	8,500,000	
M9913	March	2.9	6,402,600	Reference Lake
	April	2.45	5,409,100	
	August	7.7	17,000,000	
	February	2.69	9,098,500	
M9915	March	1.6	5,411,800	1,232,772 gallons pumped
	April	1.1	3,720,600	equals 22.7% of the volume
	August	6.8	23,000,000	under the ice.

Table 3.4: Under Ice Water Volumes at Four Lakes in NPR-A.

Calculations determined that at the maximum ice thickness more free water was available in pumped lake M9907 than its reference M9906. This is not the case for the other pair of lakes. Less than 1 percent of the available water was pumped from M9907 whereas about 23 percent was pumped from M9915.

4.1 CONCLUSIONS

The goals of the 2001 Monitoring Plan included studying water levels and water quality at both pumped and reference lakes to determine the following:

- 1. Measure water level changes and study whether the changes may be caused by water withdrawal (pumping) used for ice road and pad construction.
- 2. Determine whether pumping and associated lake level decreases caused an increase in freezing rates.
- 3. Determine whether water volumes for fish habitat may be affected by pumping and/or lake drawdown, including disturbance of sediments and specific water quality parameters.

4.1.1 Water Levels

The lakes included in this study are tundra lakes, meaning they are not connected to a river channel. Hence, water enters these lakes by direct precipitation and drainage from the surrounding area and water leaves the lakes by evaporation and sublimation. Summer evaporation on the North Slope can be significant, 1 to 3 mm per day, and can exceed summer precipitation (Kane and Janowicz 1989). Thus, the water surface elevations in the study lakes fluctuate due to precipitation, evaporation, and unnatural causes (in this case, water withdrawal by pumping).

Water surface elevation measurements in this study showed that water level decreases caused by pumping did not advance the freezing rate of the lakes. Additionally, lake levels returned to the pre-pumping levels prior to freeze up. More data, such as local precipitation, evaporation, and runoff, is required to determine whether lake recharge is likely to occur in an average year or a dry year. Additionally, multi-year data including pre-freezeup elevations, prior to pumping, would be useful to determine if water surface elevations return to original levels.

4.1.2 Water Quality

The original study design included an evaluation of water quality on fish-bearing lakes, but since the proposed "pumped" lake was not used for water withdrawal, study of these lakes was discontinued. Although, water quality parameters, including those that may be considered critical to fish habitat, were studied at the remaining non fish-bearing lakes, this study was unable to fully evaluate the potential impacts of water withdrawal on fish habitat.

Overall, the water quality parameters measured directly and analyzed in a laboratory do not suggest that pumping caused a significant degradation in water quality. Turbidity and iron measurements suggest that pumping may have partially contributed to bottom sediments becoming temporarily suspended in the free water column of the shallow lakes. However, auguring an ice hole through the lakes prior to sampling would create suspended sediments in shallow lakes. Taking this into consideration and the fact that changes were observed in both pumped and reference lakes, it does not appear that pumping caused a significant increase in suspended sediments. Both turbidity and iron concentrations appeared to return to pre-pumping conditions before the summer sampling effort.

Other water quality measurement changes appeared to be naturally occurring and were consistent between pumped and reference lakes. Parameters such as total dissolved solids, chloride, hardness, and metal concentrations, followed similar trends such that concentrations of these parameters increased in proportion to the increase in ice thickness over the course of the winter. A large portion of these analytes is excluded from the ice as it forms, causing concentrations to increase in the underlying free water. Since conductivity is dependent on salt concentrations, this also appeared to follow a similar trend.

Dissolved oxygen generally decreases over the course of the winter, as less oxygen is available under the ice. Auguring the ice hole, which disturbs and potentially introduces oxygen into the water column, may have caused some inconsistencies in dissolved oxygen measurement, such as the increase recorded at one lake in April.

- Hutchinson, G.E. A Treatise on Limnology. Yale University. Published by John Wiley and Sons, Inc., New York. 1957.
- Kane, D.L. and R.J. Janowicz. Flood Frequency Estimation for Alaska. Published by the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. Report of investigations series R88-17. April, 1989.
- MJM Research (MJM) 2000a. Fish Utilization of Lakes in Eastern NPR-A 1999. Final Data Report. Prepared for ARCO Alaska, Inc. January 2000.
- MJM Research (MJM) 2000b. Fish Utilization of Lakes in Eastern NPR-A: 1999-2000. Final Data Report. Prepared for ARCO Alaska, Inc. November 2000.
- Phillips Alaska, Inc. (PAI) 2000. 2000 NPR-A Lake Recharge Study Results. Prepared by Phillips Alaska, Inc. December 22, 2000.
- Radian International. Environmental Background Properties of North Slope (AK) Provinces. Final report prepared for ARCO Alaska, Inc. October 1999.

Appendix A Monitoring Plan

Phillips Alaska, Inc. 2001 NPR-A Lake Recharge Study

Purpose of Recharge Study:

To fulfill the following stipulation contained in the Finding of No Significant Impact - Record of Decision (FONSI-ROD) prepared by the Bureau of Land Management for Permit to Drill 3100.00 and Right-of-Way Permit 2884.01.

"Monitoring the effect of water use from lakes used for lake road construction. The concern exists in the case of multiple year use of lakes for ice road construction where the assumption is that recharging will be acceptable for the continuing use of these lakes. Applicant is to develop a monitoring plan to measure water volumes before use, measuring amounts used, and lake drawdown. An annual plan for water use will be required for the use of multi-year lake use after the first year of use."

Monitoring Plan:

The intent of the Monitoring Plan is to determine the amount of free water available under the ice and to assess the amount of recharge by the lake in the summer, following water withdrawal during the winter construction season. Phillips Alaska, Inc. (PAI) proposes to monitor three lakes used for water sources during the 2001 NPR-A exploration program plus three unused lakes to serve as controls. This is an increase in the number of lakes studied under the 2000 Recharge Program and is intended to provide for a better comparison between lakes with similar physical characteristics, as well as to take into account the variability between lakes by incorporating more than one control into the program. This monitoring approach was developed in coordination with bp and the BLM.

The study lakes proposed for 2001 are as follows:

- M9906 (Control Lake) also sampled in 2000 Recharge Study.
- M9907
- M9913 (Control Lake)
- M9915 also used in 2000 Recharge Study.
- M9911 (Control Lake)
- M9909

In 1999 and 2000, PAI conducted a study of the lakes in the eastern portion of NPR-A to determine which lakes in the area could be used as water sources (see *Fish Utilization of Lakes in Eastern NPR-A: 1999-2000, Final Data Report*, November 2000, MJM Research). Data collection involved water quality sampling, fish sampling, and volumetric calculations. These data were consulted

to select lakes for study that would be representative of the variety of lakes cited in the BLM's December 2000 protocol for lake monitoring.

For the lakes in this study, the report lists the following information:

Summary of Study Lakes for 2001 Recharge Program					
Lake Number	Lake Volume	Maximum depth	Fish Presence?		
M9906 *	211.6 million gals	9.7 feet	No fish		
M9907	150.9 million gals	9.5 feet	No fish		
M9913 *	17.0 million gals	7.9 feet	No fish		
M9915	23.4 million gals	7.1 feet	No fish		
M9911 *	237.2 million gals	15.3 feet	Fish present		
M9909	207.3 million gals	16.4 feet	Fish present		

Note: asterisk designates a lake to be used as a control in the study

The lakes were selected to represent varied lake sizes and types (fish-bearing versus non fish-bearing) and were paired with lakes having similar physical characteristics as reference lakes.

Study Methods:

Water volumes withdrawn from each lake for use by PAI will be recorded during the exploration season.

Water Level Measurements

Concern exists that water withdrawal could lower water levels to such an extent that the lakes freeze completely, thus adversely impacting fish overwintering habitat. PAI proposes to collect data on ice thickness and free water availability in a pumped lake and corresponding reference lake to determine if water withdrawal could be playing a part in advancing the freezing level of pumped lakes.

In January 2001, PAI will establish a sampling point at the deepest point of the lake using information contained in the above referenced MJM report. This location will be surveyed for future reference and the following information collected:

- elevation of ice surface;
- elevation of ice bottom; and
- elevation of bottom of lake.

Based on the data collected, the effective water depth will be calculated. This effort will be conducted immediately prior to pumping and after pumping ceases to assess the available water quantity for potential overwintering habitat for fish and aquatic invertebrates and the amount of recharge experienced by the lakes following water withdrawal.

The recharge portion of the survey will commence just prior to breakup with the installation of a water level gauge at a near shore location that is tied to a common reference point and read periodically through the summer (post-breakup). After break-up (approximately mid-June), the study lakes will be surveyed to determine water surface elevation and lake bottom elevation at the same sample locations. In Fall 2001, the study lakes will once again be surveyed for water surface and lake bottom elevations.

Water Quality Sampling

There are concerns that withdrawal of water from north slope lakes could disturb bottom sediments, disrupt stratification or effect water quality in the free water beneath the surface ice. In discussions with BLM personnel, it was agreed that samples collected prior to pumping, immediately after pumping, and again before breakup would enable us to detect a measurable change in water quality.

Four sampling trips will be conducted to assess water quality at the six lakes:

- Trip 1– immediately prior to pumping
- Trip 2– at the conclusion of pumping
- Trip 3– immediately prior to ice road close-out (prior to break up)
- Trip 4– in late summer.

A two-person team will conduct *in situ* water quality measurements using a Horiba water quality meter. The *in situ* measurements to be taken include:

- Temperature
- Dissolved Oxygen
- pH
- Conductivity
- Turbidity

An ice auger will be used to punch a hole at the sampling point established at the deepest point of the lake. Depending on the depth of water available in a given sample lake, one or more measurements will be taken. For lakes with greater than 7 feet of available water depth, *in situ* readings will be taken at the surface, middle and immediately above the bottom. Should less water be available, fewer readings will be taken.

In order for the Horiba to work properly in the sub-zero temperatures expected to be encountered during the first two sampling trips, we plan to use several methods to keep both the meter and the probes warm. The Horiba will be fitted with a 10-m cable which may allow the field team to keep the instrument in the Tucker or other transportation vehicle during the *in situ* analyses. If this is not possible, we will keep several chemical "heat packets" or Hot Hands" inside of the instrument case. The instrument probe(s) will be kept in warm water in a small cooler or other insulated container. Rubbing alcohol can be added to the water in the cooler. The probes will remain in the warm water until immersion in the lake water, and will be returned immediately to the warm cooler water after readings are taken. At least one back-up meter and probe(s) will be available should the primary meter fail.

Additional back-up *in situ* testing for dissolved oxygen will be conducted using CHEMets Colorimetric Test Kits in the test range from 1 to 12 ppm. Surface water

will be collected from the hole by inverting the 25 ml cylinder included in the CHEMetrics kit and inserting it to a depth of 4-6 inches in the water. The cylinder will then be turned 180 degrees and allowed to fill with the water with minimal agitation. Testing of the water in the cylinder using the kits will be conducted according to following the manufactures directions and will occur immediately adjacent to the test hole if possible, or in the nearby Tucker. The most critical point of this sampling is in collecting the sample in order to assure that it is not agitated and thereby aerated. Readings should not be greatly affected if it is necessary to carry the sample cylinder to the directly adjacent Tucker to add the kit chemicals and conduct the colormetric comparison.

In addition to the *in situ* testing, one water sample will be collected from each lake for laboratory analysis. Using the bailer or vertical water sampler, a total of 6 primary samples, and one random duplicate sample per trip will be collected into specially prepared sample jars to be provided by the contracted laboratory (Northern Testing Laboratories Inc.). Proposed laboratory tests include:

- Hardness as CaCO₃ (SM 3500 CaD)
- Calcium (EPA 200.7/6010B)
- Magnesium (EPA 200.7/6010B)
- Chloride (EPA 300.0)
- Sodium (EPA 200.7/6010B)
- Potassium (EPA 200.7/6010B)
- Iron (EPA 200.7/6010B)
- Silicon (EPA 200.7/6010B)
- Total Dissolved Solids (SM2540-C).

This suite of tests includes all tests also conducted for the 2000 NPRA Lake Recharge Study.

Reporting of Study Results:

PAI will summarize the results of this study in a report to the BLM by October 31, 2001. If subsequent exploration work is planned in 2002, PAI will submit an updated Lake Recharge Study Plan to the BLM by December 15, 2001.

Appendix B Laboratory Results

.

۰. ۱

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 8005 SCHOON STREET POUCH 340943 FAIRBANKS, ALASKA 99201 ANCHORAGE, ALASKA 99518 PRUDHOF BAY, ALASKA 99734 (907) 456-3116 • FAX 456-3125 (907) 349-1000 • FAX 349 1016 (907) 659-2145 • FAX 659 2146

URS Corporation	URS Corporation					
3501 Denali St.; Ste	: 101					
Anchorage, AK 992	503					
Attn: Sue Ban	L					
Phone: (907) 5	61-1020					
Fax: (907) 5	63-9732					
COC #:	20963					
NTL Lab#;	F202177					
Sample Matrix:	Water					
Location/Project:	2001 NPR-A Lake Recharge Study					
Client Sample ID:						

Report Date:2/14/01Date Arrived:2/9/01Date Sampled:2/6/01Time Sampled:1:56:00 PMSampled By:EC/CLMRL = Method Reporting LimitFlan DefinitionsB = Below Regulatory Minimum

II - Above Regulatory Maximum

M = Matrix Interference * = Less Than Reporting Limit

Method	Parameter	Result	Units	Flag	MRL	Analysis Date
EPA 300.0	 Chìoride	29.5	mg/L		0.80	2/9/01
SM 2540-C	Total Dissolved Solids	224	mg/L		35.0	2/12/01
EPA 200.7	Hardness as CaCO3	205	mg/L		0.2	2/12/01
EPA 200.7	Calcium	66.8	mg/L		0.04	2/12/01
EPA 200.7	Magnesium	9.2	mg/L		0.2	2/12/01
EPA 200.7	Sodium	12.2	mg/L		0.1	2/13/01
EPA 200.7	Potassium	2.0	mg/L		0.2	2/13/01
EPA 200.7	iron	0.094	mg/L		0,015	2/13/01
EPA 200.7	Silicon	0.4	mg/L		0.2	2/1 2/ 01

Reported by Jevenny Nicoll Fairbanks Chemistry Supervisor

.

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 8005 SCHOON STREET POUCH 346043

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99518 PRUDHOL BAY, ALASKA 99734

(907) 456 3116 · FAX 456 312! (907) 349-1000 - FAX 349-1014 (907) 659-2145 - L'AX 659-2144

URS Corpe	mation	
3501 Denal	li SL; Ste	101
Anchorage,	AK 9950	03
Attn:	Sue Ban	
Phone:	(907) 563	1-1020
Fax:	(907) 563	3-9732
COC #:		20963
NTL Lab#:		F202178
Sample Ma	trix:	Water
Location/Pr	oject:	2001 NPR-A Lake Recharge Study
Client Sam	ple ID: 🔳	

Report Date: 2/14/01 Date Arrived: 2/9/01 Date Sampled: 2/6/01 Time Sampled: 2:30:00 PM Sampled By: EC/CL

MRL = Method Reporting Limit

Flag Definitions B = Below Regulatory Minimum H = Above Regulatory Maximum M " Matrix Interference

* = Less Than Reporting Limit

Method	Parameter	Result	Units	Flag	MRL	Analysis Date
EPA 300.0	Chloride	43.5	mg/L		0.80	2/9/01
SM 2540-C	Total Dissolved Solids	164	mg/L		35.0	2/12/01
EPA 200.7	Hardness as CaCO3	142	mg/L		0.2	2/12/01
EPA 200.7	Calcium	42.7	mg/L		0.04	2/12/01
EPA 200.7	Magnesium	8.5	mg/L		0.2	2 /12/01
EPA 200.7	Sodium	13.9	mg/L		0.1	2/13/01
EPA 200.7	Potassium	1.8	mg/E		0.2	2/13/01
EPA 200.7	[ron	0.028	mg/L		0.015	2/13/ 01
EPA 200.7	Silicon	0.2	mg/L		0.2	2/12/01

Reported Sy Jeremy Nicoll Fairbanks Chemistry Supervisor

.

