FALL 2014 SUBSISTENCE FISHERY MONITORING ON THE COLVILLE RIVER

EDNE

John C. Seigle John R. Rose Laura Gutierrez Joe E. Welch

PREPARED FOR

CONOCOPHILLIPS ALASKA, INC. Anchorage, Alaska

PREPARED BY

ABR, INC.-ENVIRONMENTAL RESEARCH & SERVICES

Anchorage, Alaska

Cover: ABR biologist John Rose (front) helps Nuiqsut residents pull fish during a net harvest. Photo © ConocoPhillips Alaska, Inc. All rights reserved.

FALL 2014 SUBSISTENCE FISHERY MONITORING ON THE COLVILLE RIVER

FINAL REPORT

Prepared for

ConocoPhillips Alaska, Inc. P.O. Box 100360 700 G Street, ATO # 1902 Anchorage, AK 99510-0360

Prepared by

John C. Seigle John R. Rose Laura Gutierrez Joe E. Welch

ABR, Inc.—Environmental Research & Services P.O. Box 240268

Anchorage, AK 99524

June 2015

Acknowledgments	iii
Introduction	1
Background	1
Methods	2
Fishery Effort and Harvest	2
Length, Weight, and Age of Catch	5
Water Quality	6
Sediment Analysis	7
Qaaktaq Panel Meeting	7
Results	7
Fishery Effort and Harvest	7
Length, Weight, and Age of Catch	
Salinity and Temperature	
Water Chemistry	
Sediment Analysis	
Discussion	
Literature Cited	

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1.	Waters important to the life history of Arctic Cisco in Canada and Alaska and the nearshore Beaufort Sea	3
Figure 2.	Water sampling stations and net sites in each of the 3 main subsistence fishing areas in the Nigliq Channel of the Colville River, Alaska, 2014	4
Figure 3.	Number of nets deployed annually in the fall subsistence fishery for Arctic Cisco, Colville River, Alaska, 1985–2014	10
Figure 4.	Number of nets fishing each day in each of 3 fishing areas in the Nigliq Channel and in the Main Channel fishing area, Colville River, Alaska, 16 October to 6 December 2014	11
Figure 5.	Percent of annual fishing effort in each of 3 Nigliq Channel fishing areas, Colville River, Alaska, 1985–2014	12
Figure 6.	The observed number of Arctic Cisco harvested in 7.6-cm mesh nets in each of 3 Nigliq Channel fishing areas, 1986–2014	13
Figure 7.	Catch per unit effort of Arctic Cisco in 7.6-cm mesh gill nets, Nigliq Channel, Colville River, Alaska, 1986–2014	16
Figure 8.	Average daily catch per unit effort of Arctic Cisco in 7.6-cm gill nets, Nigliq Channel, 2004–2014	19
Figure 9.	Length frequency of Arctic Cisco and Least Cisco captured in all mesh sizes in the fall subsistence fishery, Nigliq Channel, Colville River, Alaska, 2014	24
Figure 10.	Length frequencies of Arctic Cisco in the fall subsistence fishery by gillnet mesh size, Nigliq Channel, Colville River, 2014	25

Figure 11.	Length-weight relationship of Arctic Cisco captured in the fall subsistence fishery, Nigliq Channel, Colville River, 2014	26
Figure 12.	A 5-year comparison of length-weight regression lines for Arctic Cisco captured in 7.6-cm mesh nets in the fall subsistence fishery, Nigliq Channel, Colville River, Alaska	27
Figure 13.	Age composition of Arctic Cisco harvested in 7.6-cm mesh nets, 8.3-cm mesh nets, 8.9-cm mesh nets, and all mesh sizes combined, Nigliq Channel, Colville River, Alaska, 2014	28
Figure 14.	Age-specific length distribution by gill net mesh size of Arctic Cisco harvested in the fall subsistence fishery, Nigliq Channel, Colville River, Alaska, 2014	29
Figure 15.	Catch per unit effort of Arctic Cisco by age class in the fall subsistence fishery, Nigliq Channel, 2004–2014	30
Figure 16.	Cumulative catch per unit effort of Arctic Cisco by year class in the fall subsistence fishery, Nigliq Channel, Colville River, 1976–2010	31
Figure 17.	Salinity and temperature measured at 3.0 m depth from 4 water stations on the Nigliq Channel, Colville River, Alaska, 24 October to 18 November 2014	33
Figure 18.	Water salinity depth profiles in Nigliq Channel fishing areas, Colville River, Alaska, early November 2014	34

LIST OF TABLES

Table 1.	Estimated onset of the fall subsistence fishery for Arctic Cisco in the Niġliq Channel of the Colville River, Alaska, 1985–2014	8
Table 2.	Summary statistics for fall fishing effort in 3 Nigliq Channel fishing areas and in the Main Channel fishing area, Colville River, Alaska, 2014	9
Table 3.	Observed catch of Arctic Cisco, effort, and catch per unit effort in each of 3 fishing areas in the Nigliq Channel, Colville River, Alaska, 1986–2014	. 14
Table 4a.	Observed catch of Arctic Cisco, effort, and catch per unit effort for each fishing area in three Nigliq Channel fishing area and in the Main Channel fishing area by mesh size, Colville River, Alaska, 2014	. 17
Table 4b.	Estimate of total harvest of Arctic Cisco in the Nigliq Channel and Main Channel fishing areas is calculated based on calculated effort and estimated CPUE for each river section by mesh size, Colville River, Alaska, 2014	. 18
Table 5.	Species composition of the observed harvest from the fall subsistence fishery for Arctic Cisco expressed as a percent of the sampled catch, Colville River, Alaska, 1985–2014	. 20
Table 6.	Observed catch of Least Cisco, effort, and catch per unit effort for each of 3 fishing areas in the Nigliq Channel, Colville River, Alaska, 1986–2014	. 22
Table 7.	Cumulative catch per unit effort of Arctic Cisco in 7.6-cm mesh gill nets by year class in the fall subsistence fishery, Nigliq Channel, Colville River	. 32

LIST OF APPENDICES

 Appendix B. Total fishing effort recorded for the fall subsistence fishery for Arctic Cisco in 3 Nigliq Channel fishing areas and in the Main Channel fishing area, Colville River, Alaska, 2014 Appendix C. Ambient water chemistry at 3 m depth at 4 water stations on the Nigliq Channel, Colville River, Alaska, 24 October to 18 November 2014 	B-1 C-1
Appendix C. Ambient water chemistry at 3 m depth at 4 water stations on the Nigliq Channel,	C-1
Colvine River, Alaska, 24 October to 18 November 2014	
Appendix D-1. Water chemistry results from 3 sampling locations on 2 dates, November 3 and November 18, during the fall subsistence harvest of Arctic Cisco in the Nigliq Channel, Colville River, Alaska, 2014	D-1
Appendix D-2. Calculated Alaska water quality standards for total water hardness-dependent metals rom 3 sampling locations on 2 dates, November 3 and November 18, during the fall subsistence harvest of Arctic Cisco in the Nigliq Channel, Colville River, Alaska, 2014	D-2
Appendix E.Raw laboratory water chemistry results from Arctic Fox Laboratories, Inc., for samples collected from 4 locations during the fall subsistence harvest of Arctic Cisco, Niġliq Channel, Colville River, Alaska, November 2014	E-1
Appendix F. Benthic river bed sediment chemistry results collected from 2 sampling locations during the fall subsistence harvest of Arctic Cisco in the Nigliq Channel, Colville River, Alaska on 18 November 2014	F-1
Appendix G.Raw laboratory river bed chemistry results from SGS Environmental Services, Inc., for samples collected from 2 locations during the fall subsistence harvest of Arctic Cisco, Nigliq Channel, Colville River, Alaska, 4 December 2014	G-1
Appendix H. Age frequencies of Arctic Cisco caught in 7.6-cm mesh gill nets in the fall subsistence fishery, Nigliq Channel, Colville River, 1988–2014	

ACKNOWLEDGMENTS

The 2014 Arctic Cisco study was funded by ConocoPhillips Alaska, Inc., (CPAI) and we are grateful to Robyn McGhee of CPAI for logistic support. Field support was provided by ABR personnel John Seigle, John Rose, Laura Gutierrez, Joe Welch, and Ashley Hovis, and by Nuiqsut residents Richard Tukle, Isiah Nukapigak, and Jerry Pausanna. Pam Odom (Publications Specialist) of ABR helped prepare this report. Pam also arranged travel and Tony LaCortiglia and Nancy Lampman handled gear logistics and transport. Thanks to Steve Murphy, Tom DeLong, and Bob Burgess for their advice and managerial assistance.

We depend every year on the outstanding and welcoming support of the residents of Nuiqsut. They made our eighth year working out of the village a memorable one! We thank members of the *Qaaktaq* Panel who continue to provide valuable support to our sampling crew throughout the year. Thanks also to the Kuukpik Subsistence Oversight Panel, Inc. (KSOPI). We thank the Kuukpik Hotel staff for the comfortable accommodations and good food and the Nanuq Corporation and its employees for entertainment and insights as they prepared for the ice road season. We also are indebted to all the fishers who graciously offered their harvest data, advice and insights during the 2014 fall fishery.

INTRODUCTION

In 2014, ABR worked with key fishery stakeholders in Nuiqsut, Alaska, to continue long-term monitoring of the Colville River subsistence fishery, which is conducted each fall after freeze-up in the Nigliq Channel of the Colville River. The 2014 subsistence fishery monitoring program is a continuation of long-term studies that have taken place annually since 1985 (no data were collected in 1999). Monitoring has been conducted by several contractors over that time period (MJM Research [1985-2005], LGL Alaska Research Associates [2006]), and ABR [2007–2014]) on behalf of ConocoPhillips Alaska, Inc., (CPAI) and its predecessors (see Daigneault and Reiser 2007 and Moulton et al. 2006). The monitoring program has focused primarily on the fall harvest of Arctic Cisco (Coregonus autumnalis; Qaaktaq, in Iñupiaq), which are a staple in the diet of Nuiqsut residents and traded widely with other northern Alaska communities. The program also attempts to quantify harvest of other subsistence species captured in the *Qaaktaq* fishery. The primary impetus for the monitoring program is concern that oil and gas exploration and development in the nearshore marine environment and, more recently, on the Colville River delta (henceforth the Colville delta) could adversely affect these anadromous or amphidromous fish. Furthermore, in recent years this monitoring program has continued as mandated under stipulations defined by the CD-4 development permit issued by the North Slope Borough (NSB04-117, 2004). The main goal of the monitoring program has been to obtain estimates of the total fishing effort and catch.

ABR continues to implement the Arctic Cisco fall fishery monitoring program as conceived during a series of community meetings with fishery stakeholders in 2007 (Seigle et al. 2008). The result of those stakeholder meetings was that 1) ABR worked with the community of Nuiqsut to formulate a plan for continuing long-term fishery monitoring each fall, and 2) ABR made a commitment to continue working with the community via interactions with a *Qaaktaq Panel* of expert fishers to ensure that community concerns are continually incorporated into the monitoring plan. This process has been successful to date, and subsequently the monitoring program has been working closely with fishers and other stakeholders to keep all parties abreast of developments in the fishery. As an integral part of the monitoring program, ABR has conducted numerous meetings with community members and the Qaaktaq Panel (composed of expert participants in the fishery) before, during, and after the fishing season as dictated by the schedules of participants. ABR has also taken part in local community science fairs (including in November 2014) to present information on the fishery to children and adults alike. Furthermore, ABR has offered physical assistance to fishers with their harvests whenever seeking interviews. The objectives of the monitoring program in 2014 were to:

- Continue working with key stakeholders as per agreements made in 2007 (Appendix A),
- Monitor the harvest of Arctic Cisco throughout the fishing effort, using interviews of fishery participants,
- Record the number of nets fishing at any given time and net dimensions and locations during the season,
- Document the subsistence fishery harvest,
- Collect age, length, and weight information for a subsample of Arctic Cisco harvested,
- Measure water salinity and water and sediment quality (i.e., testing for metals and petroleum-based organic compounds) in primary fishing areas,
- Compare the 2014 results with those of previous years for this program and other historical data,
- Continue to raise awareness for, and maintain a high level of participation in, the *Qaaktaq* Panel meetings.

BACKGROUND

Very little was known of the basic life history of Arctic Cisco until fish monitoring studies were initiated by the oil industry in the nearshore environments of the Prudhoe Bay region in the early 1980s (Gallaway et al. 1983). Those studies discovered that all Arctic Cisco in Alaska originate in the Mackenzie River system in Canada (Figure 1). Young-of-the-year drift down river into the Beaufort Sea in early summer, and prevailing easterly winds and ocean currents transport these young fish passively along the Beaufort Sea coast to the west. The number of young-of-the-year Arctic Cisco (i.e., recruitment strength) in Alaska and the Colville River region is correlated with the consistency and strength of easterly winds in the Beaufort Sea region during summer (Fechhelm and Fissell 1988). This wind- and ocean current-driven recruitment process largely determines the age structure of Arctic Cisco in Alaska (Gallaway and 2000). and number Fechhelm the of young-of-the-year Arctic Cisco at Prudhoe Bay (the site with the longest records on abundance of young-of-the-year Arctic Cisco) is highly correlated with harvest rates for the Colville fishery 5-7 years later (ABR et al. 2007). It was predicted that above-average harvest of Arctic Cisco would begin in 2011 and continue for the foreseeable future (Larry Moulton, 2008, personal communication). Indeed, catch per unit of effort in the Colville River during 2011 and 2012 were among the highest ever recorded (Seigle et al. 2011, Seigle and Gottschalk 2012).

Young Arctic Cisco in Alaskan Beaufort Sea waters spend their summers feeding in deltas and nearshore brackish waters before returning to deep pools of the Colville River for over-wintering (Craig 1984, Moulton et al. 1986). After achieving maturity (females at age 7–8, males at age 6–7), Arctic Cisco migrate during summer to their source rivers within the Mackenzie River system for fall spawning. These adult fish do not return to rearing streams in Alaska but rather stay in the Mackenzie system where they continue to spawn well into their teen-aged years (Craig and Halderson 1981, Gallaway et al. 1983, Bond and Erickson 1985, Bickham et al. 1989, Moulton 1989, Bond and Erickson 1997).

The subsistence fishery is conducted almost exclusively on the Nigliq Channel of the Colville River (Figure 1). A commercial Arctic Cisco fishery also was operated by the Helmericks family on the Main Channel of the Colville River for ~50 years starting in the early 1950s. In 1993, the year with the highest combined harvest from these 2 fisheries, ~78,254 fish (31,340 kg) were taken on the Colville delta (Moulton and Seavey 2004, Moulton et al. 2010). In contrast, only 5,859 fish (2,799 kg) were harvested in 2001, which was the lowest harvest on record. In 2003, the Minerals Management Service (MMS) convened а workshop in Nuiqsut to review the issue of variability in annual harvest of Arctic Cisco, from perspectives of both the subsistence community and scientists researching this species (MBC Applied Environmental Sciences 2004). Following the workshop, MMS commissioned a study to review and synthesize all available information from scientific studies and from subsistence users to assess the status of the Arctic Cisco population in Alaska and to evaluate the effects of anthropogenic disturbances on the fish (ABR et al. 2007). That study relied heavily on data collected since 1985 on the subsistence fishery in Nuiqsut (i.e., this long-term monitoring program).

METHODS

FISHERY EFFORT AND HARVEST

Four traditional fishing areas hosted the majority of concentrated fishing in the Colville delta in 2014 (Figure 2). Three traditionally used areas occur in the Nigliq Channel (in order of upstream to downstream) the Upper Nigliq area (adjacent to the town of Nuiqsut), the Nanuk area, and the Nigliq Delta area (includes nets between the Nanuk and Nigliq Delta areas). A fourth traditionally used area in the Kupigruak Channel on the eastern Colville delta (henceforth, the Main Channel fishing area) also was fished in 2014 (Figure 2).

The fishery monitoring team always included 2–3 scientists from ABR. The remaining team members were Nuiqsut residents Richard Tukle and Isaiah Nukapigak, with occasional assistance from former monitoring team member, Jerry Pausanna. ABR fishery monitors traveled each day by snow machine to the more intensively fished areas of the Colville River to conduct interviews for harvest assessment. When a member of the monitoring team observed a fisher on their way to or from a harvest, permission was asked to either assist in the harvest or to conduct an interview and to assess the recently completed harvest event. A harvest event occurs anytime a fisher checks his or

her net, but it may be recorded by harvest monitors on location at the time of harvest or after the fact in Nuiqsut or at a later date via email or telephone. During interviews, we recorded net length, net mesh size, and start and end times for that particular harvest event. If a fisher expressed desire to work alone or to not participate in an interview the monitoring team respected those wishes and moved on to another net.

Fishers use a variety of net lengths and mesh sizes depending on individual preferences. For this reason, in calculating fishing effort (i.e., net-days), the net length and effort were adjusted to a standardized net length of 18 m (60 ft) and full-day (24-hour) set duration. For example, if an 80 ft net was used during a 24-hour period, fishing effort was calculated as 80 ft/60 ft \times 1 day = 1.3 days of adjusted effort. Catch per unit effort (CPUE), expressed as catch per net-day, was calculated using these adjusted estimates of effort (Appendix B). Because nets of different mesh sizes capture different sizes of fish at different rates, we specify when data presentations are broken down by mesh size, when they include all mesh sizes, or when they are limited to the most frequently used mesh of 7.6 cm (3 inches). CPUE was calculated for all mesh sizes but is most commonly reported for nets with 7.6-cm mesh as this has historically been the most fished mesh size in the Arctic Cisco fall fishery.

In the event that the fishery monitoring team did not actually witness a harvest, interviews with fishers were conducted the next time the team crossed their path (usually within 24–48 hours). Variations of the following questions were asked:

- How many nets are you fishing?
- How long have your nets been actively fishing (helps define total season effort)?
- What are your net dimensions?
- How many *Qaaktaq* did you harvest in each net?
- How many fish of other species did you harvest?
- How often are you checking your nets (helps monitors determine when to meet fishers)?

- Do other people check your nets (helps monitors recognize when friends or relatives are assisting the net owner)?
- Where is your net and has it been moved recently (helps monitors determine location and end times for calculating effort in specific river sections)?

Catch data from these post-harvest interviews were included in the overall "observed" harvest assessment even if it was unclear which nets fish had been captured in (i.e., the fisher knew how many fish he/she caught in a day but could not say how many fish were caught in individual nets of varying mesh sizes and net lengths). Reported harvest numbers from these interviews were used in CPUE analysis only if the fisher also knew the number of days each net fished and the number of fish caught in nets of each mesh size. In 2014, as in previous years, ABR distributed a "North Slope Fisheries Logbook" to interested fishers (see Appendix B in Seigle et al. 2014). These books were distributed to fishers to assist them in tracking their personal harvests year-round. In 2014, one individual chose to share his daily harvest information (as recorded in his logbook) throughout the fall fishing season.

LENGTH, WEIGHT, AND AGE OF CATCH

After fish were removed from nets a total count was made for each net and a sub-sample was measured for fork length (to the nearest mm). The standard routine for sub-sampling from each net's catch was to lay out all fish of each species side-by-side on the ice in no particular order. Depending on the number of fish in the harvest and the amount of time available for the interview, monitors measured every fish or every second, third, or fourth fish from each net. The monitoring team endeavored to obtain a total count for each fish species captured. However, Arctic Cisco were measured first and other species, including Least Cisco (Coregonus sardinella), as time permitted, mainly because Arctic Cisco are the target species of fall fishing and monitoring efforts.

The total number of fish measured on a given day varied depending on several factors including a fisher's availability, the total number of fish caught in the net, and the number of fishers in the area. When several fishers were harvesting simultaneously in the same area, monitors attempted to obtain a sub-sample of measurements from every fisher. When possible, ABR paid a participation honorarium to fishers who were willing to donate a sub-sample of fish from their harvest for age and length weight analysis (~10/day at \$10/fish) or who otherwise provided detailed information about their fishing efforts and harvests outside of normal daily encounters with the monitoring team. Most samples were donated from 7.6-cm mesh nets as this is the predominate net used in the fishery, although fish from other known mesh sizes were accepted. The fish were kept frozen and transported to Anchorage where they were measured for fork length (mm) and weight (g) using a top-loading electronic scale.

Otoliths (sagittae) were extracted for ageing at a later date. Otoliths were cleaned with tap water and stored in 96-well pipette trays. The break-and-burn technique was used to prepare 1 otolith from each fish for ageing (Chilton and Beamish 1982). Otoliths were broken in half along the transverse axis using a sharp scalpel or by pressing the otolith between a fingernail and forefinger. The broken edge of one half of the otolith was held over an open flame for several seconds until it acquired an amber color. The otolith half was then placed broken edge up in putty and the surface was brushed with mineral oil to emphasize the growth rings under magnification. The otolith preparations were examined under a dissecting microscope at 25× magnification using reflected light. Alternating bands of dark and light on the otolith correspond to winter and summer growth, respectively, and together represent one year's growth. Following methodologies used in previous years, the central core region of the otolith, composed of a dark and light region, was recognized as the first summer and winter growth of an age 0 fish. All annuli outside this region were then counted to determine the age of the fish. Each fish was aged by 2 individuals and each otolith was read at least 3 times with additional readings as necessary to arrive at an agreement on the age of each fish.

WATER QUALITY

Water salinity was measured every other day between 24 October–17 November at 4 traditional

water sampling stations that correspond to areas of intense fishing (Figure 2). Warm weather delayed ice formation on the Nigliq Channel during the first week of fishing, 16-23 October. At these stations, surface ice was removed and the sampling probe connected to a YSI Professional Plus meter was lowered into the water. Salinity was measured in parts per thousand (ppt) and was recorded at the surface and at 0.5-m increments of depth until the probe reached the river bottom. The monitoring team also measured ambient water chemistry at 3 m depth, including temperature (°C), pH, dissolved oxygen (% and mg/L), specific conductance $(\mu S/cm)$, and conductivity $(\mu S/cm)$ (Appendix C). At the end of each sampling event, a small piece of insulation was used to cover the hole in the ice. In this way, the sampling hole was only partially frozen upon return 48 hours later.

On 2 dates, 3 November and 18 November, ABR collected water samples for detailed chemical analyses by Test America America Laboratories, Inc. (Test America) of Portland, Oregon, Alaska. Water chemistry samples were collected at 3 sites in the Nigliq Channel: in the Nigliq Delta fishing area near Woods' Camp (downstream), near the Nanuk fishing area in a section of the channel known as Uvagagvik (mid-channel), and in the Upper Niglig fishing area closest to Nuigsut (upstream; Figure 2, Appendices D-1, D-2, and E). Water samples were collected at a depth of 3 m using a van Dorn 4.2 liter, Beta acrylic horizontal water column sampler. Water samples were poured directly from the sampler into glass and polypropylene bottles prepared and shipped to ABR by Arctic Fox Environmental, Inc., (Arctic Fox) in Prudhoe Bay. Samples were kept cool until shipment to Arctic Fox in Prudhoe Bay, where preservatives were added by Arctic Fox staff (if required) and shipped to Test America. Analyses included total metals (arsenic, barium, cadmium, chromium, lead, selenium, and silver (Method 6020), mercury (Method 7470A), total nitrogen $(NO_3 + NO_2)$ (Method 353.2), and diesel-range and residual-range organics (Method AK102 & 103). The results of sample tests were compared to the United States Evironmental Protection Agency (USEPA) (2012) and Alaska Department of Environmental Conservation (ADEC) water quality standards. ADEC standards are the same as USEPA standards for most analytes tested.

However, ADEC water quality standards change for cadmium, lead, and silver depending on total water hardness for each sample tested. For these analytes, the water quality standards were based on calculations of sample-specific water hardness provided by ADEC (see Appendix D-2).

A severe weather event occurred in Nuiqsut on 18 November just as water chemistry samples were being collected. After collection, the water samples were placed on board a flight headed for Prudhoe Bay, Alaska, but due to the weather, the airplane was diverted to Barrow, Alaska. The samples remained in Barrow for several days before being delivered to Arctic Fox in Prudhoe Bay. The samples arrived at Arctic Fox beyond standard hold times for diesel-range organic and residual-range organics testing, but the results are nevertheless included in this report.

SEDIMENT ANALYSIS

On 18 November, benthic sediment samples were collected at downstream (Niglig Delta) and upstream (Upper Nigliq near Nuiqsut) locations (Figure 2) for laboratory analysis of metals by ICPMS (Method SW6020A), polynuclear aromatic hydrocarbons hydrocarbons (8270 D SIMS PAH), and diesel-range and residual-range organics (Method AK102 & 103) (Appendices F and G). Sediment samples were collected with an Ekmann dredge from the river bed, immediately transferred to non-reactive plastic bottles, and kept cool until shipping. Samples were transferred to coolers and hand-delivered by ABR to SGS Laboratories Inc., in Anchorage, Alaska, for analysis. The results of sample tests were compared to ADEC's Alaska soil quality standards (Arctic Zone Direct Contact).

QAAKTAQ PANEL MEETING

A panel meeting was held on 27 May 2015 in Nuiqsut to discuss the 2014 fishery. The panel is composed of 9 local experts who meet with ABR scientists 1–2 times per year to talk about various issues related to the fishery. A summary of the 2015 meeting is found in Appendix H.

RESULTS

FISHERY EFFORT AND HARVEST

The ABR monitoring team arrived in Nuiqsut on 12 October 2014, prior to the onset of the Arctic Cisco fishery. Due to warm weather in early October, ice formation was slow to occur and nets were not deployed by Nuiqsut fishers until 16 October (Table 1). The average start date for the fishery over 29 years of harvest monitoring is 8 October. ABR fishery monitors observed 384 harvest events in 2014 (Table 2), up slightly from 376 in 2013 and well above the 262 observations in 2012. A total of 27 households (hereafter referred to as fishers and identified by Fisher Codes) deployed 58 nets (67 sets) during the fall fishery in 2014, down from 66 nets in 2013 (Table 2, Figure 3, Appendix C). The number of nets was slightly higher than the average (56) and median (55.5) numbers of nets deployed from 1985 to 2013. Of 67 total sets, 56 sets of 49 nets occurred in the Nigliq Channel in 2014 (Table 2). The remaining 11 sets of 11 different nets (Fisher 74 set 2 nets in the Niglig Channel before moving those nets to the Main Channel) occurred in the Main Channel fishing area and were set by 6 families.

A total of 4 nets were deployed by 2 fishers in the Nigliq Channel on 16 October. The number of nets deployed rose steadily thereafter and the number of active nets peaked at 44 on 5 November (Nigliq Channel and Main Channel areas combined) (Figure 4). Of the 27 fishers, 7 pulled at least 1 net and redeployed it to another location at some point during the fishing season. Thirty or more nets were active in all parts of the river from 26 October through 18 November. Harvest activities in the Nigliq Channel began on 16 October and ended on 6 December. Harvest activities in the Main Channel area began on 1 November and ended on 22 November. After standardizing for net length, 1,499.8 adjusted net-days of fishing effort were calculated for the 2014 fall fishery (Table 2, Appendix B). This represents a 5% increase in total effort from the 2013 fishery (1,429 adjusted net-days). A total of 1,308 adjusted net-days of effort were calculated in the Nigliq Channel (versus 1,311 in 2013) and 192 adjusted net-days for the Main Channel area (versus 118 in 2013) (Table 2). In the Nigliq Channel, fishing effort was highest in the Nigliq Delta area at 47% of the total, followed by the Upper Nigliq area at 36%, and the Nanuk area at 17% (Figure 5). Fishing effort in the Upper Nigliq area (471 adjusted net-days) was more than twice that in 2013 (202 adjusted net-days) and was

Table 1.Estimated onset of the fall subsistence
fishery for Arctic Cisco in the Nigliq
Channel of the Colville River, Alaska,
1985–2014.

Year	Start Date
1985	2 October
1986	3 October
1987	8 October
1988	14 October
1989	22 October
1990	6 October
1991	12 October
1992	26 September
1993	3 October
1994	3 October
1995	16 October
1996	28 September
1997	13 October
1998	28 September
1999	
2000	3 October
2001	6 October
2002	14 October
2003	16 October
2004	9 October
2005	7 October
2006	14 October
2007	4 October
2008	4 October
2009	6 October
2010	5 October
2011	13 October
2012	21 October
2013	9 October
2014	16-October
Average	8 October

greater there than at the Nanuk area for the first time since 2006 and for only the second time in the last 12 years.

Gill nets of 5 different mesh sizes were used in the fall fishery in 2014: 5 cm, 6.4 cm, 7.6 cm, 8.3 cm, 8.9 cm. Of these, 7.6-cm mesh nets made up 45 of the 58 total nets (78%) used in the fishery in 2014 (Table 2). In the Niglig Channel, a total of 13,992 Arctic Cisco were documented during harvest monitoring in 7.6-cm mesh nets, the second highest observed harvest in the history of the fishery (Figure 6). This is more than double the historic average (5,438) of documented harvest for Arctic Cisco in 7.6 cm mesh nets over the previous 28 seasons. The total observed harvest of Arctic Cisco in 7.6-cm mesh nets increased over 2013 by 362% in the Upper Nigliq, 439% in the Nanuk, and 224% in the Nigliq Delta fishing areas (Table 3). An additional harvest of 579 Arctic Cisco was documented for 7.6-cm mesh nets in the Main Channel area, an increase over 2013 (438).

The 2014 observed CPUE in 7.6-cm mesh nets for Arctic Cisco in the Upper Nigliq (9.8 fish per adjusted net-day) area was its highest since 2006. Observed CPUE in the Nanuk area (26.2 fish per adjusted net-day) was up from 2013 (15 fish per adjusted net-day). The observed CPUE in the Niglig Delta area (27.5) was nearly double that of 2013 (13.9) (Table 3). The total observed CPUE in 7.6-cm mesh nets for Arctic Cisco in the Nigliq Channel (23.6 fish/adjusted net-day, Table 3) was the eighth highest in the 29 years of the monitoring project (Figure 7). The CPUE in 7.6-cm mesh nets in the Main Channel area was 18.7 fish per adjusted net-day (Table 4a). The daily average CPUE in 7.6-cm mesh nets in 2014 in the Niglia Channel was over 30 fish on 7 different occasions (17 and 27–30 October and 3–4 November), peaking on 28 October at 65 Arctic Cisco per adjusted net-day (Figure 8). There were 9 additional days with average daily CPUE values above 20 fish per adjusted net-day.

A total of 16,573 Arctic Cisco were documented by the monitoring team in nets of all mesh sizes for the Nigliq Channel in 2014. Documented harvest includes fish caught in nets of unknown size that are excluded from CPUE and CPUE-based estimates. This is an increase from 10,155 in 2013. An additional 1,766 fish were documented in the Main Channel area. The net

	Summary of 2014 Effort
Number of recorded harvest events	384
Number of Households	27
Number of 5.1 cm mesh nets	1(1)*
Number of 6.4 cm mesh nets	2(3)*
Number of 7.6 cm mesh nets	45(53)*
Number of 8.3 cm mesh nets	1(1)*
Number of 8.9 cm mesh nets	9(9)*
Number of Nets in Nigliq Channel	49
Total Number of Nets	58
Average Nets/Household	2.15
Net sets in Upper Niġliq	16
Net sets in Nanuk	12
Net sets in Niġliq Delta	28
Net sets in Main Channel	11
Total number of sets	67
Adjusted net days 5.1 cm mesh nets	35.00
Adjusted net days 6.4 cm mesh nets	63.99
Adjusted net days 7.6 cm mesh nets	1,187.20
Adjusted net days 8.3 cm mesh nets	10.67
Adjusted net days 8.9 cm mesh nets	202.98
Adjusted Net Days by Upper Niġliq	471.28
adjusted net days by Niġliq	611.60
adjusted net days by Nanuk	224.98
adjusted net days by main channel	191.98
Total Adjusted Net Days	1,499.8

Table 2.	Summary statistics for fall fishing effort in 3 Nigliq Channel fishing areas and in the Main
	Channel fishing area, Colville River, Alaska, 2014.

