Alpine Facilities Spring 2000 Breakup Monitoring Alpine Development Project COLVILLE RIVER DELTA NORTH SLOPE, ALASKA

2000 SPRING BREAKUP AND HYDROLOGIC ASSESSMENT

Alpine Facilities Spring 2000 Breakup Monitoring

Alpine Development Project

_{Ву} Baker

Michael Baker Jr., Inc. 4601 Business Park Blvd., # 42 Anchorage, Alaska 99503

November 21, 2000

24540-MBJ-RPT-001

Contents

1.0	Introduction	
2.0	Breakup Summary	4
2.1	Photographic Documentation	
2.2	Water Surface Elevations and Observations	
2.3	Peak Discharge in the Colville River Delta	5
2.4	Channel Ice Observations	5
2.4	Comparison of Observed and Predicted Water Surface Elevations	5
2.5	Alpine Facility Bridge and Culvert Observations	8
2.6	Gravel Pad and Road Erosion	
3.0	References	12

Appendices

Appendix A	Photographs of Flooding
Appendix B	Water Surface Elevations and Observations
Appendix C	Channel Ice Observations
Appendix D	Observations at Culverts and Bridges
Appendix E	Photographs of High Water Line at Alpine Facilities

1.0 Introduction

This report summarizes the observations and measurements made during the Spring 2000 breakup of the Colville River Delta in and around the Alpine Development.

Fieldwork for the Spring 2000 breakup monitoring was performed between 28 May 2000 and 22 June 2000. Water surface elevations were monitored at six permanent staff gages located adjacent to the Alpine Facility and at four other locations within the Colville River Delta. Discharge measurements were made at the two bridges and at selected culverts along the roadway connecting the CD-1 and CD-2 pads. Channel ice observations were made on the main channels of the delta to document the clearing of the low water channel ice sheet and the location of ice-jams. Photo documentation of the flooding around the Alpine Facility was also obtained.

All of the elevations presented in this report are in feet and are based on the British Petroleum Mean Sea Level (BPMSL) datum unless otherwise noted.

2.0 Breakup Summary

2.1 Photographic Documentation

Photographic documentation of the flow around the Alpine Facility was obtained on 10 June and 12 June 2000, and is presented in Appendix A.

2.2 Water Surface Elevations and Observations

Water surface elevation measurements began on 4 June 2000 when standing water was first observed around the permanent staff gages. The peak water surface elevation in the immediate vicinity of the Alpine Facility was 9.6 feet and was recorded at Staff Gage 6 (Figure B-2, Appendix B). The peak water surface elevation occurred sometime between the morning of 12 and 13 June 2000. The peak water surface elevations recorded at the five remaining permanent staff gages ranged from 8.75 to 9.48 feet. The water surface elevation and observation records for these locations are presented in Tables B-1 through B-6, Appendix B.

To monitor water surface elevations in the Nechelik Channel upstream from the Alpine Facility and at the head of the delta, temporary staff gages were established at selected locations (Figure B-1, Appendix B). At the head of the delta (Monument 1), the water surface elevation peaked during the night of 9-10 June 2000, at an elevation of 19.33 feet. In the Nechelik Channel (Monuments 12 and 22), the water surface elevation peaked sometime after the morning of 11 June and prior to 15 June 2000. It seems most likely that it occurred between the morning of 12 and 13 June, based on the measurements at other locations. The peak water surface elevations recorded at Monuments 12 and 22 were 13.26 and 9.58 feet, respectively. In the lower East Channel (Jim and Tina Helmricks' house, near Monument 35), the water surface elevation peaked on 11 June at approximately 12:30 hours, at an elevation of 7.39 feet. The peak water surface elevation and observation records for these locations are presented in Tables B-7 through B-10, Appendix B.

Water surface elevations measured immediately upstream and downstream of the gravel road between CD-1 and CD-2 (Staff Gages 3 and 4 and Staff Gages 6 and 7) indicate that the greatest difference between the water surface elevation on either side of the gravel road was 0.8 feet. This difference occurred on 9 June 2000, on the rising limb of the hydrograph, between permanent Staff Gages 3 and 4.

2.3 Peak Discharge in the Colville River Delta

The peak discharge at the head of the Colville River Delta was approximately 580,000 cubic feet per second (cfs). It is estimated that at the head of the delta this discharge will be equaled or exceeded, on average, approximately once every 25 years (Michael Baker Jr., Inc. et. al, 1998). Discharge on the night of 9 June, on 11 June, and on 12 June 2000 was probably within 5 to 10 percent of the estimated peak discharge. The available data does not support a quantitative estimate of the discharge on 10 June 2000.