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 8005 SCHOON STREET POUCH 340043

FAIRBANKS, AŁASKA 99701 ANCHORAGE, AŁASKA 99518 PRUDHOĽ BAY, ALASKA 99734 (907) 456 3116 • FAX 456 3126 (907) 349-1000 • FAX 349 1016 (907) 659-2145 • FAX 659-2146

URS Corp	poration	
3501 Деп	ali St.; Ste	101
Anchorag	e, AK 995	503
Atta:	Sue Ban	
Phone:	(907) 56	51-1020
Fax:	(907) 56	53-9732
COC #:		20963
NTL Lab	#:	F202179
Sample M	latrix:	Water
Location/.	Project:	2001 NPR-A Lake Recharge Study
Client Sar	mple ID; 🏾 *	VI III COLORA

Report Date:2/14/01Date Arrived:2/9/01Date Sampled:2/6/01Time Sampled:2:30:00 PMSampled By:EC/CL

MRL -- Method Reporting Limit

Flag Definitions B = Below Regulatory Minimum

 $H = Above Regulatory Maximum M \circ Matrix Interference$

* = Less Than Reporting Limit

Method	Parameter	Result	Cníts	Flag	MRL.	Analysis Date
EPA 300.0	Chloride	43.7	mg/L		0.80	2/9/01
SM 2540-C	Total Dissolved Selids	162	mg/L		35.0	2/12/01
EPA 200.7	Hardness as CaCO3	141	mg/L		0.2	2/12/01
EPA 200.7	Calcium	42.5	mg/L		0.04	2/12/01
EPA 200.7	Magnesium	8.5	mg/L		0.2	2/12/01
EPA 200.7	Sodium	14.6	mg/L		0.1	2/13/01
EPA 200.7	Potassium	1.8	mg/L		0.2	2/13/01
EPA 200.7	ir on	0.032	mg/L		0.015	2/13/01
EPA 200.7	Silicon	0.2	mg/L		0.2	2/1 2/01

Reported of Jeremy Nicoll Fairbanks Chemistry Supervisor

٠

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 8005 SCHOON STREET POUCH 340043 FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99518 PRUDHOE BAY, ALASKA 99734

(907) 456-3116 • FAX 456-3125 (907) 349-1000 • FAX 349-1016 (907) 659-2145 • FAX 659-2146

URS Corporation	
3501 Denali St.; Ste	101
Anchorage, AK 995	603
Attn: Sue Ban	
Phone: (907) 56	51-1020
Fax: (907) 56	53-9732
COC #:	20963
NTL Lab#:	F202180
Sample Matrix:	Water
Location/Project:	2001 NPR-A Lake Recharge Study
Client Sample ID:	

Report Date:2/14/01Date Arrived:2/9/01Date Sampled:2/6/01Time Sampled:3:15:00 PMSampled By:EC/CLMRL = Method Reporting LimitFlag DefinitionsB = Below Regulatory MinimumH = Above Regulatory MaximumM = Matrix Interference* = Less Than Reporting Limit

Method	Parameter	Result	Units	Flag	MRL	Analysis Date
EPA 300.0	Chloride	47.9	mg/L		0.80	2/9/01
SM 2540-C	Total Dissolved Solids	198	mg/L		35.0	2/12/01
EPA 200.7	Hardness as CaCO3	141	mg/L		0.2	2/12/01
EPA 200.7	Calcium	41.9	mg/L		0.04	2/12/01
EPA 200.7	Magnesium	8.9	mg/L		0.2	2/12/01
EPA 200.7	Sodium	15.1	mg/L		0.1	2/13/01
EPA 200.7	Potassium	1.7	mg/L		0.2	2/13/01
EPA 200.7	Iron	1.93	mg/L	н	0.015	2/13/01
EPA 200.7	Silicon	0.6	mg/L		0.2	2/12/01

Réported by Jeremy Nicoll Fairbanks Chemistry Supervisor

.

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 8005 SCHOON STREET POUCH 340043 FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99518 PRUDHOE BAY, ALASKA 99734

(907) 456 3116 • FAX 456 3125 (907) 349 1000 • FAX 349 1016 (907) 659-2145 • FAX 659 2146

URS Cor	poration	
3501 Der	iali St.; Ste	101
Anchorag	ge, AK 995	503
Attn:	Sue Ban	
Phone:	(907) 50	51-1020
Fax:	(907) 50	53-9732
COC #:		20963
NTL Lab	#:	F202181
Sample N	fatrix:	Water
Location/	Project:	2001 NPR-A Lake Recharge Study
Client Sa	mple ID:	

Report Date;2/14/01Date Arrived:2/9/01Date Sampled:2/7/01Time Sampled:8:36:00 AMSampled By:EC/CLMRL - Method Reporting Limit

Elag Definitions B -- Below Regulatory Minimum H =- Above Regulatory Maximum M = Matrix Interference

* -- Less Than Reporting Limit

Comments:

Method	Parameter	Result	Units	Flag	MRI.	Analysis Date
EPA 300.0	Chloride	34.9	mg/L	·	0.80	2/9/01
SM 2540-C	Total Dissolved Solids	268	mg/L		35.0	2/12/01
EPA 200.7	Hardness as CaCO3	230	mg/L		0.2	2/12/01
EPA 200.7	Calcium	73.5	mg/L		0.04	2/12/01
EPA 200.7	Magnesium	11.1	mg/L		0.2	2/12/01
EPA 200.7	Sodium	16.6	mg/L		0.1	2/13/01
EPA 200.7	Potassium	3,0	mg/L		0.2	2/13/01
EPA 200.7	Ir on	0.342	mg/L	11	0.015	2/13/01
EPA 200.7	Silicon	1.4	mg/L		0.2	2/12/01

Reported by Jeromy Nicoll Fairbanks Chemistry Supervisor

CT&E Environmental Services Inc.

Laboratory Division Laboratory Analysis Report 200 W. Potter Drive

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.eteesi.com

Kim Nielson URS Corporation 3501 Denali St. #101 Anchorage, AK 99503

I	Report Date:	April 10, 2001	
(Client:	URS Corporation	
		NPRA Lake Recharge	
V	Vork Order:	1011452	

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintaned by CT&E. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your CT&E Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- U Indicates the analyte was analyzed for but not detected.
- J Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than
- ! Surrogate out of range

SGS Member of the SGS Group (Societe Generale de Surveillance)

200 W. Potter Drive, Anchorage, AK 99518-1605 — Tel: (907) 562-2343 Fax: (907) 561-5301 3180 Peger Road, Fairbanks, AK 99709-5471 — Tel: (907) 474-8656 Fax: (907) 474-9685

ŝ

CT&E Ref.# Client Name Project Name/# Client Sample ID Matrix Ordered By	1011452001 URS Corporation NPRA Lake Recharge 032101M9913-01 Water (Surface, Eff., Ground)			Client PO# Printed Dat Collected D Received D Technical D Released By	ate/Time ate/Time	04/10/200 03/21/200 03/23/200 Stephen C)1 15:35)1 13:00 , Ede
Sample Remarks: EPA 200.8 Meta	uls by ICPMS: Ca was >4x spike ar	nount					
Parameter	Results	PQI,	Units	Method	Allowable Limits	Prep Date	Anatysis Date
Metals Depart	ment						
Calcium	61.7	0.500	mg/L	EPA 200.7		03/25/01	04/03/01
Iron	4.50	0.0250	mg/L	EPA 200.7		03/25/01	04/03/01
Magnesium	13.2	0.0500	mg/L	EPA 200.7		03/25/01	04/03/01
Silicon	[.]1	0.250	mg/L	BPA 200.7		04/03/01	04/05/01
Sodium	22.7	0.139	mg/L	EPA 200.7		03/25/01	04/03/01
Hardness as CaCO3	209	2.00	ng/L	SM17 2340B			04/04/01
Metals by IC	/MS						
Potassium	2500 U	2500	ug/L	EPA 200.8		04/06/01	04/09/01
Waters Depart	ment						
Chloride	95.0	25.0	mg/L	EPA 300.0			03/23/01
Total Dissolved Solid		50.0	mg/L	SM20 2540C			03/23/01
		50.0		01-120 20400			05/25/01

CT&E Ref.#	1011452002
Client Name	URS Corporation
Project Name/#	NPRA Lake Recharge
Client Sample 1D	032101M9915-01
Matrix	Water (Sarlace, Eff., Ground)
Ordered By	· · · · · · · · · · · · · · · · · · ·

Client PO#	74-PA101001.00-20
Printed Date/Time	04/10/2001 9:21
Collected Date/Time	03/21/2001 17:05
Received Date/Time	03/23/2001 13:00
Technical Director	Stephen C. Ede

Released By 5 hours Prete

Perameter	Results	PQI.	Units	Method	Allowable Limits	Prep Date	Analysis Date
Metals Department							
Calcium	85.7	0.500	mg/L	EPA 200.7		03/25/01	04/03/01
Iron	10.1	0.0250	mg/L	EPA 200.7		03/25/01	04/03/01
Magnesium	18.6	0.0500	mg/L	EPA 200.7		03/25/01	04/03/01
Silicon	1.30	0.250	mg/L	EPA 200.7		04/03/01	04/05/01
Sodium	30.2	0.139	mg/L	EPA 200.7		03/25/01	04/03/01
Hardness as CaCO3	291	2.00	mg/L	SM17 2340B			04/04/01
Metals by ICP/MS							
Potassium	3250	2500	ug/I.	EPA 200.8		04/06/01	04/09/01
Waters Department							
Chloride	121	25.0	mg/L	EPA 300.0			03/23/01
Total Dissolved Solids	446	50.0	mg/L	SM20 2540C			03/23/01

CT&E Ref.# Client Name Project Name/# Client Sample ID Matrix Ordered By	1011452003 URS Corporation NPRA Lake Recharge 032101M9915-02 Water (Surface, Eff., Ground)			Client PO# Printed Dat Collected D Received D Technical D Released By	te/Time ate/Time ate/Time	04/10/200 03/21/200 03/23/200 Stephen C)1 17:10)1 13:00 . Ede
Sample Remarks:							
Parameter	Results	PQI,	Units	Method	Allowable Limits	Prep Date	Analysis Dute
Metals Depart	ment						
Calcium	\$8.2	0.500	mg/L	EPA 200.7		03/25/01	04/03/01
Iron	10.8	0.0250	mg/L	EPA 200.7		03/25/01	04/03/01
Magnesium	19-1	0.0500	mg/L	EPA 200.7		03/25/01	04/03/01
Silicon	1.27	0.250	mg/L	EPA 200.7		04/03/01	04/05/01
Sodium	30.7	0.139	mg/L	EPA 200.7		03/25/01	04/03/01
Hardness as CaCO3	299	2.00	mg/L	SM17 2340B			04/04/01
Metals by ICE	?/MS						
Potassium	3030	2500	սջ/Լ	BPA 200.8		04/06/01	04/09/01
Naters Depart	ment						
Chloride	126	25.0	mg/L	EPA 300.0			03/23/01
Total Dissolved Solid	ds 438	50.0	mg/L	SM20 2540C			03/23/01
			0				

476

1011452004

.

CT&E Ref.#

Client Name Project Name/# Client Sample ID Matrix Ordered By	URS Corporation NPRA Lake Recharge 032101M9906-01 Water (Surface, Eff., Ground)			Chent PO# Printed Dat Collected D Received D: Technical D Released By	ate/Time ate/Time	04/10/200 03/21/200 03/23/200 Stephen C)1 18:10)1 13:00 ; Ede
Sample Remarks:	<u> </u>						
Parameter	Results	 PQL	Units	Method	Allowable Limits	Prop Date	Analysis Date
Metals Depart	ment .						
Calcium	135	0.500	mg/L	EPA 200.7		03/25/01	04/03/01
Iron	0.811	0.0250	mg/L	EPA 200.7		03/25/01	04/03/01
Magnesium	18.8	0.0500	mg/L	EPA 200.7		03/25/01	04/03/01
Silicon	1.22	0.250	mg∕L	EPA 200.7		04/03/01	04/05/01
Sodium	28.3	0.139	mg/L	EPA 200.7		03/25/01	04/03/01
Hardness as CaCO3	415	2.00	mg/L	SM17 2340B			04/04/01
Metals by ICH	/MS						
Potassium	3490	2500	ug/L	EPA 200.8		04/06/01	04/09/01
Waters Depart	ment						
Chloride	92.6	25.0	mg/L	EPA 300.0			03/23/04
TALES 1 14 P			-				·······

50.0 mg/L SM20 2540C

Client PO#

74-PAI01001.00-201

03/28/01

Total Dissolved Solids

.