*Values in parentheses represent the total number of sets for the nets of each mesh size class.

Figure 3. Number of nets deployed annually in the fall subsistence fishery for Arctic Cisco, Colville River, Alaska, 1985–2014.

length adjusted CPUE for each individual net mesh size from observed harvests in the Nigliq Channel ranged from 1.5 fish per adjusted net-day in 8.9-cm mesh nets in the Upper Niglig area to 90 fish per adjusted net-day in 6.4-cm mesh nets in the Nigliq Delta area (Table 4a). Observed CPUE (adjusted for net length) multiplied by observed adjusted fishing effort (net-days) for each mesh size class vields a total harvest estimate of ~29,904 Arctic Cisco from the Niglig Channel and ~3,336 from the Main Channel fishing area of the Colville River for an estimated total harvest of ~33.240 Arctic Cisco in 2014 (Table 4b). Arctic Cisco harvest from the Nigliq Channel and from the Main Channel area increased over 2013 harvest estimates (~20,670 in Nigliq Channel and ~1,570 in Main Channel).

A total of 9 species of fish were documented in the Colville River fall fishery harvest in 2014, including Fourhorn Sculpin (*Myoxocephalus quadricornis*) which are observed but not enumerated for this monitoring project (Table 5). A total of 19,217 fish (all species and mesh sizes) were counted during interviews, the fifth highest recorded number during the history of the monitoring project. Arctic Cisco (95.4%) comprised the vast majority of recorded harvests followed by Least Cisco (2.1%), Rainbow Smelt (1.3%), Humpback Whitefish (*C. pidschian*) (0.6%), Broad Whitefish (0.4%), and Saffron Cod (*Eleginus gracilis*) (0.2%) (Table 5). Burbot (*Lota lota*) (n = 3) and Arctic Grayling (*Thymallus arcticus*) were observed but comprised a negligible proportion of the harvest.

The CPUE for Least Cisco caught in 7.6-cm mesh nets was the lowest on record in the Nigliq Channel (0.4 fish per adjusted net-day) (Table 6). CPUE was highest in the Nanuk area (0.9 fish per adjusted net-day), followed by the Upper Nigliq (0.5 fish per adjusted net-day) and the Nigliq Delta (0.3 fish/net-day). This is the second consecutive year that CPUE in the Nigliq Channel was at an all-time low. The long-term average CPUE for Least Cisco harvest in the Nigliq Channel is 3.1 fish per adjusted net-day.

umber of fish), effort (adjusted net-days), and catch per unit effort (il, Colville River, Alaska, 1986–2014. Catch and effort data are for 7	Nanuk Area Niġliq Delta Area
Observed catch of Arctic Cisco (fishing areas in the Niġliq Chanr 18 m length.	Upper Nigliq Area
Table 3.	

	Upt	oer Niġliq ∕	Area	~	Vanuk Are	ł	Ni	<u> șliq Delta A</u>	rea	Total	Niġliq Chi	annel
Year	Observed Catch	Effort	CPUE	Observed Catch	Effort	CPUE	Observed Catch	Effort	CPUE	Observed Catch	Effort	CPUE
1986	2,218	115.7	19.2	752	25.1	29.9	3,379	51.3	65.8	6,349	192.2	33.0
1987	1,451	131.7	11.0	948	32.6	29.1	661	31.3	21.1	3,060	195.7	15.6
1988	366	56.9	6.4	146	18.0	8.1	2,078	37.3	55.7	2,590	112.3	23.1
1989	993	90.8	10.9	258	14.3	18.0	535	21.7	24.7	1,786	126.8	14.1
1990	650	147.1	4.4	1,114	148.5	7.5	202	27.6	7.3	1,966	323.1	6.1
1991	522	143.0	3.7	1,327	326.9	4.1	16	8.0	2.0	1,865	477.9	3.9
1992 ^a	4,825	316.2	15.3	2,322	130.4	17.8	4,956	96.2	51.5	12,103	542.8	22.3
1993 ^a	1,709	106.2	16.1	5,783	158.3	36.5	1,568	57.7	27.2	9,060	322.2	28.1
1994	366	0.06	3.7	642	190.2	3.4	0	0.0	1	1,008	289.2	3.5
1995 ^a	56	50.3	1.1	568	178.3	3.2	267	12.0	22.3	891	240.7	3.7
1996	413	36.0	11.5	3,591	193.3	18.6	0	0.0	1	4,004	229.3	17.5
1997	2,539	119.0	21.3	3,586	128.8	27.8	2,207	53.3	41.4	8,332	301.2	27.7
1998	189	92.3	2.0	218	83.7	2.6	1,214	155.3	7.8	1,621	331.3	4.9
1999						No Data						
2000	8	8.0	1.0	217	62.0	3.5	1,826	190.4	9.6	2,051	260.4	7.9
2001	92	62.0	1.5	36	22.7	1.6	611	208.8	2.9	739	293.4	2.5
2002	103	115.7	0.9	137	36.7	3.7	2,925	460.9	6.3	3,165	613.2	5.2
2003	62	11.7	5.3	1,495	104.0	14.4	6,187	455.7	13.6	7,744	571.3	13.6
2004	338	22.0	15.4	8,102	270.9	29.9	5,021	199.7	25.1	13,461	492.6	27.3
2005	1,387	90.0	15.4	3,222	169.5	19.0	4,512	177.0	25.5	9,121	436.5	20.9
0006^{a}	1.281	105.0	12.0	2.930	83.3	35.0	6.913	81.3	85.0	11.124	269.7	41.0

15.7

372.5

5,855

22.1

200.2

4,422

8.6

109.2

935

7.9

63.0

498

 2007^{a}

Continued.	
le 3.	
~	

	Ú	pper Niġliq A	Area		Nanuk Area		Ź	igliq Delta A	rrea	Tota	l Niġliq Ch	annel
Year	Observe Catch	d Effort	CPUE	Observed Catch	Effort	CPUE	Observec Catch	l Effort	CPUE	Observed Catch	Effort	CPUE
2008^{a}	156	44.0	3.5	1,665	203.3	8.2	2,662	198.3	13.4	4,483	445.6	10.1
2009^{a}	0	0.0	0.0	1,027	88.3	11.6	4,258	196.3	21.7	5,285	284.6	18.6
2010^{a}	91	34.7	2.6	270	98.0	2.8	1,866	193.0	9.7	2,227	326.0	6.8
2011 ^a	212	27.3	7.8	1,064	56.3	18.9	13,395	320.7	41.8	14,671	404.3	36.3
2012 ^a	86	24	3.6	1,313	48.3	27.2	5,413	173.7	31.2	6,812	246.0	27.7
2013 ^a	335	48.0	7.0	589	39.3	15.0	4,536	327.0	13.9	5,460	414.3	13.2
2014 ^a	1,211	123.7	9.8	2,588	98.8	26.2	10,193	370.0	27.5	13,992	592.5	23.6
Total ^b	22,157	2,283.3	9.7	46,845	3,119.3	15.0	91,823	4,304.6	21.3	160,825	9,707.6	16.6

Results

Figure 7. Catch per unit effort (CPUE; fish/net-day) of Arctic Cisco in 7.6-cm mesh gill nets, Niġliq Channel, Colville River, Alaska, 1986–2014. Effort is standardized to an 18 m net length.

LENGTH, WEIGHT, AND AGE OF CATCH

A sub-sample of fish was measured daily at net sites to determine the length distribution present in the fishery. ABR measured fork lengths of 1,500 Arctic Cisco in 2014. Arctic Cisco ranged in length from 202 mm to 433 mm (Figure 9). The middle 50% of fish ranged between 305 mm and 327 mm. The median fork length was 315 mm. As in 2013, 5 different mesh sizes were deployed in the Colville delta in 2014, though Arctic Cisco were only measured from 4 of these mesh sizes. Median fork lengths for measured nets were 252 mm in 5-cm mesh nets, 315 mm in 7.6-cm mesh nets, 344 mm in 8.3-cm mesh nets, and 346 mm in 8.9-cm mesh nets (Figure 10). The length distribution for Least Cisco appears to be bimodal (Figure 9). Least Cisco fork lengths ranged from 200 mm to 356 mm with a median of 305 mm. The middle 50% of measured Least Cisco ranged between 249 and 318 mm.

In 2014, ABR received donated fish samples (n = 195) from several fishers to be used for aging fish and for calculating length (mm) and weight (g)

relationships. Length and weight were correlated $(r^2 = 0.52)$ in Arctic Cisco in 7.6-cm mesh nets in 2014 (Figure 11). This was the lowest correlation between length and weight over the last 5 years (Figure 12). The strength of the correlation increases slightly $(r^2 = 0.58)$ when Arctic Cisco harvested from other mesh-size nets are included in the analysis. A 5-year comparison of length-weight regressions for Arctic Cisco caught in 7.6-cm mesh nets show that the highest correlation occurred in 2011 $(r^2 = 0.73)$.

Otolith analysis of donated fish found that those Arctic Cisco ranged in age from 4 to 7 years (all mesh sizes combined, n = 193) (Figure 13). Age composition across all mesh sizes from which fish were donated (7.6 cm, 8.1 cm, and 8.9 cm) was 54% age 5, 29.5% age 6, 15% age 4, and 1.5% age 7. Different mesh-size nets theoretically catch different age classes (i.e., sizes of fish) differentially. Because the vast majority of donated fish (n = 173) came from 7.6-cm mesh nets, age composition in 7.6-cm mesh nets was similar to that with all mesh sizes combined (54% age 5, 29%

			Mesh Size (cn	n)	
Location	5.1	6.4	7.6	8.3	8.9
Upper Niġliq Area					
Observed Catch (# of fish)	247	_	1,211	32	48
Effort (net-days)	21.7	_	123.7	5.3	31.3
CPUE (fish/net-day)	11.4	_	9.8	6	1.5
Nanuk Area					
Catch (# of fish)	_	_	2,588	_	72
Effort (net-days)	_	_	98.8	_	15.3
CPUE (fish/net-day)	_	_	26.2	_	4.7
Niġliq Delta Area					
Catch (# of fish)	_	450	10,193	_	228
Effort (net-days)	_	5	370	_	20
CPUE (fish/net-day)	—	90	27.5	—	11.4
Total Nigliq Channel					
Catch (# of fish)	247	450	13,992	32	348
Effort (net-days)	21.7	5	592.5	5.3	66.7
CPUE (fish/net-day)	11.4	90	23.6	6	5.2
Main Channel Area					
Catch (# of fish)	_	_	579	_	_
Effort (net-days)	_	_	31	_	_
CPUE (fish/net-day)	-	_	18.7	—	-
Total					
Catch (# of fish)	247	450	14,571	32	348
Effort (net-days)	21.7	5	623.5	5.3	66.7
CPUE (fish/net-day)	11.4	90	23.4	6	5.2

Table 4a.Observed catch of Arctic Cisco (number of fish), effort (adjusted net-days), and catch per unit
effort (CPUE; fish/net-day) for each fishing area in three Nigliq Channel fishing area and in
the Main Channel fishing area by mesh size, Colville River, Alaska, 2014. Nets are
standardized to 18 m length.

Mesh Size (cm)	Niġliq Channel net-days	CPUE (fish/net day)	Estimated Niġliq Channel Harvest	Main Channel Area net- days	CPUE (fish/net day)	Estimated Main Channel Harvest	Total Estimated Harvest
5.1	35	11.4	399				
6.4	50.7	90	4,563 23,818.28	13.3			
7.6	1,008.6	23.61519	1	178.6	18.7	3,336	
8.3	10.7	6	64.2				
8.9	203	5.22	1,059.66				
		Total	29,904			3,336	33,240

Table 4b.Estimate of total harvest of Arctic Cisco in the Nigliq Channel and Main Channel fishing
areas is calculated based on calculated effort and estimated CPUE for each river section by
mesh size, Colville River, Alaska, 2014.

age 6, 16% age 4, and 2% age 7) (Figure 13, Appendix H). Age 5 fish made up the majority of the harvest in 2014 for the third consecutive year.

Arctic Cisco generally recruit to the fishery at age 4, when they first reach lengths sufficient for capture in a range of mesh sizes from 6.4 to 7.6 cm. The fish continue to grow in subsequent years and are caught in higher proportions in these and larger nets. In 2014, the largest fish were typically the oldest fish (Figure 14). Median lengths of fish harvested in 7.6-cm mesh nets increased steadily with age. However, as in years past, there is wide variability in age at length, regardless of the mesh size in which fish are caught.

The age composition of Arctic Cisco in 2014 harvests (as percentage of catch) combined with the overall CPUE of 23.6 fish/net-day in the Niglig Channel (Table 3, Appendix H), allowed estimation of the age-specific CPUE. The CPUE of Arctic Cisco in 7.6-cm mesh nets increased from age 4 (3.7 fish per adjusted net-day) to age 5 (12.7 fish per adjusted net-day), before decreasing at age 6 (6.8 fish per adjusted net-day) (Figure 15). The Arctic Cisco harvested in 2014 represent the 2007-2010 year classes. The 2006 year class appears to be either present in only small numbers or completely absent from the fishery in 2014 (Figure 15). Summing CPUE by age at capture for each year class across all years that the year class was present in the fishery provides an indicator of the relative contribution of each year class in the

fishery (Figure 16). The cumulative total CPUE for the 2006 Arctic Cisco year class appears to have the lowest harvest rate (8.1 fish/adjusted net-day) of any year class since 2001 (Figure 16; Table 7). The average cumulative CPUE for year classes in 7.6-cm mesh nets between 1985 and 2005 is ~16 fish/adjusted net-day. The 2007 year class (age 7) has accounted for a CPUE of ~21 fish per adjusted net-day as of 2014 and is likely to be largely absent from the fishery in 2015. The 2008-2010 year classes (age 6, age 5, and age 4 fish) have so far contributed approximately 22, 15, and 4 fish per adjusted net-day respectively to the fishery. The 2007 year class (age 5), which was absent from the 2011 fishery (Figure 15), has subsequently contributed 19 fish/net-day to the cumulative CPUE (Figure 16).

SALINITY AND TEMPERATURE

Due to slow ice formation on the Nigliq Channel, ABR was unable to begin salinity sampling at pre-established stations until 24 October 2014. Salinity measurements continued every other day until 18 November (Figure 17). Salinity at the 2 downstream salinity stations (at 3 m depth) were above 15 parts per thousand (ppt) by 24 October and remained above 17 ppt from 28 October until the end of the monitoring season, peaking at 24.5 ppt in the Nigliq Delta area on 3 November (Figures 2 and 17). Salinity at Salinity Station 3 (Uyagagvik section of Nigliq Channel)

Figure 8. Average daily catch per unit effort (CPUE; fish/net-day) of Arctic Cisco in 7.6-cm gill nets, Nigliq Channel, 2004–2014. Effort is standardized to an 18 m net length.

Table 5.	Spe catc	cies com h, Colvil	position le River	n of the obs r, Alaska, j	served harv 1985–2014	vest from I. Table ir	the fall su ncludes al	ubsistence I fish caug	e fishery ght in ev	for Arctic ery net, re	c Cisco e sgardless	xpressed of mesh	as a percer size and lo	nt of the social section.	ampled
Year	Arctic Cisco	Bering Cisco	Least Cisco	Broad Whitefish	Humpback Whitefish	Arctic Grayling	Rainbow Smelt	Round Whitefish	Dolly Varden Char	Northern Pike	Saffron Cod	Burbot	Arctic Flounder	Fourhorn Sculpin	Total Observed
1985	69.5	(a)	14.8	15.1	0.5	0	0.2	0	0	0	0	0	0	(q)	2,705
1986	95.9	(a)	3.8	0.3	0.0	0	0.03	0.01	0	0	0	0	0	(q)	8,952
1987	71.8	(a)	18.7	5.5	3.8	0	0.01	0	0.03	0	0.03	0.06	0	(q)	6,826
1988	90.6	(a)	8.3	0.6	0.5	0	0	0	0	0	0	0.1	0	(q)	2,948
1989	66.2	(a)	23.7	7.0	3.1	0	0.03	0	0	0	0.03	0.03	0	(q)	2,946
1990	39.6	21.8	30.2	5.3	2.9	0	0.2	0	0.1	0	0.03	0.01	0	(q)	7,911
1991	62.8	1.2	30.0	1.0	3.8	0	1	0.03	0	0	0.04	0.09	0	(q)	7,576
1992	89.2	0.1	6.0	0.2	0.1	0	0	0	0	0	0	0	0	4.4	24,305
1993	85.4	0.02	11.1	0.3	0.4	0	0.04	0	0	0	0.01	0	0	2.7	17,155
1994	39.6	0.1	44.6	2.2	13.2	0	0.3	0	0	0	0	0	0	(q)	3,792
1995	34.7	0.2	35.0	7.6	22.3	0	0.2	0	0	0	0	0.1	0	(q)	7,155
1996	81.9	0	4.8	0.1	0.4	0	0.1	0	0	0	0.02	0.02	0.02	12.5	5,730
1997	74.8	0	22.9	1.3	0.9	0	0	0	0	0	0	0	0	(q)	19,758
1998	39.6	0	50.8	0.4	8.9	0	0	0.2	0	0	0	0	0	(q)	6,481
2000	79.4	0.1	14.0	0.2	6.0	0	0.3	0	0	0	0.03	0	0	(q)	3,871
2001	35.6	0.1	29.6	5.5	27.8	0	0.1	0	0	0	0	1.3	0	(q)	3,515
2002	49.8	0.1	30.6	1.6	17.5	0	0.2	0	0	0	0.1	0.2	0	(q)	8,445
2003	66.3	0.2	22.3	0.2	9.4	0	0.9	0	0	0	0.6	0.1	0	(q)	16,654
2004	74.7	0.06	24.2	0.0	0.9	0	0.08	0	0	0	0.04	0.03	0	(q)	20,705
2005	81.3	0	14.8	0.2	3.5	0	0.15	0	0	0	0.01	0	0	(q)	13,957
2006	86.6	0	12.0	0.4	0.9	0	0	0	0	0.1	0	0	0	(q)	17,344
2007	71.7	0	22.3	0.4	5.5	0	0	0	0	0	0.1	0	0	(q)	14,686
2008	84.1	0.2	14.7	0.0	0.1	0	0.7	0	0	0	0.1	0.01	0	(q)	9,199
2009	85.4	0.2	9.2	0.2	0.5	0	4.3	0	0	0	0.1	0.03	0	(q)	11,700

Continued.	
Table 5.	

Bering	Least	Broad	Humpback	Arctic	Rainbow	Round	Dolly Varden	Northern	Saffron		Arctic	Fourhorn	Total
Cisco	Cisco	Whitefish	Whitefish	Grayling	Smelt	Whitefish	Char	Pike	Cod	Burbot	Flounder	Sculpin	Observed
0	34.4	0.4	3.0	0	1.3	0	0	0	0.2	0	0	(q)	18,505
0	4.0	0.1	0.6	0	0.4	0	0	0	0.09	0	0	(q)	28,211
0	19.8	0.6	0.9	0	0.4	0	0	1	0.5	0	0	(q)	17,172
0	7.7	0.1	2.3	0	5.5	0	0	0	1.8	0	0	(q)	13,872
0	2.1	0.4	0.6	<0.01	1.3	0	0	0	0.2	<0.01	0.0	(q)	19,217
	Cisco 0 0 0 0	Cisco Cisco 0 34.4 0 4.0 0 19.8 0 7.7 0 2.1	Cisco Cisco Whitefish 0 34.4 0.4 0 4.0 0.1 0 19.8 0.6 0 7.7 0.1 0 2.11 0.4	Cisco Cisco Whitefish Whitefish 0 34.4 0.4 3.0 0 4.0 0.1 0.6 0 19.8 0.6 0.9 0 7.7 0.1 2.3 0 2.1 0.4 0.6	Cisco Cisco Whitefish Whitefish Grayling 0 34.4 0.4 3.0 0 0 4.0 0.1 0.6 0 0 19.8 0.6 0.9 0 0 7.7 0.1 2.3 0 0 2.1 0.4 0.6 0	CiscoCiscoWhitefishKraylingSmelt0 34.4 0.4 3.0 0 1.3 0 4.0 0.1 0.6 0 0.4 0 19.8 0.6 0.9 0 0.4 0 7.7 0.1 2.3 0 5.5 0 2.1 0.4 0.6 <0.01 1.3	CiscoWitefishMitefishGraylingSmeltWhitefish0 34.4 0.4 3.0 0 1.3 0 0 4.0 0.1 0.6 0 0.4 0 0 19.8 0.6 0.9 0 0.4 0 0 7.7 0.1 2.3 0 5.5 0 0 2.1 0.4 0.6 -0.01 1.3 0	CiscoCiscoWhitefishGraylingSmeltWhitefishChar0 34.4 0.4 3.0 0 1.3 0 0 0 4.0 0.1 0.6 0 0.4 0 0 0 19.8 0.6 0.9 0 0.4 0 0 0 7.7 0.1 2.3 0 5.5 0 0 0 2.1 0.4 0.6 -40.01 1.3 0 0	CiscoCiscoWhitefishGrayingSmeltWhitefishCharPike0 34.4 0.4 3.0 0 1.3 0 0 0 0 0 4.0 0.1 0.6 0 0.4 0 0 0 0 19.8 0.6 0.9 0 0.4 0 0 0 0 7.7 0.1 2.3 0 5.5 0 0 0 0 2.1 0.4 0.6 -6.01 1.3 0 0 0	CiscoCiscoWhitefishMathematicalGraylingSmeltWhitefishCharPikeCod0 34.4 0.4 3.0 0 1.3 0 0 0 0 0.2 0 4.0 0.1 0.6 0 0 0.4 0 0 0 0.2 0 19.8 0.6 0.9 0 0.4 0 0 0 0 0 7.7 0.1 2.3 0 5.5 0 0 0 0 2.1 0.4 0.6 -40.01 1.3 0 0 0 0.2	CiscoUse the fishMathematical mathematical mathmatical mathematical mathematical mathematical mathematical mathem	CiscoCiscoWhitefishGrayingSmeltWhitefishCharPikeCodBurbotFlounder 0 34.4 0.4 3.0 0 1.3 0 0 0 0 0 0 0 0 4.0 0.1 0.6 0 0.4 0 0 0 0 0 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.6 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.6 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.5 0 0 0 7.7 0.1 2.3 0 5.5 0 0 0 0 0 0 0 2.1 0.4 0.6 <0.01 1.3 0 0 0 0 0 0	CiscoCiscoWhitefishGrayingSmeltWhitefishCharPikeCodBurbotFlounderSculpin 0 34.4 0.4 3.0 0 1.3 0 0 0 0 0 0 0 0 0 0 4.0 0.1 0.6 0 0.4 0 0 0 0 0 0 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.5 0 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.5 0 0 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.5 0 0 0 0 19.8 0.6 0.9 0 0.4 0 0 1 0.5 0 0 0 0 19.8 0.6 0.9 0 0.4 0 0 0 0 0 0 0 10.1 2.3 0 5.5 0 0 0 0 0 0 0 0 0 0.1 0.4 0.6 -0.01 1.3 0 0 0 0 0 0 0 0 0 0.1 0.4 0.6 0 0 0 0 0 0 0 0 0 0 0.1 0.4 0.6 0 0 0 </td

(a) = included with Arctic Cisco prior to 1990(b) = always present but not counted

2014 Colville River Fishery Monitoring

t Cisco (number of fish), effort (net-days), and catch per unit effort (CPUE; fish/net-day) for each of 3 f nnel, Colville River, Alaska, 1986–2014. Catch and effort data are for 7.6-cm mesh gill nets standardize

Table 6.

Table 6.	Observed areas in 1 m length	d catch of L the Niġliq C	east Cisco Jhannel, Co	(number of 1 Iville River,	fish), effort Alaska, 19	(net-days), 86–2014. C	and catch ₁ atch and ef	ber unit effc Fort data ar	ort (CPUE; f e for 7.6-cm	ish/net-day) mesh gill ne	for each of 3 ets standardiv	3 fishing zed to 18
I	Upp	ber Niğliq Area	а		Nanuk Area		Z	iġliq Delta Ar	ea	Tota	ıl Niğliq Chanr	lel
Year	Observed Catch	Effort	CPUE	Catch	Effort	CPUE	Catch	Effort	CPUE	Catch	Effort	CPUE
1986	146	115.7	1.0	16	25.1	1.0	24	51.3	0.0	186	192.2	1.0
1987	730	131.7	6.0	63	32.6	2.0	12	31.3	0.0	805	195.7	4.0
1988	93	56.9	2.0	12	18	1.0	105	37.3	3.0	210	112.3	2.0
1989	332	90.8	4.0	16	14.3	1.0	10	21.7	0.0	358	126.8	3.0
1990	711	147.1	5.0	416	148.5	3.0	179	27.6	6.0	1,306	323.1	4.0
1991	50	143	0.0	272	326.9	1.0	0	8	0.0	322	477.9	1.0
1992	261	316.2	1.0	88	130.4	1.0	151	96.2	2.0	500	542.8	1.0
1993	181	106.2	2.0	498	158.3	3.0	96	57.7	2.0	775	322.2	2.0
1994	330	66	3.0	711	190.2	4.0	0	0	1	1,041	289.2	4.0
1995	238	50.3	5.0	494	178.3	3.0	94	12	8.0	826	240.7	3.0
1996	14	36	0.0	195	193.3	1.0	0	0	1	209	229.3	1.0
1997	1,370	119	12.0	1,575	128.8	12.0	203	53.3	4.0	3,148	301.2	10.0
1998	544	92.3	6.0	577	83.7	7.0	935	155.3	6.0	2,056	331.3	6.0
1999						No Data						
2000	11	8	1.0	67	62	2.0	330	190.4	2.0	438	260.4	2.0
2001	129	62	2.0	222	22.7	10.0	491	208.8	2.0	842	293.4	3.0
2002	176	115.7	2.0	165	36.7	5.0	1,033	460.9	2.0	1,374	613.2	2.0
2003	25	11.7	2.0	459	104	4.0	1,038	455.7	2.0	1,522	571.3	3.0
2004	167	22	8.0	2,493	270.9	9.0	1,483	199.7	7.0	4,143	492.6	8.0
2005	405	90	5.0	710	140.3	5.0	700	177	4.0	1,815	407.3	4.0
2006	274	92.7	3.0	261	67.3	4.0	414	65.0	6.0	949	225.0	4.0
2007	939	63.0	15.0	559	109.4	5.0	1085	188.7	6.0	2583	361.2	7.0
2008	78	44.0	1.8	529	188.0	2.8	460	233.2	2.0	1067	465.2	2.3
2009	9	1.7	3.6	321	88.3	3.6	265	181.3	1.5	592	271.3	2.2
2010	139	34.7	4.0	235	92	2.6	225	193.3	1.2	599	320	1.9
2011	8	27.3	0.3	06	56.3	1.6	550	292.0	1.9	648	375.7	1.7

Continued.	
e 6.	
7	

able 6.	Conti	nued.										
	Up	per Niġliq A	rea		Nanuk Area		Z	Viġliq Delta Aı	rea	Tota	ıl Niġliq Cha	nnel
н	Observed Catch	Effort	CPUE	Catch	Effort	CPUE	Catch	Effort	CPUE	Catch	Effort	CPUE
12	92	24.0	3.8	585	48.3	12.1	319	173.7	1.8	966	246.0	4.0
13	74	48.0	1.5	21	23.3	0.9	93	322.0	0.3	188	393.3	0.5
4	61	123.7	0.5	76	82.8	0.9	93	322.0	0.3	230	528.5	0.4
al	7,584	2,273	3.3	11,756	3,021	3.9	10,388	4,215	2.5	29,728	9,509	3.1

Figure 10. Length frequencies of Arctic Cisco in the fall subsistence fishery by gillnet mesh size, Nigliq Channel, Colville River, 2014.

rose above 15 ppt on 30 October and remained there until the end of monitoring, peaking at 19.1 ppt on the last day of monitoring. Salinity upstream Salinity Station 4 in the Upper Nigliq area, was negligible until 28 October when it reached 6.9 ppt. The salinity at this station rose gradually to 13.5 on the last day of monitoring. Peak fishing effort typically occurs during the first week of November (Figure 4) and early November salinity levels during this period were in line with past measurements over the history of the fishery (Figure 18). Temperature was measured at the same time as salinity at 3 m depth at all 4 salinity stations. The temperature trends were opposite of the salinity trends at all 4 stations for most of the sampling season (Figure 17). Temperatures were coldest at the downstream location (-1.1-0.3 °C) and warmest at the upstream station (0.4–0.8 $^{\circ}$ C) (Appendix C).

WATER CHEMISTRY

ABR collected water at upstream, midchannel, and downstream water chemistry collection sites on 3 and 18 November for analysis of total metals, total nitrogen, diesel-range organics, and residual-range organics (Figure 2, Appendix D-1 and D-2). Total nitrogen was either undetected or was detected at levels well below the Alaska Department of Environmental Conservation (ADEC) water quality standards at all collection sites. Diesel-range and residual-range organics were not detected at any of the collection sites. Arsenic and barium were detected at each collection site at levels well below ADEC water quality standards. Mercury was detected during both sampling events at the downstream water chemistry collection site. Mercury concentrations $(0.26 \ \mu g/L \text{ on } 3 \text{ November and } 0.57 \ \mu g/L \text{ on } 18$ November) were well below USEPA drinking water standards and USEPA Aquatic Life Standards, but were higher than ADEC water quality standards. Full laboratory reports are found in Appendix E.

SEDIMENT ANALYSIS

ABR collected sediment samples at the upstream and downstream sediment collection sites on 18 November (Figure 2). Metal analytes tested

2014 Colville River Fishery Monitoring

Table 7.Cumulative catch per unit effort
(CPUE) of Arctic Cisco in 7.6-cm
mesh gill nets by year class in the fall
subsistence fishery, Nigliq Channel,
Colville River (1981–present).

Year Class	CPUE	
1981	0.4	
1982	0.2	
1983	17.3	
1984	0.3	
1985	10.9	
1986	18.0	
1987	44.9	
1988	2.8	
1989	4.3	
1990	29.2	
1991	4.7	
1992	14.4	
1993	1.1	
1994	5.4	
1995	4.4	
1996	2.5	
1997	25.9	
1998	29.9	
1999	38.8	
2000	16.1	
2001	6.2	
2002	9.7	
2003	11.8	
2004	21.7	
2005	27.2	
2006	8.1	
2007 ^a	21.1	
2008^{a}	21.7	
2009 ^a	15.4	
2010 ^a	3.7	

^a Calculation assumes that the 2007–2010 year classes are still contributing to cumulative CPUE. were all well below the ADEC soil quality standards with the exception of arsenic (Appendices F and G). The arsenic levels were 7.49 mg/kg and 8.79 mg/kg for the upstream and downstream collection sites respectively, while the ADEC standard is 6.1 mg/kg or less. Arsenic levels were also slightly higher than ADEC standards in 2013 (Seigle et al. 2014).