2.4 Channel Ice Observations

Ice floe observations were begun on 6 June 2000, when the ice cover within the Colville River Delta began to breakup. By 12 June 2000 all of the major channels of the Colville River Delta had cleared of channel ice and ice jams, with the exception of the Nechelik Channel. The Nechelik had cleared to approximately river mile N7, about one mile north of CD-2. The progression of the channel ice clearing and ice jamming is shown on a series of figures presented in Appendix C.

2.4 Comparison of Observed and Predicted Water Surface Elevations

The peak water surface elevations in the immediate vicinity of the Alpine Facility were compared (Table 2-1) to the elevations predicted by the two-dimensional surface water model developed for the Colville River Delta (Michael Baker Jr., Inc., 1998 and Shannon & Wilson, Inc., 1997). Based on a linear interpolation between the water surface elevations predicted for the 10- and 30- year open water floods, it is estimated that the peak water surface elevations experienced this spring might be equaled or exceeded on average about once every 19 years. At individual staff gages located in the immediate

vicinity of the Alpine Facility (permanent Staff Gages 1, 3, 4, 6, 7, 8 and the temporary staff gage at Monument 22), the estimate of the recurrence interval varied from 16 to 24 years.

Observation Site	Observed Peak Water Surface Elev. (ft)	Predicted 10-yr Water Surface Elev. (ft)	Predicted 30-yr Water Surface Elev. (ft)	Predicted 50-yr Water Surface Elev. (ft)	Approximate Recurrence Interval of Observed Peak Water Surface Elevation (1) (yrs)
Staff G. 1	9.1	8.4	10.2	11.2	18
Staff G. 3	9.48	8.6	10.8	11.8	18
Staff G. 4	8.75	7.6	9.2	9.9	24
Staff G. 6	9.64	8.8	10.9	11.9	18
Staff G. 7	8.84		9	9.8	N/A (2)
Staff G. 8	9.11	8.8	9.9	10.7	16
Mon 01	19.33	19	21.7	23	25 (3)
Mon 12	13.26	12	14	14.9	23
Mon 22	9.58	8.6	10.7	11.8	19
Mon 35	7.39	4.5	5.2	5.4	Over 200 (4)

Table 2-1: Comparison of Observed and Predicted Water Surface Elevations

Notes:

 The recurrence interval was estimated based on water surface elevations predicted with a two-dimensional open-water surface-water model of the Colville River Delta (Michael Baker Jr., Inc., 1998 and Shannon & Wilson, Inc., 1997). Thus, the impact on the recurrence interval of an ice cover and/or ice jams has not been considered. The larger the recurrence interval, the less likely it will be that an ice cover and/or ice jams will significantly affect the recurrence interval associated with a particular water surface elevation.

2. An estimate of the water surface elevation in the immediate vicinity of Staff Gage 7 is not available. The finite elements within the immediate vicinity of Staff Gage 7 are turned off in the two-dimensional surface water model of the 10-year open water flood.

3. The recurrence interval was estimated from the computed peak discharge and the flood frequency relationship developed for the head of the delta (Michael Baker Jr., Inc. and Shannon & Wilson, Inc., 1998).

4. The peak water surface elevation was caused by a downstream ice-jam.

5. The locations of the monuments and staff gages are shown in Appendix B, Figures 1 and 2, respectively.

At Monument 12, located approximately half way between the Alpine Facility and Monument 1 at the head of the delta, the Spring 2000 peak water surface elevation has an average expected recurrence interval of 23 years. At Monument 1, the Spring 2000 peak discharge has an average expected recurrence interval of 25 years.

The reason the recurrence interval is higher at the head of the delta than at the Alpine Facility may be related to temporary floodwater storage within the delta. As a flood moves through the delta, the peak is attenuated due to the filling of depressions and backwater areas (i.e., temporary floodwater storage). The two-dimensional surface water

model, on the other hand, assumed that steady-state conditions existed at the time of the peak discharge (i.e., no attenuation of the discharge). Thus, the two-dimensional surface water model may somewhat over-estimate the water surface elevation within the lower reaches of the delta due to attenuation of the flood peak discharge. The magnitude of this possible over-estimation is likely to be on the order of inches and to be of about the same magnitude as the difference in water surface elevation between the 19- and 25-year floods.

It should also be noted that the two-dimensional surface water model does not consider the impact of an ice sheet or ice jams on the water surface elevation. At the time the model was constructed, it was assumed that during a large flood (such as the 50-, 100-, and 200-year floods for which the model was constructed) the presence of an ice sheet or ice jams would have little effect on the water surface elevation. At the time of the Spring 2000 peak water surface elevation at the Alpine Facility, there were ice jams at the coast in several of the channels. The extent to which these ice jams impacted the water surface elevation at the Facility cannot be quantitatively assessed, but after reviewing all of the data, it is thought that they probably had only a small to minor impact on the peak water surface elevation.