CT&E Ref.# Client Name Project Name/# Client Sample ID Matrix Ordered By	1011452005 URS Corporation NPRA Lake Recharge 032101M9907-01 Water (Surface, Eff., Ground)			Client PO# Printed Date Collected Da Received Da Technical D Released By	ate/Time .te/Time	04/10/200 03/21/200 03/23/200 Stephen C)1 18:55)1 13:00 . Ede
Sample Remarks:							
Parameter	Results	PQI.	Units	Method	Allowable Limits	Prep Date	Analysis Date
Metals Depart	tment						
Calcium	100	0.500	mg/L	EPA 200.7		03/25/01	04/03/01
Iron	1.05	0.0250	− mg/L	EPA 200.7		04/03/01	04/05/01
Magnesium	15.5	0.0500	mg/L	EPA 200.7		03/25/01	04/03/01
Silicon	1.87	0.250	mg/L	EPA 200.7		04/03/01	04/05/01
Sodium	22.7	0.139	mg/L	EPA 200.7		03/25/01	04/03/01
Hardness as CaCO3	314	2.00	mg/L	SM17 2340B			04/04/01
Metals by ICE	P/MS						
Polassium	3250	2500	ug/L	EPA 200.8		04/06/01	04/09/01
Waters Depart	ment						
Chloride	61.9	25.0	mg/L	EPA 300.0			03/23/01
Total Dissolved Solid	ds 364	50.0	mg/L	SM20 2540C			03/28/01

Laborate	C I & E Environmental Services Inc. Laboratory Division	ITAI SELVIC	es inc.				ļ.				
CUENT: URS CORP.	ζi ζ		CT&E	CT&E Reference:		4	S'WHENER'S	7	is far	15:58	rejsi 1
z	5	PHONE NO: $(7_0, 7_1) \rightarrow (7_0, 7_1) \rightarrow (7_0, 7_1)$				┝╴				╞	PAGE
6	hunste NP	NPRA Lukes	No.	SAMPLE Mend		$\left \right $		1 I	+		
REPORTS TO:	ł]		autora Sienos	~ •	10-	3.00				
Kim Nielsen	FAX NO: (861E-E95	×) ⊐z(ס	2.7	252	Eng		_		
An indian and	St HIOI		1Z->	GHAB	14 35 00 SA	55 00 (SK)	2.6				
LASINO. SAMPLE IDE	ICATION		MATRIX	6	Hera	T.T. CA I					
(U) 032JOIM9913-01		3/2/0 1535	¥А З	K B	*	≁ ≯					
(2) 032101M9915-01		LJOS_	μh Alm	Υð	X	x x					
(3) 10321014915-02	1	3/21/01 17/10	wlar ₹	6)	XX	хX					
10-2010 MADICEOL			WA 3			\times \times					
(5) 103010149907-01		1855	1.JA 3		r x x	× ×					
) /					
								\vdash			
									·	·	
				Ý	 						
Collected/Religiushed By: (1). /	/ Date Time	Received By:	¥:		Shipping Carrier.	л і ВГ			Sample	Samples Receive	Samples Received Cold? (Circle)
Bendosky This	{			10	Shipping Ticket No:	el No:			Tempe	Temperature °C:	Temperature °C: 5. 8°
Relinquished By: (2)	Date Time	e 🚦 Received By:	Y:		Data Deliveribles Required	vindeus sei(Я		Chain o	Chain of Custody	Chain of Custody Seal: (Circle)
		······		r	Levell Lo	Levelli Lev	Level (1		INTACI	INTACT	INTACT BROKEN
Relinquished By: (3)	Date Time	B Received By:	Y:	в	equested Tu	maround T	ime and Sp	- T	jal Instru	Requested Turnaround Time and Special Instructions:	ial (Astructions:
Reinquished By: (4)	Date / Tim	Time Received For	To a subsection of the	l_{2}							
200 W. Poter Drive Anchorage, AK 99518	NK 99518 Tel: (907) 582-2343	-2343 Fax: (907) 561-5301	61-5301		White - Retained by Lab (Project File)	ned by Lub (P	Project File)	- 1			Yellow - Returned with Record Pick - Retained by Seronia

200 W. Focker Univer Anchorege, AX, 94916 1 ed. (907) 562-2543 Fax: (907) 561-530 3180 Peger Road Fairbanka, AX 99701 Tet (907) 474-9656 Fax: (907) 474-9685

0-720

		Form F004r03.1 (Revised 03/08/01)	
YES / NO	CUSTODY SEALS INTACT:	Log-in proofed by:	
EN ANCHURAGE OFUN ARNY AL FAUDI FAIRDATING. COOLER TEMP:	DATE / TIME:		
NCTIONACT IDON ADDIVAT FOOM FAIDRANKS		Date / Time:	
		Individual contacted:	
Other (specify)	Was client notified of problems? (specify below)		
Other (specify)	Is sample condition good?		
40 ml vials w / HCl	Were correct container / sample sizes submitted?		
4 oz w / septa w / MeOH	Were all bottles for volatiles free of headspace?		
- ¥	Were all samples sealed in separate plastic bags?		
8 oz amber unpres'd	Were all samples unbroken and clearly labeled?		
Comi Nalgene	packing material:		
120 ml coli bottles	Were all samples packed to prevent breakage?		
1L cubies w / NaOH + ZnAc	Did the COC and samples correspond?		
1L cubies w / H ₂ SO ₄	Did the COC indicate ACOE / AFCEE project? (if applicable)		
1L cubies w / HNO ₃	Was the COC filled out properly?		
5 1L cubies unpres'd	Was there a COC with cooler?		
500 ml amber w / H ₂ SO ₄	Were seals intact upon arrival?		
950 ml amber w / HCl	# / where:		
950 ml amber unpres'd	IST		
# of each Container Received:	Was there an airbill, etc. 7 Note #:		
	*		
	Is received temperature 4 ± 2°C? Temp:		
	-	Yes No	
Notes:	**The following must be completed for all ACOE & AFCEE: ******	••••• The following must b	•
Ref Lab required?			
Lab-filtered for dissolved ?	Structure (print) Structures	Completed by (sign):	
Field-filtered for dissolved ?	Will-courier, charges apply?		
Field pres'd for volatiles?	Is there a quote for this project?		
Limited Sample Volume?	If this is for PWS, provide PWSID.		
Extra Sample Volume?	Will a data package be required?		
Additional Sample Remarks:	ts this an ACOE / AFCEE / ADEC project?		
BMS/BMSD	Has Project Manager been notified of problems?		
Trip Blank			
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Matrix of each Sample	And there are weathered for the analyses)?		
Received Temperature:	If was have voll engling with Sunervisor?		
Received Date/Time: 3/2 × /530	Are samples within 24 free of hold time or due date?	<	
Due Date: 4/4	If yes have you done e-mail notification?		
	Are samples RUSH, priority, or within 72 hrs. of hold time?	Tes NO	

CT&E Environmental Services Inc.

Ц

Laboratory Analysis Report

Laboratory Division

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.cteesi.com

Kim Nielson URS Corporation 3501 Denali St. #101 Anchorage, AK 99503

Work Order:	1012194 Alpine/NPRA
Client:	URS Corporation
Report Date:	May 11, 2001

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by CT&E. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your CT&E Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- U Indicates the analyte was analyzed for but not detected.
- J Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- * The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than

2

! Surrogate out of range

SGS Member of the SGS Group (Societe Generale de Surveillance)

200 W. Potter Drive, Anchorage, AK 99518-1605 — Tel: (907) 562-2343 Fax: (907) 561-5301 3180 Peger Road, Fairbanks, AK 99709-5471 — Tel: (907) 474-8656 Fax: (907) 474-9685

CT&E Ref.#	1012194001
Client Name	URS Corporation
Project Name/#	Alpine/NPRA
Client Sample ID	01-M9913-002
Matrix	Water (Surface, Eff., Ground)
Ordered By	- · · · ·

Printed Date/Time	74-PA101001.00-200 05/11/2001 16:28
Collected Date/Time	04/27/2001 14:41
Received Date/Time	04/30/2001 15:30
Technical Director	Stephen C. Ede
Released By	and Pret

Parameter	Rosults	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date
Metals Department							
Calcium	97.3	0.500	mg/L	EPA 200.7		05/09/01	05/10/01
Iron	17.5	0.0250	mg/L	EPA 200.7		05/09/01	05/10/01
Magnesium	20.8	0.0500	നൃ/).	EPA 200.7		05/09/01	05/10/01
Silicon	2.06	0.250	mg/l,-	EPA 200.7		05/09/01	05/10/01
Sodium	34.7	0.139	mg/L	EPA 200.7		05/09/01	05/10/01
Hardness as CaCO3	329	2.00	mg/L	SM17 2340B			05/11/01
Metals by ICP/MS							
Potassium	2740	500	og/1,	EPA 200.8		05/01/01	05/08/01
Waters Department							
Chloride	124	5.00	mg/1.	EPA 300.0			05/02/01
Total Dissolved Solids	454	50.0	mg/L	SM20 2540C			05/01/01

CT&E Ref.# Client Name	1012194002 URS Corporation
Project Name/#	Alpine/NPRA
Client Sample ID	01-M9915-002
Matrix	Water (Surface, Eff., Ground)
Ordered By	

Client PO#	74-PAI01001.00-200
Printed Date/Fime	05/11/2001 16:28
Collected Date/Time	04/27/2001 10:54
Received Date/Time	04/30/2001 15:30
Technical Director	Stephen C. Ede

Released By Shame Posto

ı.

Parameter	Results	PQL.	Units	Method		Prep Date	Analysis Date
Metals Department							
Calcium	112	0.500	mg/1.	EPA 200.7	05/	09/01	05/10/01
Iron	11.8	0.0250	mg/L	EPA 200.7	054	09/01	05/10/01
Magnesium	26 .0	0.0500	mg/L	EPA 200.7	05/	09/01	05/10/01
Silicon	2.24	0,250	mg/L	EPA 200.7	05/	09/01	05/10/01
Sodium	42.0	0.139	mg/L	EPA 200.7	05-	09/01	05/10/01
Hardness as CaCO3	386	2.00	ൺ/L	SM17 2340B			05/11/01
Metals by ICP/MS							
Potassium	3020	500	ug/L	EPA 200.8	05/	01/01	05/08/01
Waters Department							
Chloride	166	5.00	mg/L	EPA 300.0			05/02/03
Total Dissolved Solids	528	50.0	mg/L	SM20 2540C			05/01/01

CT&E Ref.#	1012194003
Client Name	URS Corporation
Project Name/#	Alpine/NPRA
Client Sample ID	01-M9906-002
Matrix	Water (Surface, Eff., Ground)
Ordered By	

101

641

Client PO# 74-PAI01001.00-200 Printed Date/Time 05/11/2001 16:28 **Collected Date/Time** 04/27/2001 12:03 **Received Date/Time** 04/30/2001 15:30 **Technical Director** Stephen C. Ede

Preto

05/02/01

05/01/01

Released By 5

Sample Remarks:

Chloride

Total Dissolved Solids

arameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date
Getals Department							
Calcium	171	5.00	mg/1.	EPA 200.7		05/09/01	05/10 /01
ron	0.504	0.0250	mg/L	EPA 200.7		05/09/01	05/10/01
Aagnesium	24.7	0.0500	mg/L	EPA 200.7		05/09/01	05/10/01
Silicon	1.40	0.250	mg/L	EPA 200.7		05/09/01	05/10/08
Sodium	36.8	0.139	mg/L	EPA 200.7		05/09/01	05/10/01
lardness as CaCO3	528	2.00	mg/L	SM17 2340B			05711/01
Metals by ICP/MS							
Potassium	3680	500	ug/L	EPA 200.8		05/01/01	05/08/01

5.00

50.0

mg/L

mg/L

EPA 300.0

SM20 2540C

CT&E Ref.#	1012194004
Client Name	URS Corporation
Project Name/#	Alpine/NPRA
Client Sample ID	01-M9907-002
Matrix	Water (Surface, Eff., Ground)
Matrix Ordered By	Water (Surface, Eff., Ground)

 Client PO#
 74-PAJ01001.00-200

 Printed Date/Time
 05/11/2001_16:28

 Collected Date/Time
 04/27/2001_12:44

 Received Date/Time
 04/30/2001_15:30

 Technical Director
 Stephen C. Ede

Released By 5 % ne Posto

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Anatysis Date
Metals Department							
Calcium	133	0.500	mg/L	EPA 200.7		05/09/01	05/10/01
fron	2.57	0.0250	mg/L	EPA 200.7		05/09/01	05/10/01
Magnesium	20.8	0.0500	mg/L	EPA 200.7		05/09/01	05/10/01
Silicon	1.59	0.250	nıg/L	EPA 200.7		05/09/01	05/10/01
Sodium	30.1	0.139	mg/E.	BPA 200.7		05/09/01	05/10/01
Hardness as CaCO3	418	2.00	mg/L	\$M17 2340B			05/11/01
Metals by ICP/MS							
Potassium	3750	500	ug/L	EPA 200.8		05/01/01	05/08/01
Waters Department							
Chlotide	67.5	5.00	mg/L	EPA 300.0			05/02/01
Total Dissolved Solids	474	50.0	mg/L	SM20 2540C			05/01/01

CT&E Ref.#1012194005Client NameURS CorporationProject Name/#Alpine/NPRAClient Sample ID01-M9907-003MatrixWater (Sorface, Eff., Ground)Ordered By		Ground)			Client PO# Printed Date/T Collected Date/ Received Date/ Technical Dire Released By	Time Time ctor	05/11/200 04/27/200 04/30/200 Stephen C.	12:50 15:30 Ede
Sample Remarks:								
Parameter	Res	ults	PQI.	Units	Method	Allowable Limits	Prop Date	Analysis Date
Metals Depart	tment							
Calcium	125		0.500	mg/L	EPA 200.7		05/09/01	05/10/01
Iron	2.5	D C	0.0250	mg/L	EPA 200.7		05/09/01	05/10/01
Magnesium	19.0	5	0.0500	ng/L	EPA 200.7		05/09/01	05/10/01
Silicon	1.49	9	0.250	mg/L	EPA 200.7		05/09/01	05/10/01
Sodium	28.	7	0.139	mg/L	EPA 200.7		05/09/01	05/10/01
Hardness as CaCO3	393		2.00	mg/L	SM17 2340B			05/11/01
Metals by IC	P/MS							
Potassium	372	0	500	ug/L	BPA 200.8		05/01/01	05/08/01
Waters Depar	tment							
Chloride	63.	6	5.00	ng/L	EPA 300.0			05/02/01
Total Dissolved Sol	ids 480)	50.0	mg/L	\$M20 2540C			05/01/01

Relinquished By: (3) Relinquished By: (2) PROJECT: CONTACT: CALLARSON Relinquished By: (4) INVOICE TO: Kim Nielsen REPORTS TO and URS Collected/Relinquished By: (1) men 3 ଚ v ¢ Alpine /NPRA 01-M9907-002 01-M9906-002 01-M9715-002 01-19913-002 Laboratory Division *researcessessessessessessessessessesses* CI & Environmental Services Inc. SAMPLE IDENTIFICATION 10/00/01 8 8 4/30/01 ò P.O. NUMBER: 74- PAIDIOI, DO 2000 ŝ PHONE NO: (407) 661-1020 FNX 140: 1907 1 563-3198 NPRA 15-30 Ĩ į 00:00 t, ₹ [127] [0] 10:54 12:03 Receive **Received By:** 14 41 **Received By:** Received 12:44 <u>8</u> history ş € MATRIX ٤ × i **CT&E Reference:** N ş o D m Z 4200 -> e SVTIDITE SVTIDITE 69.00 69.00 Ś Ŷ ş ÌÌ Θ X X X × Requested Turnerround Time and Special Instructions: Level Level II Level II Data Deliveribles Required Shipping Ticket No-Shipping Certier X EPA 3 White - Retained by Lab (Project File) 200.7 × X X X х EP_A 300.0 X Y ¥, SH 2540C × X SYCC-For metals Yellow - Returned with Report Pink - Retained by Sample Chain of Custody Seal: (Circle) Temperature °C; Samples Received Cold? (Circle) YES PACH BHOKEN 0 k ç REMARKS 5 è ABSENT ٩Ż

58

200 W. Potter Drive Anchorege, AX 99515 Tel: (907) 562-2343 Fax: (907) 561-5301 3180 Peger Road Feirbernics, AX 99701 Tei: (907) 474-8656 Fax: (907) 474-9685

Data / Time: Log-in proofed by: Form Fo04r03.1 (Revised 03/06/01)	Individual contacted:	The following	Completed by (sign);	
CVBC/ED peek	Stad.	No No		8
Phone / Fax: TO BE COMPLETED DATE / TIME: CUSTODY SEALS IN COMPLETED BY (IN	Were all samples packed to prevent breakage? packing material: Were all samples unbroken and clearly labeled? Were all bottles for volatiles free of heedspace? Were correct container / sample sizes submitted? Is sample condition good? Was client notified of problems? (specify below)	Ves No Is received temperature 4 ± 2°C? Temp: Thermometer used: Was there an airbill, etc.? Note #: Was cooler sealed with custody seals? Fax'd to COE? # Was there a COC with cooler? Was the COC filled out property? Did the COC and samples correspond?	Has Project Manager been notified of problems? Is this an ACOE / AFCEE / ADEC project? Will a data package be required? If this is for PWS, provide PWSID. If there a cubte for this project? Is there a cubte for this project? Willy couries charges apply? Willy couries charges apply?	Are samples RUSH, priority, or <i>within 72 hrs</i> . of hold time? If yes have you done <i>e-mail notification</i> ? Are samples <i>within 24 hrs</i> . of hold time or due dete? If yes, have you <i>spoken with</i> Supervisor? Are there any problems (e.g., lds, enalyses)? Were samples preserved correctly and pH verified?
IN ANCHORAGE UPON ARRIVAL FROM FAIRBANKS: COOLER TEMP: TACT: YES / NO #/ WHERE:	5 60 ml coli bottles 60 ml Nalgene 8 oz amber unpres'd 4 oz amber unpres'd 4 oz w / septa w / MeOH 40 ml vials w / HCl Other (specify) 0ther (specify)	Notes: Soc Atth Aled Co. Notes: Soc Atth Aled Co. Soc ml amber unpres'd Sol ml amber w / HCl Sol ml amber w / HCl Sol ml amber w / H2SO, 11. cubies unpres'd 11. cubies w / HNO, 11. cubies w / H2SO, 11. cubies w / H2SO, 11. cubies w / H2SO,	Trip Blank BMS/BMSD Additional Sample Remarks: Extra Sample Volume? Limited Sample Volume? Field pres'd for volatiles? Field-filtared for dissolved Lab-filtered for dissolved Ref Lab required?	Due Date: <u>5/4/0/</u> Received Date/Time: <u>4/30/01</u> /530 Received Temperature: Matrix of each Sample: <u>-5</u>

CT&E Environmental Services Inc.