DISCUSSION

Warm weather conditions delayed freeze-up on the Colville delta in early October 2014. The fall fishery for Arctic Cisco began on 16 October, a week later than 2013 and 8 days later than the average start date for the fall fishery since 1985 (Table 1). Two net owners and a third fisher set nets on 16 October. However, ice conditions were still sub-standard for travel in certain sections of the river and all 3 fishers penetrated through the ice with their snow machines after setting nets (note: nobody was seriously injured). As such, ABR's on-ice monitoring did not begin until the following week when it was confirmed that ice formation had reached consistently safe levels for snow machine travel. Despite the slow start to the season, ABR was able to record 384 harvest events from the Niglig Channel and the Main Channel fishing areas.

ABR continued monitoring of the fishery in Nuigsut until 24 November, though most fishing effort had ceased by the end of the third week of November when regular net-tending (i.e., every day or every other day) of still active nets had diminished considerably due to a series of severe storms in the region. ABR continued monitoring of the fishery until early December via telephone and email contact with a few of the remaining fishers still active on the river. However, local weather conditions impacted the start and end of the harvest efforts, effectively shortening the fall fishing season. Despite the late start to the fishing season, the observed fishing effort of ~1,500 adjusted net-days (Table 2) was higher than in 2013 (1,429), 2012 (847), and 2011 (1,232). The increased 2014 effort can be attributed to consistently good ice conditions on the Nigliq Channel, which were safe for travel and net deployment once the season did begin, and up until the severe weather events nearly 5 weeks later.

Discussion

Figure 17. Salinity (parts per thousand) and temperature (°C) measured at 3.0 m depth from 4 water stations on the Nigliq Channel, Colville River, Alaska, 24 October to 18 November 2014.

33

Figure 18. Water salinity depth profiles in Nigliq Channel fishing areas, Colville River, Alaska, early November 2014.

Even though the fishing season was abbreviated, the total of 58 nets deployed in the Niglig Channel and in the Main Channel fishing area was actually slightly higher than the average number of nets (56) deployed in the previous 28 years (Figure 3). Furthermore, the number of nets deployed at any one time during the 2014 season remained consistently high during the traditional period of peak fishing which typically occurs from the middle of October until the middle of November (Figure 4). In fact, there was a 3-week period from 26 October through 17 November 2014 where 30 or more nets were active each day and the peak of 44 active nets on 5 November was a slight increase over peak net deployment in 2013 (42). The peak net fishing effort in 2013 occurred on 16 October, the same day that fishing began in 2014 (see Figure 4 in Seigle et al. 2014). In 2014, daily active nets remained above 25 until after the normal stop-date for monitoring by ABR (~20 November). It is likely that the late start to the fishery, combined with a relatively high daily catch rate of greater than 25 fish per adjusted net-day (Figure 8) for much of the season, led to a high level of fishing effort into the latter portion of the fishing season, as compared to years past.

Beginning in 1998, and with few exceptions since then, the majority of fishing effort on the

Nigliq Channel has occurred in the Nigliq Delta fishing area, followed by the Nanuk area, and then the farthest upstream Upper Nigliq area (Figure 5). While the Niglig Delta area was still the preferred fishing area in 2014, the Upper Niglig fishing area surpassed the Nanuk area for the first time since 2006 and for only the second time since 1998. Over the past 8 years, our experience with the fishery has indicated that the typical increase in fishing effort from upstream to downstream among the 3 Nigliq Channel fishing areas resulted from the perception among fishers that returns relative to effort were greater with distance downstream. This perception is supported by the fact that CPUE in the Nigliq Delta area has indeed been higher than in the Nanuk and Upper Nigliq fishing areas in 13 of the last 16 years. Additionally, CPUE in the Upper Nigliq area has been notably lower than in the other 2 fishing areas in nearly every year, and average CPUE increases from upstream to the farthest downstream area (9.7, 15.0, and 21.3; Table 3).

While the pattern of increasing CPUE with distance downstream continued in 2014, fishers in the Upper Nigliq area experienced the highest CPUE since 2006 (~10 fish per adjusted net-day), and CPUE in the Nanuk area (26.2 fish per adjusted net-day) was more than double that in the

Upper Nigliq area, and nearly as high as in the Niglig Delta area (Table 3). Furthermore, CPUE of Arctic Cisco in the Nanuk area has increased annually over the last 4 years. The relatively high CPUE for Arctic Cisco in 7.6-cm mesh nets in these 2 upstream fishing areas allowed many fishers to enjoy adequately high harvest rates without burning as much snow machine fuel in 2014 as compared to 2013 (Table 3). Fishers who did travel all the way to the Nigliq Delta fishing area were rewarded with a CPUE of 27.5 Arctic Cisco per adjusted net-day in 7.6-cm mesh nets that was nearly double the 2013 rate of 13.9 and reversed a downward trend in catch rates in that area in recent years (Table 3). The CPUE in the Nigliq Delta area in 2014 was the eighth highest in 29 years of monitoring.

It should be noted that the results of fishing effort in the Main Channel fishing area on the eastern Colville delta not as well documented 2014 relative to the previous 2 years. Although considerable fishing effort was documented there for the fourth consecutive year, communication with those fishers was limited. This is due in part to the fact that ABR monitors generally focus on the much greater fishing effort that occurs in the Nigliq Channel and typically rely on local hires to provide all of the information about harvests on the Main Channel fishing area. Traditionally, the Main Channel area has been fished by overnight campers because of the distance from Nuigsut precludes nets from being checked reliably on a daily or semi-daily basis. This did not appear to be the case in 2014 and there was considerable uncertainty over the schedule of net-checking compared to previous seasons. Based on limited harvest reports, fishing appeared to be good in the Main Channel area with observed CPUE of nearly 19 fish per adjusted net-day in 7.6-cm mesh nets. Still, due to the lack of reliable reporting by fishers of most of their harvest events, particularly for nets other than 7.6-cm mesh, it is possible that we underestimated harvest in the Main Channel in 2014.

Increased overall fishing effort (\sim 5% over 2013) combined with increased CPUE in all areas of the river made for an above average harvest season as observed by ABR fishery monitors (Figure 6). The estimated harvest of \sim 35,000 Arctic Cisco in the Nigliq Channel in 2014 (Table 4) was well above the average catch of \sim 25,900

fish during the previous 5 years. We reported previously that upward trends in harvest of Arctic Cisco were predicted in 2011 and the years to follow based on estimates of young-of-the-year Arctic Cisco captured in nearshore Beaufort Sea fyke net surveys near Prudhoe Bay (Craig Reiser, LGL, 2009 and 2010, personal communications; see Figure 17 *in* Seigle and Parrett 2008). These predictions appeared to be confirmed in 2011 (~39,000 fish harvested), but then harvest estimates dipped in 2012 (~23,000 fish) and 2013 (~20,000 fish). The increase in harvest in 2014 illustrates the effects of year class recruitment and strength on fishing success.

Indeed, large fluctuations in harvest levels of Arctic Cisco from various year classes on a year to year basis remain evident in the fishery. For example, the 2007 year class was barely represented in the 2011 fishery but then appeared in large numbers as 5-year-olds in 2012 (Figures 15 and 16). The year class contributed to a rather small percentage of the harvests in 2013 and 2014 as 6 and 7-year-olds. However, the 2008 year class (6-year-olds in 2014) continues to represent a considerable portion of harvests in the Niglig Channel (Figures 15 and 16, Appendix H). The 2006 year class has likely returned to the McKenzie River system to spawn. The 2009 year class (5-year-olds in 2014) was a major contributor to 2013 and 2014 harvests and will likely continue to be so in 2015.

The increase in CPUE for Arctic Cisco in the fishery in 2014 was perhaps influenced by the presence of a more diverse age structure than in recent years. For the first time since 2011, we saw a range of age classes in the fishery from 4 to 7 years (Figures 13–15). In the previous 2 years we observed mostly 5 and 6-year-olds with a small percentage of 4-year-old fish. It is possible that the 2005 and 2006 year classes (age 9 and age 8 in 2014), which were present in lower numbers as 7-year-olds in the fishery in recent years, were simply not as successful as the subsequent 2007–2009 year classes (ages 7, 6, and 5 in 2014). It is also possible that these Arctic Cisco were overwintering in other parts of the Colville River (e.g., Main Channel) or that they matured faster and left the Colville River earlier for the spawning grounds on the Mackenzie River system.

The wide range of lengths of Arctic Cisco observed in each mesh size net along with wide variability in age at length suggests that there may be many environmental factors affecting the successful recruitment of any given age class fish to the fishery (Figures 10 and 14). Size differences among age classes could be caused by differences among years in the nutrient availability in offshore waters during summer months, or differences in overwintering conditions between different parts of the river which might make different metabolic demands on overwintering fish. This is supported further by the large variability in weight at length for Arctic Cisco over the past 5 years (Figure 12). Nonetheless, median size and age of Arctic Cisco did increase overall with increasing mesh size of the nets in which those fish were caught in 2014, indicating relatively good fish health (Figures 10 and 14).

Another factor that may have contributed to high CPUE for Arctic Cisco in 2014 was the persistence of favored salinity levels during the fishing season (Moulton and Field 1988, Moulton 1994). In fact, salinity levels in the Nigliq Delta and Nanuk fishing areas were optimal for overwintering Arctic Cisco from the onset of water sampling on 24 October (15–25 ppt, Figure 17). These salinity levels also may have influenced the overall harvest percentages of other species. Salinity in the Nigliq Channel is often a good predictor for Arctic Cisco location and harvest numbers and also tends to predict Least Cisco presence and abundance as well (Moulton and Seavey 2004). Least Cisco prefer salinities slightly lower than Arctic Cisco in the Niglig Channel and generally reside in waters with salinity <15 ppt (Moulton and Field 1988). Higher salinities in the Nigliq Delta and Nanuk areas throughout the monitoring season likely influenced the low numbers of Least Cisco observed during the 2014 season in those areas (Table 6). Salinity at the upstream sampling location (Salinity Station 4) in the Upper Nigliq area was above 10 ppt by the end of October and rose steadily to the upper salinity range of Least Cisco thereafter (Figures 17 and 18). It is therefore likely that high salinities pushed Least Cisco upstream of traditional fishing areas in 2014. Temperature may also influence the movement of some fish upstream in the Nigliq

Channel as warmer waters tend to occur upstream of the Nigliq Delta fishing area (Figure 17).

Laboratory analysis of water sample chemistry indicates that for most analytes tested, Nigliq Channel water meets agency standards for USEPA drinking water and aquatic life as well as ADEC water quality standards. The exception was mercury, which was detected above ADEC standards at the downstream location. However, it should be noted that mercury is found in naturally high concentrations throughout wetlands and waterbodies of the high Arctic environments (Douglas and Strum 2004, Loseto et al. 2004, Rember and Trefry 2004). Furthermore, one must consider that the results for all analytes tested represent a snap-shot of water quality at one location during a low-flow period of the year and may not be representative of year-round water quality conditions. Similarly, only arsenic levels registered above ADEC soil standards, though it must be noted that those standards are for soils that are not inundated by flowing waters year-round. Additionally, localized areas of elevated arsenic are not uncommon in the state due both to atmospheric deposition and local geology (Crecelius et al. 1991. Stenhaur and Boehm 1992, ADEC 2009).

In summary, the 2014 fall fishery was perceived by fishers to be a good harvest year. This perception was supported by harvest CPUE's in the Nigliq Channel that ranked eighth overall in the 29 years of harvest monitoring. ABR will continue to work with members of the Qaaktaq Panel in the spring of 2015 to discuss the results of 2014 harvest monitoring. We also will continue to work with various stakeholders to assist in facilitating the exchange of information related to what continues to be a successful subsistence fishery.

LITERATURE CITED

- ABR, Sigma Plus Statistical Consulting Services, Inc., Stephen R. Braund & Associates, Inc., and Kuukpik Subsistence Oversight Panel. 2007. Variation in abundance of Arctic Cisco in the Colville River: analysis of existing data and local knowledge. Volumes I and II. Report for the U.S. Department of the Interior, Minerals Management Service Alaska OCS Region, Anchorage, AK. Technical Report No. MMS 2007-042.
- ADEC. 2009. Technical memorandum: arsenic in soil. March 2009. Alaska Department of Environmental Conservation Division of Spill Prevention and Response Contaminated Sites Program. Accessed online: http://dec. alaska.gov/spar/csp/guidance/tm-arsenic.pdf (15 February 2013).
- Bickham, J. W., S. M. Carr, B. G. Hanks, D. W.
 Burton, and B. J. Gallaway. 1989. Genetic analysis of population variation in the Arctic Cisco (*Coregonus autumnalis*) using electrophoretic, flow cytometric, and mitochondrial DNA restriction analysis. Biological Papers of the University of Alaska 24: 112–122.
- Bond, W. A., and R. N. Erickson. 1985. Life history studies of anadromous coregonid fishes in two freshwater lake systems on the Tuktoyaktuk Peninsula, Northwest Territories. Canadian Technical Report of Fisheries and Aquatic Sciences 1336: 1–61.
- Bond, W. A., and R. N. Erickson. 1997. Coastal migrations of Arctic Cisco in the eastern Beaufort Sea. Pages 155–164 *in* J. Reynolds, editor. Fish ecology in Arctic North America. American Fisheries Society Symposium 19, Bethesda, MD.
- Chilton, D. E., and R. J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Canadian Special Publication of Fisheries and Aquatic Sciences 60. 102 pp.
- Craig, P. C. 1984. Fish use of coastal waters of the Alaskan Beaufort Sea: a review. Transactions of the American Fisheries Society 113: 265–282.

- Craig, P. C., and L. Halderson. 1981. Beaufort Sea barrier island-lagoon ecological process studies: final report, Simpson Lagoon. Part 4. Fish. Pages 384–678 *in* Environmental Assessment of the Alaskan Continental Shelf. OCS Final Reports of Principal Investigators, MMS/NOAA, OCSEAP, Anchorage, AK. Volume 7.
- Crecelius, E. A., J. H. Trefry, M. S. Steinhaur, and P. D. Boehm. 1991. Trace metals in sediments from the inner continental shelf of the western Beaufort Sea. Environmental Geology 18: 71–79.
- Daigneault, M. J., and C. Reiser. 2007. Colville River fall fishery monitoring, 2006. Report by LGL Alaska Research Associates, Inc., Anchorage, AK, for ConocoPhilips Alaska, Inc., Anchorage, AK. 42 pp.
- Douglas, T. A., and M. Sturm. 2004. Arctic haze, mercury and the chemical composition of snow across the northwestern arctic. Atmospheric Environment 38: 805–820.
- Fechhelm, R. G., and D. B. Fissel. 1988. Wind-aided recruitment of Canadian Arctic Cisco (*Coregonus autumnalis*) into Alaskan waters. Canadian Journal of Fisheries and Aquatic Sciences 47: 2,164–2,171.
- Gallaway, B. J., and R. G. Fechhelm. 2000. Anadromous and amphidromous fishes. Chapter 17 *in* The natural history of an Arctic oil field. Joe C. Truett and Stephen R. Johnson, editors. Academic Press, New York, NY. 422 pp.
- Gallaway, B. J., W. B. Griffiths, P. C. Craig, W. J. Gazey, and J. W. Helmericks. 1983. An assessment of the Colville River delta stock of Arctic Cisco (*Coregonus autumnalis*) migrants from Canada? Biological Papers of the University of Alaska 21: 4–23.
- Loseto, L. L., S. D. Sicilliano, and D. R. S. Lean. 2004. Methylmercury production in high arctic wetlands. Environmental Toxicology and Chemistry 23: 17–23.

- MBC Applied Environmental Sciences. 2004. Proceedings of a workshop on the variability of Arctic Cisco (*Qaaktaq*) in the Colville River, November 18–20, Nuiqsut, AK. OCS Study, MMS 2004-033. USDOI, MMS, Alaska OCS Region, Anchorage, AK. 60 pp. + appendices.
- Moulton, L. L. 1989. Recruitment of Arctic Cisco (*Coregonus autumnalis*) into the Colville delta, Alaska, in 1985. Biological Papers of the University of Alaska 24: 107–111.
- Moulton, L. L. 1994. The 1993 Endicott Development Fish Monitoring Program. Vol. II: the 1993 Colville River fishery. Report by MJM Research, Bainbridge Island, WA, for BP Exploration (Alaska) Inc. and North Slope Borough. 60 pp. + appendices.
- Moulton, L. L., and L. J. Field. 1988. Assessment of the Colville River fall fishery 1985–1987. Report by Environmental Sciences and Engineering, Inc., Anchorage, AK, for ARCO Alaska, Inc., North Slope Borough, and the City of Nuiqsut. 42 pp.
- Moulton, L. L., L. J. Field, and S. Brotherton. 1986. Assessment of the Colville River fishery in 1985. Colville River Fish Study, Chapter 3. Report by Entrix, Inc., Anchorage, AK, for ARCO Alaska, Inc., the North Slope Borough, and the City of Nuiqsut. 86 pp.
- Moulton, L. L., and B. T. Seavey. 2004. Harvest estimate and associated information for the 2003 Colville River fall fishery. Report by MJM Research, Bainbridge Island, WA, for ConocoPhillips Alaska, Inc., Anchorage, AK. 79 pp.
- Moulton, L. L., B. T. Seavey, and J. Pausanna. 2006. Harvest rates for the 2005 Colville River fall fishery. Report by MJM Research, Bainbridge Island, WA, for ConocoPhillips Alaska, Inc., Anchorage, AK.
- Moulton, L. L., B. T. Seavey, and J. Pausanna. 2010. History of an under-ice subsistence fishery for Arctic Cisco and Least Cisco in the Colville River, Alaska. Arctic 63: 381–390.

- Rember, R. D, and J. H Trefry. 2004. Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan arctic. Geochimica et Cosmochimica Acta 68: 477–489.
- Seigle, J. C., S. M. Murphy, and S. R. Braund. 2008. Fall 2007 fishery monitoring on the Colville River. Report by ABR, Inc., Anchorage, AK, for ConocoPhillips Alaska, Inc., Anchorage, AK. 33 pp.
- Seigle, J. C., and J. P. Parrett. 2008. Fall 2008 subsistence fishery monitoring on the Colville River. Report by ABR, Inc., Anchorage, AK, for ConocoPhillips Alaska, Inc., Anchorage, AK. 46 pp.
- Seigle, J. C., J. M. Gottschalk, and J. R. Rose. 2011. Fall 2010 subsistence fishery monitoring on the Colville River. Report by ABR, Inc., Anchorage, AK, for ConocoPhillips Alaska, Inc., Anchorage, AK. 78 pp.
- Seigle, J. C., and J. M. Gottschalk. 2012. Fall 2011 subsistence fishery monitoring on the Colville River. Report by ABR, Inc., Anchorage, AK, for ConocoPhillips Alaska, Inc., Anchorage, AK. 93 pp.
- Seigle, J. C., S. D. Garcia, and J. M. Gottschalk. 2014. Fall 2013 subsistence fishery monitoring on the Colville River. Report by ABR, Inc., Anchorage, AK, for ConocoPhillips Alaska, Inc., Anchorage, AK. 156 pp.
- Stenhaur, M. S., and P. B Boehm. 1992. The composition and distribution of saturated and aromatic hydrocarbons in the nearshore sediments, river sediments, and coastal peat of the Alaskan Beafort Sea: implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research 33: 223–253.
- USEPA. 2012. Current drinking water regulations. Accessed online: http://water.epa.gov/laws regs/rulesregs/sdwa/currentregulations.cfm (15 February 2013).

Appendix A. Stakeholder engagement and monitoring plan for the fall subsistence fishery monitoring on the Colville River.

John Seigle (ABR) traveled to Nuiqsut on 27 May for a 1:30 pm meeting with the *Qaaktaq* Panel. The KSOPI executive director, Elizabeth Ipalook, was present and assisted John in reminding panel members about the meeting. Unfortunately, several members of the panel left town during 26–27 May and were unable to attend the meeting. Ultimately, 2 members of the panel attended (Lydia Sovalik and Thomas Napageak Jr.).

John presented results from analysis of the 2014 fishery. There were 2 comments made by those present. First, Lydia noted that fish appeared smaller in 2014. John responded that this likely true on average, but that one must also consider the age of fish predominant in the harvests. Arctic Cisco will remain in the Colville Delta until approximately age-8, and older fish are more likely to be larger than younger fish. Of the fish that were sub-sampled for age, 59% were age-5 and another 30% were age-6. With so few fish present from age-7 and age-8 age classes, it is reasonable to expect that fish might have been slightly smaller on average. There is some evidence that Arctic Cisco in 2014 weighed slightly less at length than in the previous 4 years, particularly with the longest fish (see Figure 12).

Thomas Napageak Jr agreed with John that it is likely that ABR has underestimated the harvest of fish in the main channel in 2014. We estimated a harvest of ~3,336 fish in 3 inch mesh nets from a small number of interviews. However, Thomas suggests that he alone caught nearly 3,000 fish in that region of the Delta. We discussed some of the problems that ABR had in 2014 with regard to collecting harvest data from the Main Channel. In particular, ABR relies on local hire to collect data from the Main Channel, but those hires experienced difficulties in visiting that section of the river delta in 2014. Thomas and John discussed communicating directly more frequently in 2015. Thomas said that he would assist the fish monitors to increase the accuracy of their harvest projections for the Main Channel by participating in more harvest interviews.

John noted that the overall 2014 harvest appeared to be one of the best in the nearly 30 years of monitoring of the fishery. Thomas agreed that it was a better than average year and that he was pleased with his harvest results. The meeting closed with an agreement to reconvene the panel in the fall of 2015 during the fall fishery to revisit these and other related topics.

A-1

					Stretched				
Fisher Code	Fishing Area	Net	Net Code	Length (m)	Mesh (cm)	Start Date	End Date	Net-days	Adjusted Net-days
6	Napua	Λ	1464.1	24 384	7.62	10/30/14	11/10/1 <i>A</i>	11	14.67
0	Inanuq Unner Niglia	A	140A1	24.304	7.02	10/21/14	11/10/14	36	14.07
7	Napua	R	147R1	15 24	7.62	10/21/14 10/25/14	11/26/14	30	76.66
7	Nanuq	D C	147D1	24 384	7.02	10/25/14	10/26/14	1	1.33
7	Nanuq	C C	14701	24.304	7.02	10/25/14 10/26/14	10/20/14	21	1.55
16	Inanuq Unner Niglia		14702	18 288	7.02 8.80	10/20/14 10/23/14	11/20/14	31	38.00
16	Upper Nigliq	R	1416R1	24 384	7.62	10/23/14 10/23/14	11/30/14	38	50.66
16	Upper Nigliq	D C	1416C1	24.304	8.80	10/25/14 10/26/14	11/30/14	35	<i>16</i> 66
16	Upper Nigliq	D	1416D1	24.304	8.89	10/26/14	11/30/14	35	40.00
21	Upper Nigliq		141001	24.304	0.03	10/20/14	10/26/14	33 7	40.00
21	Napua	л л	142171	30.48	7.62	10/19/14 10/30/14	11/22/14	23	38.33
25	Nanuq	A P	1425A1	24 284	7.02 8.80	10/30/14 11/4/14	11/22/14 11/22/14	23 18	24.00
25	Nanuq	D C	1425D1	18 288	8.89	11/4/14	11/22/14 11/22/14	10	24.00
23	Inanuq Unner Niglia		142301	10.200	0.09 8 255	11/13/14 10/25/14	11/22/14 11/10/14	9 16	9.00
27	Upper Nigliq	A D	142/A1	12.192	0.235 7.62	10/25/14	11/10/14	10	10.07
27	Main Calvilla	D A	142/D1 1428A1	10.200	7.02	10/20/14 11/0/14	11/10/14	13	17.00
20	Manua Norma	A	1420A1	24.384	7.02	10/24/14	11/22/14	15	17.55
32 22	Nanuq	A D	1452A1	24.384	7.02	10/24/14	11/2/14	9	12.00
52 41	Nanuq	D A	1432D1	24.384	7.02	10/24/14	11/2/14 10/21/14	9	12.00
41	Nanuq Nialia Dalta	A	1441A1	24.384	7.02	10/30/14	10/31/14	1	1.55
41	Nigiiq Della	A	1441AZ	24.384	7.02	10/31/14	12/0/14	50 26	47.99
42	Opper Nigliq	A	1442A1	30.48 20.49	7.02	10/2//14	11/22/14	20	43.33
49	Main Colvine	A	1449A1	30.48 24.294	7.02	11/1/14	11/9/14	8	13.33
55 55	Nigliq Delta	A	1455D1	24.384	7.02	10/25/14	11/3/14	13	17.33
55 55	Nigliq Delta	В	1455B1	30.48	7.62	10/25/14	11/30/14	36	59.99
55 55	Nigliq Delta	A	1455A2	24.384	7.02	11/3/14	11/30/14	25 10	33.33 25.22
55	Nigliq Delta		1455C1	24.384	7.02	11/11/14	11/30/14	19	25.55
50 (2	Nigliq Delta	A	1400A1	24.384	7.02	10/25/14	11/14/14	20	20.00
03	Nigliq Delta	A	1403A1	30.48 20.49	7.02	11/11/14	12/0/14	25	41.00
09 70	Nigliq Delta	A	1409A1	30.48 20.49	7.02	10/23/14	10/29/14	0	10.00
70	Nigliq Delta	A	14/0A1	30.48 24.294	7.02	10/16/14	10/25/14	9	15.00
/0	Nigliq Delta	В	14/0B1	24.384	7.62	10/16/14	10/29/14	13	17.33
/0	Nigliq Delta	C	147001	18.288	7.62	10/23/14	11/12/14	20	20.00
/0	Niginq Delta	A	14/0A2	30.48	7.62	10/25/14	11/1//14	23	38.33
/0	Nigliq Delta	D	14/0D1	30.48	7.62	10/25/14	11/1//14	23	38.33
72	Main Colville	A	1472A1	24.384	7.62	11/4/14	11/22/14	18	24.00
72	Main Colville	В	1472B1	24.384	7.62	11/4/14	11/22/14	18	24.00
72	Main Colville	С	1472C1	24.384	7.62	11/9/14	11/22/14	13	17.33

Appendix B. Total fishing effort (adjusted net-days) recorded for the fall subsistence fishery for Arctic Cisco in 3 Nigliq Channel fishing areas and in the Main Channel fishing area, Colville River, Alaska, 2014.

Fisher				Longth	Stretched				Adjusted
Code	Fishing Area	Net	Net Code	(m)	(cm)	Start Date	End Date	Net-days	Net-days
74	Nigliq Delta	А	1474A1	24.384	8.89	10/16/14	10/21/14	5	6.67
74	Nigliq Delta	В	1474B1	24.384	8.89	10/16/14	10/20/14	4	5.33
74	Nigliq Delta	С	1474C1	30.48	7.62	10/20/14	10/31/14	11	18.33
74	Nigliq Delta	D	1474D1	30.48	6.35	10/21/14	10/31/14	10	16.66
74	Main Colville	С	1474C2	30.48	7.62	11/1/14	11/9/14	8	13.33
74	Main Colville	D	1474D2	30.48	6.35	11/1/14	11/9/14	8	13.33
77	Upper Nigliq	А	1477A1	13.716	7.62	10/18/14	11/7/14	20	15.00
77	Upper Nigliq	В	1477B1	18.288	6.35	10/19/14	11/22/14	34	34.00
79	Upper Nigliq	А	1479A1	30.48	7.62	10/24/14	11/7/14	14	23.33
79	Nigliq Delta	В	1479B1	24.384	7.62	10/26/14	11/7/14	12	16.00
82	Nigliq Delta	А	1482A1	24.384	7.62	10/26/14	11/11/14	16	21.33
82	Nigliq Delta	В	1482B1	24.384	7.62	10/30/14	11/11/14	12	16.00
86	Main Colville	А	14A1	9.144	7.62	11/1/14	11/9/14	8	4.00
87	Main Colville	А	1487A1	24.384	7.62	11/4/14	11/22/14	18	24.00
87	Main Colville	В	1487B1	24.384	7.62	11/9/14	11/22/14	13	17.33
87	Main Colville	С	1487C1	24.384	7.62	11/4/14	11/22/14	18	24.00
88	Upper Nigliq	А	1488A1	24.384	7.62	10/24/14	11/30/14	37	49.33
88	Upper Nigliq	В	1488B1	24.384	7.62	11/1/14	11/9/14	8	10.67
88	Upper Nigliq	В	1488B2	24.384	7.62	11/11/14	11/30/14	19	25.33
88	Nigliq Delta	С	1488C1	24.384	7.62	11/11/14	11/18/14	7	9.33
89	Upper Nigliq	А	1489A1	18.288	7.62	10/19/14	10/22/14	3	3.00
89	Nigliq Delta	А	1489A2	18.288	7.62	10/23/14	11/7/14	15	15.00
89	Nigliq Delta	В	1489B1	24.384	7.62	10/23/14	11/7/14	15	20.00
89	Nigliq Delta	С	1489C1	24.384	7.62	10/25/14	11/7/14	13	17.33
89	Nigliq Delta	D	1489D1	24.384	8.89	10/25/14	11/7/14	13	17.33
89	Nigliq Delta	Е	1489E1	24.384	7.62	10/31/14	11/16/14	16	21.33
89	Nigliq Delta	В	1489B2	24.384	7.62	11/10/14	11/16/14	6	8.00
100	Nanuq	А	14100A1	30.48	5.08	10/20/14	11/10/14	21	35.00
100	Nanuq	В	14100B1	24.384	8.89	11/11/14	11/18/14	7	9.33
101	Nigliq Delta	А	14101A1	30.48	7.62	10/31/14	11/7/14	7	11.67
Total									1,499.8

Appendix B. Continued.

Data	Salinity	Salinity	Water Temperature	Percent	Oxygen Concentration	Specific Conductance	лU
Date	Station	(ppr)	()	Oxygen	(IIIg/L)	(IIIS/CIII)	pm
24 Oct	1	18.0	0.0	86.8	11.1	30.2	7.43
24 Oct	2	16.3	0.5	85	10.9	27.6	7.22
24 Oct	3	14.6	0.8	94.8	11.5	24.8	7.37
24 Oct	4	0.1	0.4	101.3	14.6	0.2	6.84
26 Oct	1	17.9	0.3	75.5	9.6	30.0	7.67
26 Oct	2	16.4	0.4	87	11.2	27.6	7.65
26 Oct	3	14.5	0.8	87.6	11.4	24.6	7.31
26 Oct	4	0.1	0.4	95.5	13.8	0.2	8.22
28 Oct	1	23.6	-1.1	93	11.9	39.2	7.75
28 Oct	2	17.8	0	87.5	11.4	29.9	7.63
28 Oct	3	14.7	0.6	93.3	12.1	25.0	7.44
28 Oct	4	6.9	0.5	94.6	13.0	12.4	7.62
30 Oct	1	24.3	-1.0	85.7	10.8	40.1	7.74
30 Oct	2	20.9	-0.5	88.3	11.3	34.8	7.63
30 Oct	3	15.2	0.6	87.4	11.3	25.8	7.59
30 Oct	4	9.8	0.6	91	12.2	17.0	7.12
1 Nov	1	24.3	-0.9	98	12.3	40.1	7.79
1 Nov	2	21.4	-0.5	93.9	12.0	35.6	7.63
1 Nov	3	15.8	0.6	98.5	12.6	26.8	7.63
1 Nov	4	10.3	0.6	98.4	13.4	17.9	7.19
3 Nov	1	24.5	-0.9	96.4	12.0	40.6	7.76
3 Nov	2	21.0	-0.4	96.8	12.3	34.9	7.7
3 Nov	3	16.3	0.4	97.5	12.5	27.5	7.57
3 Nov	4	10.1	0.6	100	13.4	17.7	7.5
6 Nov	1	24.3	-0.7	92.4	11.5	40.1	7.7
6 Nov	2	21.3	-0.4	91.9	11.5	35.4	7.56
6 Nov	3	16.9	0.4	94.9	11.9	28.5	7.38
6 Nov	4	10.6	0.7	96.9	12.8	18.5	7.67
8 Nov	1	20.7	-0.8	87.6	10.6	35.2	7.72
8 Nov	2	18.7	-0.3	90.6	11.7	31.2	7.72
8 Nov	3	17.5	0.3	91.6	11.7	29.4	7.62
8 Nov	4	10.7	0.8	98.4	13.1	18.8	7.25
10 Nov	1	21.8	-0.7	94.4	12.1	36.7	7.67
10 Nov	2	19.9	0.5	92.2	11.9	33.1	7.67

Appendix C. Ambient water chemistry at 3 m depth at 4 water stations on the Nigliq Channel, Colville River, Alaska, 24 October to 18 November 2014.