At Monument 35, it is estimated that the peak water surface elevation was approximately 2.5 feet higher than the estimated 25-year flood water surface elevation based on the 10and 30-year open water flood profiles developed with the two-dimensional surface water model. Thus, the probable effect of the offshore ice jam was to raise the water surface elevation more than 2.5 feet. This value should be used cautiously. Monument 35 is located close to the downstream boundary of the two-dimensional surface water model and therefore the water surface elevation estimates at this location are subject to considerably more error than those at the Alpine Facility.

In assessing the recurrence interval associated with the flood peak discharge and the peak water surface elevation at the head of the delta, an ambiguity was found. Based on the 10- and 30-year open water flood profiles developed with the two-dimensional surface water model, the average recurrence interval of the Spring 2000 flood peak water surface

is estimated to be about 12 years. However, using normal depth computations to estimate the magnitude of the flood peak discharge and the flood frequency relationship developed for the delta (Michael Baker Jr., Inc. and Shannon & Wilson, Inc., 1998) the flood peak discharge is estimated to have an average recurrence interval of about 25 years. The reason for this difference is unexplained at this time. Therefore, until the reason for this difference can be confirmed, it will be important to continue to measure both water surface slope and water surface elevation at the head of the delta whenever an estimate of total discharge is required.

2.5 Alpine Facility Bridge and Culvert Observations

Water surface elevations at the ends of the culverts were recorded three to six days after the peak water surface elevation. Differences in water surface elevation between the south and north ends of the culverts varied from -0.53 to 0.55 feet (Tables D-2, D-3 and D-4, Appendix D). Culverts C-4 and C-9 were the only culverts with a difference of more than 0.50 feet, approximately six days after the peak water surface elevation. Both culverts C-4 and C-9 had snow and ice in the culverts six days after the peak water surface elevation. The snow and ice was responsible for the majority of the difference in the water surface elevation at both culverts. Thus, the installation of the culverts does not appear to be a problem.

Depressions in the ground surface at the ends of the culverts were documented to provide a baseline for scour monitoring (Tables D-2 and D-3, Appendix D). All of the depressions, with the exception of CS-10 and CS-11, appear to have been caused by the culvert construction effort and did not appear to be the result of water scour. Observations at CS-10 and CS-11 indicated that water scour may have caused some of the depression. Water surface elevations and other observations made at the culverts are presented in Tables D-1, D-2, and D-3, Appendix D. The difference between the water surface elevation at each end of each culvert is summarized in Table D-4, Appendix D.

Water velocity was measured at the two bridges and at selected culverts along the road between CD-1 and CD-2. At the East bridge (large bridge), the maximum discharge

passing through the bridge during the Spring 2000 breakup is estimated to be 7100 cubic feet per second (cfs). The average velocity at the time of the maximum discharge is estimated to be 3.6 feet per second. At the West bridge, (small bridge), the maximum discharge passing through the bridge during the Spring 2000 breakup is estimated to be 975 cubic feet per second (cfs). The average velocity at the time of the maximum discharge is estimated to be between 4.0 to 4.6 feet per second. Summaries of the discharge measurements are presented in Appendix D. The maximum discharge estimates are based on these measurements and the water surface elevations recorded on either side of the bridges.

Water velocity measurements were also made in selected culverts along the road between CD-1 and CD-2. The highest recorded discharge and associated velocity, along with the maximum likely peak discharge and associated velocity, are presented in Table 2-2. The maximum likely peak discharge and associated velocity are computed based on a clean culvert barrel. In some cases (Appendix D), there was snow and ice still remaining in the culvert barrel after the flood had passed. It is estimated that the peak discharge occurred on 12 June 2000, in conjunction with the peak water surface elevation. Summaries of the discharge measurements are presented in Appendix D.