Laboratory Analysis Report

Laboratory Division

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.eteesi.com

Kim Nielson URS Corporation 3501 Denali St. #101 Anchorage, AK 99503

Work Order:	1015315 NPRA Lake Recharge
Client:	URS Corporation
Report Date:	August 31, 2001

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by CT&E. A copy of our Quality Control Manual that outlines this program is available at your request.

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth in our Quality Assurance Program Plan.

If you have any questions regarding this report or if we can be of any other assistance, please call your CT&E Project Manager at (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- U Indicates the analyte was analyzed for but not detected.
- F Indicates an estimated value that falls below PQL, but is greater than the MDL.
- B Indicates the analyte is found in the blank associated with the sample.
- The analyte has exceeded allowable limits.
- GT Greater Than
- D Secondary Dilution
- LT Less Than

3

! Surrogate out of range

SGS Member of the SGS Group (Societe Generate de Surveillance)

200 W. Potter Drive, Anchorage, AK 99518-1605 --- Tel: (907) 562-2343 Fax: (907) 561-5301 3180 Peger Road, Fairbanks, AK 99709-5471 --- Tel: (907) 474-8656 Fax: (907) 474-9685

CT&E Ref.#	1015315001
Cilent Name	URS Corporation
Project Name/#	NPRA Lake Recharge
Client Sample ID	081201M9906-01
Matrix	Water (Surface, Eff., Ground)
Ordered By	

Client PO#	74-PAI01001.00-20
Printed Date/Time	08/31/2001 13:42
Collected Date/Time	08/12/2001 21:30
Received Date/Time	08/14/2001 11:15
Technical Director	Stephen C. Ede
Released B	m-Posto

Parameter	Results	PQI.	Onits	Method	Allowable Limits	Prep Date	Analysis Date
Metals Department							
Calcium	27.7	0.100	mg/L	EPA 200.7		08/17/01	08/27/01
Iron	0.0579	0.0200	nig/L	EPA 200.7		08/27/01	08/28/01
Magnesium	4.11	0.100	mg/L	EPA 200.7		08/17/01	08/27/01
Silicon	0.500 U	0.500	mg/L	EPA 200.7		08/17/01	08/27/01
Sodium	6.21	1.00	mg/L	EPA 200.7		08/17/01	08/27/01
Hardness as CaCO3	86.0	2.00	mg/L	SM17 2340C			08/30/01
Metals by ICP/MS							
Potassium	697	500	ug/L	EPA 200.8		08/17/01	08/28/01
Waters Department							
Chloride	15.2	0.500	mg/l,	EPA 300.0			08/14/01
Total Dissolved Solids	136	50.0	mg/L	SM20 2540C			08/15/01

CT&E Ref.#	1015315002
Client Name	URS Corporation
Project Name/#	NPRA Lake Recharge
Client Sample 10	081201M9907-01
Matrix	Water (Surface, Eff., Ground)
Ordered By	

-

Client PO#	74-PAI01001.00-20
Printed Date/Time	08/31/2001 13:42
Collected Date/Time	08/12/2001 22:45
Received Date/Time	08/14/2001 11:15
Technical Director	Stephen C. Ede

Released By Shame Park

Parameter	Results	PQI.	Units	Method	Aflowable Limits	Prep Date	Analysis Date
Metals Department							
Calcium	27.3	0.100	mg/L	EPA 200.7		08/17/01	08/27/01
Iron	0.0457	0.0200	mg/L	BPA 200.7		08/27/01	08/28/01
Magnesium	4.40	0.100	nıg/L	EPA 200.7		08/17/01	08/27/01
Silicon	0.500 U	0.500	ng/L	EPA 200.7		08/17/01	08/27/01
Sodium	6.58	1.00	mg/L	EPA 200.7		08/17/01	08/27/01
Hardness as CaCO3	86.3	2.00	mg/L	SM17 2340C			08/30/01
Metals by ICP/MS							
Potassium	884	500	ug/L	EPA 200.8		08/17/01	08/28/01
Waters Department							
Chloride	13.8	0.500	mg/L	EPA 300.0			08/14/01
Total Dissolved Solids	164	50.0	mg/L	SM20 2540C			08/15/01

CT&E Ref.#	1015315003
Client Name	URS Corporation
Project Name/#	NPRA Lake Recharge
Client Sample ID	081301M9913-01
Matrix	Water (Sarface, Eff., Ground)
Ordered By	

Released By 5-4-	am Prate
Technical Director	Stephen C. Ede
Received Date/Time	08/14/2001 11:15
Collected Date/Time	08/13/2001 0:15
Printed Date/Time	08/31/2001 11:25
Client PO#	74-PAI01001.00-20

Parameter	Results	PQL	Units	Method	Allowable Limits	Prep Date	Analysis Date
Metals Department							
Calcium	11.4	0.100	mg/L	EPA 200.7		08/17/01	08/27/01
Iron	0.203	0.0200	mg/L	EPA 200.7		08/27/01	08/28/01
Magnesium	2.54	0.100	mg/I,	EPA 200.7		08/17/01	08/27/01
Silicon	0.500 U	0.500	mg/L	EPA 200.7		08/17/01	08/27/01
Sodium	4.59	1.00	mg/L	EPA 200.7		08/17/01	08/27/01
Hardness as CaCO3	38.9	2.00	mg/L	SM17 2340C			08/30/01
Matals by ICP/MS							
Potassium	500 U	500	ug/L	EPA 200.8		08/17/01	08/28/01
Waters Department							
Chloride	13.1	0.500	mg/L	EPA 300.0			08 /14/01
Total Dissolved Solids	95.0	50.0	mg/L	SM20 2540C			08/15/01

CT&E Ref.#	1015315004
Client Name	URS Corporation
Project Name/#	NPRA Lake Recharge
Client Sample ID	081301M9915-01
Matrix	Water (Surface, Eff., Ground)
Ordered By	· ·

Client PO#	74-PAI01001.00-200
Printed Date/Time	08/31/2003 [1:25
Collected Date/Time	08/13/2001 5:15
Received Date/Time	08/14/2001 11:15
Technical Director	Stephen C. Ede

Released By 5 harren Posta

Parameter	Results	PQ1.	Units	Method	Allowable Limits	Prep Date	Analysis Date
<u>Metals Department</u>							
Calcium	9.43	0.100	mg/L	El'A 200.7		08/17/01	08/27/01
Iron	0.312	0.0200	mg/L	EPA 200.7		08/27/01	08/28/01
Magnesium	2.27	0.100	mg/L	EPA 200.7		08/17/01	08/27/01
Silicon	0.500 U	0.500	mg/L	EPA 200.7		08/17/01	08/27/01
Sodium	3.92	1.00	mg/L	EPA 200.7		08/17/01	08/27/01
Hardness as CaCO3	32.9	2.00	mg/f.	SM17 2340C			08/30/01
Metals by ICP/MS							
Potassium	508	500	ug/l,	EPA 200.8		08/17/01	08/28/01
Waters Department							
Chloride	11.8	0.500	mg/L	EPA 300.0			08/14/01
Total Dissolved Solids	90.0	50.0	mg/L	SM20 2540C			08/15/01

CT&E Ref.#	1015315005
Client Name	URS Corporation
Project Name/#	NPRA Lake Recharge
Client Sample ID	081301M9915-02
Matrix	Water (Surface, Eff., Ground)
Ordered By	

,

Client PO#	74-PAI01001.00-200
Printed Date/Time	08/31/2001 11:25
Collected Date/Time	08/13/2001 5:20
Received Date/Time	08/14/2001 11:15
Technical Director	Stephen C. Ede

Released By Sham Poets

Parameter	Results	PQL	Units	Method	Aliowable Limits	Prep Date	Analysis Date
<u>Metals Department</u>							
Calcium	9.34	0.100	mg/L	EPA 200.7		08/17/01	08/27/01
Iron	0.302	0.0200	mg/L	EPA 200.7		08/27/01	08/28/01
Magnesium	2.24	0.100	mg/1.	EPA 200.7		08/17/01	08/27/01
Silicon	0.500 U	0.500	mg/L	EPA 200.7		08/17/01	08/27/01
Sodium	3.89	1.00	mg/J,	EPA 200.7		08/17/01	08/27/01
Hardness as CaCO3	32.6	2.00	mg/L	SM17 2340C			08/30/01
Metals by ICP/MS							
Potassium	500	500	ug/1.	EPA 200.8		08/17/01	08/28/01
Waters Department							
Chloride	11.8	0.500	mg/L	EPA 300.0			08/14/01
Total Dissolved Solids	98.0	50.0	mg/L	SM20 2540C			08/15/01

CT&E Ref.#	385998	Matrix S	pike			Printe Prep	d Date/Time Batch Method Date	09/04/200)	7:58
Original									
Matrix	Water (Surf	ace, Eff., Gro	ound)						
-	a the following produ 01, 1015315002, 10	•		4, 10153150 Per Recov	005 MS/MSD Limus		RPD Lámits	Spiked Amount	Analysis Date
Waters Dep Nitrate-N Batch Method	WIC 2494	45 0.500 U	3.86	81	(80-120)			4.51 mg/L	08/14/01
Method Instrument	EPA 300.0 Dionex DX-300	ны с							

CT&E Ref.#	386556 386557	Matrix 5 Matrix 5	Spike Spike Duplic	ate		Prin Prej	Method	09/04/200 MXX 91	134
Original	10153150	001					Date	08/17/200	1
Matrix	Water (Si	urface, Eff., Gr	ound)						
	the following pro		:						
Parameter		Original Result	QC Result	Per Recov	M\$/M\$D Lamits	RPD	RPD Limits	Spiked Amount	Analysis Date
<u>Metals Depa</u>	artment								
Calcium		MS 27.7	38.0	103	(70-130)			10 mg/L	08/27/01
		MSD	37.6	100	(· · · · · · · · · · · · · · · · · · ·	1	(<20)	10 mg/L	08/27/01
Magnesium		MS 4.11	13.8	97	(70-130)			10 mg/L	08/27/01
		MSD	13.7	96		0	(<20)	10 mg/L	08/27/01
Silicon		MS 0.500 (J 10.2	101	(70-130)			10 mg/J,	08/27/01
		MSD	10.1	101		1	(<20)	10 mg/L	08/27/01
Sodium		MS 6.21	16.1	99	(70-130)			10 mg/L	08/27/01
		MSD	15.9	97		1	(<20)	10 mg/I.	08/27/01
Batch Method Instrument	MIP 3574 EPA 200.7 TJA Enviro II	JCP P2							

CT&E Ref.#	386575	386575 Matrix Spike				Printed I Prep	ted Date/Time Baich Method	MXX	09/04/2001 7:58 MXX 9136	
Original Matrix	Water (Surf	íace, Eff., Gr	ound)				Date	08/17/2	001	
	t the following produ 02, 1015315003, 1	-		;						
Parameter		Oniginal Result	QC Result	Pet Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
Batch Mothod	MMS 1727									

Method EPA 200.8 Instrument Perkin Elmer Sciex ICP-MS P3

Metals by ICP/MS

CT&E Ref.#	386575 386576	Matrix S Matrix S	Spike Spike Duplica	ite		Prin Prej	ted Date/Time Batch Method Date	09/04/200 MXX 9 08/17/200	136
Original Matrix	101531500 Water (Sur)2 face, Eff., Gr	ound)					00/17/200	73
Parameter		Original Result	- QC Readr	Per Reçov	MS/MSD Limits	RPD	RP1) Eamits	Spiked Amount	Analysis Date
Metals by IC	P/MS								
Manganese		MS	906	90	(70-130)			1000 ug/L	08/28/01
-		MSD	890	89	(2	(<20)	1000 ug/1.	08/28/01
Copper		MS	909	91	(70-130)			1000 ug/L	08/28/01
		MSD	875	87	(,	4	(<20)	1000 ug/L	08/28/01
Zine		MS	974	99	(70-130)			1000 ug/L	08/28/01
		MSD	944	96	(,	3	(<20)	1000 ug/1,	08/28/01
Vanadium		MS	889	89	(70-130)		. ,	1000 ug/L	08/28/01
		MSD	859	86	())	3	(< 20)	1000 µg/[,	08/28/01
Thallium		MS	950	94	(70-130)			1010 ug/1,	08/28/01
		MSD	921	91	(3	(<20)	1010 ug/L	08/28/01
Sodium		MS	1670 0	100	(70-130)			10000 ug/L	08/28/01
		MSD	15900	92	(5	(<20)	10000 ug/L	08/28/01
Silver		MS	192	96	(70-130)			200 ug/L	08/28/01
		MSD	189	95	(,	2	(<20)	200 ug/L	08/28/01
Selenium		MS	947	95	(70-130)		. ,	1000 ug/l.	08/28/01
		MSD	919	92	(10.00)	3	(<20)	1000 ug/L	08/28/01
Potassium		MS 884	10100	92	(70-130)	•	()	10000 ug/L	08/28/01
		MSD	9630	88	(10 100)	5	(< 20)	10000 ug/I.	08/28/01
Nickel		MS	904	90	(70-130)	-	、 · /	1000 ug/L	08/28/01
		MSD	866	87	(10.00)	4	(<20)	1000 ug/l.	08/28/01
Molybdenum		MS	961	96	(70-130)		()	1000 ug/L	08/28/01
-		MSD	931	93	(10110)	3	(< 20)	1000 ug/L	08/28/01
Cadmium		MS	479	96	(70-130)	-	(-•)	500 ug/L	08/28/01
		MSD	453	91	(10-150)	6	(<20)	500 ug/1,	08/28/01
Lead		MS	951	95	(70-130)	Ť	(20)	1000 ug/L	08/28/01
		MSD	924	93	(10-100)	3	(< 20)	1000 ug/1.	08/28/01
Magnesium		MS	14500	99	(70-130)	•	(40)	10000 ug/1.	08/28/01
0		MSD	13700	91	(70-150)	6	(< 20)	10000 ug/L	08/28/01
Arsenic		MS	914	91	(70-130)	C,	(120)	1000 ug/L	08/28/01
		MSD	886	89	(70-150)	3	(<20)	1000 ug/1.	08/28/01
Atuminum		MS	967	97	(70-130)	1.	()	1000 ug/l.	08/28/01
		MSD	917	92	(78-130)	5	(< 20)	1000 ug/1.	08/28/01
Beryllium		MS	355	88	(70-130)	-	(~20)	402 ug/1.	08/28/01
*		MSD	349	87	(70-150)	2	(<20)	402 ug/L	08/28/01
Antimony		MS	951	95	(70-130)	£.	(-20)	402 ug/L 1000 ug/L	08/28/01
		MSD	914	91	(10-100)	4	(<20)	1000 ug/L 1000 ug/L	08/28/01
Calcium		MS	37500	101	(70, 120.)	**	(~207	1000 ug/L 10000 ug/L	
		MSD	36100	86	(70-130)	4	(<20)	-	08/28/01
Chromium		MS	938	94	(20.120)	4	(~ 20)	10000 ug/t.	08/28/01
Chromium		MSD			(70-130)	1	(~ 20)	1000 ug/L	08/28/01
LL		111.11.7	915	92		3	(< 20)	1000 og/L	08/28/01