Date	Water Station	Salinity (ppt)	Water Temperature (°C)	Percent Oxygen	Oxygen Concentration (mg/L)	Specific Conductance (mS/cm)	pH
10 Nov	3	17.8	0.3	93	11.8	29.9	7.51
10 Nov	4	11.1	0.8	98.1	12.5	19.4	7.38
12 Nov	1	22.9	-1.1	98.4	12.6	38.1	7.74
12 Nov	2	19.4	-0.7	91.6	11.8	32.6	7.73
12 Nov	3	18.5	0.1	93.2	11.9	31.1	7.65
12 Nov	4	12.3	0.8	96.3	12.5	21.2	7.44
14 Nov	1	23.6	-0.9	92.1	11.5	39.1	7.59
14 Nov	2	21.2	-0.4	87.5	11.2	35.2	7.68
14 Nov	3	18.7	0	87.2	11.2	31.4	7.65
14 Nov	4	13.0	0.6	90.8	11.9	22.4	7.63
16 Nov	1	23.4	-0.9	93.6	11.9	38.7	7.62
16 Nov	2	21.4	-0.5	88.3	11.2	35.8	7.62
16 Nov	3	19.0	0	87.6	11.2	31.8	7.64
16 Nov	4	13.1	0.6	86.1	11.3	22.5	7.31
18 Nov	1	24.1	-1.1	99.1	12.4	39.7	7.51
18 Nov	2	22.3	-0.7	89.1	11.3	37.1	7.6
18 Nov	3	19.1	-0.1	88.8	11.4	32.0	7.61
18 Nov	4	13.5	0.6	91.2	11.9	23.3	7.6

er 18 (11/18), during the fall	
Water chemistry results from 3 sampling locations on 2 dates, November 3 (11/3) and Novemb	subsistence harvest of Arctic Cisco in the Nigliq Channel, Colville River, Alaska, 2014.
Appendix D-1.	

			USEPA Drinking Water	USEPA Aquatic Life	ADEC Alaska Water	Downstre Chen Collect	am Water nistry ion Site	Mid-Chan Chenr Collecti	nel Water listry on Site	Upstrear Chem Collecti	n Water istry on Site
Analyte (µg/L)	Analytical Method	Reporting Limit	Standard (MCL ^a)	Standard (CCC ^b)	Quality Standards	11/3	11/18	11/3	11/18	11/3	11/18
Arsenic	6020 - Metals (ICP/MS)	1.0	10	150	10	1.1	2.1	Ŋ	1.4	ND	1.0
Barium	6020 - Metals (ICP/MS)	1.0	2,000	NEL	2,000	58	81	100	100	120	130
Cadmium	6020 - Metals (ICP/MS)	1.0	5	0	calculated ^c	ND	ND	ND	ND	ND	ŊŊ
Calcium	200.7 Rev 4.4 - Metals	0.001	NEL	NEL	NEL	0.290	0.290	0.200	0.250	0.150	0.180
Chromium	6020 - Metals (ICP/MS)	2.0	100	74	100	Ŋ	ND	ND	ND	ND	ND
Lead	6020 - Metals (ICP/MS)	1.0	15	б	calculated ^c	ND	ND	ND	ND	ND	ŊŊ
Magnesium	200.7 Rev 4.4 - Metals	0.001	NEL	NEL	NEL	0.890	0.880	0.560	0.720	0.380	0.480
Mercury	7470A	0.0005	2.00	0.77	0.05	0.26	0.57	Ŋ	ND	ND	ŊŊ
Selenium	6020 - Metals (ICP/MS)	1.0	50	5	5	2.7	4.3	ND	ND	ND	ŊŊ
Silver	6020 - Metals (ICP/MS)	1.0	NEL	NEL	calculated ^c	ND	ND	QN	Ŋ	Ŋ	QN
Nitrate Nitrite as Total Nitrogen	EPA 353.2	10	10,000	NEL	10,000	ND	ND	33	QN	24	ND
Diesel Range Organics	AK102 & AK 103	100	NEL	NEL	NEL	ŊŊ	ND ^d	ŊŊ	ND ^d	ND	ND ^d
Residual Range Organics	AK102 & AK 103	520	NEL	NEL	NEL	ŊŊ	ND ^d	QN	ND ^d	ND	ND ^d
Total water hardness	SM 2430B Hardness	0.0002	NEL	NEL	NEL	4.40	4.30	2.80	3.60	1.90	2.40
^a Maximum Contaminen	t Level										

^b Criterion Continuous Concentration ^c See Appendix D-2 for calculated values of the ADEC water quality standards for each sample collected. Refer to the "Methods" section of this report for a description of how

 d Diesel range and residual range organics were processed past their hold times NEL= No Established Limit ND = Not detected at the reporting limit

Rive	r, Alaska, 2014.		11/10), uum	ousisuus tatt ourses	ILCO ITAL VOST O	I MININ CISCO I	hugur om u	
				AD	EC Alaska Wate	er Quality Standard	sa	
	USEPA Drinking Water Standard	USEPA Aquatic Life Standard	Downstream Colled	Water Chemistry ction Site	Mid-Cha Chemistry (unnel Water Collection Site	Upstream V Colle	Vater Chemistry ction Site
Analyte (µg/L)	MCL ^b	ccc°	11/3	11/18	11/3	11/18	11/3	11/18
Total Water Hardness	Ι	Ι	4.40	4.30	2.80	3.60	1.90	2.40
Cadmium	5	0.25	4.47	4.39	3.20	3.85	2.40	2.85
Lead	15.0	2.5	50.0	50.0	50.0	50.0	50.0	50.0
Silver	NEL	NEL	2,539	2,441	1,167	1,798	599	895
B Con the the device of the de	cominition of ADEC Aloci	Wotor Output	Ctondords onlon	otion				

Calculated Alaska water quality standards for total water hardness-dependent metals from 3 sampling locations on 2 dates, November 3 (11/3) and November 18 (11/18), during the fall subsistence harvest of Arctic Cisco in the Niglig Channel, Colville Appendix D-2.

See "Methods" for description of ADEC Alaska Water Quality Standards calculation Maximum Contaminent Level

q

^c Criterion Continuous Concentration NEL= No Established Limit

Appendix E. Raw laboratory water chemistry results from Arctic Fox Laboratories, Inc., for samples collected from 4 locations during the fall subsistence harvest of Arctic Cisco, Nigliq Channel, Colville River, Alaska, November 2014.

			ě,	Bill Numb	Shipping	d for lab by	Receive	Time	Date	Reinquisted By (3)
D ABSENT	D BROKEN	NTACT		Arrival: Sustady S	Chain of C	si by	Manana		C	Reinquished By (2)
PB X165 "C	FBK D	0.	ANCO	Received	Location F	A WS/H 0930	Hacer	Time	H Nov /4	Reinquished By (1) John Rose John Rose
500 ml ady	EN EV LAROPATO		X			AFSU848	1	15:20	*	Hidro 423
Stor &		7		×	-	4FS4847		15:20	-	Hydra 4-2
1000 pl Glass						APSU846		15.20	~	
500 ml phy			X		-	4-54845		12:40	/	Hydro 3-3
FOR TN COS		×		×		AFSU844		DA: 71	1	Hyden 3-2
IDECIML GLASS					- ×	4FS4843		12:40	J	Hydro 3-1
500 ML BUY			×		-	AF54842		12:00	~	14/2 1-3
SED ML poly		×		×		HE22841		12:00	3 Nov 14	Hydro 1-2
1000 ml Glass					×	AF52840		12:00	3 NOV 14	Hydro 1-1
Remarks		5	Nor			AF Sample ID	Matrix	Sampled	Date Sampled	Client Sample ID
		i jEi	S (V					1		Requested Turnaround Time and Special Instructions:
		72 5	3 Sø	574	O.S.	D YES No	Send R		mat	Data Deliverables Level 10 Level 11 0 Level 11 0 EDD/Fo
		\$əv	U	12	anos 17					Project Name
		pro	Ν	nd	1 1	unper:	PWS N		346	E-mail ISEIGLE @ABRINC.co
) H	74	-14	Q	(BY)RR	Sample	5-1443	Number 407-77	Phone Number (907) 344-6777 Fax
		Graj	191	101	n d Cl	ation Number:	Authoriz		110	Contad Person
		45		,		Contract Julinber	P.O. of		9524	P.C. BOX 24068
Preservative		1111000111	Nove	Net	Britte	Number	Account			ABR, T.v.
						- From	14-18	-		
	NU U	000					0) 659-214) 659-214	45 / Fax: (907	Pfone: (907) 659-21
	100 A 100			-				Ry LIEL.	OUNCERCU	A CHC LOA LHOU
	stody Form	in of Cu	nd Cha	2				2		
	inon Order	and Cont	A walk hit							

lo añed

Arctic Fox Environmental, Inc.

Pouch 340043 - Prudhoe Bay, AK 99734 Phone: (907) 659-2145 / Fax: (907) 659-2146 / arcticfox@astacalaska.com

ABR Inc. environmental Research & Services PO BOX 24068 Anchorage, Alaska 99524 Report Date:12/26/2015Date Arrived:11/4/2014Date Sampled:11/3/2014Time Sampled:see belowCollected By:JRR

Attn:Not DocumentedPhone:(907) 223-2536Fax:(907) 770-1443Email:jseigle@abrinc.com

Arctic Fox Lab#AF52840-52848Client Sample ID:See belowLocation/Project:Not DocumentedCOC#:85525Sample Matrix:Water

Comments: Attached are the results for analysis of your samples. These samples were analyzed by Test America in Beaverton, OR. Tracking information is as follows:

ABR Sample ID: Hydro 1-1 Analysis Requested: DRO/RRO Time Sampled: 1200 Arctic Fox ID: AF52840 Test America ID:250-22607-1

ABR Sample ID: Hydro 1-3 Analysis Requested: Total Nitrogen Time Sampled: 1200 Arctic Fox ID: AF52842 Test America ID:250-22607-3

ABR Sample ID: Hydro 3-2 Analysis Requested: Total Metals Time Sampled: 1240 Arctic Fox ID: AF52844 Test America ID:250-22607-5

ABR Sample ID: Hydro 4-1 Analysis Requested: DRO/RRO Time Sampled: 1520 Arctic Fox ID: AF52846 Test America ID:250-22607-7

ABR Sample ID: Hydro 4-3 Analysis Requested: Total Nitrogen Time Sampled: 1520 Arctic Fox ID: AF52848 Test America ID:250-22607-9

Michol Hundy

Reported By: Ralph E. Allphin/Michael J. Hawley/John M. Fot Arctic Fox Environmental, Inc.

ABR Sample ID: Hydro 1-2 Analysis Requested: Total Metals, Ca/Mg Hardness Time Sampled: 1200 Arctic Fox ID: AF52841 Test America ID:250-22607-2

ABR Sample ID: Hydro 3-1 Analysis Requested: DRO/RRO, Ca/Mg Hardness Time Sampled: 1240 Arctic Fox ID: AF52843 Test America ID:250-22607-4

ABR Sample ID: Hydro 3-3 Analysis Requested: Total Nitrogen Time Sampled:1240 Arctic Fox ID: AF52845 Test America ID:250-22607-6

ABR Sample ID: Hydro 4-2 Analysis Requested: Total Metals, Ca/Mg Hardness Time Sampled: 1520 Arctic Fox ID: AF52847 Test America ID:250-22607-8

			ll Number	Shipping Bi		ed for lab by:	Receiv	Time:	Date:	Relinquished By (3):
ROKEN DABSENT	BR	I DINTACT	stody Sea	Chain of Cu						
。 、 く 引は Bd 2。 一 3。	FBK D	ANC D°C	iceived/ . rival:	Location Re Temp on Ar	8	ed By: WSIN ON	Receiv	Time:	Date:	John Kost John 1021
BORATORY	ETED BY LAE	TO BE COMPLI))	ed By:	Receiv	Time:	Date: 111	Reinquished By (1):
500 ml pdy		X			20	AFSU84		15:20	¥	4 da 4-3
500ml By			×		7	4F5484-		15:20	~	Hudro 4-2
1000 nl Glass				×		APS4846		15:20	<	Hodro 21-1
SOOML pely		×			5	4=5484°		12:40		Hidro 3-3
Eas up boy			×			4754844		12:40	-	Hudan 3-2
1000ml Clarks				×	-	APS4843		12:40	<u></u>	Hydre 3-1
500 mL Buy		8			(~ 	AFS4847		12:00	<	Hydro 1-3
500 mL poly			×		_	HES2841		12:00	3 Nov 14	Hydro 1-2
Jooo nh Ginss				×	_	AF51840		12:00	3 NOV 14	Hydro 1-1
Remarks		5	>		82	AF Sample ID	Matrix	Sampled	Date Sampled	Client Sample ID
		N Je	>					4		Requested Turnaround Time and Special Instructions:
		350	571	0	srenie	□ YES X No	Send R		mat	Data Deliverables: Level I C Level II C EDD/For
		a II	۳Ľ	dک	Sonta					Project Name:
		М .	Jul	, /) 1 0 1	umper	PWS N		X	E-mail: ISEIGLE ABRINC. CO
		70	74	0	əquin	BYJRR	Sample	2-1443	lumber 907-77	Phone Number (907) 344-6777 Fax N
		للعل	191	ิยษ	N	fation Number:	Authoriz			Contact Person:
			-			Contract Number:	P.O. or		9524	P.O. BOX 24068
Preservative		Jave	V John	1 Brock		Number	Account			ABR INC.
				-	_	hh	14-18		/ www.arcucioxen	arctictox(@astacalaska.com
	020	00					6) 659-214	5 / Fax: (907	Phone: (907) 659-214
		0						50734	Difficient a	Arelle Fox Enour
orm	vices Ore ustody Fe	Chain of Cu	An					Inn	onmonta	The Post Print

Page _____ of

Arctic Fox Environmental, Inc.

Pouch 340043 - Prudhoe Bay, AK 99734 Phone: (907) 659-2145 / Fax: (907) 659-2146 / arcticfox@astacalaska.com

ABR Inc. environmental Research & Services PO BOX 24068 Anchorage, Alaska 99524 Report Date:11/20/2014Date Arrived:11/4/2014Date Sampled:11/3/2014Time Sampled:see belowCollected By:JRR

Attn:Not DocumentedPhone:(907) 223-2536Fax:(907) 770-1443Email:jseigle@abrinc.com

Arctic Fox Lab#AF52840-52848Client Sample ID:See belowLocation/Project:Not DocumentedCOC#:85525Sample Matrix:Water

Comments: Attached are the results for analysis of your samples. These samples were analyzed by Test America in Beaverton, OR. Tracking information is as follows:

ABR Sample ID: Hydro 1-1 Analysis Requested: DRO/RRO Time Sampled: 1200 Arctic Fox ID: AF52840 Test America ID:250-22607-1

ABR Sample ID: Hydro 1-3 Analysis Requested: Total Nitrogen Time Sampled: 1200 Arctic Fox ID: AF52842 Test America ID:250-22607-3

ABR Sample ID: Hydro 3-2 Analysis Requested: Total Metals Time Sampled: 1240 Arctic Fox ID: AF52844 Test America ID:250-22607-5

ABR Sample ID: Hydro 4-1 Analysis Requested: DRO/RRO Time Sampled: 1520 Arctic Fox ID: AF52846 Test America ID:250-22607-7

ABR Sample ID: Hydro 4-3 Analysis Requested: Total Nitrogen Time Sampled: 1520 Arctic Fox ID: AF52848 Test America ID:250-22607-9

Michol Hundy

Reported By: Ralph E. Allphin/Michael J. Hawley/John M. Fot Arctic Fox Environmental, Inc.

ABR Sample ID: Hydro 1-2 Analysis Requested: Total Metals Time Sampled: 1200 Arctic Fox ID: AF52841 Test America ID:250-22607-2

ABR Sample ID: Hydro 3-1 Analysis Requested: DRO/RRO Time Sampled: 1240 Arctic Fox ID: AF52843 Test America ID:250-22607-4

ABR Sample ID: Hydro 3-3 Analysis Requested: Total Nitrogen Time Sampled:1240 Arctic Fox ID: AF52845 Test America ID:250-22607-6

ABR Sample ID: Hydro 4-2 Analysis Requested: Total Metals Time Sampled: 1520 Arctic Fox ID: AF52847 Test America ID:250-22607-8

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-22607-1 Client Project/Site: 1114-1844/Coleville Fish Study

For:

Arctic Fox Environmental, Inc Pouch 340043 Prudhoe Bay, Alaska 99734

Attn: Ralph Allphin

awsa Berm

Authorized for release by: 11/14/2014 4:12:26 PM

Vanessa Berry, Project Manager II (503)906-9233 vanessa.berry@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
QC Sample Results	8
Definitions	12
Certification Summary	13
Chain of Custody	14
Receipt Checklists	15

Sample Summary

TestAmerica Job ID: 250-22607-1

Client: Arctic Fox Environmental, Inc Project/Site: 1114-1844/Coleville Fish Study

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
250-22607-1	AF52840 Hydro 1-1	Water	11/03/14 12:00	11/07/14 08:55
250-22607-2	AF52841 Hydro 1-2	Water	11/03/14 12:00	11/07/14 08:55
250-22607-3	AF52842 Hydro 1-3	Water	11/03/14 12:00	11/07/14 08:55
250-22607-4	AF52843 Hydro 3-1	Water	11/03/14 12:40	11/07/14 08:55
250-22607-5	AF52844 Hydro 3-2	Water	11/03/14 12:40	11/07/14 08:55
250-22607-6	AF52845 Hydro 3-3	Water	11/03/14 12:40	11/07/14 08:55
250-22607-7	AF52846 Hydro 4-1	Water	11/03/14 15:20	11/07/14 08:55
250-22607-8	AF52847 Hydro 4-2	Water	11/03/14 15:20	11/07/14 08:55
250-22607-9	AF52848 Hydro 4-3	Water	11/03/14 15:20	11/07/14 08:55

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-22607-1

Comments

No additional comments.

Receipt

The samples were received on 11/7/2014 8:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

Except:

The following samples were received unpreserved and were preserved upon receipt to the laboratory: AF52841 Hydro 1-2 (250-22607-2), AF52844 Hydro 3-2 (250-22607-5), AF52847 Hydro 4-2 (250-22607-8). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion. PSS 11/7/14@1015 M039

GC Semi VOA

Method(s) AK102 & 103: 250-32172 MB, LCS/LSCD surrogate recoveries were outside of acceptance limits for Triacontane. Samples in the batch had passing surrogate recoveries. Target analyte recoveries in LCS/LCSD were within lab control limits. The low Triacontane recovery in batch QC samples had limited negative impact on sample results. (LCS 250-32172/2-A), (LCSD 250-32172/3-A), (MB 250-32172/1-A), AF52840 Hydro 1-1 (250-22607-1), AF52843 Hydro 3-1 (250-22607-4), AF52846 Hydro 4-1 (250-22607-7). There was insufficient sample to perform a re-extraction; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Job ID: 250-22607-1

Client Sample ID: AF52840 Hy	Lab Sample ID: 250-22607-1								
Date Collected: 11/03/14 12:00								Matrix	· Water
Date Received: 11/07/14 08:55								math	. mator
Method: AK102 & 103 - Alaska - Di	esel Range (Organics &	Residual Range	e Organio	cs (GC)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		0.12		mg/L		11/12/14 09:12	11/12/14 16:27	1
RRO (nC25-nC36)	ND		0.61		mg/L		11/12/14 09:12	11/12/14 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	67		50 _ 150				11/12/14 09:12	11/12/14 16:27	1
1-Chlorooctadecane	99		50 - 150				11/12/14 09:12	11/12/14 16:27	1
Client Sample ID: AE52841 Hy	dro 1-2						l ah Sam	nla ID: 250-2	2607-2
Data Collected: 11/02/14 12:00							Lub Oum	Moteria	
Date Collected: 11/03/14 12:00								Watth	C. Water
Date Received. 11/07/14 06.55									
Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0011		0.0010		mg/L		11/08/14 15:10	11/09/14 21:47	1
Barium	0.058		0.0010		mg/L		11/08/14 15:10	11/09/14 21:47	1
Chromium	ND		0.0020		mg/L		11/08/14 15:10	11/09/14 21:47	1
Lead	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 21:47	1
Silver	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 21:47	1
Selenium	0.0027		0.0010		mg/L		11/08/14 15:10	11/09/14 21:47	1
Cadmium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 21:47	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00026		0.00020		mg/L		11/11/14 14:33	11/11/14 23:46	1
Client Sample ID: AF52842 Hv	dro 1-3						Lab Sam	ple ID: 250-2	2607-3
Date Collected: 11/03/14 12:00								Matrix	c: Water
Date Received: 11/07/14 08:55									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.010		mg/L			11/12/14 17:40	1
Client Semple ID: AF52942 Us	due 2.4						Lah Cam	nla ID: 250.2	007 4
Client Sample ID: AF52843 Hy	aro 3-1						Lap Sam	pie ID: 250-2	2007-4
Date Collected: 11/03/14 12:40								Matrix	c: water
Date Received: 11/07/14 08:55									
Mothod: AK102 8 102 Alaska Di	acal Panga (Dragnice 8	Posidual Pana	Organia					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
DBO (C10-C25)			0.10				11/12/14 09:12	11/12/14 16:46	1
BBO (nC25-nC36)			0.52		ma/l		11/12/14 09:12	11/12/14 16:46	1
			0.02		y.L		11/12/17 00.12	10.70	'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	104		50 - 150				11/12/14 09:12	11/12/14 16:46	1
1-Chlorooctadecane	89		50 _ 150				11/12/14 09:12	11/12/14 16:46	1

TestAmerica Job ID: 250-22607-1

Client Sample ID: AF52844 Hydro 3-2 Date Collected: 11/03/14 12:40 Date Received: 11/07/14 08:55

Lab Sample	ID:	250-22	607-5
		Matrix:	Water

Lab Sample ID: 250-22607-6

Lab Sample ID: 250-22607-7

Lab Sample ID: 250-22607-8

Matrix: Water

Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:01	1
Barium	0.10		0.0010		mg/L		11/08/14 15:10	11/09/14 22:01	1
Chromium	ND		0.0020		mg/L		11/08/14 15:10	11/09/14 22:01	1
Lead	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:01	1
Silver	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:01	1
Selenium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:01	1
Cadmium —	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:01	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		11/11/14 14:33	11/11/14 23:38	1

Client Sample ID: AF52845 Hydro 3-3

Date Collected: 11/03/14 12:40

Date Received: 11/07/14 08:55

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	0.033		0.010		mg/L			11/12/14 17:45	1

Client Sample ID: AF52846 Hydro 4-1

Date Collected: 11/03/14 15:20

Date Received: 11/07/14 08:55

Method: AK102 & 103 - Alaska - I	Diesel Range Or	ganics & F	Residual Range	organio	cs (GC)				
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		0.10		mg/L		11/12/14 09:12	11/12/14 17:04	1
RRO (nC25-nC36)	ND		0.50		mg/L		11/12/14 09:12	11/12/14 17:04	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	53		50 - 150				11/12/14 09:12	11/12/14 17:04	1
1-Chlorooctadecane	84		50 - 150				11/12/14 09:12	11/12/14 17:04	1

Client Sample ID: AF52847 Hydro 4-2 Date Collected: 11/03/14 15:20

Date Received: 11/07/14 08:55

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:33	1
Barium	0.12		0.0010		mg/L		11/08/14 15:10	11/09/14 22:33	1
Chromium	ND		0.0020		mg/L		11/08/14 15:10	11/09/14 22:33	1
Lead	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:33	1
Silver	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:33	1
Selenium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:33	1
Cadmium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 22:33	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		11/11/14 14:33	11/11/14 23:36	1

		Client	Sample R	lesults	5						
Client: Arctic Fox Environmental, Project/Site: 1114-1844/Coleville	Inc Fish Study						TestAmerica Job ID: 250-22607-1				
Client Sample ID: AF52848 Date Collected: 11/03/14 15:20	Hydro 4-3						Lab San	2607-9 x: Water			
Date Received: 11/07/14 08:55											
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5	
Nitrate Nitrite as N	0.024		0.010		mg/L			11/12/14 17:46	1	6	
										8	
										9	

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

2 3 4 5

Lab Sample ID: MB 250-3217	2/1-A											Client S	ample ID:	Method	I Blank
Matrix: Water													Prep	Type: To	otal/NA
Analysis Batch: 32187													Pre	p Batch	32172
-		ΜВ	МВ												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	P	repared	Analy	/zed	Dil Fac
DRO (C10-C25)		ND			0.10	-		mg/L			11/1	2/14 09:12	11/12/14	15:32	1
RRO (nC25-nC36)		ND			0.50			mg/L			11/1	2/14 09:12	11/12/14	15:32	1
		ΜВ	МВ												
Surrogate	%Reco	very	Qualifier	Lim	its						P	repared	Analy	/zed	Dil Fac
Triacontane		29	X	50 -	150						11/1	2/14 09:12	11/12/14	4 15:32	1
1-Chlorooctadecane		88		50 -	150						11/1	2/14 09:12	11/12/14	4 15:32	1
Lab Sample ID: LCS 250-321	72/2-A									С	lient	Sample	ID: Lab C	Control S	Sample
Matrix: Water													Prep	Type: To	otal/NA
Analysis Batch: 32187													Pre	p Batch:	32172
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
DRO (C10-C25)				2.50		2.08			mg/L			83	75 - 125		
RRO (nC25-nC36)				1.50		1.49			mg/L			100	60 - 120		
	LCS	LCS													
Surrogate	%Recovery	Qua	lifier	Limits											
Triacontane	42	Χ		50 - 150	-										
1-Chlorooctadecane	86			50 - 150											
- Lab Sample ID: LCSD 250-32	172/3-A								С	lient	Sam	ple ID: L	.ab Contr	ol Samp	le Dup
Matrix: Water													Prep	Type: To	otal/NA
Analysis Batch: 32187													Pre	p Batch:	32172
				Spike		LCSD	LCS	D					%Rec.		RPD
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
DRO (C10-C25)				2.50		2.17			mg/L			87	75 _ 125	4	20
RRO (nC25-nC36)				1.50		1.50			mg/L			100	60 - 120	0	20
	LCSD	LCS	D												
Surrogate	%Recovery	Qua	lifier	Limits											
Triacontane	40	X		50 - 150	-										
1-Chlorooctadecane	93			50 - 150											

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 250-32059/1- Matrix: Water Analysis Batch: 32078	Α						Client Sa	mple ID: Metho Prep Type: T Prep Batch	d Blank otal/NA n: 32059
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 20:19	1
Barium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 20:19	1
Chromium	ND		0.0020		mg/L		11/08/14 15:10	11/09/14 20:19	1
Lead	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 20:19	1
Silver	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 20:19	1
Selenium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 20:19	1
Cadmium	ND		0.0010		mg/L		11/08/14 15:10	11/09/14 20:19	1

LCS LCS

0.0995

0.0954

0.0996

0.0997

0.0486

0.0942

0.0960

Result Qualifier

Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

Spike

Added

0.100

0.100

0.100

0.100

0.0500

0.100

0.100

Lab Sample ID: LCS 250-32059/2-A

Matrix: Water

Analyte

Arsenic

Barium

Lead

Silver

Selenium

Cadmium

Chromium

Analysis Batch: 32078

Method: 6020 - Metals (ICP/MS) (Continued)

Prep Type: Total/NA

Prep Batch: 32059

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

Client Sample ID: Duplicate

Prep Type: Total/NA

%Rec

100

95

100

100

97

94

96

D

6

Client Sample ID: AF52841 Hydro 1-2 Prep Type: Total/NA

Matrix: Water Analysis Batch: 32078

Lab Sample ID: 250-22607-2 MS

Analysis Batch: 32078									Prep Ba	atch: 32059
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.0011		0.100	0.0965		mg/L		95	75 _ 125	
Barium	0.058		0.100	0.161		mg/L		103	75 ₋ 125	
Chromium	ND		0.100	0.104		mg/L		104	75 ₋ 125	
Lead	ND		0.100	0.0799		mg/L		80	75 ₋ 125	
Silver	ND		0.0500	0.0431		mg/L		86	75 - 125	
Selenium	0.0027		0.100	0.0911		mg/L		88	75 ₋ 125	
Cadmium	ND		0.100	0.0842		mg/L		84	75 - 125	

Lab Sample ID: 250-22563-H-1-B DU Matrix: Water

Analysis Batch: 32078

Analysis Batch: 32078							Prep Batch:	32059
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	0.0021		0.00220		mg/L		2	20
Barium	0.54		0.557		mg/L		3	20
Chromium	ND		ND		mg/L		NC	20
Lead	0.0034		0.00347		mg/L		1	20
Silver	ND		ND		mg/L		NC	20
Selenium	ND		ND		mg/L		NC	20
Cadmium	0.0016		0.00158		mg/L		0.6	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 250-32150/11-A Matrix: Water Analysis Batch: 32166								C	Client Sa	mple ID: Metho Prep Type: T Prep Bato	od Blank Fotal/NA h: 32150
Analyte	MB Result	MB Qualifier	RL		MDL Un	t	D	Pre	epared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg	/L		11/11	/14 14:33	11/11/14 23:15	1
 Lab Sample ID: LCS 250-32150/12-A							С	lient	Sample I	D: Lab Control	Sample
Matrix: Water										Prep Type: 1	Total/NA
Analysis Batch: 32166										Prep Batc	h: 32150
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Mercury			0.00500	0.00509		mg/L			102	85 - 115	

Method: 7470A	- Mercury	(CVAA)	(Continued)
---------------	-----------	--------	-------------

Lab Sample ID: 250-22660-H-4-C	; MS							Client	Sample ID	: Matrix	Spike
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 32166									Prep	Batch:	32150
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	ND		0.00500	0.00495		mg/L		99	75 - 125		
- Lab Sample ID: 250-22660-H-4-D	MSD						Client S	ample IC): Matrix S	oike Du	olicate
Matrix: Water									Prep T	vpe: To	tal/NA
Analysis Batch: 32166									Prep	Batch:	32150
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00500	0.00491		mg/L		98	75 - 125	1	20
Method: 353.2 - Nitrogen, Ni	trate-Nitr	ite									
_ Lab Sample ID: MB 580-175653/ [,]	14							Client S	ample ID:	Method	Blank
Matrix: Water									Prep T	vpe: To	tal/NA
Analysis Batch: 175653										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D F	repared	Analyz	ed	Dil Fac
Nitrate Nitrite as N		ND	0.	010	mg/L				11/12/14	17:37	1
- Lab Sample ID: LCS 580-175653	/15						Clien	t Sample	ID: Lab C	ontrol S	ample
Matrix: Water									Prep T	vpe: To	tal/NA
Analysis Batch: 175653											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate Nitrite as N			1.00	1.00		mg/L		100	90 _ 110		
- Lab Sample ID: LCSD 580-17565	53/16					с	lient San	nple ID:	Lab Contro	I Sampl	e Dup
Matrix: Water									Prep T	vpe: To	tal/NA
Analysis Batch: 175653											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate Nitrite as N			1.00	0.994		mg/L		99	90 - 110	1	20
Lab Sample ID: 250-22607-3 MS							Clier	nt Sampl	e ID: AF52	842 Hyd	lro 1-3
Lab Sample ID: 250-22607-3 MS Matrix: Water							Clier	nt Sampl	e ID: AF52 Prep T	842 Нус уре: То	lro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653							Clier	nt Sampl	e ID: AF52 Prep T	842 Hyc ype: To	lro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653	Sample	Sample	Spike	MS	MS		Clier	nt Sampl	e ID: AF52 Prep T %Rec.	842 Hyc ype: To	lro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte	Sample Result	Sample Qualifier	Spike Added	MS Result	MS Qualifier	Unit	Clier	nt Sampl %Rec	e ID: AF52 Prep T %Rec. Limits	842 Нус уре: То	lro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte Nitrate Nitrite as N	Sample Result ND	Sample Qualifier	Spike Added 1.00	MS Result 0.964	MS Qualifier	Unit mg/L	Clier	nt Sampl	e ID: AF52 Prep T %Rec. Limits 60 - 130	842 Hyc ype: To	iro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte Nitrate Nitrite as N Lab Sample ID: 250-22607-3 MS	Sample Result ND	Sample Qualifier	Spike Added 1.00	MS Result 0.964	MS Qualifier	Unit mg/L	Clier D Clier	%Rec 96	e ID: AF52 Prep T %Rec. Limits 60 - 130 e ID: AF52	842 Hyd ype: To 842 Hyd	Iro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte Nitrate Nitrite as N Lab Sample ID: 250-22607-3 MS Matrix: Water	Sample Result ND	Sample Qualifier	Spike Added 1.00	MS Result 0.964	MS Qualifier	Unit mg/L	Clier D Clier	%Rec 96	e ID: AF52 Prep T %Rec. Limits 60 - 130 e ID: AF52 Prep T	842 Hyd ype: To 842 Hyd ype: To	iro 1-3 tal/NA iro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte Nitrate Nitrite as N Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653	Sample Result ND	Sample Qualifier	Spike Added 1.00	MS Result 0.964	MS Qualifier	Unit mg/L	Clier D Clier	nt Sampl	e ID: AF52 Prep T %Rec. Limits 60 - 130 e ID: AF52 Prep T	842 Hyc ype: To 842 Hyc ype: To	Iro 1-3 tal/NA Iro 1-3 tal/NA
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte Nitrate Nitrite as N Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653	Sample Result ND D Sample	Sample Qualifier	Spike Added 1.00	MS Result 0.964 MSD	MS Qualifier MSD	Unit mg/L	Clier D Clier	nt Sampl	e ID: AF52 Prep T %Rec. Limits 60 - 130 e ID: AF52 Prep T %Rec.	842 Hyc ype: To 842 Hyc ype: To	iro 1-3 tal/NA iro 1-3 tal/NA RPD
Lab Sample ID: 250-22607-3 MS Matrix: Water Analysis Batch: 175653 Analyte Nitrate Nitrite as N Lab Sample ID: 250-22607-3 MSI Matrix: Water Analysis Batch: 175653 Analyte	Sample Result ND D Sample Result	Sample Qualifier Sample Qualifier	Spike Added 1.00 Spike Added	MS Result 0.964 MSD Result	MS Qualifier MSD Qualifier	Unit mg/L Unit	Clier D Clier	%Rec 96 nt Sampl	e ID: AF52 Prep T %Rec. Limits 60 - 130 e ID: AF52 Prep T %Rec. Limits	842 Hyc ype: To 842 Hyc ype: To 	iro 1-3 tal/NA iro 1-3 tal/NA RPD Limit

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 250-22607-3 DI Matrix: Water Analysis Batch: 175653	J					Client Sa	mple ID: AF52 Prep T	842 Hyd ype: Tol	ro 1-3 tal/NA
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Nitrate Nitrite as N	ND		 0.0196		mg/L			NC	20

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description				
X	Surrogate is outside control limits				

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

EPA Region

10

9

10

10

Certification ID

P330-11-00092

Certification ID

UST-012

OR100021

2597

C586

Laboratory: TestAmerica Portland

Laboratory: TestAmerica Seattle

Authority

California

Washington

Authority

Oregon

USDA

Alaska (UST)

Expiration Date

12-26-14

09-30-15

01-09-15

04-17-17

06-23-15

Expiration Date

5 **8** 9

EPA Region Program

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Program

NELAP

Federal

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

State Program

State Program

State Program

Alaska (UST)	State Program	10	UST-022	03-04-15	
California	State Program	9	2901	01-31-15	
L-A-B	DoD ELAP		L2236	01-19-16	
L-A-B	ISO/IEC 17025		L2236	01-19-16	
Montana (UST)	State Program	8	N/A	04-30-20	
Oregon	NELAP	10	WA100007	11-06-15	
USDA	Federal		P330-11-00222	04-08-17	
Washington	State Program	10	C553	02-17-15	
TestAmerica Portland 9405 SW Nimbus Avenue		Cha			TestAmerica THEFEAPERN ENVIRONMENTAL TECHNOL
--	----------------------------	-------------------------	-----------------------------------	---------------------------------------	---
Beaverton, OR 97008 phone 503.906.9200 fax 503.906.9210	Regulatory Progra	n: [Dw [NP	250-22607 Chain of Custody		TestAmerica Laboratories, Inc.
Client Contact	Project Manager: John	-othike Hawley		15/14	COC No:
Arctic Fox Environmental	Tel/Fax:907-659-2145		Lab Contact:John Fot/Mike H	awle Carrier: Groupsile &	k of L COCs
Pouch 340043	Analysis Turna	round Time		****	Sampler. JPP
Prudhoe Bay, AK 99734	CALENDAR DAYS	WORKING DAYS	N 24 3		For Lab Use Only:
Phone 907-659-2145	TAT if different from B	slow.	20		Walk-in Client: No
FAX 907-659-2146		10	ху 425 1 л / л	· · · · · · · · · · · · · · · · · · ·	Lab Sampling:
Project Natives Une Use 120 and Star					Joh / SDG No.
PO# 1/14 - 18 44					
	Sample Sample (0-	npie /pe comp.	м шоре 1/20/ 1/20/ 1/20/		
Sample Identification	Date Lime G	Grab) Matrix Cont	E G A		Sample Specific Notes:
AF52840	W3/14 1200 C	- J	4 A		H4120 1-1
4527 841			<u>م</u>		H4DR01-2
LCC7 & 4 2	>		8		HYDRO 1 - 3
4557843	0721		2		HYDRO 3-1
ALCORDA	~~		2		HVD20 3-2
4652845	>		8		H4060 3-3
A1-52 848	1520		2		HUDRO 4-1
4652847			2		HYDRO 4-2
AFS2848	, , , ,	> >	× *		HUPPO 4-3
		_			
preservationussed and accordent trickly of the standard and the second standard second se			Sample Disposal (A fee m	ay be assessed if samples are re	tained longer than 1 month)
Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	e List any EPA Waste Codes	for the sample in the			
Zyuon-Hazard Brammable Skin Imitant	Doison B	Juknown	Return to Client	Disposal by Lab	or Months
Special Instructions/QC Requirements & Comments:					
			U	4,0 3.S	21119
Custody Seals Intact:	Custody Seal No.:		Cooler Telyo. (°C): Obs'd: Corr'd:	Them ID No.
Relinquished by	Company	Date/Time: VS(141140	Rep of by. M. N.	Contraction	Date Time 11 (2005
Relindushed by:	Company:	Date/Time	Received	Company.	Date/Time
Relinquished by:	Company	Date/Time.	Received in Laboratory by:	Company:	Date/Time
				Form No.	CA-C-WI-002, Rev. 4.2, dated 04/02/2013

9

Client: Arctic Fox Environmental, Inc

Login Number: 22607 List Number: 1

Creator:	Svabik-Seror,	Philip	М

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	No HNO3 volume provided for metals analsysi.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Portland

Client: Arctic Fox Environmental, Inc

Login Number: 22607 List Number: 2 Creator: Abello, Andrea N

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	A2TB = 0.1 / 0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 250-22607-1

List Source: TestAmerica Seattle

List Creation: 11/08/14 11:09 AM

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-22607-2 Client Project/Site: 1114-1844/Coleville Fish Study

For:

Arctic Fox Environmental, Inc Pouch 340043 Prudhoe Bay, Alaska 99734

Attn: Ralph Allphin

Kolly (Lavetto

Authorized for release by: 2/20/2015 9:33:08 AM

Kelly Garretts, Project Manager II (253)248-4961 kelly.garretts@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
QC Sample Results	6
Definitions	7
Certification Summary	8
Receipt Checklists	9

TestAmerica Job ID: 250-22607-2

Received

Lab Sample ID	Client Sample ID	Matrix	Collected
250-22607-2	AF52841 Hydro 1-2	Water	11/03/14 12:00 1

Client: Arctic Fox Environmental, Inc

Project/Site: 1114-1844/Coleville Fish Study

250-22607-2	AF52841 Hydro 1-2	Water	11/03/14 12:00	11/07/14 08:55
250-22607-5	AF52844 Hydro 3-2	Water	11/03/14 12:40	11/07/14 08:55
250-22607-8	AF52847 Hydro 4-2	Water	11/03/14 15:20	11/07/14 08:55

Job ID: 250-22607-2

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-22607-2

Comments

No additional comments.

Receipt

The samples were received on 11/7/2014 8:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

Except:

The following samples were received unpreserved and were preserved upon receipt to the laboratory: AF52841 Hydro 1-2 (250-22607-2), AF52844 Hydro 3-2 (250-22607-5), AF52847 Hydro 4-2 (250-22607-8). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion.

PSS 11/7/14@1015 M039

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: AF52841 Hy	dro 1-2						Lab Sam	ple ID: 250-2	2607-2
Date Collected: 11/03/14 12:00 Date Received: 11/07/14 08:55								Matrix	c: Water
Method: 200.7 Rev 4.4 - Metals (ICI	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	290		1.0		mg/L		02/18/15 07:27	02/19/15 02:35	10
Magnesium	890		1.0		mg/L		02/18/15 07:27	02/19/15 02:35	10
Method: SM 2340B - Hardness, Ca	Iculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness	4400		0.20		mg/L			02/19/15 21:28	1
Calcium hardness as calcium carbonate	720		0.20		mg/L			02/19/15 21:28	1
Magnesium hardness as calcium carbonate	3600		0.20		mg/L			02/19/15 21:28	1
Client Sample ID: AF52844 Hy Date Collected: 11/03/14 12:40	dro 3-2						Lab Sam	ple ID: 250-2 Matrix	2607-5 <: Water
Date Received: 11/07/14 08:55									
Method: 200.7 Rev 4.4 - Metals (ICI	P)	0	51	MDI	11	_	Durant	Amelianad	D!! 5
	Result	Quaimer	RL	MDL		D	Prepared	Analyzed	
Calcium	200		1.0		mg/∟		02/18/15 07:27	02/19/15 02:42	10
	560		1.0		mg/L		02/18/15 07:27	02/19/15 02:42	10
Method: SM 2340B - Hardness, Ca	Iculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness	2800		0.20		mg/L			02/19/15 21:28	1
Calcium hardness as calcium carbonate	500		0.20		mg/L			02/19/15 21:28	1
Magnesium hardness as calcium carbonate	2300		0.20		mg/L			02/19/15 21:28	1
Client Sample ID: AF52847 Hy	dro 4-2						Lab Sam	ple ID: 250-2	2607-8
Date Collected: 11/03/14 15:20								Matrix	c: Water
Date Received: 11/07/14 08:55									
Method: 200.7 Rev 4.4 - Metals (ICI	P)					-			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	150		1.0		mg/L		02/18/15 07:27	02/19/15 02:54	10
Magnesium	380		1.0		mg/L		02/18/15 07:27	02/19/15 02:54	10

Method: SM 2340B - Hardness, Calculation Dil Fac Analyte MDL Unit Result Qualifier RL D Prepared Analyzed Hardness 1900 0.20 mg/L 02/19/15 21:28 1 0.20 02/19/15 21:28 Calcium hardness as calcium 380 mg/L 1 carbonate 0.20 02/19/15 21:28 1600 mg/L 1 Magnesium hardness as calcium carbonate

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 250-34496/1-/ Matrix: Water Analysis Batch: 34561	4	MD N	48									Client Sa	ample ID: Mo Prep Typ Prep B	ethod be: To atch:	Blank tal/NA 34496
Anchito	в	NID N	/ID)uglifier		ы		MDI	Unit				ropored	Analyzad		
			Juanner		0.10						02/1	0/15 07:27		42 -	
Magnooium					0.10			mg/L			02/1	0/15 07.27	02/19/15 00	40	1
Magnesium		ND			0.10			IIIg/L			02/10	0/15 07.27	02/19/15 00	43	1
Lab Sample ID: LCS 250-34496/2	-A									С	lient	Sample	ID: Lab Con	trol S	ample
Matrix: Water													Prep Typ	e: To	al/NA
Analysis Batch: 34561													Prep B	atch:	34496
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Calcium				20.0		20.8			mg/L		_	104	85 - 115		
Magnesium				20.0		20.7			mg/L			104	85 - 115		
Lab Sample ID: 250-22607-5 MS										C	Clien	t Sample	D: AF5284	4 Hyd	ro 3-2
Matrix: Water													Prep Typ	e: To	al/NA
Analysis Batch: 34561													Prep B	atch:	34496
	Sample	Sampl	е	Spike		MS	MS						%Rec.		
Analyte	Result	Qualifi	er	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Calcium	200			20.0		226	4		mg/L		_	121	75 - 125		
Magnesium	560			20.0		500	4		ma/l			155	75 125		
				20.0		009	4		iiig/L				75-125		
Lab Sample ID: 250-22991-E-3-D	DU			20.0		569	4		iiig/E			Clie	nt Sample II): Dup	licate
Lab Sample ID: 250-22991-E-3-D Matrix: Water	DU			20.0		209	7		ing/2			Clie	nt Sample II Prep Tvr	D: Dup be: To	licate al/NA
Lab Sample ID: 250-22991-E-3-D Matrix: Water Analysis Batch: 34561	DU			20.0		209	4		g, ב			Clie	nt Sample II Prep Typ Prep B	D: Dup be: Tot atch:	licate al/NA 34496
Lab Sample ID: 250-22991-E-3-D Matrix: Water Analysis Batch: 34561	DU Sample	Sampl	e	20.0		DU	DU					Clie	nt Sample II Prep Typ Prep B	D: Dup be: Tot atch:	licate al/NA 34496 RPD
Lab Sample ID: 250-22991-E-3-D Matrix: Water Analysis Batch: 34561 Analyte	DU Sample Result	Sampl Qualifi	e ier	20.0		DU Result	+ DU Qual	lifier	Unit		D	Clie	nt Sample II Prep Typ Prep B	D: Dup be: Tot atch: RPD	olicate al/NA 34496 RPD Limit
Lab Sample ID: 250-22991-E-3-D Matrix: Water Analysis Batch: 34561 Analyte Calcium	DU Sample Result 180	Sampl Qualifi	e ier			DU Result 196	DU Qual	lifier	Unit mg/L		D	Clie	nt Sample II Prep Typ Prep B	D: Dup be: Tor atch: RPD 7	alicate al/NA 34496 RPD Limit 20

\frown	alif	i o ro
Gu		iers

Motals

Metals		
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	5

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-15
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-16
USDA	Federal		P330-11-00092	04-17-17
Washington	State Program	10	C586	06-23-15

Client: Arctic Fox Environmental, Inc

Login Number: 22607 List Number: 1

Creator:	Svabik-Seror,	Philip M	

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	No HNO3 volume provided for metals analsysi.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Job Number: 250-22607-2

List Source: TestAmerica Portland

			ě,	Bill Numb	Shipping	d for lab by	Receive	Time	Date	Reinquisted By (3)
D ABSENT	D BROKEN	NTACT		Arrival: Sustady S	Chain of C	si by	Manana		C	Reinquished By (2)
PB X165 "C	FBK D	0.	ANCO	Received	Location F	A WS/H 0930	Hacer	Time	H Nov /4	Reinquished By (1) John Rose John Rose
500 ml ady	EN EV LAROPATO		X			AFSU848	1	15:20	*	Hidro 423
Stor &		7		×	-	4FS4847		15:20	-	Hydra 4-2
1000 pl Glass						APSU846		15.20	~	
500 ml phy			X		-	4-54845		12:40	/	Hydro 3-3
FOR TN COS		×		×		AFSU844		DA: 71	1	Hyden 3-2
IDECIML GLASS					- ×	4FS4843		12:40	J	Hydro 3-1
500 ML BUY			×		-	AF54842		12:00	~	14/2 1-3
SED ML poly		×		×		HE22841		12:00	3 Nov 14	Hydro 1-2
1000 ml Glass					×	452840		12:00	3 NOV 14	Hydro 1-1
Remarks		5	Nor			AF Sample ID	Matrix	Sampled	Date Sampled	Client Sample ID
		i jEi	S (V					1		Requested Turnaround Time and Special Instructions:
		72 5	3 Sø	574	O.S.	D YES No	Send R		mat	Data Deliverables Level 10 Level 11 0 Level 11 0 EDD/Fo
		\$əv	U	12	anos 17					Project Name
		pro	Ν	nd	1 1	unper:	PWS N		346	E-mail ISEIGLE @ABRINC.co
) H	74	-14	Q	(BY)RR	Sample	5-1443	Number 407-77	Phone Number (907) 344-6777 Fax
		Graj	191	101	n d Cl	ation Number:	Authoriz		110	Contad Person
		45		,		Contract Julinber	P.O. of		9524	P.C. BOX 24068
Preservative		1111000111	Nove	Net	Britte	Number	Account			ABR, T.v.
						- From	14-18	-		
	NU U	000					0) 659-214) 659-214	45 / Fax: (907	Pfone: (907) 659-21
	100 A			-				Ry LIEL.	OUNCERCU	A CHC LOA LHOU
	stody Form	in of Cu	nd Cha	2				2		
	inon Order	and Cont	A walk to							

lo añed

Aretic Fox Environmental, Inc. Analytical Services Order and Chain of Cuesody Form State and reasonance and the provide of the	C) ABSENT	D BROKEN	NTACT		ustody Si	Chain of C Shipping b	ecalved for lab by:	Time: R	Date	Relinquished By (3).
Aretic Fox Environmental, Inc. Provide 30003 (Provide Bay MC 907 a) Provide 300 (Provide Bay MC 97 a	8178	E C			Intival:	Temp on A	CHOM M	Time: R	Date: 1	Relinquished By (2):
Aretic Fox Environmental, Inc. Prove 3003 (2019) 569-214 and Services Order and Chain of Custody Form and Chain of Custody Fo	TORY	ED BY LABORA	ECOMPLET	TO B	an altrant	anation D	ALLOW -	I Jûwra 3	11/19/2014	TOHN SETERS
Arctic Fox Environmental, Inc. Analytical Services Order Bauch 30003 / Prudice Bay AK 9074 Bauch 30003 / Prudice Bay AK 9074 Inter-second diverse Base Address Analytical Services Order ND, LW, Ewill Rower, Robert 10, 100 Inter-section Converted with rower, Robert 10, 100 <th< td=""><td>Stand pily</td><td></td><td>Х</td><td>X</td><td></td><td></td><td>W J J</td><td>17:00</td><td>1</td><td>11/1)pa 4-3</td></th<>	Stand pily		Х	X			W J J	17:00	1	11/1)pa 4-3
Anctic Fox Environmental, Inc. Analytical Services Order Analytical Services Order Bouch 3000/3 / Functional Bay, AX 50734 No. Bouch 3000/3 / Functional Bay, AX 50734 ND, LWC Fix AND Bay, BC 70, YUL For AND Formation Properties and Advance. Properties and Advance. Properties and Advance. Properties and Advance. Properties and Advance. Properties and Advance. Properties and Advance. Properties and Advance. Properties and Advance. Properties and Propertin Propertins and Properise and Properties and Properties and Pro	per al dias				×			17:00	×	Hydrey
Arctic Fox Environmental, Inc. Analytical Services Order and chains Pageth 3400.3 1 Protione Bay, AK, 997.4 IIII-1 SET BS26 and chains Pageth 3400.3 1 Protione Bay, AK, 997.4 IIII-1 SET and chain of Custody Form and chain of Custody Form State Pageth 3400.3 1 Protione Bay, AK, 997.4 IIII-1 SET and chain of Custody Form State Colspan="2" Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 3400.2 Pageth 340.2 Pageth 340.2 Pageth 340.2 Pageth 340.2 Pageth 340.2 Pageth 340.2	legal you 0.29					X	(AF5292)	17:00)(HY 000-1-1
Arctic Fox Environmental, Inc. Analytical Services Order Analytical Services Order Biology of State Figure Colored Summer Analytical Services Order Biology of State Figure Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer State Colored Summer Colored Summer Premover Summer Premover Summer State Colored Summer State Colored Summer Premover Summer State Colored Summer Premover Summer Premover Summer Premover Summer State Colored Summer Premover Summer Premover Summer State Colored Summer Premover Summer Premover Summer Summer Premover Summer Premover Summer Premover Summer Premover Summer P	200 mL poly		X	×			4	16:30	W	E-E CHONH
Arctic Fox Environmental, Inc. Analytical Services Order and Chain of Custody Form Bookh 340043 / Prudhole Bay, KK 00754 and Chain of Custody Form BESE 2146 BESE 2146 and Chain of Custody Form Sector Sector and Chain of Custody Form NALL Cash Labora Nall Cash Chain of Custody Form Nall Cash Cash Chain of Custody Form Nall Cash Cash Cash Cash Cash Cash Cash Cash	1000 mL GLASS			×.	X			16:30	n	HYDRO 3-2
Aretic Fox Environmental, Inc. Analytical Services Order and Chain of Custody Form Pouch subors (907) 659-2146 ILL4-1860 BESSE ILL4-1860 Provide Bay Ark 99734 Barcher second Address ILL4-1860 ILL4-1860 Provide Services Order ILL4-1860 Provide Services Order ILL4-1860 <t< td=""><td>1200 ML Soft</td><td></td><td></td><td></td><td></td><td>×</td><td>452920</td><td>16:30</td><td>Ж</td><td>HYDR# 3-1</td></t<>	1200 ML Soft					×	452920	16:30	Ж	HYDR# 3-1
Arctic Fox Environmental, Inc. Pouer 340043 / Prutine Bay, NK 96734 and Chain of Custody Form Phone: 607) 6592465 / Fax; 6073 659246 and Chain of Custody Form SS26 Analytical Services Order and Chain of Custody Form SS276 None: Service Analytical Services Order and Chain of Custody Form SS276 None: Service SS276 None: Service Analytical Services Order Analytical Services Order Anal	1300 ml galy		X	X			¢	12:30 (19	HYDRO 1-3
Arctic Fox Environmental, Inc. Analytical Services Order and Chain of Custody Form Bouch 30043 / Prudhoe Bay, AK 99734 and Chain of Custody Form Bouch 30043 / Prudhoe Bay, AK 99734 and Chain of Custody Form Name and Adaess Applice (907) 659-2145 / Fax (907) 659-2146 and Chain of Custody Form None Colspan="2">Sectors/Generations/Conservation Analytical Services Order 11/14-1860 Sectors/Generations/Conservation Analytical Services Order 11/14-1860 Sectors/Generations/Conservation Analytical Services Order 11/14-1860 Sectors/Generations/Conservation Analytical Services Order 11/14-1860 Sectors/Generation/Conservation Analytical Services Order 11/14-1860 Sectors/Generation/Conservation Analytical Services Order 11/14-1860 Sectors/Generation/Conservation Analytical Services Order 11/14-1860 Sectors/Generation/Conservation Sectors/Generation/Conservation Sectors/Generation/Conservation Sectors/Generation/Conservation Sectors/Generation/Conservation Sectors/Generation/Conservation Sectors/Generation/Conservation <td>IDCO put GLASS</td> <td></td> <td>*</td> <td></td> <td>×</td> <td></td> <td><i>S</i>,</td> <td>15:30 1</td> <td>18 Nov 14</td> <td>HYDRO 1-2-</td>	IDCO put GLASS		*		×		<i>S</i> ,	15:30 1	18 Nov 14	HYDRO 1-2-
Arctic Fox Environmental, Inc. Pouch 340043 / Prudhoe Bay, AK 90734 Pouch 340043 / Prudhoe Bay, AK 9073659-2145 accessing and Chain of Custody Form IIIU-1860 Analytical Services Order and Chain of Custody Form BSS26 R Name and Address Apple Control Castody Service (Services) Anount Number (IIIU-1860 IIIU-1860 SS26 R Name and Address Apple Services (Services) Anount Number (IIIU-1860 IIIU-1860 SS26 R Name and Address Apple Services (Services) Anount Number (IIIU-1860 Non Copurati Number (IIIU-1860 SS26 R Public Services (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ITO me poly					X	W AF32919 1	15:30	18 Nov 14	14000 1-1
Arctic Fox Environmental, Inc. Analytical Services Order Phone: (907) 659-2145 Fax: (907) 659-2145 1114-1860 8526 and Address: Analytical Services Order and Chain of Custody Form Arcticouloeuwaasha.com/www.acdetoxen.com 1114-1860 8526 Analytical Services Order 1114-1860 1114-1860 Analytical Services Order 1144-1860 1144-1860 Analytical Services Order 1144-1860	Remarks						Natrix AF Sample ID	Sampled	Date Sampled	Client Sample ID
Arctic Fox Environmental, Inc. Analytical Services Order and Chain of Custody Form Pouch 340043 / Fruchoe Bay, AK 99734 Pouch 340043 / Frax (907) 659-2145 1114-1860 8526 and Chain of Custody Form BS 26 1114-1860 Analytical Services Order and Chain of Custody Form 8526 SR, Lwic Kaine, Services Analytical Services A for the services and Chain of Custody Form 8526 SR, Lwic Kaine, Services Analytical Services Analytical Services Order and Chain of Custody Form 8526 SR, Lwic Kaine, Services Analytical Services Analytical Services Order and Chain of Custody Form 8526 SR, Lwic Kaine, Services Analytical Services Analytical Services Order and Chain of Custody Form 8526 SR, Lwic Kaine, Services Analytical Services Analytical Services Order and Chain of Custody Form 8526 SR, Lwic Kaine, Analytical Services Analytical Number and Chain of Custody Form 85526 SR, Due Services Analytical Services Order Polytical Number 90 or contract Number Polytical Number 85526 Stational Contraction Number and Chain of Custody Form 90 or contract Number 90 or contract Number Stational Person Stational Contraction Number Bit Dievelli Dievelli Dievelli Bit Dievelli Dievelli Bit Dievelli Bit Dievelli Dievelli Bit Dievelli			55 SIJ							and Special Instructions.
Aretic Fox Environmental, Inc. Analytical Services Order and Chain of Custody Form Pouch 340043 / Prudhee Bay, AK. 99734 Phone: (907) 659-2145 / Fax. (907) 659-2146 acciectur/beausaista.com (mm. acchemen.com mk. Schulects) 1114-1860 85326 In Name and Address: BR, Luc Environmental, Inc. 1114-1860 85326 In Name and Address: BR, Luc Environmental, AR. 99734 1114-1860 85326 In Name and Address: BR, Luc Environmental, AR. 99734 Account Number: 1114-1860 85326 In Name and Address: BR, Luc Environmental, AR. 99734 Account Number: 114-1860 85326 In Name and Address: BR, Luc Environmental, AR. 99734 Account Number: 114-1860 85326 In Name and Address: BR, Luc Environmental, AR. 9974 Account Number: 114-1860 85326 In Name and Address: In Name and Address: In Statistic Statistin Statistic S			int			-721 -721	D YES M. No	(0	mat:	Level 1 D Level II D Level III D EDD/Fo
Arctic Fox Environmental, Inc. Analytical Services Order Pouch 340043 / Prudhoe Bay, AK 99734 Analytical Services Order Phone: (907) 659-2145 / Fax (907) 659-2146 1114-1860 and Chain of Custody Form 85226 Analytical Services Order 1114-1860 Name and Address Account Number. Name Scauke Statuk S Account Number. Name Scauke Statuk S Account Number. Name Scauke Statuk S Pol or Coppia of Number. Name Scauke Statuk S Sampled By JCS JRP. Namber. Gof 314-677 Fax Number. Name Scauke Statuk S Sampled By JCS JRP. Name Scauke Statuk S			סינם	571	n				P FISHERY	Project Name: COLVILLE FAL
Arctic Fox Environmental, Inc. Analytical Services Order Pouch 340043 / Prudhoe Bay, AK 99734 Pouch 340043 / Prudhoe Bay, AK 99734 Analytical Services Order Pouch 340043 / Prudhoe Bay, AK 99734 1114-1860 B5326 arctone end Address 1114-1860 85326 3R, I.W. E.W. Service Servic			14	113	ß		WS Number:			E-mail: JSE 19/E & ABRINC, COM
Arctic Fox Environmental, Inc. Analytical Services Order Arctic Fox Environmental, Inc. Pruchoe Bay, AK 99734 Phone: (907) 659-2145 / Fax (907) 659-2146 1114-1860 In Name and Address 1114-1860 Arctic Fox Environmental, Inc. 85526 In Name and Address 1114-1860 Prove Environmental, Fax (907) 659-2146 1114-1860 In Name and Address 1114-1860 Prove Environmental Account Number Prove Environmental Account Number Prove Environmental Prove Contract Number Prove Services Prove Contract Number			62	1	/ (152 152	Bampled By JCS, JRR	1443 8	Number 967 770	Phone Number 907 3446777 Fex
Arctic Fox Environmental, Inc. Analytical Services Order Pouch 340043 / Prudhoe Bay, AK 99734 Analytical Services Order Phone: (907) 659-2145 / Fax (907) 659-2146 III (1-1860) arctorox/Lociase/acom / www.actorocorp III (1-1860) Analytical Services Order 85526 Analytical Services Order 85526 Analytical Services Order 85526 Analytical Services Order 111 (1-1860)			r colm	742	DF	LHULLIN	4.0. or Contract Number. /4-/6 2. Authorization Number:	2	E AK 9952	PO. Ruy 24068 ANCHORAG
Arctic Fox Environmental, Inc. Pouch 340043 / Prudhoe Bay AK 99734 Phone: (907) 659-2145 / Fax: (907) 659-2146 arcticas/declasalasacom (www.ardictorest.com 1/1/4-1/860 B5526	Preservative						Account Number.		C RESEARCH	ABR, INC ENVIRONMENTA
Arctic Fox Environmental, Inc. Analytical Services Order and Chain of Custody Form		NG S	858				1114-1860	99734) 659-2146 v.con	45 / Fax (907 11/www.archofoxen	Phone: (907) 659-21 arcticizativastacaleska.co
Analytical Services Order		istody For	ain of Cu	nd Ch	۵			l, Inc.	ronmenta	Arctic Fox Envi
		vices Orde		Analy						

Page of

Arctic Fox Environmental, Inc.