CT&E Ref.#	386575 386576	Matrix 5 Matrix 5	Spike Spike Duplic	ate		Prin Preş	Method		136
Original	1015315	002					Date	08/17/200)
Matrix	Water (S	urface, Eff., Gr	ound)						
Parameter		Original Result	QC Result	Pet Recov	MS/MSD Limits	RYD	RPD Limits	Spiked Amount	Anglysis Date
Metals by 1	ICP/MS								
Cobalt		MS	915	92	(70-130)			1000 ug/L	08/28/01
		MSD	885	89	•	3	(< 20)	1000 ug/L	08/28/01
Iroa		MS	1040	104	(70-130)			1000 ug/I,	08/28/01
		MSD	929	92		12	(<20)	1000 ug/L	08/28/01
Barium		MS	1110	100	(70-130)			1000 ug/f.	08/28/01
		MSD	1040	93	•	7	(< 20)	1000 ug/t,	08/28/01
Batch Method Instrument	MMS 1727 EPA 200.8 Perkin Elmer	Sciex ICP-MS	P3				-		

CT&E Ref.#	388680 388681	Matrix S Matrix S	pike vike Duplio	cate		Prin Prej	ited Date/Time Batch Method Date	09/04/200 MXX 9 08/27/200	184
Original	1015315	001							-
Matrix	Water (S	urface, Eff., Gro	und)						
	a the following pr 01, 1015315002		015315004	4, 10153150	05				
Parameter		Original Result	QC Result	Pet Recov	MS/MSD Limits	RPD	RP1) Limits	Spiked Amoant	Analysis Date
Metals Dep	artment								
Iron		MS 0.0579	1.00	94	(70-130)			t mg/f.	08/28/01
		MSD	1.01	95		1	(<20)	t mg/L	08/28/01
Batch	MIP 3575							-	
Method Instrument	EPA 200.7 TJA Enviro II	ICP P2							

CT&E Ref.# Client Name Project Name/# Matrix	386503 URS Corporati NPRA Lake Re Water (Surface				Printed Date/Time Prep Batch Method Date	09/04/2001 7:57
	following production 015315002, 10153	-)4, 10153150	105		
Parameter		Results	PQL	Units		Analysis Date
Waters Depart Bromide	tment	0.500 U	0.500	mg/L		08/14/01

Droinide	0.500 U	0.500	mgar	08/14/01
Chloride	0.0928F	0.500	mg/L	08/14/01
Fluoride	0.500 U	0.500	mg/L	08/14/01
Nitrate-N	0.500 U	0.500	mg/1.	08/14/01
Nitrite-N	0.500 U	0.500	mg/L	08/14/01
Ortho Phosphate-P	0.500 U	0.500	mg/L	08/14/01
Sulfate	0.500 U	0.500	mg/1.	08/14/01
D 4 I				

Batch	WIC 2494
Method	EPA 300.0
Instrument	Dionex DX-300 HPLC

CT&E Ref.#	386504 Lab Control Sample	Printed Date/Time	09/04/2001 7:58
	-	Prep Batch	
Client Name	URS Corporation	Method	
Project Name/#	NPRA Lake Recharge	Date	
Matrix	Water (Surface, Eff., Ground)		

QC results affect the following production samples:

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter		QC Results	Pet Recuv	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Bromide	LÇS	9.50	95	(90-110)			10 mg/L	08/14/01
Chloride	LCS	9.41	94	(90-110)			10 mg/L	08/14/01
Fluoride	LCS	9.58	96	(90-110)			10 mg/L	08/14/01
Nitrate-N	LCS	2.06	91	(90-110)			2.26 mg/L	08/14/01
Nitrite-N	LCS	2.38	78 •	(90-110)			3.05 mg/L	08/14/01
Ortho Phosphate-P	LCS	2.83	87 •	(90-110)			3.27 mg/L	08/14/01
Sulfate	LCS	9.18	92	(90-110)			10 mg/L	08/14/01
Batch W(C 2494 Method EPA 300.0							<u>.</u>	

Method EPA 300.0 Instrument Dionex DX-300 HPLC

CT&E Ref.# Client Name Project Name/# Original Matrix	385997 Und URS Corporation NPRA Lake Recharg Water (Surface, Eff.,			Printed Prep	Date/Time Batch Method Date	09/04/2 001	7:58
	he following production samp 1015315002, 1015315003,		315005				
Parameter		Original Result	QC Result	RPD	RPD Limits		Analysia 17ate
Waters Depa:	rtment						
Sulfate			5,49				08/14/01
Bromide			0.500 U				08/14/01
Chloride			0.817				08/14/01
Fluoride			0.500 U				08/14/01
Nitrite-N			0.500 U				08/14/01
Nitrate-N		0.500 U	0.223F	I	(<20)		08/14/01
Ortho Phosphate	-P		0.500 U				08/14/01
Batch Method Instrument	WIC 2494 EPA 300.0 Dionex DX-300 HPLC						

CT&E Ref.# Client Name Project Name/# Matrix	t Name URS Corporation ect Name/# NPRA Lake Recharge					09/04/2001 7:57
•		on samples: 5315003, 1015315004	10152150			
1013313001,	1013313002, 101.	5313003, 1013313004	, 10133130	00		· · · · · · · · · · · · · · · · · · ·
Parameter		Results	PQL	Units		Analysis Date
Waters Depar	tment					
Total Dissolved S	olids	50.0 U	50.0	mg/L		08/15/01
Batch Method Justrument	WAT 3112 SM20 2540C					

CT&E Ref.# Client Name Project Name/#	URS Corpor	ation	ol Sample	nple		Printed Date/Time Prep Batch Method Date		09/04/2001	7:58
Matrix	NPRA Lake Water (Surfa	_ .					EJALC		
QC results affect the 1015315001, 1	o15315002, 101			004, 101531	5005				
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Total Dissolved Sc	olids All 10	LCS	229	107	(75-125)			214 mg/I,	08/15/01

Batch WAT 3112 Method SM20 2540C

Instrument

CT&E Ref.# Client Name Project Name/# Original Matrix	386253 URS Corpora NPRA Lake F 1015315001 Water (Surfac			Printed I Prep	Date/Time Batch Method Date	09/04/2001	7:58
	the following product 1015315002, 10153	ion samples: 15003, 1015315004, 101	5315005				
Parameter		Original Result	QC Result	RPD	RPJ) Limits		Analynin Date
<u>Waters Depa</u> Total Dissolved : Batch Method Instrument		136	134	2	(< 25)		08/15/01

CT&E Environmental Services Inc.

CT&E Ref.#	386554 Method Blank	Printed Date/Time	09/04/2001 7:57
Client Name	URS Corporation	Prep Batch	MXX 9134
Project Name/# Matrix	NPRA Lake Recharge Water (Surface, Eff., Ground)	Method Date	08/17/2001
	water (nurrate, Err., enound)		08/1//2001

QC results affect the following production samples:

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter	Results	PQL	Units	Analysis Date
Metals Department				
Calcium	0.100 U	0.100	mg/L	08/27/01
Magnesium	0.100 U	0.100	mg/1.	08/27/01
Silicon	0.500 U	0.500	mg/1.	08/27/01
Sodium	1.00 U	1.00	mg/L	08/27/01
Batch MIP 3574				
Method EPA 200.7				

Instrument TJA Enviro HICP/P2

CT&E Ref.# 386555 Lab Control Sample		Printed Date/Time	09/04/2001 7:58
	-	Prep Batch	MXX 9134
Client Name	URS Corporation	Method	
Project Name/#	NPRA Lake Recharge	Date	08/17/2001
Matrix	Water (Surface, Eff., Ground)		

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Silicon		LCS	9.86	99	(85-115)			10 mg/L	08/27/01
Batch Method Instrument	MIP 3574 EPA 200.7 TJA Enviro II ICP	P2							
TOTAL METAL	S ANALYSIS	LCS	0.75	69	(95 115)			10 month	08/22/01
		LCS	9.75	98	(85-115)			10 mg/E	08/27/01
Magnesium		LCS	9.55	96	(85-115)			10 mg/L	08/27/01
Sodium	3574	LCS	9.64	96	(85-115)			10 mg/L	08/27/01

Batch MIP 3574 Method EPA 200.7

Instrument TJA Enviro B ICP P2

CT&E Ref.#	388683	Undigested Duplicate	Printed	Date/Time	09/04/2001 7:58
Client Name	URS Corpor	ation	Prep	Batch	
Project Name/#	NPRA Lake	Recharge		Method	
Original				Date	
Matrix	Drinking Wa	iter			
QC results affect the	following produc	tion samples:			

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter	Original Result	QC Result	RPD	RPD Limits	Analysis Date
Zirconium		0.100 U			08/27/01
Manganese		0.507			08/27/01
Mołybdenum		0.0400 U			08/27/01
Nickel		0.0400 U			08/27/01
Potassium		40.0 U			08/27/01
Selenium		0.200 U			08/27/01
Silver		0.0400 U			08/27/01
Strontium		0.0584			08/27/01
Magnesium		2.39			08/27/01
Zinc		0.0347			08/27/01
Silicon		7.09			08/27/01
Vanadium		0.0200 U			08/27/01
Barium		0.0127			08/27/01
Sodium		3.40			08/27/01
Lead		0.200 U			08/27/01
Arsenic		0.100 U			08/27/01
Beryllium		0.00400 U			08/27/01
Boron		0.01901			08/27/01
Aluminum		0.200 U			08/27/01
Copper		0.0400 U			08/27/01
Calcium		4.99			08/27/01
Chromisun		0.0400 U			08/27/01
Cobalt		0.0200 U			08/27/01
Cadmium		0.0200 U			08/27/01
Iron	2,91	2.91	0		08/27/01
Antimony		0.200 U			08/27/01
Batch MDP Method EPA (3574 200.7				

Instrument — TJA Enviro II ICP / P2

CT&E Ref.#	386570	Method Blank	Printed	Date/Time	09/04/200	01 7:57
Client Name	URS Corpora	ation	Ргер	Batch	MXX	9136
Project Name/#	NPRA Lake	Recharge		Method		
Matrix	Water (Surfa	ce, Eff., Ground)		Date	08/17/20	01

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter	Resul	ls	PQL	Units	Analysis Date
Phosphorus		500 U	50	ug/I.	08/28/01
Butch	MMS 1727				
Method	EPA 200.8				
Lastrument	Perkin Elmer Sciex ICP-MS	P3			

Metals by ICP/MS

Aluminum	20.0 U	20.0	ug/I.	08/28/01
Antimony	1.50 U	1.50	ug/L	08/28/01
Arsenic	1.50 U	1.50	ug/I.	08/28/01
Barium	3.00 U	3.00	ug/L	08/28/01
Beryllium	0.400 U	0.400	ug/i.	08/28/01
Cadmium	0.100 U	0.100	ug/1.	08/28/01
Calcium	500 U	50	ug/1.	08/28/01
Chromium	4.50 U	4,50	.µg/1.	08/28/01
Cobalt	4.00 U	4.00	ug/1.	08/28/01
Copper	0.800 U	0.800	og/),	08/28/01
Iron	250 U	25	ug/1.	08/28/01
Lead	0.400 U	0.400	սը/Ն	08/28/01
Magnesium	500 U	50	ug/1.	08/28/01
Manganese	3.00 U	3.00	ug/L	08/28/01
Molybdenum	10.0 U	10.0	ug/L	08/28/01
Nickel	2.00 U	2.00	ug/L	08/28/01
Potassium	500 U	50	ug/[.	08/28/01
Selenium	2.00 U	2.00	ug/L	08/28/01
Sodium	500 U	50	μg/E,	08/28/01
Zinc	2.00 U	2.00	ug/l.	08/28/01
Silver	2.50 U	2.50	ug/L	08/28/01
Thallium	0.300 U	0.300	ug/L	08/28/01
Vanadium	5.00 11	5.00	ug/L	08/28/01
Batch MMS 1727				

MMS 1727 Method EPA 200.8

Instrument Perkin Ehmer Sciex ICP-MS P3

CT&E Ref.#	386571 Lab Control Sample	Printed Date/Time	09/04/2001 7:58
		Prep Batch	MXX 9136
Client Name	URS Corporation	Method	
Project Name/#	NPRA Lake Recharge	Date	08/17/2001
Matrix	Water (Surface, Eff., Ground)		

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter			QC Results	Pet Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Chromium		LCS	991	99	(85-115)			1000 og/L	08/28/01
Aluminum		LCS	958	96	(85-115)			1000 ug/L	08/28/01
Antimony		LCS	958	96	(85-115)			1000 ng/L	08/28/01
Arsenic		LCS	938	94	(85-115)			1000 ug/L	08/28/01
Barium		LCS	988	99	(85-115)			1000 ug/L	08/28/01
Beryllium		LCS	382	95	(85-115)			402 ug/L	08/28/01
Molybdenum		LCS	941	94	(85-115)			1000 ug/L	08/28/01
Zinc		1.CS	944	94	(85-115)			1000 ug/L	08/28/01
Vanadium		LCS	928	93	(85-115)			1000 ug/L	08/28/01
Thallium		LCS	927	92	(85-115)			1010 ug/L	08/28/01
Sodium		LCS	9770	98	(85-115)			10000 ug/L	08/28/01
Silver		LCS	196	98	(85-115)			200 ug/L	08/28/01
Selenium		LCS	974	97	(85-115)			1000 ug/L	08/28/01
Potassium		LCS	9020	90	(85-115)			10000 ug/L	08/28/01
Cadmium		LCS	480	96	(85-115)			500 og/L	08/28/01
Nickel		LCS	957	96	(85-115)			1000 ug/L	08/28/01
Calcium		LCS	9970	100	(85-115)			10000 ug/L	08/28/01
Manganese		LCS	940	94	(85-115)			1000 ug/L	08/28/01
Magnesium		LCS	976 0	98	(85-115)			10000 ug/L	08/28/01
Lead		LCS	949	95	(85-115)			1000 ug/L	08/28/01
Iron		LCS	997	100	(85-115)			1000 ug/L	08/28/01
Copper		LCS	955	96	(85-115)			1000 ug/L	08/28/01
Cobali		LCS	955	96	(85-115)			1000 ug/L	08/28/01
Batch Method	MMS 1727 EPA 200.8							-	