Pouch 340043 - Prudhoe Bay, AK 99734 Phone: (907) 659-2145 / Fax: (907) 659-2146 / arcticfox@astacalaska.com

ABR Inc. environmental Research & Services PO BOX 24068 Anchorage, Alaska 99524 Report Date:2/26/2015Date Arrived:11/25/2014Date Sampled:11/18/2014Time Sampled:see belowCollected By:JCS, JRR

 Attn:
 John Sigle

 Phone:
 (907) 344-6777

 Fax:
 (907) 770-1443

 Email:
 jseigle@abrinc.com

Arctic Fox Lab#AF52919-52921Client Sample ID:See belowLocation/Project:Colville Fall FisheryCOC#:85526Sample Matrix:Water

Comments: Attached are the results for analysis of your samples. These samples were analyzed by Test America in Beaverton, OR. Tracking information is as follows:

ABR Sample ID: Hydro 1-1; 1-2; and 1-3 Analysis : Nitrate/Nitrite, DRO/RRO, Total Metals Ca/Mg Hardness Time Sampled: 1530 Arctic Fox ID: AF52919 Test America ID: 250-22991-1 ABR Sample ID: Hyrdo 3-1; 3-2; and 3-3 Analysis : Nitrate/Nitrite, DRO/RRO, Total Metals Ca/Mg Hardness Time Sampled: 1630 Arctic Fox ID: AF52920 Test America ID: 250-22991-2

ABR Sample ID: Hydro 4-1; 4-2; and 4-3 Analysis : Nitrate/Nitrite, DRO/RRO, Total Metals Ca/Mg Hardness Time Sampled: 1700 Arctic Fox ID: AF52921 Test America ID: 250-22991-3

Michel Hundy

Reported By: Ralph E. Allphin/Michael J. Hawley/John M. Fot Arctic Fox Environmental, Inc.

			l er.	Bill Numb	Shipping		, C				
LI ABSENT		INTACT	seal L	Custody a	Chain of		d for lab by:	Receive	Time:	Date:	Relinquished By (3):
8178			ĺ	Arrival:	lemp on		CHON.	M	143	11/25/14	
B D V. T. c	FBK D°C F) °°	ANC C	Received,	Location		A A A	CIAN	Time.	11/11/2011	Polinguished By (2):
70	TED BY LABORATOR	BE COMPLE	TO				M. C. M. O. M.	Receive	Time:	Date:	Tour Service
500ml ply			x					¢	17:00	11	HYDRO 4-3
JOCO ML GINS				\times)				17:00	м	HYDRe 4-2-
500ml Poly					- X		AF5292		17:00	11	HY DAG 4-1
SOO ML PH			X		-		<	-	16:30	м	E-E MUM
Ide on Ginss				x	-				16:30	м	HYDRO 3-2
500 mL pH					- ×		AF52920		16:30	ж	HYDR0 3-1
500 ml ply			×		-		6	(15:30	Ξ	HYDRO 1-3
loce mt GLASS				X				E	15:30	18 Nov 14	HYDRO 1-2
500 m ply					- x		AFSZAIA	X	15:30	18 Nov 14	HYDRO 1-1
Remarks						ō	AF Sample I	Matrix	Time Sampled	Date Sampled	Client Sample ID
										-	Requested Turnaround Time and Special Instructions:
					ainers		D YES X No	Send R		rmat:	Data Deliverables: Level I
			57	C	r197					V FISHERY	Project Name: COLVILLE FAL
			IJa	NB	-1 N /		umber:	PWS N			E-mail: USEISLE @ABRINC, COM
			h -	/(157		d BY: JCS, JRR	Sample	0-1443	Number: 907-77	Phone Number: 907-344-6777 Fax
			241	771	1 THIT		zation Number:	Authoriz			Contact Person: John SEWLE
			2L]	JN		Contract Number:	P.O. or	24	E, AK 995.	P.O. Day 24068 ANCHORAG
Preservative							t Number:	Accoun		RESEARCH	HBR, INC. ENVIRONMENTA
						1860	1114-		nv.com	n / <u>www.arcticfoxer</u>	arcticfox@astacalaska.con
	526	85						5	99734 ') 659-214	dhoe Bay, AK 45 / Fax: (907	Pouch 340043 / Pru Phone: (907) 659-21
	vices Order ustody Form	tical Ser lain of C	Analy nd Ch	ഖ					l, Inc.	ronmenta	Arctic Fox Envi

Page ____ of __

Arctic Fox Environmental, Inc.

Pouch 340043 - Prudhoe Bay, AK 99734 Phone: (907) 659-2145 / Fax: (907) 659-2146 / arcticfox@astacalaska.com

ABR Inc. environmental Research & Services PO BOX 24068 Anchorage, Alaska 99524 Report Date:12/8/2014Date Arrived:11/25/2014Date Sampled:11/18/2014Time Sampled:see belowCollected By:JCS, JRR

 Attn:
 John Sigle

 Phone:
 (907) 344-6777

 Fax:
 (907) 770-1443

 Email:
 jseigle@abrinc.com

Arctic Fox Lab#AF52919-52921Client Sample ID:See belowLocation/Project:Colville Fall FisheryCOC#:85526Sample Matrix:Water

Comments: Attached are the results for analysis of your samples. These samples were analyzed by Test America in Beaverton, OR. Tracking information is as follows:

ABR Sample ID: Hydro 1-1; 1-2; and 1-3 Analysis : Nitrate/Nitrite, DRO/RRO, Total Metals Time Sampled: 1530 Arctic Fox ID: AF52919 Test America ID: 250-22991-1 ABR Sample ID: Hyrdo 3-1; 3-2; and 3-3 Analysis : Nitrate/Nitrite, DRO/RRO, Total Metals Time Sampled: 1630 Arctic Fox ID: AF52920 Test America ID: 250-22991-2

ABR Sample ID: Hydro 4-1; 4-2; and 4-3 Analysis : Nitrate/Nitrite, DRO/RRO, Total Metals Time Sampled: 1700 Arctic Fox ID: AF52921 Test America ID: 250-22991-3

Reported By: Ralph E. Allphin/Michael J. Hawley/John M. Fot Arctic Fox Environmental, Inc.

Job ID: 250-22991-1

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-22991-1

Comments

No additional comments.

Receipt

The samples were received on 11/26/2014 8:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.2° C.

Except:

Only unpreserved volume received for all analyses. Containers poured off into HNO3 250mL poly (lot number N039) and H2SO4 250mL poly (lot number N004). PSS 11/26/14@1310, F52919 Hydro 1 (250-22991-1), AF52920 Hydro 3 (250-22991-2), AF52921 Hydro 4 (250-22991-3)

The following sample(s) was received outside of holding time for DRO/RRO extraction because samples were received in unpreserved sample containers. The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis: AF52919 Hydro 1 (250-22991-1), AF52920 Hydro 3 (250-22991-2), AF52921 Hydro 4 (250-22991-3).

The following samples were received unpreserved and were preserved upon receipt to the laboratory: AF52919 Hydro 1 (250-22991-1), AF52920 Hydro 3 (250-22991-2), AF52921 Hydro 4 (250-22991-3). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion. PSS 11/26/14@1310

GC Semi VOA

Method(s) AK102 & 103: The following sample(s) were received outside of holding time: AF52919 Hydro 1 (250-22991-1), AF52920 Hydro 3 (250-22991-2), AF52921 Hydro 4 (250-22991-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: AF52919 Hydro 1

Date Collected: 11/18/14 15:30

Date Received: 11/26/14 08:45

Lab Sample ID: 250-22991-1

Matrix: Water

2 3 4 5

7 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND	Н	0.11		mg/L		12/03/14 14:24	12/04/14 11:17	1
RRO (nC25-nC36)	ND	Н	0.56		mg/L		12/03/14 14:24	12/04/14 11:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	67		50 - 150				12/03/14 14:24	12/04/14 11:17	1
1-Chlorooctadecane	85		50 - 150				12/03/14 14:24	12/04/14 11:17	1
Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0021		0.0010		mg/L		11/30/14 15:52	12/01/14 16:24	1
Barium	0.081		0.0010		mg/L		11/30/14 15:52	12/01/14 16:24	1
Chromium	ND		0.0020		mg/L		11/30/14 15:52	12/01/14 16:24	1
Lead	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:24	1
Silver	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:24	1
Selenium	0.0043		0.0010		mg/L		11/30/14 15:52	12/01/14 16:24	1
Cadmium	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:24	1
- Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00057		0.00020		mg/L		12/02/14 16:00	12/02/14 20:05	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.10		mg/L			11/29/14 13:43	1
Client Sample ID: AF52920 Hy	dro 3						Lab Sam	ple ID: 250-2	2991-2
Date Collected: 11/18/14 16:30								Matrix	k: Water
Date Received: 11/26/14 08:45									
Method: AK102 & 103 - Alaska - Die	esel Range C	Organics &	Residual Range	e Organio	cs (GC)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND	Н	0.11		mg/L		12/03/14 14:24	12/04/14 11:36	1
RRO (nC25-nC36)	ND	Н	0.54		mg/L		12/03/14 14:24	12/04/14 11:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	68		50 - 150				12/03/14 14:24	12/04/14 11:36	1
1-Chlorooctadecane	84		50 - 150				12/03/14 14:24	12/04/14 11:36	1

Method: 6020 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0014		0.0010		mg/L		11/30/14 15:52	12/01/14 16:29	1
Barium	0.10		0.0010		mg/L		11/30/14 15:52	12/01/14 16:29	1
Chromium	ND		0.0020		mg/L		11/30/14 15:52	12/01/14 16:29	1
Lead	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:29	1
Silver	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:29	1
Selenium	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:29	1
Cadmium	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:29	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		12/02/14 16:00	12/02/14 20:07	1

TestAmerica Portland

TestAmerica Job ID: 250-22991-1

	ыныу								
Client Sample ID: AF52920 Hydr Date Collected: 11/18/14 16:30 Date Received: 11/26/14 08:45	o 3						Lab Sam	ple ID: 250-2 Matrix	2991-2 c: Water
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.10		mg/L			11/29/14 13:49	1
Client Sample ID: AF52921 Hydr	o 4						Lab Sam	ple ID: 250-2	2991-3
Date Collected: 11/18/14 17:00 Date Received: 11/26/14 08:45								Matrix	c: Water
Method: AK102 & 103 - Alaska - Diese Analyte	el Range (Result	Drganics & Qualifier	Residual Range RL	e Organio MDL	c <mark>s (GC)</mark> Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND	Н	0.11		mg/L		12/03/14 14:24	12/04/14 11:55	1
RRO (nC25-nC36)	ND	Н	0.54		mg/L		12/03/14 14:24	12/04/14 11:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	67		50 - 150				12/03/14 14:24	12/04/14 11:55	1
1-Chlorooctadecane	85		50 - 150				12/03/14 14:24	12/04/14 11:55	1
Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0010		0.0010		mg/L		11/30/14 15:52	12/01/14 16:48	1
Barium	0.13		0.0010		mg/L		11/30/14 15:52	12/01/14 16:48	1
Chromium	ND		0.0020		mg/L		11/30/14 15:52	12/01/14 16:48	1
Lead	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:48	1
Silver	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:48	1
Selenium	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:48	1
Cadmium	ND		0.0010		mg/L		11/30/14 15:52	12/01/14 16:48	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		12/02/14 16:00	12/02/14 20:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.10		mg/L			11/29/14 13:51	1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-22991-2

Client Project/Site: 1114-1860/Coleville Fall Fishery

For:

Arctic Fox Environmental, Inc Pouch 340043 Prudhoe Bay, Alaska 99734

Attn: Ralph Allphin

Kolly (Lavetto

Authorized for release by: 2/20/2015 9:36:47 AM

Kelly Garretts, Project Manager II (253)248-4961 kelly.garretts@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
QC Sample Results	6
Definitions	7
Certification Summary	8
Receipt Checklists	9

Matrix

Water

Water

Water

Client: Arctic Fox Environmental, Inc Project/Site: 1114-1860/Coleville Fall Fishery

Client Sample ID

AF52919 Hydro 1

AF52920 Hydro 3

AF52921 Hydro 4

Lab Sample ID

250-22991-1

250-22991-2

250-22991-3

TestAmerica Job ID: 250-22991-2

Received

11/26/14 08:45

11/26/14 08:45

11/26/14 08:45

Collected

11/18/14 15:30

11/18/14 16:30

11/18/14 17:00

TestAmerica Portland

Job ID: 250-22991-2

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-22991-2

Comments

No additional comments.

Receipt

The samples were received on 11/26/2014 8:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.2° C.

Except:

Only unpreserved volume received for all analyses. Containers poured off into HNO3 250mL poly (lot number N039) and H2SO4 250mL poly (lot number N039).

PSS 11/26/14@1310

AF52919 Hydro 1 (250-22991-1), AF52920 Hydro 3 (250-22991-2), AF52921 Hydro 4 (250-22991-3)

The following samples were received unpreserved and were preserved upon receipt to the laboratory: AF52919 Hydro 1 (250-22991-1), AF52920 Hydro 3 (250-22991-2), AF52921 Hydro 4 (250-22991-3). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion.

PSS 11/26/14@1310

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Job ID: 250-22991-2

Client Sample ID: AF52919 Hy Date Collected: 11/18/14 15:30 Date Received: 11/26/14 08:45	dro 1						Lab Sam	ple ID: 250-2 Matrix	2991-1 : Water
Method: 200.7 Rev 4.4 - Metals (ICF	>)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	290		1.0		mg/L		02/18/15 07:27	02/19/15 01:23	10
Magnesium	880		1.0		mg/L		02/18/15 07:27	02/19/15 01:23	10
Method: SM 2340B - Hardness, Cal	lculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness	4300		0.20		mg/L			02/19/15 21:28	1
Calcium hardness as calcium carbonate	730		0.20		mg/L			02/19/15 21:28	1
Magnesium hardness as calcium _carbonate	3600		0.20		mg/L			02/19/15 21:28	1
Client Sample ID: AF52920 Hy	dro 3						Lab Sam	ple ID: 250-2	2991-2
Date Collected: 11/18/14 16:30								Matrix	: Water
Date Received: 11/26/14 08:45									
Method: 200.7 Rev 4.4 - Metals (ICI	>)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	250		1.0		mg/L		02/18/15 07:27	02/19/15 01:29	10
Magnesium	720		1.0		mg/L		02/18/15 07:27	02/19/15 01:29	10
Method: SM 2340B - Hardness, Ca	lculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness	3600		0.20		mg/L			02/19/15 21:28	1
Calcium hardness as calcium carbonate	630		0.20		mg/L			02/19/15 21:28	1
Magnesium hardness as calcium _carbonate	3000		0.20		mg/L			02/19/15 21:28	1
Client Sample ID: AF52921 Hy	dro 4						Lab Sam	ple ID: 250-2	2991-3
Date Collected: 11/18/14 17:00 Date Received: 11/26/14 08:45								Matrix	: Water
Method: 200 7 Rev 4.4 - Metals (ICI	וכ								
Analyte	/ Result	Qualifier	RL	мрі	Unit	D	Prepared	Analyzed	Dil Fac
	180		10		ma/L		02/18/15 07:27	02/19/15 01:35	10
Magnesium	480		1.0		ma/l		02/18/15 07:27	02/19/15 01:35	10
	400				9 , ⊏				10
Method: SM 2340B - Hardness, Cal	lculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness	2400		0.20		mg/L			02/19/15 21:28	1

02/19/15 21:28

02/19/15 21:28

1

1

0.20

0.20

mg/L

mg/L

460

2000

Calcium hardness as calcium

Magnesium hardness as calcium

carbonate

carbonate

Method: 200.7 Rev 4.4 - Metals (ICP)

Matrix: Water Analysis Batch: 34561	'1-A								Client Sa	ample ID: Metho Prep Type: 1 Prep Batcl	d Blank otal/NA n: 34496
		MB MB									
Analyte	Re	sult Qualifier		RL	MDL	Unit	D	P	repared	Analyzed	Dil Fac
Calcium		ND		0.10	I	mg/L		02/1	8/15 07:27	02/19/15 00:43	1
Magnesium		ND		0.10	I	mg/L		02/1	8/15 07:27	02/19/15 00:43	1
Lab Sample ID: LCS 250-34496	6/2-A						С	lient	Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type: 1	otal/NA
Analysis Batch: 34561										Prep Batcl	n: 34496
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualif	fier Unit		D	%Rec	Limits	
Calcium			20.0	20.8		mg/L			104	85 - 115	
Magnesium			20.0	20.7		mg/L			104	85 ₋ 115	
Lab Sample ID: 250-22607-B-5	-D MS								Client S	Sample ID: Matr	ix Spike
Lab Sample ID: 250-22607-B-5 Matrix: Water	-D MS								Client S	Sample ID: Matr Prep Type: 1	ix Spike otal/NA
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561	-D MS								Client S	Sample ID: Matr Prep Type: 1 Prep Batcl	ix Spike otal/NA n: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561	-D MS Sample	Sample	Spike	MS	MS				Client S	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec.	ix Spike otal/NA n: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte	-D MS Sample Result	Sample Qualifier	Spike Added	MS Result	MS Qualif	fier Unit		D	Client \$	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits	ix Spike otal/NA n: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium	-D MS Sample <u>Result</u> 200	Sample Qualifier	Spike Added 20.0	MS Result 226	MS Qualif	fier <u>Unit</u> mg/L		<u>D</u>	Client \$	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125	ix Spike Total/NA n: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium	-D MS Sample Result 200 560	Sample Qualifier	Spike Added 20.0 20.0	MS Result 226 589	MS Qualif 4 4	fier <u>Unit</u> mg/L mg/L		D	Client S %Rec 121 155	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125 75 - 125	ix Spike Total/NA 1: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium	-D MS Sample Result 200 560	Sample Qualifier	Spike Added 20.0 20.0	MS Result 226 589	MS Qualif 4 4	<mark>fier Unit mg/L mg/L </mark>		D — —	Client \$	Sample ID: Matr Prep Type: 1 %Rec. Limits 75 - 125 75 - 125 Die ID: AF52921	ix Spike Total/NA 1: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium Lab Sample ID: 250-22991-3 Di Matrix: Water	-D MS Sample Result 200 560	Sample Qualifier	Spike Added 20.0 20.0	MS Result 226 589	MS Qualif 4 4	<mark>fier Unit mg/L mg/L </mark>		D Clie	%Rec 121 155 155	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125 75 - 125 Die ID: AF52921 Prep Type: 1	ix Spike Total/NA 1: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium Lab Sample ID: 250-22991-3 Di Matrix: Water Analysis Batch: 34561	-D MS Sample Result 200 560	Sample Qualifier	Spike Added 20.0 20.0	MS <u>Result</u> 226 589	MS Qualif 4 4	<mark>fier Unit mg/L mg/L </mark>		D Clie	%Rec - 121 - 155 - ent Samp	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125 75 - 125 Die ID: AF52921 Prep Type: 1 Prep Batcl	ix Spike fotal/NA 1: 34496 Hydro 4 fotal/NA 1: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium Lab Sample ID: 250-22991-3 Di Matrix: Water Analysis Batch: 34561	-D MS Sample Result 200 560 U Sample	Sample Qualifier	Spike Added 20.0 20.0	MS <u>Result</u> 226 589 DU	MS Qualif 4 4 DU	fier Unit mg/L mg/L		D Clie	Client \$ %Rec 121 155 ent Samp	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125 75 - 125 Die ID: AF52921 Prep Type: 1 Prep Batcl	ix Spike fotal/NA 1: 34496 Hydro 4 fotal/NA 1: 34496 RPD
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium Lab Sample ID: 250-22991-3 Di Matrix: Water Analysis Batch: 34561 Analyte	-D MS Sample Result 200 560 U Sample Result	Sample Qualifier Sample Qualifier	Spike Added 20.0 20.0	MS Result 226 589 DU Result	MS Qualif 4 4 DU Qualif	<mark>fier Unit</mark> mg/Lmg/L		Clic D	Client S <u>%Rec</u> 121 155 ent Samp	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125 75 - 125 Die ID: AF52921 Prep Type: 1 Prep Batcl RPI	ix Spike fotal/NA 1: 34496
Lab Sample ID: 250-22607-B-5 Matrix: Water Analysis Batch: 34561 Analyte Calcium Magnesium Lab Sample ID: 250-22991-3 Di Matrix: Water Analysis Batch: 34561 Analyte Calcium	-D MS Sample Result 200 560 U Sample Result 180	Sample Qualifier Sample Qualifier	Spike Added 20.0 20.0	MS Result 226 589 DU Result 196	MS Qualif 4 4 DU Qualif	fier <u>Unit</u> mg/L mg/L mg/L			Client \$ %Rec 121 155 ent Samp	Sample ID: Matr Prep Type: 1 Prep Batcl %Rec. Limits 75 - 125 75 - 125 Die ID: AF52921 Prep Type: 1 Prep Batcl RPT	Hydro 4 Total/NA 1: 34496 Hydro 4 Total/NA 1: 34496 RPD 2 2 1 20

Client: Arctic Fox Environmental, Inc Project/Site: 1114-1860/Coleville Fall Fishery

2 3 4 5 6 7 8

-			
\mathbf{O}	ali	Fin	rc
Qu	an	ne	I D

Motals

Metals		
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	5

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-15
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-16
USDA	Federal		P330-11-00092	04-17-17
Washington	State Program	10	C586	06-23-15

Client: Arctic Fox Environmental, Inc

Login Number: 22991 List Number: 1

Creator: Svabik-Seror, Philip M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Sampling dates taken from container labels.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	False	DRO/RRO extraction received expired.
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	Only unpreserved containers received.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

9

Appendix F. Benthic Arctic C	river bed sediment chemic isco in the Nigliq Channe	stry results (in mg/kg) sl, Colville River, Alas	collected from 2 sampling ika on 18 November 2014.	locations during the fall s	ubsistence harvest of
A nalvte (mo/ko)	Analvtical method	Reporting Limit ^a	Alaska Soil Quality Standards Arctic Zone Direct Contact ^b	Upstream Sediment Chemistry Collection Site	Downstream Sediment Chemistry Collection Site
Milary W (IIIB/ NB)		IIIII			MIC HODANIOA
Arsenic	SW6020A	0.479, 0.427	6.1	7.49	8.79
Barium	SW6020A	0.145, 0.130	27,400	443	386
Cadmium	SW6020A	0.0957, 0.086	110	0.277	0.225
Chromium	SW6020A	0.185, 0.165	410	22.6	22.9
Lead	SW6020A	0.0957, 0.086	400	12.2	12.8
Mercury	SW6020A	0.0185, 0.0165	41	0.0516	0.0632
Selenium	SW6020A	0.479, 0.427	680	0.557	0.658
Silver	SW6020A	0.0957, 0.086	680	0.136	0.161
Diesel Range Organics	AK102 & AK 103	10.5, 9.3	$12,500^{\circ}$	12.8	17.6
Residual Range Organics	AK102 & AK 103	10.5, 9.3	$13,700^{\circ}$	135	108
1-Methylnaphthalene	8270D SIMS (PAH)	0.00251, 0.00224	380	0.0149	0.0434
2-Methylnaphthalene	8270D SIMS (PAH)	0.00251, 0.00224	380	0.0177	0.0562
Acenaphthene	8270D SIMS (PAH)	0.00251, 0.00224	3,800	ND	ND
Acenaphthylene	8270D SIMS (PAH)	0.00251, 0.00224	3,800	ND	ND
Anthracene	8270D SIMS (PAH)	0.00251, 0.00224	27,800	ND	ND
Benzo(a)anthracene	8270D SIMS (PAH)	0.00251, 0.00224	6.6	ND	0.0158
Benzo(a)pyrene	8270D SIMS (PAH)	0.00251, 0.00224	0.66	ND	ND
Benzo(b)fluoranthene	8270D SIMS (PAH)	0.00251, 0.00224	6.6	0.00708	0.0124
Benzo(g,h,i)perylene	8270D SIMS (PAH)	0.00251, 0.00224	1,900	ND	0.00485
Benzo(k)fluoranthene	8270D SIMS (PAH)	0.00251, 0.00224	6.6	ND	ND
Chrysene 16.6	8270D SIMS (PAH)	0.00251, 0.00224	660	0.00849	0.0166
Dibenzo(a,h)anthracene	8270D SIMS (PAH)	0.00251, 0.00224	0.66	ND	ND
Fluoranthene	8270D SIMS (PAH)	0.00251, 0.00224	2,500	0.00561	0.0132
Fluorene	8270D SIMS (PAH)	0.00251, 0.00224	3,200	0.00278	0.00764
Indeno(1,2,3-c,d)pyrene	8270D SIMS (PAH)	0.00251, 0.00224	6.6	ND	ND

Continued. Appendix F.

Analyte (mg/kg)	Analytical method	Reporting Limit ^a	Alaska Soil Quality Standards Arctic Zone Direct Contact ^b	Upstream Sediment Chemistry Collection Site	Downstream Sediment Chemistry Collection Site
Naphthalene	8270D SIMS (PAH)	0.00251, 0.00224	1,900	0.0088	0.0252
Phenanthrene	8270D SIMS (PAH)	0.00251, 0.00224	27,800	0.0019	0.0439
Pyrene	8270D SIMS (PAH)	0.00251, 0.00224	1,900	0.00706	0.0139
^a Detection limit values are fo	or unstream and downstream loca	tions respectively			

Detection limit values are for upstream and downstream locations respectively ^b From Alaska Department of Environmental Conservation (ADEC), Table B1 in 18 AAC 75 ^c From ADEC Table B2 in 18 AAC 75 ND=None Detected

Appendix G. Raw laboratory river bed chemistry results from SGS Environmental Services, Inc., for samples collected from 2 locations during the fall subsistence harvest of Arctic Cisco, Nigliq Channel, Colville River, Alaska, 4 December 2014.

Laboratory Report of Analysis

To: ABR, Inc. PO Box 240268 Anchorage, AK 99524 (907) 344-6777

Report Number: 1145790

Client Project: 14-162 Colville Fall Fishery

Dear Joel Gottschalk,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Stephen at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Stephen Ede Project Manager Stephen.Ede@sgs.com Date

Print Date: 12/04/2014 3:59:25PM

Case Narrative

SGS Client: ABR, Inc. SGS Project: 1145790 Project Name/Site: 14-162 Colville Fall Fishery Project Contact: Joel Gottschalk

Refer to sample receipt form for information on sample condition.

Site #1 (Colville Fall) (1145790001) PS

AK103 - Unknown hydrocarbon with several peaks is present.

Site #4 (Colville Fall) (1145790002) PS

AK103 - Unknown hydrocarbon with several peaks is present.

1145773004MS (1247047) MS

8270D SIM - MS/MSD recovery for multiple analytes is outside of QC criteria. Refer to LCS for accuracy.

1145798005MS (1247516) MS

8270D SIM - MS/MSD recovery for multiple analytes is outside of QC criteria. Refer to LCS for accuracy.

1145773004MSD (1247048) MSD

8270D SIM - MS/MSD recovery for multiple analytes is outside of QC criteria. Refer to LCS for accuracy.

1145798005MSD (1247517) MSD

8270D SIM - MS/MSD recovery for multiple analytes is outside of QC criteria. Refer to LCS for accuracy. 8270D SIM - MS/MSD RPD for fluoranthene and benzo[g,h,i]perylene does not meet QC criteria.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 12/04/2014 3:59:25PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason
8270D SIMS (PA	Н)			
1145798005	LABREFQC	XMS8435	Benzo(a)Anthracene	RP
1145798005	LABREFQC	XMS8435	Chrysene	RP
1145798005	LABREFQC	XMS8435	Naphthalene	SP
1247516	1145798005MS	XMS8435	Benzo(a)Anthracene	RP
1247516	1145798005MS	XMS8435	Benzo[g,h,i]perylene	RP
1247516	1145798005MS	XMS8435	Dibenzo[a,h]anthracene	RP
1247516	1145798005MS	XMS8435	Indeno[1,2,3-c,d] pyrene	RP
1247517	1145798005MSD	XMS8435	Benzo(a)Anthracene	RP
1247517	1145798005MSD	XMS8435	Dibenzo[a,h]anthracene	RP
1247517	1145798005MSD	XMS8435	Indeno[1,2,3-c,d] pyrene	RP

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 12/04/2014 3:59:26PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (http://www.sgs.com/terms_and_conditions.htm), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6020, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits.
- ! Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CL Control Limit
- D The analyte concentration is the result of a dilution.
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- IB Instrument Blank
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 1/2 of the LOQ)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.
- Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
Site #1 (Colville Fall)	1145790001	11/18/2014	11/24/2014	Soil/Solid (dry weight)
Site #4 (Colville Fall)	1145790002	11/19/2014	11/24/2014	Soil/Solid (dry weight)
Method	Method Des	<u>cription</u>		
8270D SIMS (PAH)	8270 PAH S	IM Semi-Volatiles	GC/MS	

AK102 AK103 SW6020A SM21 2540G 8270 PAH SIM Semi-Volatiles GC/MS Diesel/Residual Range Organics Diesel/Residual Range Organics Metals by ICP-MS (S) Percent Solids SM2540G

Print Date: 12/04/2014 3:59:26PM

	Detectable Results Summary		
Client Sample ID: Site #1 (Colville Fall)			
Lab Sample ID: 1145790001	Parameter	Result	Units
Metals by ICP/MS	Arsenic	8.79	mg/Kg
	Barium	386	mg/Kg
	Cadmium	0.225J	mg/Kg
	Chromium	22.9	mg/Kg
	Lead	12.8	mg/Kg
	Mercury	0.0632	mg/Kg
	Selenium	0.658J	mg/Kg
	Silver	0.161J	mg/Kg
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	43.4	ug/Kg
· , · · · · · · · · · · ·	2-Methylnaphthalene	56.2	ug/Kg
	Benzo(a)Anthracene	15.8	ug/Kg
	Benzo[b]Fluoranthene	12.4	ug/Kg
	Benzo[g,h,i]perylene	4.85J	ug/Kg
	Chrysene	16.6	ug/Kg
	Fluoranthene	13.2	ug/Kg
	Fluorene	7.64	ug/Kg
	Naphthalene	25.2	ug/Kg
	Phenanthrene	43.9	ug/Kg
	Pyrene	13.9	ug/Kg
Semivolatile Organic Fuels	Diesel Range Organics	17.6J	mg/Kg
	Residual Range Organics	108	mg/Kg
Client Comple ID: Cite #4 (Coluille Fall)			0 0
Client Sample ID: Site #4 (Colville Fall)			
	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	7.49	mg/Kg
	Banum	443	mg/Kg
	Cadmium	0.277J	mg/Kg
	Chromium	22.0	mg/Kg
	Lead	12.2	mg/Kg
	Releasium	0.05165	mg/Kg
	Selenium	0.557J	mg/Kg
	Silver	0.136J	mg/Kg
Polynuclear Aromatics GC/MS		14.9	ug/Kg
		17.7	ug/Kg
	BenzolbjFluorantnene	7.08J	ug/Kg
	Chrysene	8.49	ug/Kg
	Fluoranthene	5.61J	ug/Kg
	Fluorene	2.78J	ug/Kg
	Naphthalene	8.80	ug/Kg
	Prienanthrene	19.0	ug/Kg
	Pyrene	7.06J	ug/Kg
Semivolatile Organic Fuels	Diesel Range Organics	12.8J	mg/Kg
	Residual Range Organics	135	mg/Kg

Print Date: 12/04/2014 3:59:27PM

SGS North America Inc.

Results of Site #1 (Colville Fall)

Client Sample ID: **Site #1 (Colville Fall)** Client Project ID: **14-162 Colville Fall Fishery** Lab Sample ID: 1145790001 Lab Project ID: 1145790 Collection Date: 11/18/14 14:15 Received Date: 11/24/14 12:11 Matrix: Soil/Solid (dry weight) Solids (%): 66.3 Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	8.79	1.38	0.427	mg/Kg	10		11/26/14 16:31
Barium	386	0.414	0.130	mg/Kg	10		11/26/14 16:31
Cadmium	0.225 J	0.276	0.0855	mg/Kg	10		11/26/14 16:31
Chromium	22.9	0.552	0.165	mg/Kg	10		11/26/14 16:31
Lead	12.8	0.276	0.0855	mg/Kg	10		11/26/14 16:31
Mercury	0.0632	0.0552	0.0165	mg/Kg	10		11/26/14 16:31
Selenium	0.658 J	1.38	0.427	mg/Kg	10		11/26/14 16:31
Silver	0.161 J	0.276	0.0855	mg/Kg	10		11/26/14 16:31

Batch Information

Analytical Batch: MMS8756 Analytical Method: SW6020A Analyst: ACF Analytical Date/Time: 11/26/14 16:31 Container ID: 1145790001-A Prep Batch: MXX28310 Prep Method: SW3050B Prep Date/Time: 11/25/14 08:31 Prep Initial Wt./Vol.: 1.093 g Prep Extract Vol: 50 mL

Print Date: 12/04/2014 3:59:27PM

Results of Site #1 (Colville Fall)

Client Sample ID: **Site #1 (Colville Fall)** Client Project ID: **14-162 Colville Fall Fishery** Lab Sample ID: 1145790001 Lab Project ID: 1145790 Collection Date: 11/18/14 14:15 Received Date: 11/24/14 12:11 Matrix: Soil/Solid (dry weight) Solids (%): 66.3 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	43.4	7.46	2.24	ug/Kg	1		11/26/14 12:41
2-Methylnaphthalene	56.2	7.46	2.24	ug/Kg	1		11/26/14 12:41
Acenaphthene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Acenaphthylene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Anthracene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Benzo(a)Anthracene	15.8	7.46	2.24	ug/Kg	1		11/26/14 12:41
Benzo[a]pyrene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Benzo[b]Fluoranthene	12.4	7.46	2.24	ug/Kg	1		11/26/14 12:41
Benzo[g,h,i]perylene	4.85 J	7.46	2.24	ug/Kg	1		11/26/14 12:41
Benzo[k]fluoranthene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Chrysene	16.6	7.46	2.24	ug/Kg	1		11/26/14 12:41
Dibenzo[a,h]anthracene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Fluoranthene	13.2	7.46	2.24	ug/Kg	1		11/26/14 12:41
Fluorene	7.64	7.46	2.24	ug/Kg	1		11/26/14 12:41
Indeno[1,2,3-c,d] pyrene	3.73 U	7.46	2.24	ug/Kg	1		11/26/14 12:41
Naphthalene	25.2	7.46	2.24	ug/Kg	1		11/26/14 12:41
Phenanthrene	43.9	7.46	2.24	ug/Kg	1		11/26/14 12:41
Pyrene	13.9	7.46	2.24	ug/Kg	1		11/26/14 12:41
Surrogates							
2-Fluorobiphenyl	91.9	45-105		%	1		11/26/14 12:41
Terphenyl-d14	98.6	30-125		%	1		11/26/14 12:41

Batch Information

Analytical Batch: XMS8431 Analytical Method: 8270D SIMS (PAH) Analyst: RTS Analytical Date/Time: 11/26/14 12:41 Container ID: 1145790001-A Prep Batch: XXX32474 Prep Method: SW3550C Prep Date/Time: 11/25/14 13:54 Prep Initial Wt./Vol.: 22.734 g Prep Extract Vol: 1 mL

Print Date: 12/04/2014 3:59:27PM

SGS North America Inc.

Results of Site #1 (Colville Fall)							
Client Sample ID: Site #1 (Colville Fal Client Project ID: 14-162 Colville Fall Lab Sample ID: 1145790001 Lab Project ID: 1145790	l) Fishery	(Collection Da Received Da Matrix: Soil/ Solids (%): (Location:				
Results by Semivolatile Organic Fuels	3						
Parameter Diesel Range Organics	<u>Result Qual</u> 17.6 J	<u>LOQ/CL</u> 30.0	<u>DL</u> 9.30	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 11/25/14 23:54
Surrogates							
5a Androstane	70.7	50-150		%	1		11/25/14 23:54
Batch Information							
Analytical Batch: XFC11694 Analytical Method: AK102 Analyst: AYC Analytical Date/Time: 11/25/14 23:54 Container ID: 1145790001-A			Prep Batch: Prep Methoc Prep Date/Ti Prep Initial V Prep Extract	XXX32472 d: SW3550C ime: 11/25/1 Vt./Vol.: 30.1 Vol: 1 mL	4 12:29 4 g		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 108	<u>LOQ/CL</u> 30.0	<u>DL</u> 9.30	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 11/25/14 23:54
Surrogates							
n-Triacontane-d62	67.3	50-150		%	1		11/25/14 23:54
Batch Information							
Analytical Batch: XFC11694 Analytical Method: AK103 Analyst: AYC Analytical Date/Time: 11/25/14 23:54 Container ID: 1145790001-A			Prep Batch: Prep Methoo Prep Date/Ti Prep Initial V Prep Extract	XXX32472 d: SW3550C ime: 11/25/1 Vt./Vol.: 30.1 Vol: 1 mL	4 12:29 4 g		

Print Date: 12/04/2014 3:59:27PM

٦

Results of Site #4 (Colville Fall)

Client Sample ID: **Site #4 (Colville Fall)** Client Project ID: **14-162 Colville Fall Fishery** Lab Sample ID: 1145790002 Lab Project ID: 1145790 Collection Date: 11/19/14 16:30 Received Date: 11/24/14 12:11 Matrix: Soil/Solid (dry weight) Solids (%): 58.9 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	7.49	1.54	0.479	mg/Kg	10		11/26/14 16:40
Barium	443	0.463	0.145	mg/Kg	10		11/26/14 16:40
Cadmium	0.277 J	0.309	0.0957	mg/Kg	10		11/26/14 16:40
Chromium	22.6	0.618	0.185	mg/Kg	10		11/26/14 16:40
Lead	12.2	0.309	0.0957	mg/Kg	10		11/26/14 16:40
Mercury	0.0516 J	0.0618	0.0185	mg/Kg	10		11/26/14 16:40
Selenium	0.557 J	1.54	0.479	mg/Kg	10		11/26/14 16:40
Silver	0.136 J	0.309	0.0957	mg/Kg	10		11/26/14 16:40

Batch Information

Analytical Batch: MMS8756 Analytical Method: SW6020A Analyst: ACF Analytical Date/Time: 11/26/14 16:40 Container ID: 1145790002-A Prep Batch: MXX28310 Prep Method: SW3050B Prep Date/Time: 11/25/14 08:31 Prep Initial Wt./Vol.: 1.099 g Prep Extract Vol: 50 mL

Print Date: 12/04/2014 3:59:27PM

Results of Site #4 (Colville Fall)

Client Sample ID: **Site #4 (Colville Fall)** Client Project ID: **14-162 Colville Fall Fishery** Lab Sample ID: 1145790002 Lab Project ID: 1145790 Collection Date: 11/19/14 16:30 Received Date: 11/24/14 12:11 Matrix: Soil/Solid (dry weight) Solids (%): 58.9 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.9	8.36	2.51	ug/Kg	1		12/02/14 22:15
2-Methylnaphthalene	17.7	8.36	2.51	ug/Kg	1		12/02/14 22:15
Acenaphthene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Acenaphthylene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Anthracene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Benzo(a)Anthracene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Benzo[a]pyrene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Benzo[b]Fluoranthene	7.08 J	8.36	2.51	ug/Kg	1		12/02/14 22:15
Benzo[g,h,i]perylene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Benzo[k]fluoranthene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Chrysene	8.49	8.36	2.51	ug/Kg	1		12/02/14 22:15
Dibenzo[a,h]anthracene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Fluoranthene	5.61 J	8.36	2.51	ug/Kg	1		12/02/14 22:15
Fluorene	2.78 J	8.36	2.51	ug/Kg	1		12/02/14 22:15
Indeno[1,2,3-c,d] pyrene	4.18 U	8.36	2.51	ug/Kg	1		12/02/14 22:15
Naphthalene	8.80	8.36	2.51	ug/Kg	1		12/02/14 22:15
Phenanthrene	19.0	8.36	2.51	ug/Kg	1		12/02/14 22:15
Pyrene	7.06 J	8.36	2.51	ug/Kg	1		12/02/14 22:15
Surrogates							
2-Fluorobiphenyl	77.3	45-105		%	1		12/02/14 22:15
Terphenyl-d14	76.5	30-125		%	1		12/02/14 22:15

Batch Information

Analytical Batch: XMS8435 Analytical Method: 8270D SIMS (PAH) Analyst: RTS Analytical Date/Time: 12/02/14 22:15 Container ID: 1145790002-A

Prep Batch: XXX32489 Prep Method: SW3550C Prep Date/Time: 12/02/14 11:27 Prep Initial Wt./Vol.: 22.848 g Prep Extract Vol: 1 mL

Print Date: 12/04/2014 3:59:27PM

SGS North America Inc.

Results of Site #4 (Colville Fall)							
Client Sample ID: Site #4 (Colville Fall Client Project ID: 14-162 Colville Fall Lab Sample ID: 1145790002 Lab Project ID: 1145790	l) Fishery	Collection Date: 11/19/14 16:30 Received Date: 11/24/14 12:11 Matrix: Soil/Solid (dry weight) Solids (%): 58.9 Location:					
Results by Semivolatile Organic Fuels	5						
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Diesel Range Organics	12.8 J	33.9	10.5	mg/Kg	1		11/26/14 00:03
Surrogates							
5a Androstane	77.4	50-150		%	1		11/26/14 00:03
Batch Information							
Analytical Batch: XFC11694 Analytical Method: AK102 Analyst: AYC Analytical Date/Time: 11/26/14 00:03 Container ID: 1145790002-A			Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	XXX32472 d: SW3550C ime: 11/25/1 Vt./Vol.: 30.0 : Vol: 1 mL	4 12:29 19 g		
Parameter Residual Range Organics	<u>Result Qual</u> 135	<u>LOQ/CL</u> 33.9	<u>DL</u> 10.5	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 11/26/14 00:03
Surrogates							
n-Triacontane-d62	78.1	50-150		%	1		11/26/14 00:03
Batch Information							
Analytical Batch: XFC11694 Analytical Method: AK103 Analyst: AYC Analytical Date/Time: 11/26/14 00:03 Container ID: 1145790002-A			Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	XXX32472 d: SW3550C ime: 11/25/14 Vt./Vol.: 30.0 : Vol: 1 mL	4 12:29 19 g		

٦

Method Blank

Blank ID: MB for HBN 1681567 [MXX/28310] Blank Lab ID: 1246964

QC for Samples: 1145790001, 1145790002

Results by SW6020A

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/Kg
Barium	0.150U	0.300	0.0940	mg/Kg
Cadmium	0.100U	0.200	0.0620	mg/Kg
Chromium	0.200U	0.400	0.120	mg/Kg
Lead	0.100U	0.200	0.0620	mg/Kg
Mercury	0.0200U	0.0400	0.0120	mg/Kg
Selenium	0.500U	1.00	0.310	mg/Kg
Silver	0.100U	0.200	0.0620	mg/Kg

Batch Information

Analytical Batch: MMS8756 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 11/26/2014 4:09:50PM Prep Batch: MXX28310 Prep Method: SW3050B Prep Date/Time: 11/25/2014 8:31:44AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Matrix: Soil/Solid (dry weight)

Print Date: 12/04/2014 3:59:28PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1145790 [MXX28310] Blank Spike Lab ID: 1246965 Date Analyzed: 11/26/2014 16:12

Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790001, 1145790002

Results by SW6020A

	B	lank Spike	(mg/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	
Arsenic	50	52.0	104	
Barium	50	49.6	99	
Cadmium	5	5.26	105	
Chromium	20	20.9	105	
Lead	50	52.6	105	
Mercury	0.5	0.517	103	
Selenium	50	52.6	105	
Silver	5	5.11	102	

Batch Information

Analytical Batch: MMS8756 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Prep Batch: MXX28310 Prep Method: SW3050B Prep Date/Time: 11/25/2014 08:31 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 12/04/2014 3:59:29PM

Matrix Spike Summary

Original Sample ID: 1246970 MS Sample ID: 1246968 MS MSD Sample ID: 1246969 MSD

QC for Samples: 1145790001, 1145790002

Analysis Date: 11/26/2014 16:52 Analysis Date: 11/26/2014 16:56 Analysis Date: 11/26/2014 16:59 Matrix: Soil/Solid (dry weight)

Results by SW6020A										
		Mat	rix Spike (r	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u> Arsenic	<u>Sample</u> 0.682J	<u>Spike</u> 48.0	<u>Result</u> 49.9	<u>Rec (%)</u> 102	<u>Spike</u> 47.8	<u>Result</u> 49.6	<u>Rec (%)</u> 102	<u>CL</u> 80-120	<u>RPD (%)</u>	RPD CL
Barium	18.4	48.0	68.8	105	47.8	67.1	102	80-120		
Cadmium	0.0940U	4.80	4.98	104	4.78	4.97	104	80-120		
Chromium	1.47	19.2	21.4	104	19.1	21.4	104	80-120		
Lead	0.516	48.0	50	103	47.8	50.9	105	80-120		
Mercury	0.0149J	0.480	.512	104	0.478	0.492	100	80-120		
Selenium	0.470U	48.0	50	104	47.8	50.3	105	80-120		
Silver	0.0940U	4.80	4.78	100	4.78	4.76	100	80-120		

Batch Information

Analytical Batch: MMS8756 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 11/26/2014 4:56:45PM Prep Batch: MXX28310 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 11/25/2014 8:31:44AM

Prep Initial Wt./Vol.: 1.04g Prep Extract Vol: 50.00mL

Print Date: 12/04/2014 3:59:29PM

1681462 [SPT/9498]	Matrix: Soil/Solid (dry weight)					
2						
G)(
<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %			
⁻ 9498 M21 2540G 11/24/2014 6:15:00PM						
	1681462 [SPT/9498] 2 G <u>Results</u> 100 ⁻ 9498 V21 2540G 11/24/2014 6:15:00PM	1681462 [SPT/9498] Matri 2 G Results LOQ/CL 100 ⁷⁹⁴⁹⁸ V21 2540G 11/24/2014 6:15:00PM	1681462 [SPT/9498] Matrix: Soil/Solid (2 G G LOQ/CL DL 100 100 '9498 J21 2540G 11/24/2014 6:15:00PM	1681462 [SPT/9498] Matrix: Soil/Solid (dry weight) 2 G G Image: Color of the second secon		

Print Date: 12/04/2014 3:59:29PM

SGS	

- Duplicate Sample Sur	mmary								
Original Sample ID: 1 Duplicate Sample ID: QC for Samples:	Original Sample ID: 1145788003 Duplicate Sample ID: 1246935 QC for Samples:		Analysis Date: 11/24/2014 18:15 Matrix: Soil/Solid (dry weight)						
Results by SM21 2540	G								
	Original ()	Duplicate ()	RPD (%)						
Total Solids	99.4	99.4	0.08	15.00					
Batch Information	1								
Analytical Batch: SPT Analytical Method: SM Instrument: Analyst: MJN	9498 121 2540G								
Print Date: 12/04/2014 3:59:	30PM	ottor Drive Anabarana Al	(05519						
	200 West P	otter Drive Anchorage, Al	85518						

Duplicate Sample Summary]							
Original Sample ID: 11457890 Duplicate Sample ID: 1246936	01	Analysis Date: 11/24/2014 18:15 Matrix: Soil/Solid (dry weight)							
QC for Samples:									
1145790001, 1145790002									
Results by SM21 2540G)							
NAME	<u>Original ()</u>	Duplicate ()	<u>RPD (%)</u>	RPD CL					
Total Solids	97.0	97.0	0.07	15.00					
Batch Information									
Analytical Batch: SPT9498 Analytical Method: SM21 25400 Instrument: Analyst: MJN	5								

Method Blank									
Blank ID: MB for HBN 168 Blank Lab ID: 1247031	1763 [XXX/32472]	Matrix: Soil/Solid (dry weight)							
QC for Samples: 1145790001, 1145790002									
Results by AK102									
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>					
Diesel Range Organics	10.0U	20.0	6.20	mg/Kg					
Surrogates									
5a Androstane	86.4	60-120		%					
3atch Information									
Analytical Batch: XFC116	394	Prep Ba	tch: XXX32472						
Analytical Method: AK102	2	Prep Me	ethod: SW3550	C					
Instrument: HP 6890 Ser	ies II FID SV D R	Prep Da	ate/Time: 11/25/	2014 12:29:44PM					
Analyst: AYC		Prep Initial Wt./Vol.: 30 g							
Analytical Liate/Lime: 11/	20/2014 0.20.001 101								

Print Date: 12/04/2014 3:59:30PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1145790 [XXX32472] Blank Spike Lab ID: 1247032 Date Analyzed: 11/25/2014 21:06 Spike Duplicate ID: LCSD for HBN 1145790 [XXX32472] Spike Duplicate Lab ID: 1247033 Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790001, 1145790002

Results by AK102			_							
	E	Blank Spike (mg/Kg)			pike Duplic	ate (mg/Kg)				
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL	
Diesel Range Organics	167	138	83	167	153	92	(75-125)	10.20	(< 20)	
Surrogates										
5a Androstane	3.33	90.3	90	3.33	98.5	99	(60-120)	8.70		
Batch Information										
Analytical Batch: XFC11694	L			Pre	p Batch: X	XX32472				
Analytical Method: AK102				Prep Method: SW3550C Prep Date/Time: 11/25/2014 12:29						
Analyst: AYC			Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL							
,				Dup	be Init Wt./\	/ol.: 167 mg	/Kg Extract	Vol: 1 mL		

Print Date: 12/04/2014 3:59:31PM

Method Blank									
Blank ID: MB for HBN 168 Blank Lab ID: 1247031	Blank ID: MB for HBN 1681763 [XXX/32472] Blank Lab ID: 1247031		Matrix: Soil/Solid (dry weight)						
QC for Samples: 1145790001, 1145790002									
Results by AK103									
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>					
Residual Range Organics	10.0U	20.0	6.20	mg/Kg					
Surrogates									
n-Triacontane-d62	82.2	60-120		%					
Batch Information									
Analytical Batch: XFC11	694	Prep E	Batch: XXX3247	2					
Analytical Method: AK10	3	Prep N	Nethod: SW3550)C					
Instrument: HP 6890 Ser	ies II FID SV D R	Prep [Date/Time: 11/25	5/2014 12:29:44PM					
Analyst: AYC Analytical Date/Time: 11	Analyst: AYC Analytical Date/Time: 11/25/2014_9:26:00PM		Prep Initial Wt./Vol.: 30 g Prep Extract Vol: 1 ml						
, , , , , , , , , , , , , , , , , , ,		- 1							

Print Date: 12/04/2014 3:59:32PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1145790 [XXX32472] Blank Spike Lab ID: 1247032 Date Analyzed: 11/25/2014 21:06 Spike Duplicate ID: LCSD for HBN 1145790 [XXX32472] Spike Duplicate Lab ID: 1247033 Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790001, 1145790002

Results by AK103			_						
	E	Blank Spike (mg/Kg)			Spike Duplicate (mg/Kg)				
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Residual Range Organics	167	140	84	167	155	93	(60-120)	10.30	(< 20)
Surrogates									
n-Triacontane-d62	3.33	84	84	3.33	94.1	94	(60-120)	11.30	
Batch Information Analytical Batch: XFC11694 Analytical Method: AK103				Pre	p Batch: X p Method:	XX32472 SW3550C			
Instrument: HP 6890 Series Analyst: AYC	II FID SV D R	2		Pre Spil Dup	p Date/Tim ke Init Wt./\ pe Init Wt./\	e: 11/25/20 1 /ol.: 167 mg /ol.: 167 mg	I 4 12:29 J/Kg Extract J/Kg Extract	Vol: 1 mL Vol: 1 mL	

Print Date: 12/04/2014 3:59:32PM

Method Blank

Blank ID: MB for HBN 1681772 [XXX/32474] Blank Lab ID: 1247045

QC for Samples: 1145790001

Results by 8270D SIMS (PAH)

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
2-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
Acenaphthene	2.50U	5.00	1.50	ug/Kg
Acenaphthylene	2.50U	5.00	1.50	ug/Kg
Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo(a)Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo[a]pyrene	2.50U	5.00	1.50	ug/Kg
Benzo[b]Fluoranthene	2.50U	5.00	1.50	ug/Kg
Benzo[g,h,i]perylene	2.50U	5.00	1.50	ug/Kg
Benzo[k]fluoranthene	2.50U	5.00	1.50	ug/Kg
Chrysene	2.50U	5.00	1.50	ug/Kg
Dibenzo[a,h]anthracene	2.50U	5.00	1.50	ug/Kg
Fluoranthene	2.50U	5.00	1.50	ug/Kg
Fluorene	2.50U	5.00	1.50	ug/Kg
Indeno[1,2,3-c,d] pyrene	2.50U	5.00	1.50	ug/Kg
Naphthalene	2.50U	5.00	1.50	ug/Kg
Phenanthrene	2.50U	5.00	1.50	ug/Kg
Pyrene	2.50U	5.00	1.50	ug/Kg
Surrogates				
2-Fluorobiphenyl	75.1	45-105		%
Terphenyl-d14	109	30-125		%

Batch Information

Analytical Batch: XMS8430 Analytical Method: 8270D SIMS (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: RTS Analytical Date/Time: 11/25/2014 8:31:00PM Prep Batch: XXX32474 Prep Method: SW3550C Prep Date/Time: 11/25/2014 1:54:44PM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 1 mL

Matrix: Soil/Solid (dry weight)

Print Date: 12/04/2014 3:59:33PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1145790 [XXX32474] Blank Spike Lab ID: 1247046 Date Analyzed: 11/25/2014 20:45

Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790001

Results by 8270D SIMS (PAH)

	E	Blank Spike	(ug/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
1-Methylnaphthalene	22.2	18.0	81	(44-107)
2-Methylnaphthalene	22.2	16.4	74	(45-105)
Acenaphthene	22.2	18.8	85	(45-110)
Acenaphthylene	22.2	16.4	74	(45-105)
Anthracene	22.2	18.0	81	(55-105)
Benzo(a)Anthracene	22.2	21.5	97	(50-110)
Benzo[a]pyrene	22.2	16.6	75	(50-110)
Benzo[b]Fluoranthene	22.2	23.6	106	(45-115)
Benzo[g,h,i]perylene	22.2	21.3	96	(40-125)
Benzo[k]fluoranthene	22.2	21.1	95	(45-125)
Chrysene	22.2	23.0	104	(55-110)
Dibenzo[a,h]anthracene	22.2	21.3	96	(40-125)
Fluoranthene	22.2	21.8	98	(55-115)
Fluorene	22.2	19.4	87	(50-110)
Indeno[1,2,3-c,d] pyrene	22.2	21.4	96	(40-120)
Naphthalene	22.2	17.4	78	(40-105)
Phenanthrene	22.2	20.7	93	(50-110)
Pyrene	22.2	21.2	95	(45-125)
Surrogates				
2-Fluorobiphenyl	22.2	84.3	84	(45-105)
Terphenyl-d14	22.2	110	110	(30-125)

Batch Information

Analytical Batch: XMS8430 Analytical Method: 8270D SIMS (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: RTS Prep Batch: XXX32474 Prep Method: SW3550C Prep Date/Time: 11/25/2014 13:54 Spike Init Wt./Vol.: 22.2 ug/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 12/04/2014 3:59:33PM

SGS North America Inc.

Matrix Spike Summary

Original Sample ID: 1145773004 MS Sample ID: 1247047 MS MSD Sample ID: 1247048 MSD Analysis Date: 11/25/2014 20:59 Analysis Date: 11/25/2014 21:13 Analysis Date: 11/25/2014 21:27 Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790001

Results by 8270D SIMS (PAH) Matrix Spike (ug/Kg) Spike Duplicate (ug/Kg) Parameter Sample Spike Result Rec (%) Spike Result Rec (%) CL <u>RPD (%)</u> RPD CL Acenaphthene 11.9 23.7 31.2 81 23.7 30.4 78 45-110 2.30 (< 30) Acenaphthylene 5.30U 23.7 26.5 112 * 23.7 25.0 106 * 45-105 5.60 (< 30) 105 Anthracene 3.83J 23.7 24.8 23.7 23.7 100 55-105 4.40 (< 30) Benzo(a)Anthracene 4.30J 23.7 25.4 107 23.7 25.7 108 50-110 1.10 (< 30) Benzo[a]pyrene 5.30U 23.7 22.9 97 23.7 22.3 94 50-110 2.80 (< 30) Benzo[b]Fluoranthene 3.56J 23.7 26.8 113 23.7 25.1 106 45-115 6.90 (< 30) Benzo[g,h,i]perylene 4.01J 23.7 24.8 105 23.7 25.0 105 40-125 0.61 (< 30) Benzo[k]fluoranthene 5.30U 23.7 22.8 97 23.7 24.2 102 45-125 5.70 (< 30) * * Chrysene 4.68J 23.7 27.0 114 23.7 27.7 117 55-110 2.80 (< 30) Dibenzo[a,h]anthracene 5.30U 23.7 24.8 104 23.7 23.6 100 40-125 4.70 (< 30) Fluoranthene 5.72J 23.7 28.2 119 * 23.7 27.9 118 55-115 1.10 (< 30) Fluorene 5.60 12.1 23.7 32.2 85 23.7 30.4 78 50-110 (< 30) Indeno[1,2,3-c,d] pyrene 5.30U 23.7 25.1 106 23.7 23.5 99 40-120 6.80 (< 30) Phenanthrene 17.7 23.7 39.8 93 23.7 38.3 87 50-110 4.00 (< 30) Pyrene 6.20J 23.7 28.1 118 23.7 27.2 45-125 3.00 115 (< 30) 1120 1-Methylnaphthalene 23.7 1121 -1 23.7 1078 -142 44-107 3.00 (< 30) 2-Methylnaphthalene 1860 23.7 1708 -658 * 23.7 1665 -837 * 45-105 2.50 (< 30) 2090 Naphthalene 23.7 1942 -608 * 23.7 1868 -939 * 40-105 4.10 (< 30) Surrogates 23.7 20.2 85 2.90 2-Fluorobiphenyl 23.7 19.5 83 45-105 Terphenyl-d14 23.7 24.9 105 23.7 23.5 99 30-125 5.80 Batch Information

Analytical Batch: XMS8430 Analytical Method: 8270D SIMS (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: RTS Analytical Date/Time: 11/25/2014 9:13:00PM

Prep Batch: XXX32474 Prep Method: Sonication Extraction Soil 8270 PAH SIM Prep Date/Time: 11/25/2014 1:54:44PM Prep Initial Wt./Vol.: 22.55g Prep Extract Vol: 1.00mL

Print Date: 12/04/2014 3:59:34PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1686961 [XXX/32489] Blank Lab ID: 1247514

QC for Samples: 1145790002

Results by 8270D SIMS (PAH)

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
2-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
Acenaphthene	2.50U	5.00	1.50	ug/Kg
Acenaphthylene	2.50U	5.00	1.50	ug/Kg
Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo(a)Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo[a]pyrene	2.50U	5.00	1.50	ug/Kg
Benzo[b]Fluoranthene	2.50U	5.00	1.50	ug/Kg
Benzo[g,h,i]perylene	2.50U	5.00	1.50	ug/Kg
Benzo[k]fluoranthene	2.50U	5.00	1.50	ug/Kg
Chrysene	2.50U	5.00	1.50	ug/Kg
Dibenzo[a,h]anthracene	2.50U	5.00	1.50	ug/Kg
Fluoranthene	2.50U	5.00	1.50	ug/Kg
Fluorene	2.50U	5.00	1.50	ug/Kg
Indeno[1,2,3-c,d] pyrene	2.50U	5.00	1.50	ug/Kg
Naphthalene	2.50U	5.00	1.50	ug/Kg
Phenanthrene	2.50U	5.00	1.50	ug/Kg
Pyrene	2.50U	5.00	1.50	ug/Kg
Surrogates				
2-Fluorobiphenyl	69	45-105		%
Terphenyl-d14	87.3	30-125		%

Batch Information

Analytical Batch: XMS8435 Analytical Method: 8270D SIMS (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: RTS Analytical Date/Time: 12/2/2014 9:06:00PM Prep Batch: XXX32489 Prep Method: SW3550C Prep Date/Time: 12/2/2014 11:27:44AM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 1 mL

Matrix: Soil/Solid (dry weight)

Print Date: 12/04/2014 3:59:34PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1145790 [XXX32489] Blank Spike Lab ID: 1247515 Date Analyzed: 12/02/2014 21:19

Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790002

Results by 8270D SIMS (PAH)

Blank Spike (ug/Kg)								
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>				
1-Methylnaphthalene	22.2	12.8	58	(44-107)				
2-Methylnaphthalene	22.2	12.2	55	(45-105)				
Acenaphthene	22.2	13.4	60	(45-110)				
Acenaphthylene	22.2	11.3	51	(45-105)				
Anthracene	22.2	14.1	63	(55-105)				
Benzo(a)Anthracene	22.2	18.0	81	(50-110)				
Benzo[a]pyrene	22.2	12.4	56	(50-110)				
Benzo[b]Fluoranthene	22.2	17.9	81	(45-115)				
Benzo[g,h,i]perylene	22.2	16.4	74	(40-125)				
Benzo[k]fluoranthene	22.2	18.2	82	(45-125)				
Chrysene	22.2	18.7	84	(55-110)				
Dibenzo[a,h]anthracene	22.2	16.5	74	(40-125)				
Fluoranthene	22.2	19.7	89	(55-115)				
Fluorene	22.2	14.7	66	(50-110)				
Indeno[1,2,3-c,d] pyrene	22.2	16.8	76	(40-120)				
Naphthalene	22.2	12.6	57	(40-105)				
Phenanthrene	22.2	16.5	74	(50-110)				
Pyrene	22.2	19.2	86	(45-125)				
Surrogates								
2-Fluorobiphenyl	22.2	66.5	67	(45-105)				
Terphenyl-d14	22.2	91.6	92	(30-125)				

Batch Information

Analytical Batch: XMS8435 Analytical Method: 8270D SIMS (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: RTS Prep Batch: XXX32489 Prep Method: SW3550C Prep Date/Time: 12/02/2014 11:27 Spike Init Wt./Vol.: 22.2 ug/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 12/04/2014 3:59:34PM

SGS North America Inc.