Instrument Perkin Elmer Sciex ICP-MS P3

CT&E Ref.#	388791	Undigested Duplicate	Printed	Date/Time	09/04/2001	7:58
Client Name	URS Corpor	ation	Prep	Batch		
Project Name/#	NPRA Lake	Recharge		Method		
Original	1015412001			Date		
Matrix	Drinking Wa	tter				

1015315001, 1015315002, 1015315003, 1015315004, 1015315005

Parameter	Original Result	QC) Result	RPD	RPD Limits	Analysis Date
Magnesium	· · · · · · · · · · · · · · · · · · ·	5310	I	•	08/28/01
Manganese		536	2		08/28/01
Molybdenum		10.0 U	0		08/28/01
Nickel	2.00 U	1.08F	I		08/28/01
Phosphorus		500 U			08/28/01
Selenium	2.00 U	2.00 U	-1,160		08/28/01
Silver		2.50 U	25		08/28/01
Lead		0.484	45		08/28/01
Barium	.53.8	52.4	3		08/28/01
Sodium		6170	2		08/28/01
Potassium		1050	1		08/28/01
Iron		305	1		08/28/01
Copper		756	0		08/28/01
Cobalt		4.00 U	0		08/28/01
Chromium	4.50 U	4,50 U	32		08/28/01
Calcium		31800	1		08/28/01
Beryllium	0.400 U	0.400 U	-200		08/28/01
Arsenie	15.9	15.7	1		08/28/01
Antimony	U 00.1	1,00 U	14		08/28/01
Aluminum		20.0 U	-1		08/28/01
Vanadium		5.00 U	-945		08/28/01
Zinc		801	2		08/28/01
Cadmium	0,100 U	0.100 U	-35		08/28/01
Thallium	0.300 U	0.300 U	-5		08/28/01
Batch MMS 177 Matheat EBA 200.8	27				

Method EPA 200.8

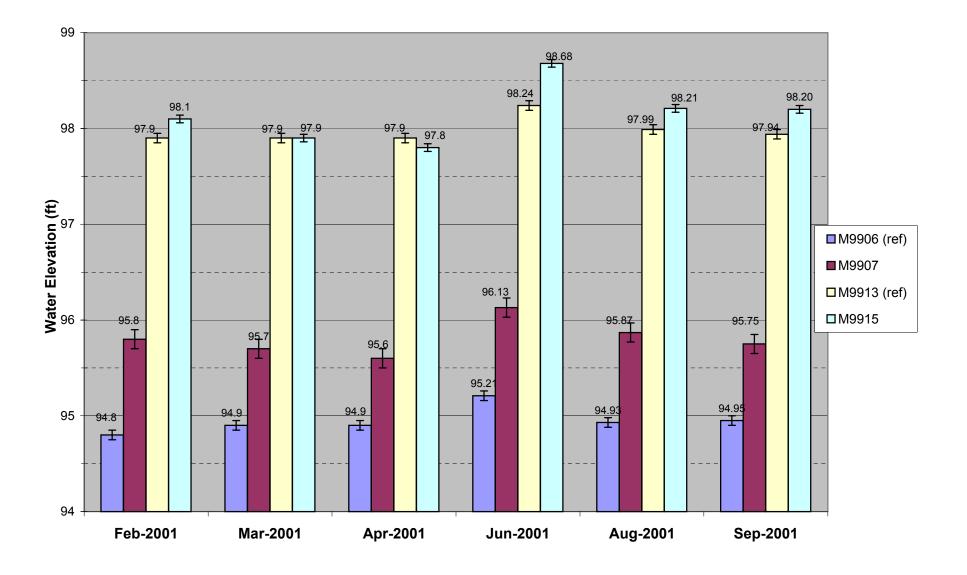
Instrument — Perkin Ehner Sciex ICP-MS P3

	388678 URS Corporatio NPRA Lake Rec Water (Surface, the following production s , 1015315002, 101531	harge Eff., Ground) amples:	4, 10153156	005	Printed Prep	Date/Time Batch Method Date	09/04/2001 7:57 MXX 9184 08/27/2001
Parameter		Results	PQL	Units			Analysis Date
Metals Depa Iron Batch Method Instrument	ntment MIP 3575 EPA 2007 TJA Enviro B ICP P2	0.0200 U	0.020	mg/l,			08/28/01

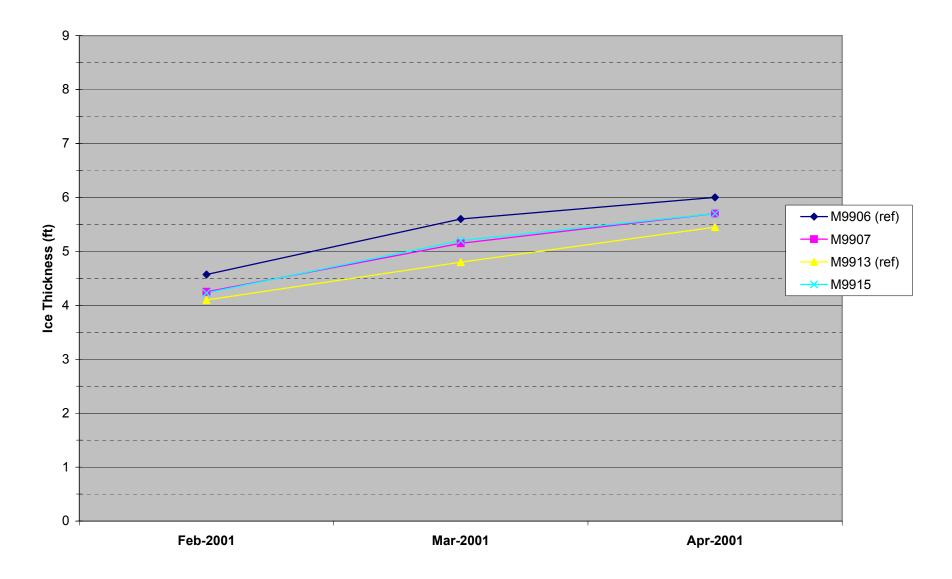
CT&E Ref.# Client Name Project Name/# Matrix	388679 Lab URS Corporati NPRA Lake Re Water (Surface	on echarge	Sample			Printe Prep	ed Date/Time Batch Method Date	09/04/2001 MXX 91 08/27/2001	84
-	the following productio , 1015315002, 10153)04, 101531:	5005				
Parameter			QC <u>Results</u>	Pet Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
TOTAL METAL fron Batch	MIP 3575	LCS	0.961	96	(85-115)			I mg/L	08/28/01
Method Enstrument	EPA 200.7 TJA Enviro II ICP	P2							

5	우
Comisso Ino	CHAIN O
222	
	F CUSTODY
	RECORD
	B

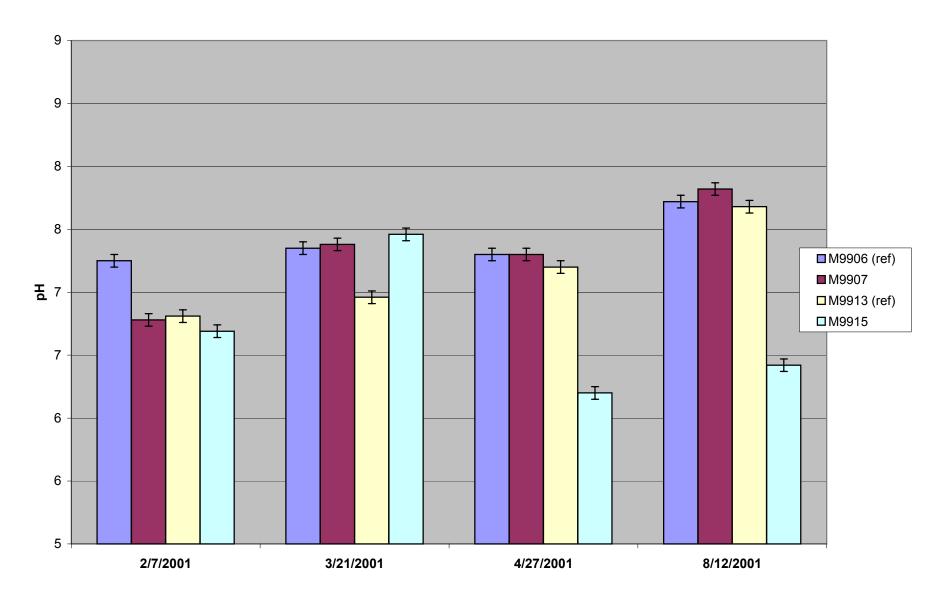
jest (
0
┣━
S
ω
÷
U

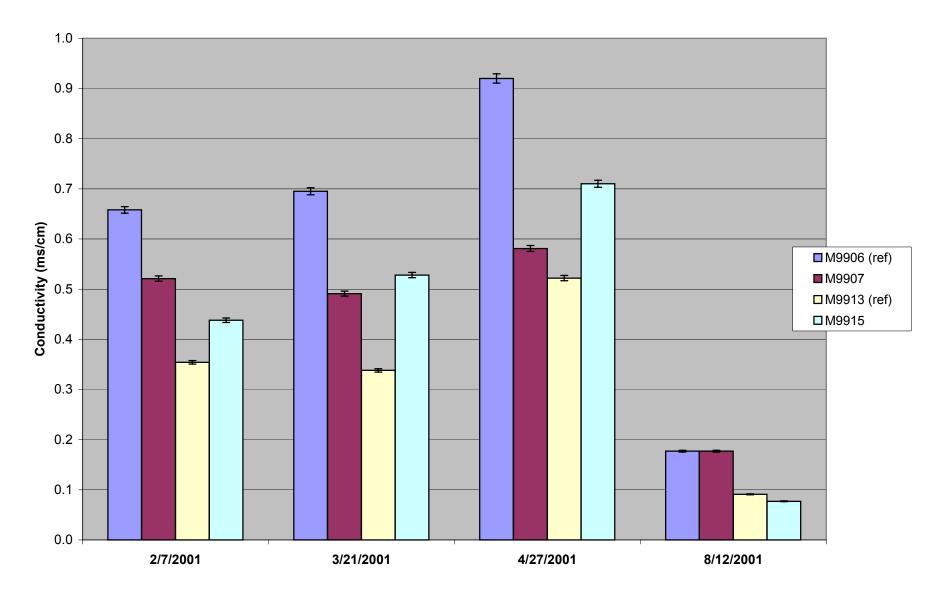

CT&E Environmental Services Inc. Laboratory Division

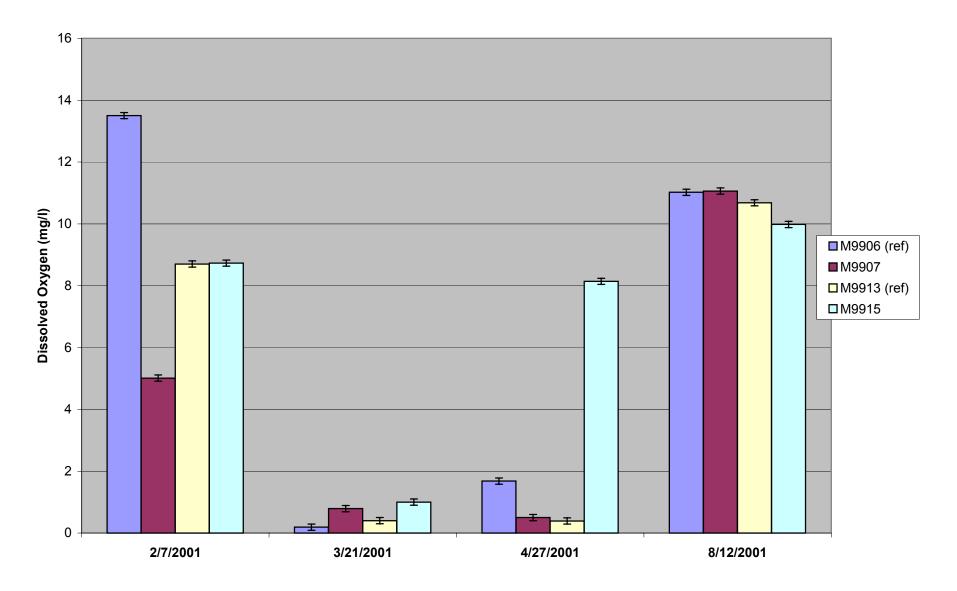
2		('æ	/,	```	/)			1	ļ			ł						고	Ţ	0	
elinquished B		elinquished B		ollected/Relin						ଓ	9	0	ල	θ	LAB NO.		K				
y: (3)		· · · ·	N XX	(1) Alberta						081301 M9°	081301 M90	1964 102180	1264 102180	081201 1991	SAMPLE IDENTIFI	1 Denali SP	elson	100 3000 AU		Im Nie USOT	AS CORP
Date		/bate	8/13/01	Dale						15-02	115-61	13-01	10-4	10-90	CATION	1# 101 03P.0. NUM	FAX NO:				¢.
Time		Time	650	Time						8/13/01	8/13/0	8/11/01	8/12/0	8/12/01	DATE	IBER:	<u> 1</u> 27 56		JPQA 12	© 767) 2	
Received By	1	Received By		Received B _j						0631	2150	3100	2945	2130	TIME		3-398	E	-0-	<u> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u>	
)		r.								λA	٨W	۲. P	W.P	40	MATRIX				-	44	
									ļ	ы	3	พ	ω	ω	κν	m z – >		00	No.		CIRE H
	<u>^</u>			_(Ø	ຄ	ถ	с С			GRA8					CI&E Heterence:
Reques	Level I	Data D	Shippi	Shippi	ĺ							*	*	×	H	Net	Q		hetionaines Eigd		~
Sied Tun	Y	eivenbk	ng Ticke	ig Carrie					-				~ *	^ ~	4020	Tra	<u></u>	2	HHOT	L	
naround D JA		es Requ	îNo:	9F.	_			\vdash	╞	×	×	X	×	×		(5M.	ور کړې	5	۱ 		ŝ
l Time a	evel III	ĥ				<u> </u>		-	-						8	de C	9130	کری ال	•	`	Mg;N
nd Spec					_										_		_	2		;	تبارم
ial Instr	INTAC	Chain :	Tempe	Sample								·								1	š, Š
uctions:		of Custo	rature '	es Reco	i			 						:							
	B HO	xdy Sea	Ģ	ived Co				-												PAGE	
•) XEN	⊡ (Cird	N 1	əld? (Cir														/		İL	-
		۹	0.2	0 0) YE											REMA					9	
	ABSENT		\int_{c}	NO SE									-		IRKS						_
		Date Time Received B: Requested Turnaround Time and Special Instructions: STADUARD STADUARD FAT	/Date Time Received By: Data Deliveribles Required Chain of Custody Seal: (Circle) Date Time Received B: Clevel I Level II INTACT BROKEN Date Time Received B: Requested Tumaround Time and Special Instructions: STADOARD FAT	Matrix B/(3/b1) 6 TO Shipping Ticket No: Temperature °C: 7.0 Date Time Received By: Data Delivenbles Required Chain of Custody Seal: (Circle) Date Time Received By: Evel II Level III INTACT BROKEN Date Time Received By: Requested Tumaround Time and Special Instructions: STAJOARD TaT	Collected/Relicquished B1: (1) Date Time Received By: Shipping Carrier: Samples Received Cold? (Circle) YE Beinguished By: (2) 0 ate Time Received By: Shipping Ticket No: Temperature *C: 7.0 Beinguished By: (2) 0 ate Time Received By: Date Time Received By: Date Chain of Cushody Seal: Circle) Relinquished By: (3) Date Time Received B): Evel I Level II INTACT BHOKEN Relinquished By: (3) Date Time Received B): Requested Tumaround Time and Special Instructions:	equilibrium Date Time Received By: Shipping Carrier: Samples Received Cold? (Circle) YE 0 0//3/b1 650 Shipping Ticket No: Temperature °C: Z.O 0 0ate Time Received By: Data Delivenbles Required Chain of Custody Seal: (Circle) 0 0ate Time Received By: Tevel1 Level II INTACT BROKEN 0 0ate Time Received By: Tevel1 Level III INTACT BROKEN 0 0ate Time Received By: Straucurd Time and Special Instructions: Straucurd Time and Special Instructions:	Collected/Relinquished B/: Date Time Received B/: Shipping Carrier: Samples Received Could? (Circle) YE Relinquished By: 0/13/6/1 510 Shipping Ticket No: Temperature °C: 2.0 Relinquished By: 0ate Time Received By: Data Deliveribles Required Chain of Custody Seal: (Circle) Relinquished By: 0ate Time Received By: Time Received By: Relinquished By: 0ate Time Received By: Strauce III Level III INTACT BROKEN Relinquished By: 0ate Time Received By: Strauce III Imme and Special Instructions:	Collected/Helinquished By: Date Time Received By: Shipping Carrier: Samples Received CoM? (Circle) YE Beinquished By: Date Time Received By: Shipping Ticket No: Temperature 10: Z.O Beinquished By: Date Time Received By: Data Deliveribles Required Chain of Cuseody Seal: (Circle) Reinquished By: Date Time Received By: Data Deliveribles Required Chain of Cuseody Seal: (Circle) Reinquished By: Date Time Received By: Straub CARD Time and Special Instructions:	Collected/Relinquished By: Date Time Received By: Shipping Carrier: Samples Received Cod? (Circle) YE Beinguished By: 0 ate Time Received By: Shipping Toket No: Temperature °C: Z.O Beinguished By: 0 ate Time Received By: Data Delivenbles Required Chain of Clustody Seal: (Circle) Reinguished By: 0 ate Time Received By: Data Delivenbles Required Chain of Clustody Seal: (Circle) Requested Tumaround Time and Special Instructions: S/MA/CARD FA/ S/MA/CARD FA/	Collected/Relinquished Eff. (1) Date Time Received By: Shipping Carrier: Samples Received Coll? (Circle) VE Reinquished By: 0 ate Time Received By: Shipping Tricket No: Temperature °C: Z .0 Reinquished By: 0 ate Time Received By: Data Deliventities Required Chain of Custody Seal: (Circle) Reinquished By: 0 ate Time Received By: Data Deliventities Required Chain of Custody Seal: (Circle) Requested Tumaround Time and Special Instructions: Sripping Tricket Tumaround Time and Special Instructions: Sripping Time	S O'B\3_O1 M971 S-02 B(B) B Collected/Trelicqisheq/B/(11) Date Time Received By: Bitpoing Came: Shipping Came: Samples Received Coll? (Circle) VE Collected/Trelicqisheq/B/(11) Date Time Received By: Shipping Came: Samples Received Coll? (Circle) VE Beimgolshed By: Date Time Received By: Data Delvenbles Required Chain of Cuseody Seal: (Circle) Reimgolshed By: Date Time Received By: Stripping Came: Temperature °C: Z.O Reimgolshed By: Date Time Received By: Stripping Came: Temperature °C: Z.O Refunctioned Time Received By: Stripping Came: Temperature °C: Z.O Refunctioned Time Received By: Stripping Came: Temperature °C: Z.O Refunctioned Time Received By: Stripping Came: Temperature °C: Z.O Stripping Came: Stripping Came: Stripping Came: Temperature °C: Z.O Requested By: Date Time Received By: Stripping Came: Stripping Came: Stripping Came: Stripping Came: Stripping Came: Striping Came: Stripping Came: Str	(T) OB 1 3 0 1 MP(7) 15 - 61 (S) 13 0 1 MP(7) 15 - 67 (S) 14 3 0 15 10 10 10 10 10 10 10 10 10 10 10 10 10	① 0.8[12_0] MP(113-01 8/13/01 d.015 IVA 3 G X X X I I ④ 0.8[13_01 MP(715-61) 8/13/01 d.515 IVA 3 G X	(E) O312.01 MPP07-01 8/12/01 Code15 WA 3 G X X X I (E) O312.01 MPP115-01 8/12/01 a o15 WA 3 G X X X I I (E) O813.01 MPP115-01 8/12/01 a o15 WA 3 G X X X I </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Lue No. SAMPLE IDENTIFICATION DATE TIME MATRIX S /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ 3/ // 3/ // 3/</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c} \mbox{convert} \sum_{n=0}^{n} \mbox{find} fi$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lue No. SAMPLE IDENTIFICATION DATE TIME MATRIX S /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ /// 3/ 3/ // 3/ // 3/	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \mbox{convert} \sum_{n=0}^{n} \mbox{find} fi$

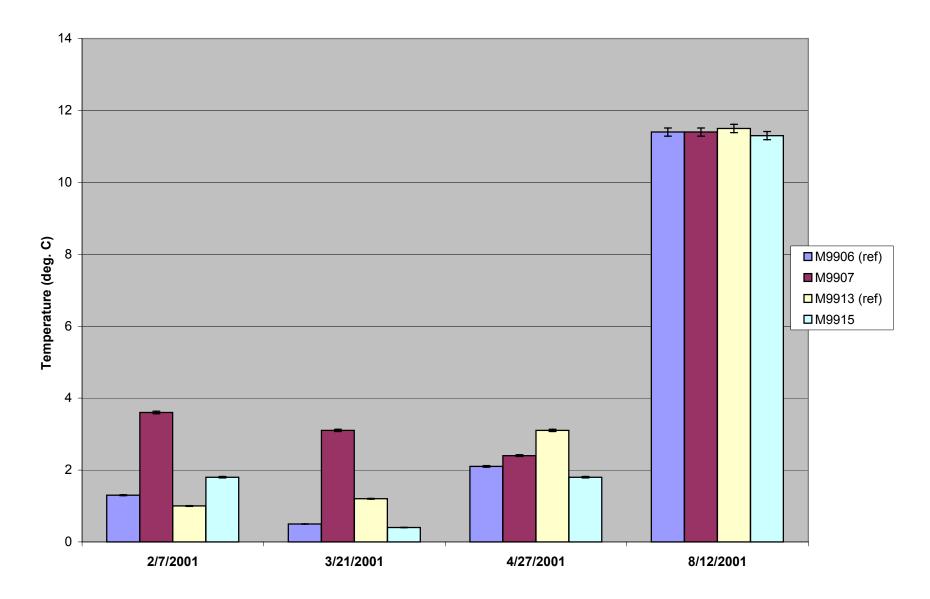

CT: YES / NO #/WHERE:		Log-in proofed by:
JN ANCHORAGE UPON ARRIVAL FROM FAIRBANKS:	TO BE COMPLETED IN	Date / Time:
		Individual contacted:
	Was client notified of problems? (specify below)	
Other (enacify)		
	Were correct container / sampre sizes such inter:	
-	Were all bottles for volatiles free of interviews pace:	
4 oz w / septa w / MeOH	Were all samples sealed in selected produces.	
4 oz amber unpres'd	Were at a the work is second place back.	
b oz amber unpres'd	packing inderview	
5" 60 ml Nalgene	Mele al satisfies becam in because.	
120 ml coli bottles	Und the CVC and sectod to prevent breakane?	
1L cubies w / NaOH + ZnAc	Did the CUC indicate ACVE / AFVEC project in operation	
1L cubies w / H ₂ SO ₄	was the oper tarianty append a stopp project? (if applicable)	
S 1L cubies w / HNO3	Westingta a coc whitegoin.	
5 1L cubies unpres'd	Nets state a COC with antiser	
500 rpl amber w / H ₂ SO ₄		
950 ml amber w / HCI		
950 ml amber unpres'd	West specific and another methody spaging? Fax'd to COE?	
# of each Container Received:	Man there are airkill ato ? Note #:	
	Is received temperature 4 ± 2°C? Temp:	Tes No
		an second frummond and a second
Notes:	The second and the completed for all ACOE & AFCEE; *******	
Ref Lab required?	1441140 1 - 145 - 145 - 14 - 14 - 14 - 14 - 14	Completed by taight:
Lab-filtered for dissolved		1
Field-filtered for dissolved	Will be used a beneficial and the second sec	
Field pres'd for volatiles?	A thore a music intrinis project?	
Limited Sample Volumer	ب ا	
Extra Sample Volumer	Will a data package be required?	
Additional Sample Kemarks:	Agents an ACOE / AFCEE / ADEC project? /	
BWS/BWSD	Has Project Manager been notified of problems?	
Trip Blank		
	Were samples preserved consecut and processions	
1-5-	Are there any promones (e.g., ios, cierysource)	2
Matrix of each Sample:	If yes, have you sponent with output versel?	
Received Temperature: 2.0°C	Are samples within 47 ins. of the wind of and	6
Received Date/Time: <u>2//4/6/ ///5</u>	If yes have you work a struct three of due date?	
Due Date: <u>cy k poi</u>	is the four doma e-mail notification?	
alat	Are samples RUSH, priority, or within 72 hrs. of hold time?	Yes
		;
	Services Inc. SAMPLE RECEIPT FORM	CT&E Environmental Services Inc.
		•

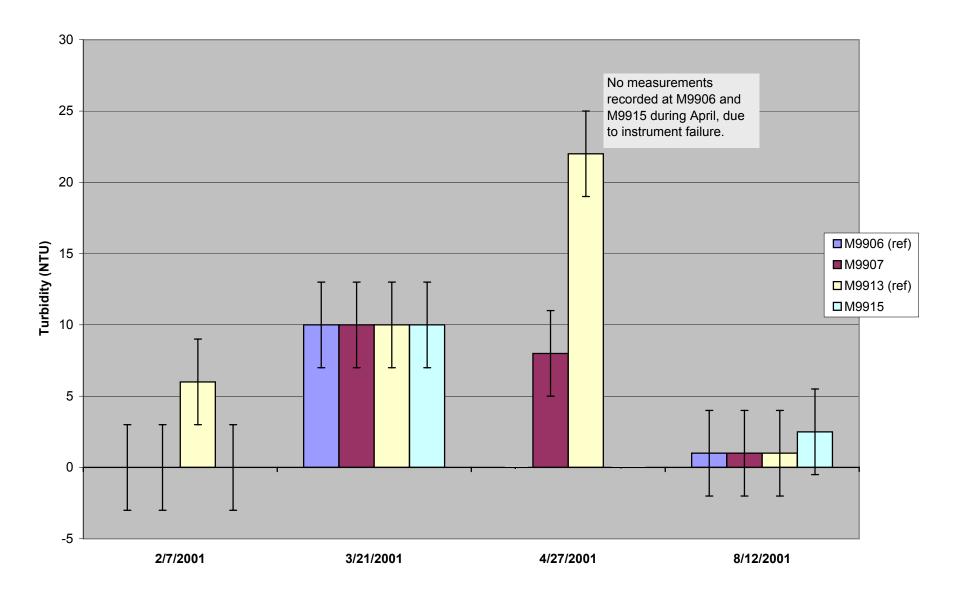
.

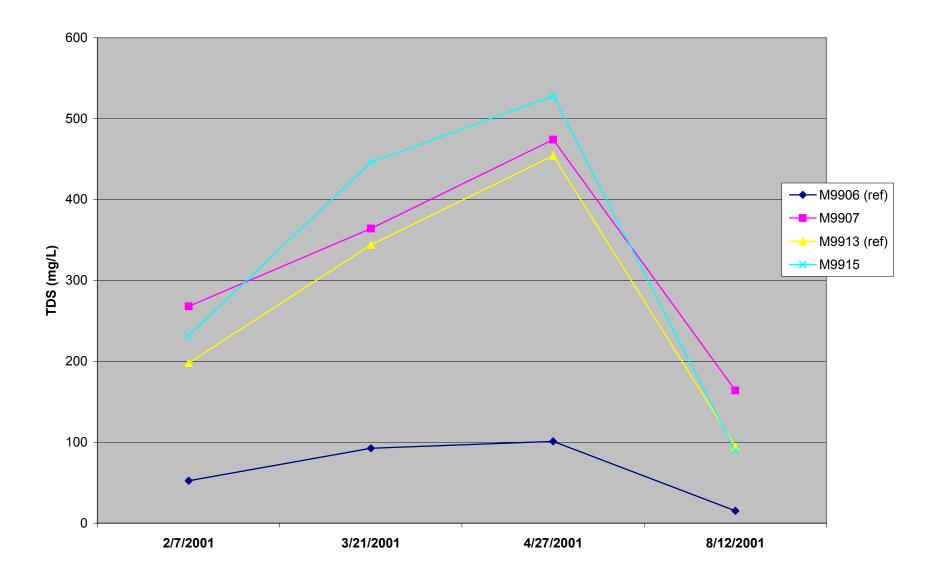

Appendix C Plots and Graphs of Water Quality Results Surface Water Elevation at NPRA Lakes, 2001.

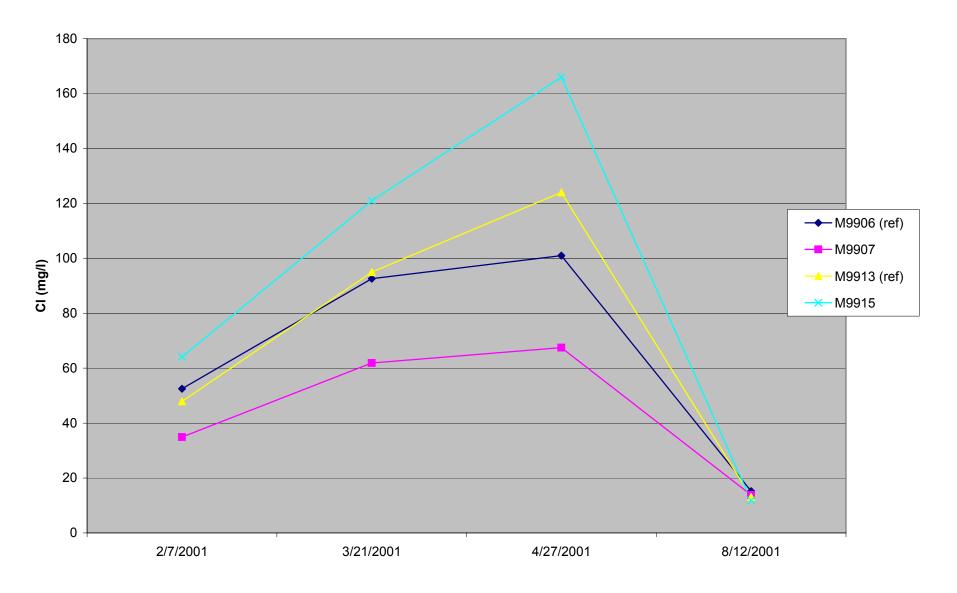

Ice Thickness at NPRA Lakes, 2001.