Matrix Spike Summary

Original Sample ID: 1145798005 MS Sample ID: 1247516 MS MSD Sample ID: 1247517 MSD Analysis Date: 12/02/2014 21:33 Analysis Date: 12/02/2014 21:47 Analysis Date: 12/02/2014 22:01 Matrix: Soil/Solid (dry weight)

QC for Samples: 1145790002

Results by 8270D SIMS (PAH)

		Matrix Spike (ug/Kg)		Spike Duplicate (ug/Kg)								
<u>Parameter</u>	Sample	Spike	Result	Rec ((%)	<u>Spike</u>	Result	<u>Rec (%</u>	<u>6)</u>	CL	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	8.62	23.2	25.6	73		23.2	24.8	70		44-107	2.80	(< 30)
2-Methylnaphthalene	10.3	23.2	26.0	68		23.2	25.3	65		45-105	3.00	(< 30)
Acenaphthene	5.19U	23.2	14.4	62		23.2	16.5	71		45-110	13.50	(< 30)
Acenaphthylene	5.19U	23.2	19.5	84		23.2	19.2	83		45-105	2.10	(< 30)
Anthracene	5.19U	23.2	15.2	66		23.2	13.8	60		55-105	9.40	(< 30)
Benzo(a)Anthracene	20.1	23.2	25.3	22	*	23.2	30.8	46	*	50-110	19.50	(< 30)
Benzo[a]pyrene	5.19U	23.2	2.60U	0	*	23.2	2.60U	0	*	50-110	0.00	(< 30)
Benzo[b]Fluoranthene	5.19U	23.2	2.60U	0	*	23.2	2.60U	0	*	45-115	0.00	(< 30)
Benzo[g,h,i]perylene	5.19U	23.2	25.5	110		23.2	35.0	151	*	40-125	31.40	* (< 30)
Benzo[k]fluoranthene	5.19U	23.2	2.60U	0	*	23.2	2.60U	0	*	45-125	0.00	(< 30)
Chrysene	34.5	23.2	37.7	14	*	23.2	48.4	60		55-110	24.70	(< 30)
Dibenzo[a,h]anthracene	5.19U	23.2	17.8	77		23.2	20.5	89		40-125	14.20	(< 30)
Fluoranthene	48.3	23.2	43.7	-20	*	23.2	60.4	52	*	55-115	32.00	* (< 30)
Fluorene	12.7	23.2	30.0	74		23.2	27.5	64		50-110	8.70	(< 30)
Indeno[1,2,3-c,d] pyrene	5.19U	23.2	23.6	102		23.2	30.5	132	*	40-120	25.60	(< 30)
Naphthalene	5.19U	23.2	21.0	70		23.2	21.3	72		40-105	1.50	(< 30)
Phenanthrene	17.9	23.2	33.2	66		23.2	35.7	77		50-110	7.20	(< 30)
Pyrene	44.0	23.2	43.5	-2	*	23.2	55.5	50		45-125	24.10	(< 30)
Surrogates												
2-Fluorobiphenyl		23.2	18.2	78		23.2	17.9	78		45-105	1.20	
Terphenyl-d14		23.2	19.1	82		23.2	17.1	74		30-125	11.40	

Batch Information

Analytical Batch: XMS8435 Analytical Method: 8270D SIMS (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: RTS Analytical Date/Time: 12/2/2014 9:47:00PM

Prep Batch: XXX32489

Prep Method: Sonication Extraction Soil 8270 PAH SIM Prep Date/Time: 12/2/2014 11:27:44AM Prep Initial Wt./Vol.: 22.59g Prep Extract Vol: 1.00mL

Print Date: 12/04/2014 3:59:35PM

SGS North America Inc.

	1
U	
Ľ]
	2

<u>с</u>	IENT: J	10HM SEILLE	(ABR	'nc.)				Instru Omi	iction: ssion	s: Se s may	ctions / delay	/ 1 - 5 / the c	must onset o	be fill of ana	led ou Ivsis.	Ţ.		
<u>ا</u> ا		John Selorë Stephen Ede	ЭНА	ONE NO:	7-344-6	777 ×206	Secti	on 3				Pres	ervative				Page Page	o
ection 문 전	KOJECT ME: CSL	יאוררב לערר אַכארכע	PRO PWS	uec <i>ii</i> sid <i>i 4 - </i> { mit#:	62		# U											
S / 2	FORTS T	10: 216-cf	Р. Ш	IAIL: Seigle	opulac. c	er.	oz⊢	Type C = COMP									[
Z	VOICE TO	ö	NO 0.4	оте #: · #: [Ч-/	62		∢ - z	G = G = Multi		יי <u>י</u> אערס/	~~1<							
R A	ESERVED		ATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	шсо	Incre- mental Soils	LAW	Di a	<u>41</u> 1						REMA	RKS/ ID
9	A-B	STE#1 (course	E FALL	11/18/2514	H:12		2			× ×								
6	X-R	Site # (Carvini	E Fill	11/19/2014	16:30		б		X	$\frac{X}{X}$								
ا ح س				,	-						_							
ectic																		
 S																		
ž	linquishe	ed By: (1)		Date	Time	Received By:	-			UN I	tection 4		D Projec	ct? Yes	٩	Data De	iverable Requir	ements:
	Jour J	Selere		11/24/244	12:11 pm						Cooler ID	<u>.</u> .						
<u>يم</u> ک	linquishe	id By: (2)		Date [/]	Time	Received By:				Re	quested	Turnarc	und Tim	ie and/o	r Specia	I Instruct	ons:	
noitc Dtion	.				/													
ž J e gage	innquisne	(s) (s)		Cate		Treceived by:					mu Blan	j k	Chill	A3		Chain o	Custody Seal:	(Circle)
29 of	linquishe	id By: (4)		Date	Time	Received For	Laborat	ory By:		2	1	or An	nbient [INTACT	BROKEN	BSENT
31		/	/	11/he/11	1); Cl	Core	ןיע ה	A	•		See atta	ched Sa	mple Re	ceipt Fc	rm) (;	See attac	ed Sample Rec	eipt Form)
<u> </u>] 200 W. F] 5500 Bu	Potter Drive Anchorage siness Drive Wilmingt	e, AK 995 on, NC 21	318 Tel: (907) 8405 Tel: (910	562-2343 Fa 350-1903 F	іх: (907) 561-5; ^т ах: (910) 350-5	801 1557) 		s.www.s	sgs.com/	terms-an	d-conditi	ons			

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

SAMPLE RECEIPT FORM

Were custody seaks intact? Note # & location, if applicable. Yes No (Stila) Exemption permitted if sampler hand carries/delivers. COC accompanded samples? Yes No (A) Exemption permitted if sampler hand carries/delivers. Temperature blank compliant* (i.e., 0.6°C after CF)? Yes No (A) Exemption permitted if chilled & collected <& hra ago. If < 0°C, were samples containers ics free? Yes No (A) Exemption permitted if chilled & collected <& hra ago. Cooler ID: @ wf Therm.ID: Yes No (A) Permitted if chilled & collected <& hra ago. Cooler ID: @ wf Therm.ID: Yes No (A) Permitted if chilled & collected <& hra ago. Cooler ID: @ wf Therm.ID: Yes No (A) Permitted if chilled & collected <& hra ago. Teamples are received within a temporature blank & word thermen team and teamption in the temperature blank & Note: Identify containers received at non-compliant temperature. Use form PS-0029 if more space is needed. Delivery method (specir) all that apply): Chilled A at and it and prove the temperature blank & Note: Identify containers received in the another teamport or "hole". Delivery method (specir) all that apply): Chilled A at another or "hole". Tracking/AB # or see attached or N/A Delivery method (specir) all that apply): Chilled A at another or	Review Criteria:	Condition;	Comments/Action Taken:
COC accompanied samples? Yes No Temperature blank compliant* (i.e., 0-6°C after CE)? Yes No If >6°C, were samplas-cottected <8 hrms.ago?	Were custody seals intact? Note # & location, if applicable.	Yes No (N/A)	□ Exemption permitted if sampler hand carries/delivers.
Temperature blank compliant* (i.e., 0-6°C after CP)? Yes Ko NA If <0°C, were samples-containers age?	COC accompanied samples?	Yes No	
If >0°C, were samplase-orditected 28 Intrase.age? Yes Yes NA If >0°C, were samplase-orditected 28 Intrase.age? Yes No NA Cooler ID: @ w/ Therm.ID: Wes No NA Cooler ID: @ w/ Therm.ID: Cooler ID: @ w/ Therm.ID: Cooler ID: @ w/ Therm.ID: Cooler ID: @ w/ Therm.ID: Cooler Wes Note: Hently containers received at non-compliant temperature blak & Cooler ID: @ w/ Therm.ID: Cooler Note: Hently containers received at non-compliant temperature.Use form PS-0029 if more space is needed. Delivery method (specify all that apply): Ctmicliand carrieds. Tracking/AB # or see attached or N/A UPS FedEx RAVN C&D Delivery Carlile Pon Nor NA No NA Yers samples received with abold ince? On Samples received with hold time? No NA No NA No NA Were samples in good condition (no leaks/cracks/breakage)? No NA No NA No No Were samples received with hold time? No NA No No No No Were samples in good condition (no	Temperature blank compliant* (i.e., 0-6°C after CF)?	Yes (No	□ Exemption permitted if chilled & collected <8 hrs ago.
If ≠0°C, yeer all sample containers ice free? Yes No NA Cooler D: @ w/ Therm.D: I'samples are received without a tempProtect hank, the "cooler w/ Therm.D: I'samples are received without a tempProtect hank, the "cooler Tracking/AB Cooler D: @ w/ Therm.D: I'samples are received without a tempProtect hank, the "cooler Tracking/AB Cooler D: @ w/ Therm.D: I'samples are received with that apply: Cheff I dand Tearriseth or see attached OFN WOR with airbills, was the WOB & airbill or see attached or N/A Jor Samples received with payment, note amount (\$ > And whether cash / check / CC (circle one) was received. Ser samples received within hold time? No NA Note: Heard on the From Counter elog? No NA Were samples received within hold time? No NA Note: There one Heads and login per COC. Were samples received within hold time? No NA Note: Heard on the From Counter elog? Were samples received within hold time? No NA No NA </td <td>If >6°C, were samples-collected <8 hours ago?</td> <td>Yes No N/A</td> <td></td>	If >6°C, were samples-collected <8 hours ago?	Yes No N/A	
Cooler ID:	If <0°C, were all sample containers ice free?	Yes No (N/A)	
Cooler ID: @ w/ Therm.ID: Cooler ID: @ w/ Therm.ID: If samples are received without a tempPratery blank, the "cooler Note: Identify containers received at non-compliant If samples are received without a tempPratery blank, the "cooler Note: Identify containers received at non-compliant If samples are received with payment, in cases where neither a Tracking/AB # Or System (Specify all that apply): Chert (Thand Carried) Or Worth with attribills, was the WO# & airbill Tracking/AB # Or System (Specify all that apply): Chert (Thand Carried) Or System (Specify all that apply): Chert (Thand Carried) Or System (Specify all that apply): Chert (Specify all that apply): Yes 'No With airbills, was the WO# & airbill Tracking/AB # or samples received with payment, note amount (\$) No NA Yers samples received with in hold time? No NA No samples match COC* (i.e., sample IDs, dates/times collected)? No NA Were analyses requested unambiguous? Yes No NIA Were analys	Cooler ID: w/ Therm.ID:		
Cooler ID: @	Cooler ID: @w/ Therm.ID:		
Cooler ID: @	Cooler ID: @ w/ Therm-ID:	2110	
Cooler ID:	Cooler ID: @ w/ Therm.ID:	Ch: 11est	
If samples are received without a tempBrature-blank, the "cooler temperature" will be documented in lieu of the temperature blank & "COOLER TEMP" will be noted to the right. In cases where neither a temp blank nor cooler temp can be obtained note "ambient" or "chilled." Delivery method (specify all that apply): <u>Them (fnand carried)</u> . Tracking/AB # USPS Lynden AK Air Alert Courier or see attached or N/A For Samples received with payment, note amount (\$ > For samples received with nold time? No N/A Were samples received within hold time? No N/A Were samples received within hold time? No N/A Were samples received within hold time? No N/A Were samples received unambiguous? Were samples received unambiguous? Were samples needed (specify all that apply): Bubble Wrap Separate plastic bags Verniculite Other: Were proper containers (type/mass/volume/preservative*) used? Were all soil VOAs, field extracted with McOH+BFB? For preserve duater than VOA' wals, LL-Hey in cooler with samples? Were all soil VOAs, field extracted with McOH+BFB? For samples could the thanding (e.g., 200.8/6020A). Were all soil VOAs, field extracted with McOH+BFB? For special handing (e.g., "MI" soils, foreing soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were cottage data, were bottles flagged (i.e., stickers?)? For any question answered "No," has the PM been notified and the problem resolved (or papervork put in their phin)? Was PEER REVIEW of sample andberging/abeling completed? Yes No (N/A) Were Stree Stree of thandy and the finit on in their hin)? Was PEER REVIEW of sample duates for methed for metals (seg. N/A Were No (N/A) Per Reviewed by: N/A	Cooler ID: @ w/ Therm.ID:		
temperature will be documented in lieu of the temperature blank & Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed. Temp blank nor cooler temp can be obtained, note "ambient" or 'chilled." Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed. Delivery method (specify all that apply): Cffent(fland Carried). Tracking/AB # Or see attached or see attached or see attached UPS FedEx RAVN C&D Delivery Carlile Pen AK Air Alert Courier or see attached Of With airbills, was the WO# & airbill or see attached or see attached → For samples received with payment, note amount (\$ and whether cash / check / CC (circle one) was received. > For samples received with payment, note amount (\$ not whether cash / check / CC (circle one) was received. Note: Bfer to form F-083 "Sample Guide" for hold times. Note: Bfer to form F-083 "Sample Guide" for hold times. Do samples match COCF (i.e., sample IDs, dates/times collected)? Note: Bfer to form F-083 "Sample Guide" for hold times. Were samples in good condition (no leaks/cracks/breakage)? Yes No Note: Bfer to form F-083 "Sample Guide" for hold times. Segrate plastic bags Vermiculit Other: Yes No <t< td=""><td>If samples are received without a temperature blank, the "cooler</td><td></td><td></td></t<>	If samples are received without a temperature blank, the "cooler		
COUCLEAR LEAR Will be include to the fight. In clases where lettiner a Index during blank groups and the compliant in the set of the complex space is needed. Imp blank groups color temp color to by specific and the complex specific and the compliant groups and the complex specific and the complex sp	temperature" will be documented in lieu of the temperature blank &		Note: Identify containers reasined at non compliant
Indep to the probability of the probabi	COULER TEMP will be noted to the right. In cases where neither a temp blank nor cooler temp can be obtained note "ambient" or "chilled"		temperature. Use form FS-0029 if more space is needed.
Description Name uppy). Left Courier or several additional controls of the courier of the couri	Delivery method (specify all that apply):	Tracking/AB #	
UPS FodEx RAVN C&D Delivery Carlie Pen Air Warp Speed Other:	USPS Lynden AK Air Alert Courier	or see attached	
Carlile Pen Air Warp Speed Other:	UPS FedEx RAVN C&D Delivery	or N/A	
 → For WO# with airbills, was the WO# & airbill info recorded in the Front Counter eLog? → For samples received in FBKS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received in FBKS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received in the KS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received in the KS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received in the KS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received unambiguous? Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Verniculte Other: Were proper containers (type/massivolume/preservative*) used? Were all VOA sials free of headspace (i.e., bubbles ≤6 mm)? Were all VOA sials free of headspace (i.e., bubbles ≤6 mm)? Yes No MA For preserved waters (other than VOA vials, LL-Hercury or microbiological analyses), was pH verified and compliant? If pH was adjusted, were bottles flagged (i.e., stickers)? For SUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? For asquestion answered "No," has the PM been notified and the problem resolved (or paperwork flagged accordingly? For any question answered "No," has the PM been notified and the row flagged (or paperwork flagged accordingly? For any question answered "No," has the PM been notified and the roblem resolved (or paperwork put in their bin)? Were SNO MA Were SNO MA Were SNO MA Were solution and the roblem resolved (or paperwork put in their bin)? Were SNO MA Yes No MA Yes No MA Yes No MA Per Reviewed by: M/A 	Carlile Pen Air Warn Speed Other:		
info recorded in the Front Counter eLog? Yes No NA → For samples received with payment, note amount (\$) and whether cash / check / CC (circle one) was received. → For samples received within hold time? and whether cash / check / CC (circle one) was received. Do samples match COC* (i.e., sample IDs, dates/times collected)? Were samples in good condition (no leaks/cracks/breakage)? Not: Refer to form F-033 '(Sample Guide" for hold times. No wice analyses requested unambiguous? Yes No N/A Note: If times differ <ihr, and="" coc.<="" details="" login="" per="" record="" td=""> Were samples in good condition (no leaks/cracks/breakage)? Yes No N/A Note: If times differ <ihr, and="" coc.<="" details="" login="" per="" record="" td=""> Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculie Other: Yes No N/A Were NOA Were analyses field extracted with MeOH+BFB? Yes No N/A Were NOA Met Exemption permitted for metals (e.g., 200.8/6020A). Were all soil VOAs field extracted with MeOH+BFB? Yes No N/A Yes No N/A Met Exemption permitted for metals (e.g., 200.8/6020A). For special handling (e.g., 'MT' soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (i.e., stickers)? Yes No N/A Yes No N/A For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A</ihr,></ihr,>	\rightarrow For WO# with airhills was the WO# & airhill		
 → For samples received with payment, note amount (\$) and whether cash / check / CC (circle one) was received. → For samples received in FBKS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received within hold time? Do samples match COC* (i.e., sample IDs, dates/times collected)? Were analyses requested unambiguous? Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other: Were all soil VOAs field extracted with MeOH+BFB? Yes No WA Were all soil VOAs field extracted with MeOH+BFB? Yes No WA Yes No WA For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (i.e., stickers)? For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Wes PER REVIEW of sample rumbering/labeling completed? Yes No WA Yes No WA SRF Completed by: C/C) PM notified: N/A 	info recorded in the Front Counter eLog?	Yes No N/A)
→ For samples received in FBKS, ANCH staff will verify all criteria are reviewed. SRF initiated in FBKS by: Were samples received within hold time? No No NA Note: Refer to form F-083 "Sample Guide" for hold times. Do samples match COC* (i.e., sample IDs, dates/times collected)? No NA Note: Refer to form F-083 "Sample Guide" for hold times. Were analyses requested unambiguous? No NA Note: Refer to form F-083 "Sample Guide" for hold times. Were samples in good condition (no leaks/cracks/breakage)? No NA No NA Were samples (i.e., vOAs, LL-Hg) in cooler with samples? Yes No NA Mereall soil VOAs field extracted with MeOH+BFB? Were all vOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No MA Mereall soil VOAs field extracted with MeOH+BFB? Yes No Yes No Yes No MA For preserved waters (other than VOA vials, LL-Mercury or microbiological analyses), was pH verified and compliant? Yes No MA If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No MA Merearcharter for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No NA For SITE-SPECIFIC QC, e.g. BMs//BMSD//BDUP, were conta	\rightarrow For samples received with payment, note amount (\$) and whether cas	h / check / CC (circle one) was received.
Were samples received within hold time? No No N/A Note: Refer to form F-083 "Sample Guide" for hold times:. Do samples match COC* (i.e., sample IDs, dates/times collected)? No N/A No N/A Were analyses requested unambiguous? No N/A No N/A Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply): Bubble Wrap No No N/A Separate plastic bags Vermiculite Other: Yes No N/A Were proper containers (type/mass/volume/preservative*) used? Yes No N/A Were all VOA vials free of headspace (i.e., bubbles <_6 mm)?	→ For samples received in FBKS, ANCH staff will verify all criteri	a are reviewed. S	RF initiated in FBKS by:
Do samples match COC* (i.e., sample IDs, dates/times collected)? Were analyses requested unambiguous? No N/A Were analyses requested unambiguous? No N/A Were samples in good condition (no leaks/cracks/breakage)? No N/A Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other: Were proper containers (type/mass/volume/preservative*) used? Yes No N/A Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No N/A Were all vOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No N/A Por preserved waters (other than VOA vials, LL-Mercury or microbiological analyses), was pH verified and compliant? Yes No N/A If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No N/A For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No N/A For SITE-SPECIFIC QC, e.g. BMS/BMS/D/DUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes	Were samples received within hold time?	Yes No N/A	Note: Refer to form F-083 "Sample Guide" for hold times.
Were analyses requested unambiguous? Yes No N/A Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other: Were proper containers (type/mass/volume/preservative*) used? Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes No NA Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No Yes No Yes No Were all soil VOAs field extracted with MeOH+BFB? Yes No	Do samples match COC* (i.e., sample IDs, dates/times collected)?	Wes No N/A	Note: If times differ <1hr, record details and login per COC.
Were samples in good condition (no leaks/cracks/breakage)? Yes No Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other: Were proper containers (type/mass/volume/preservative*) used? Yes No Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes No Were all VOA vials free of headspace (i.e., bubbles <6 mm)?	Were analyses requested unambiguous?	Ver No N/A	
Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other: Were proper containers (type/mass/volume/preservative*) used? Yes No (N/A) Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes No (N/A) Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No (N/A) Were all soil VOAs field extracted with MeOH+BFB? Yes No (N/A) For preserved waters (other than VOA vials, LL-Mercury or microbiological analyses), was pH verified and compliant? Yes No (N/A) If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No (N/A) For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No (N/A) For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Yes No (N/A) For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No (N/A) Were bottles/paperwork flagged accordingly? Yes No (N/A) SRF Completed by: CRO) PM notified: N/A Were bottles of anapte numbering/labeling completed? Yes No (N/A) Yes No (N/A) SRF Completed by: CRO) PM notified: N/A	Were samples in good condition (no leaks/cracks/breakage)?	Yes No	
Separate plastic bagsVermiculiteOther:Image: Control of the control	Packing material used (specify all that apply): Bubble Wrap		
Were proper containers (type/mass/volume/preservative*) used? Yes No N/A	Separate plastic bags Vermiculite Other:	- 0	
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes No Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No Were all soil VOAs field extracted with MeOH+BFB? Yes No For preserved waters (other than VOA vials, LL-Mercury or microbiological analyses), was pH verified and compliant? Yes No If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by:	Were proper containers (type/mass/volume/preservative*) used?	Yes No (N/A)	Exemption permitted for metals (e.g., 200.8/6020A).
Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)? Yes No WA Were all soil VOAs field extracted with MeOH+BFB? Yes No WA For preserved waters (other than VOA vials, LL-Mercury or microbiological analyses), was pH verified and compliant? Yes No WA If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No WA For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No NA For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Yes No NA For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No NA For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A	Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No (NA)	
Were all soil VOAs field extracted with MeOH+BFB? Yes No (MA) For preserved waters (other than VOA vials, LL-Mercury or Yes No (MA) microbiological analyses), was pH verified and compliant? Yes No (MA) If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No (MA) For special handling (e.g., "MI" soils, foreign soils, lab filter for Yes No (MA) dissolved, lab extract for volatiles, Ref Lab, limited volume), Yes No (MA) were bottles/paperwork flagged (e.g., sticker)? Yes No (MA) For RUSH/SHORT Hold Time, were COC/Bottles flagged Yes No (MA) accordingly? Was Rush/Short HT email sent, if applicable? Yes No (MA) For any question answered "No," has the PM been notified and Yes No (MA) the problem resolved (or paperwork put in their bin)? Yes No (MA) Was PEER REVIEW of sample numbering/labeling completed? Yes No (MA)	Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)?	Yes No (N/A	
For preserved waters (other than VOA vials, LL-Mercury or microbiological analyses), was pH verified and compliant? Yes No WA If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No WA For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No WA For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Was Rush/Short HT email sent, if applicable? Yes No WA For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: Yes No N/A Peer Reviewed by: N/A	Were all soil VOAs field extracted with MeOH+BFB?	Yes No (AHA)	
microbiological analyses), was pH verified and compliant? Yes No N/A If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No N/A For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No N/A For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Was Rush/Short HT email sent, if applicable? Yes No N/A For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: Yes No N/A Peer Reviewed by: N/A	For preserved waters (other than VOA vials, LL-Mercury or	Yes No N/A	
If pH was adjusted, were bottles flagged (i.e., stickers)? Yes No N/A For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No N/A For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Was Rush/Short HT email sent, if applicable? Yes No N/A For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: N/A	microbiological analyses), was pH verified and compliant?		
For special handling (e.g., "MI" soils, foreign soils, lab filter for dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? Yes No NA For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Was Rush/Short HT email sent, if applicable? Yes No NA For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No NA For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No NA SRF Completed by: CRO Was PEER REVIEW of sample numbering/labeling completed? Yes No NA Peer Reviewed by: N/A	If pH was adjusted, were bottles flagged (i.e., stickers)?	Yes No (N/A)	
dissolved, lab extract for volatiles, Ref Lab, limited volume), were bottles/paperwork flagged (e.g., sticker)? For RUSH/SHORT Hold Time, were COC/Bottles flagged Yes No N/A accordingly? Was Rush/Short HT email sent, if applicable? Yes No N/A For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were Yes No N/A containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and Yes No N/A the problem resolved (or paperwork put in their bin)? PM notified: N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: N/A	For special handling (e.g., "MI" soils, foreign soils, lab filter for	Yes No (N/A)	
were bottles/paperwork flagged (e.g., sticker)? Yes No NA For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Was Rush/Short HT email sent, if applicable? Yes No NA For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by:	dissolved, lab extract for volatiles, Ref Lab, limited volume),		
For RUSH/SHORT Hold Time, were COC/Bottles flagged accordingly? Was Rush/Short HT email sent, if applicable? Yes No N/A For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by:	were bottles/paperwork flagged (e.g., sticker)?		
accordingly? Was Rush/Short HT email sent, if applicable? Image: Constant of the problem resolved (or paperwork put in their bin)? For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A SRF Completed by: CROMERCIFIC WORKSTOWN OF COMPLeted by: CROMERCIFIC WORKSTOWN OF COMPLeteD STREED FOR THE PM NOTIFIED	For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes No (N/A	
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were containers / paperwork flagged accordingly? Yes No N/A SRF Completed by: CRO For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A SRF Completed by: CRO Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: N/A	accordingly? Was Rush/Short HT email sent, if applicable?		
containers / paperwork flagged accordingly? For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A SRF Completed by: CRO Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: N/A	For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were	Yes No (N/A)	
For any question answered "No," has the PM been notified and the problem resolved (or paperwork put in their bin)? Yes No N/A SRF Completed by: CRO Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A PM notified: N/A	containers / paperwork flagged accordingly?		~ ~
the problem resolved (or paperwork put in their bin)? PM notified: N/A Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: N/A	For any question answered "No," has the PM been notified and	Yes No N/A	SRF Completed by: CRO
Was PEER REVIEW of sample numbering/labeling completed? Yes No N/A Peer Reviewed by: N/A	the problem resolved (or paperwork put in their bin)?	\sim	PM notified: N/A
	Was PEER REVIEW of sample numbering/labeling completed?	Yes No N/A	Peer Reviewed by: N/A

Additional notes (if applicable):

Note to Client: Any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	Preservative	Container Condition
1145790001-A	No Preservative Required	OK			
1145790001 - B	No Preservative Required	OK			
1145790002-A	No Preservative Required	OK			
1145790002-В	No Preservative Required	OK			

Container Condition Glossary

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was

insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

				1	Age (Year	s)				Sample
Season ^a	3	4	5	6	7	8	9	10	11	Size
1984	0.0	0.0	10.2	77.2	9.1	0.0	0.0	0.0	0.0	est
1985	0.0	0.0	3.3	21.5	68.2	4.8	1.3	0.0	0.0	est
1986	0.0	0.0	0.0	41.2	50.8	8.0	0.0	0.0	0.0	199
1987	0.0	0.5	0.0	1.0	59.0	32.0	7.6	0.0	0.0	196
1988	0.8	0.0	63.5	1.6	0.8	31.0	2.4	0.0	0.0	126
1989	0.0	18.3	0.0	72.0	0.0	0.0	9.3	0.3	0.0	est
1990	0.0	7.3	86.0	3.3	2.7	0.0	0.0	0.7	0.0	150
1991	0.0	4.9	51.0	33.6	1.4	5.6	0.0	2.1	0.0	143
1992	0.0	0.0	59.7	36.4	3.9	0.0	0.0	0.0	0.0	154
1993	0.0	0.0	3.4	79.7	14.9	2.0	0.0	0.0	0.0	148
1994	0.0	0.7	10.8	31.7	46.8	9.4	0.7	0.0	0.0	139
1995	0.0	0.0	59.5	23.6	7.4	7.4	2.0	0.0	0.0	148
1996	0.0	0.0	5.3	84.7	9.3	0.7	0.0	0.0	0.0	150
1997	0.0	0.0	43.2	11.6	41.1	4.1	0.0	0.0	0.0	146
1998	0.0	27.2	13.2	45.7	4.0	8.6	1.3	0.0	0.0	151
1999	0.0	23.3	62.0	2.7	8.0	2.7	1.3	0.0	0.0	150
2000	0.0	3.5	33.6	37.1	4.2	11.2	4.2	3.5	2.8	143
2001	0.0	10.3	16.5	37.1	14.4	4.1	12.4	5.2	0.0	97
2002	0.0	7.6	72.9	14.6	4.2	0.7	0.0	0.0	0.0	144
2003	0.0	0.0	20.0	75.0	5.0	0.0	0.0	0.0	0.0	est
2004	0.0	0.7	11.3	51.1	34.8	1.4	0.0	0.7	0.0	141
2005	0.0	1.0	1.0	50.5	36.9	10.7	0.0	0.0	0.0	103
2006	0.0	0.0	3.2	24.2	58.9	12.6	1.1	0.0	0.0	95
2007	0.0	12.8	17.9	28.2	35.9	5.1	0.0	0.0	0.0	39
2008	0.0	5.1	32.2	61.0	1.7	0.0	0.0	0.0	0.0	59
2009	0.0	11.7	69.2	17.5	1.7	0.0	0.0	0.0	0.0	120
2010	0.0	0.7	23.4	46.8	24.8	3.5	0.7	0.0	0.0	141
2011	0.0	0.0	15.2	64.5	15.2	5.1	0.0	0.0	0.0	138
2012	0.0	21.8	68.9	9.2	0.0	0.0	0.0	0.0	0.0	119
2013	0.0	20.9	67.2	11.9	0.0	0.0	0.0	0.0	0.0	134
2014	0.0	15.6	53.8	28.9	1.7	0.0	0.0	0.0	0.0	173

Appendix H. Age frequencies of Arctic Cisco caught in 7.6-cm mesh gill nets in the fall subsistence fishery, Nigliq Channel, Colville River, 1988–2014.

^a Monitoring was conducted by 4 different entities: North Slope Borough in 1984; MJM Research 1985–2005; LGL Limited in 2006; and ABR, Inc. 2007–2014

est = estimated