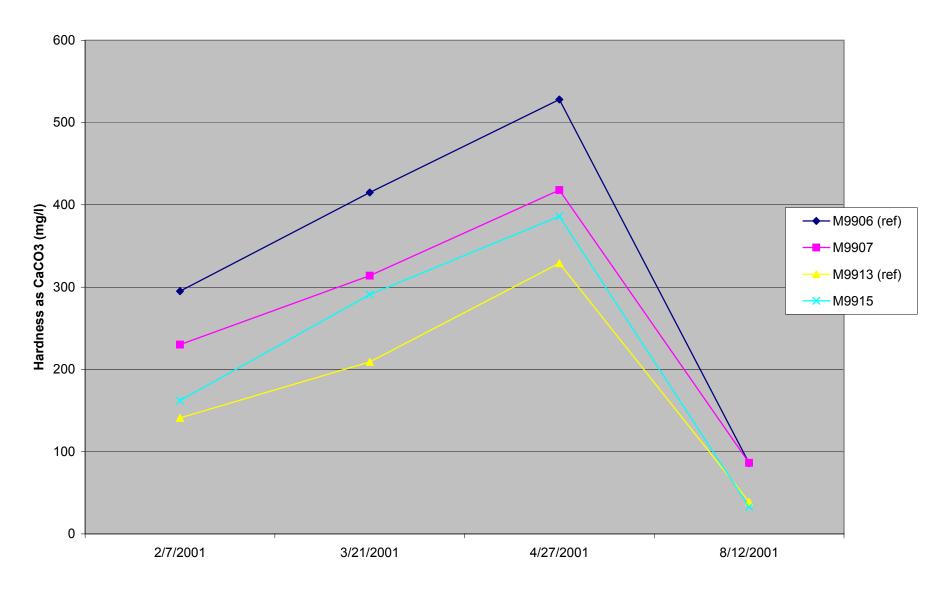

pH at NPRA Lakes, 2001.

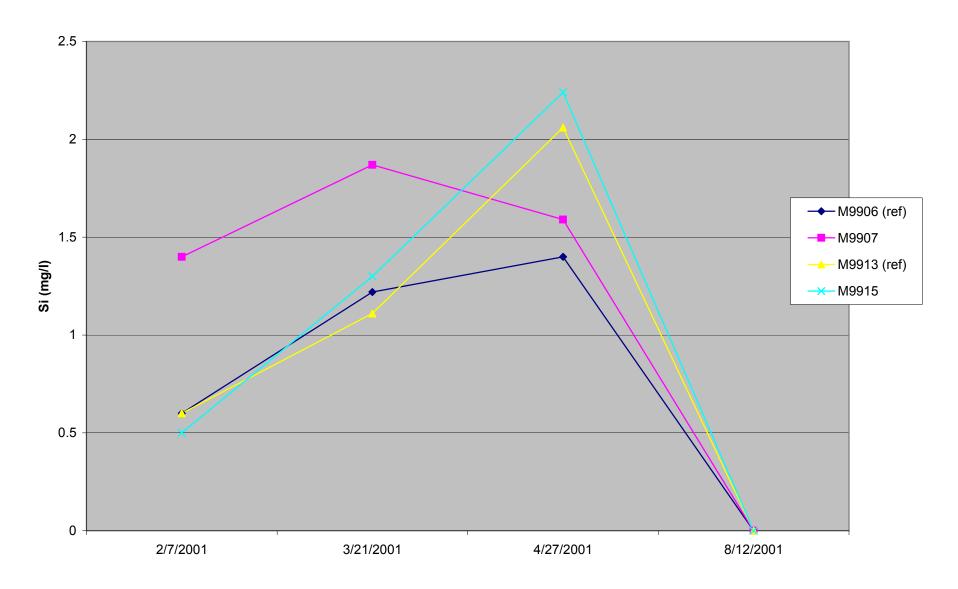

Conductivity at NPRA Lakes, 2001.

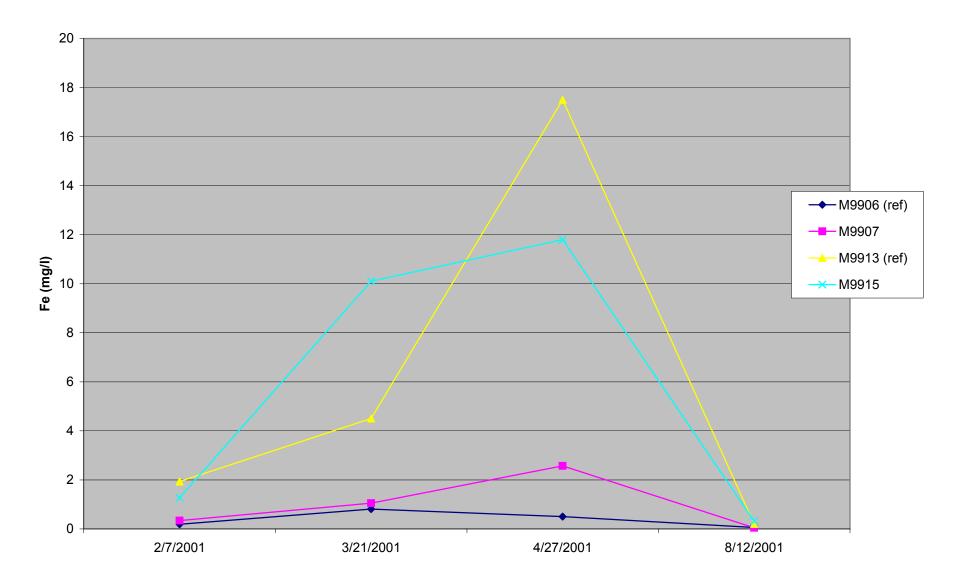

Dissolved Oxygen concentrations at NPRA Lakes, 2001.

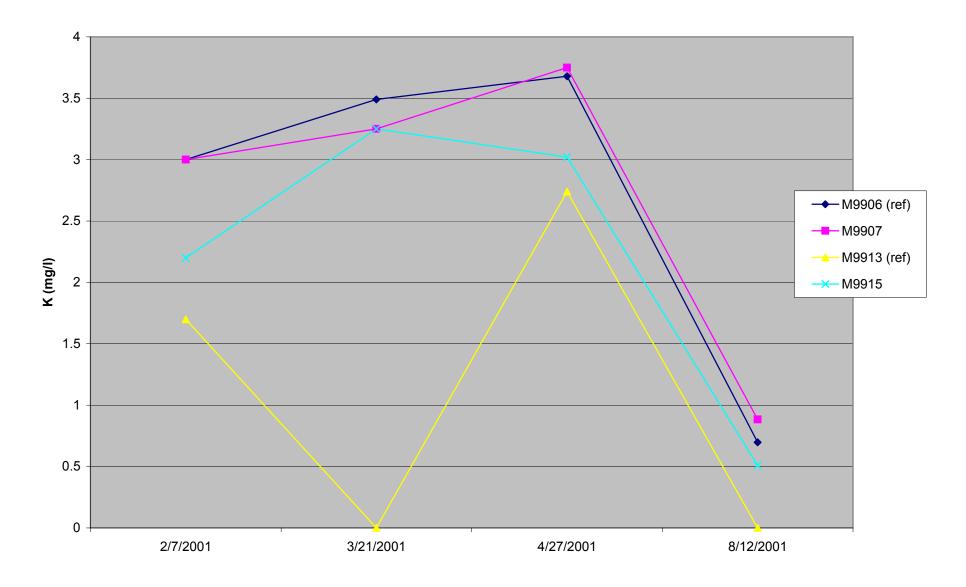

Temperature at NPRA Lakes, 2001.

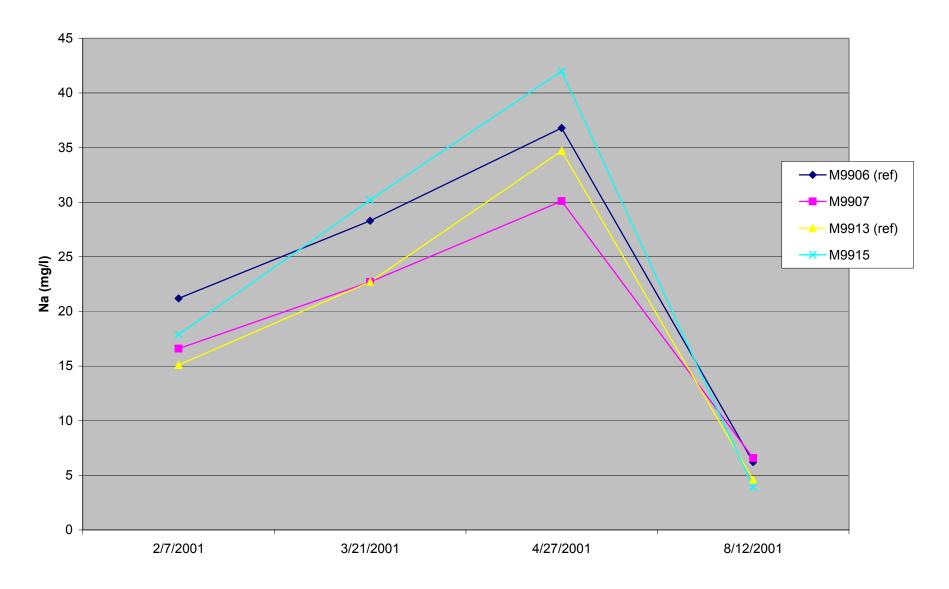

Turbididy at NPRA Lakes, 2001.

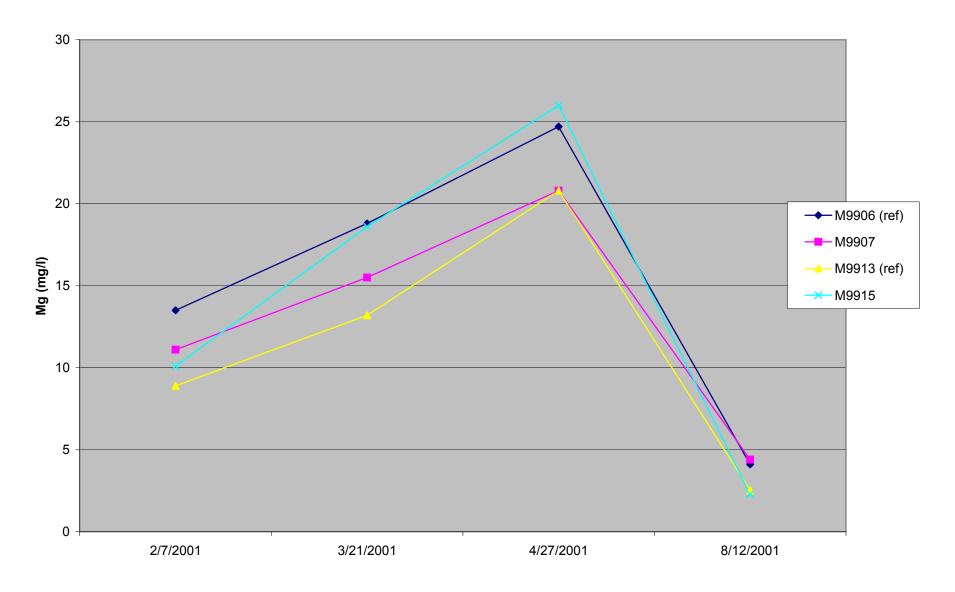

Total Dissolved Solids at NPRA Lakes, 2001.

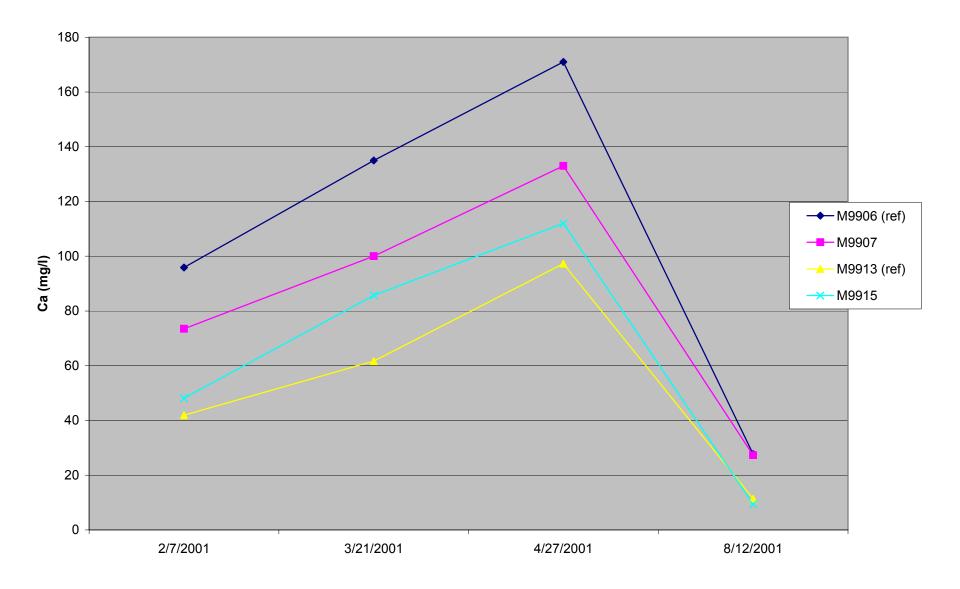

Chloride Concentrations at NPRA Lakes, 2001.


Hardness at NPRA Lakes, 2001.


Silicon Concentrations at NPRA Lakes, 2001.


Iron Concentrations at NPRA Lakes, 2001.


Potasium Concentrations at NPRA Lakes, 2001.


Sodium Concentrations at NPRA Lakes, 2001.

Magnesium Concentrations at NPRA Lakes, 2001.

Calcium Concentrations at NPRA Lakes, 2001.

Appendix D

Water Quality Data Collected during 1999 and 2000

Lake	Date	рН	Cond (mS/cm)	DO (mg/l)	Temp (C)		TDS (mg/L)	Hard (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
M9906	07/15/99	8.25	0.1997	9.9	13.0	13.8	112	85.6	26.9	4	5
M9907	07/15/99	8.3	0.1993	9.88	13.2	13.3	116	84	25.4	4.3	5.4
M9913	07/12/99	7.37	0.0859	9.82	13.9	11.9	55	32	9.2	2.1	3.9
M9915	07/13/99	7.58	0.0887	9.76	14.7	14.1	61	32.8	9	2.3	4.1

From MJM Research, January 2000: Fish Utilization of Lakes in Eastern NPR-A during 1999.

From MJM Research, November 2000: Fish Utilization of Lakes in Eastern NPR-A 1999-2000.

Lake	Date	рН	Cond (mS/cm)	DO (mg/l)	Temp (C)	Cl (mg/L)	TDS (mg/L)	Hard (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
M9906	07/15/00	8	0.223	10.6	9.9	21.2	134	89	27.4	5.1	9.7
M9907	07/16/00	8.15	0.295	11.2	11.4	32.0	164	111	35.5	5.5	11.9
M9913	07/20/00	8.6	0.192	11.2	11.1	8.2	136	87	28.9	3.5	7.2
M9915	07/21/00	7.8	0.204	9.8	14.8	23.5	156	69	21.2	3.9	10.1

From Phillips Alaska, Inc., December 2000: 2000 NPR-A Lake Recharge Study Results.

Lake	Date	рН	Cond (mS/cm)	DO* (mg/l)	Temp (C)	CI (mg/L)	TDS (mg/L)	Hard (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
M9906	8/15/2000			11.54	7.4	15.6	136	86.0	27.6	4.2	6.1
M9915	8/15/2000			11.83	6.4	14.1	88	32.1	9.0	2.3	3.8

Note: "--" indicates the parameter was not reported

* indicates dissolved oxygen was measured as % saturation and converted to mg/l using recorded temperature and an assumed barometric pressure of 760 mmHg.