	Highest Field Measurement (2)			Maximum Likely Peak (4)		
Structure (1)	Date	Discharge (cfs)	Average Velocity (ft/s)	Date (3)	Discharge (cfs)	Average Velocity (ft/s)
East Bridge	6/9/00	3780	3.27	6/12/00	7085	3.55
West Bridge	6/10/00	577	3.30	6/12/00	975	4.62
Culvert C-1	6/10/00	28.1	2.78	6/12/00	57.1	4.54
Culvert C-2	6/10/00	36.9	3.79	6/12/00	57.3	4.56
Culvert C-3	6/11/00	26.6	3.22	6/12/00	55.5	4.75
Culvert C-4	6/10/00	24.3	3.87	6/12/00	52.9	4.57
Culvert C-5	6/11/00	15.4	3.57	6/12/00	37.9	4.79
Culvert C-6	N/A	N/A	N/A	6/12/00	9.4	4.50
Culvert C-7	N/A	N/A	N/A	6/12/00	16.2	4.95
Culvert C-8	N/A	N/A	N/A	6/12/00	5.7	3.92
Culvert C-9	N/A	N/A	N/A	6/12/00	3.8	3.53
Culvert C-10	N/A	N/A	N/A	6/12/00	37.1	5.51
Culvert C-11	N/A	N/A	N/A	6/12/00	52.0	4.54
Culvert C-12	N/A	N/A	N/A	6/12/00	18.7	3.83
Culvert C-13	N/A	N/A	N/A	6/12/00	57.5	4.61
Culvert C-14	N/A	N/A	N/A	6/12/00	38.8	4.12
Culvert C-15	N/A	N/A	N/A	6/12/00	39.0	4.61
Culvert C-16	N/A	N/A	N/A	6/12/00	34.8	4.72
Culvert C-17	6/11/00	21.2	3.37	6/12/00	46.4	5.06
Culvert C-18	N/A	N/A	N/A	6/12/00	56.4	4.85
Culvert C-19	N/A	N/A	N/A	6/12/00	56.4	4.78
Culvert C-20	N/A	N/A	N/A	6/12/00	56.6	4.91
Culvert C-21	6/11/00	23.8	2.53	6/12/00	56.4	4.76
Culvert C-22	6/10/00	24.2	3.62	6/12/00	51.0	4.85
Culvert C-23	6/10/00	19.7	4.57	6/12/00	42.1	5.2
Culvert C-24	6/10/00	17.9	4.15	6/12/00	43.5	5.47

Table 2-2Measured and Maximum Likely Peak Discharge and Velocity inAlpine Drainage Structures

Notes:

1. See Figure D-1, Appendix D for culvert and bridge site plan.

2. The highest measured data was not recorded at the time of the flood peak.

3. It is estimated that the peak discharge and velocity occurred between the morning of 12 and 13 June 2000.

4. The maximum likely peak discharge and velocity estimate for the culverts is based on a clean culvert barrel. In actuality, some culverts were still blocked by snow and ice after the flood peak had receded (Appendix D).

2.6 Gravel Pad and Road Erosion

Visual inspection of the road and pads revealed the presence of a high water mark (Appendix E). The high water mark appeared to have been caused by either the settlement of the gravel embankment below the flood peak water surface or the removal of fines from the gravel embankment. However, no material was observed deposited in significant quantities along the toe of the embankment.

3.0 References

Michael Baker Jr., Inc. 1998. Colville River Delta Two-Dimensional Surface Water Model, Project Update. Prepared for: ARCO Alaska, Inc., Anchorage.

Michael Baker Jr., Inc. and Shannon & Wilson, Inc. 1998. *Colville River Flood-Frequency Analysis, North Slope, Alaska*. Prepared for: ARCO Alaska, Inc., Anchorage.

Shannon & Wilson, Inc. 1997. *Colville River Two-Dimensional Surface Water Model*. Prepared for: Michael Baker Jr., Inc., Anchorage, Alaska.

Appendix A

Photographs of Flooding

List of Figures:

- Figure A-1 June 10, 2000 Flooding Near Alpine Facilities (6 sheets)
- Figure A-2 June 12, 2000 Flooding Near Alpine Facilities (5 sheets)
- Figure A-3 June 12, 2000 Flooding Near Alpine Facilities (1 sheet)
- Figure A-4 June 10, 2000 Flooding Near East Channel Pipeline Crossing
- Figure A-5 June 9, 2000 Rafted Ice Near Head of Nechelik Channel

200 SERING BEEAKUE
CD-2 CD-2
200 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
2000 SPRING BREAKUP
COLVILLE RIVER DELTA A-1
COLVILLE RIVER DELTA

	North		
CD 2 Access			
OD-2 ALLESS			
(2 of 6)			
aker Michael Baker Jr., Inc.	2000 SPRING BREAK	KUP	Figure
20-Sep-00 Project: 24540-157-0000	COLVILLE RIVER DI	ELTA	A-1
ed: TAR Scale	FLOODING NEAR ALPINE F	FACILITIES	Sheet 3 of

	North	
		Swale
	D-2 Access	
	Ice Sheet on Lake	
	and the second sec	
10, 2000 (5 of 6)		
	2000 SPRING BREAKLIP	Fiau
er Michael Baker Jr., Inc.		

Nechelik Channel CD-2 Gravel Access CD-2 Gravel Access CD-2 Gravel Access x, 2000 (1 of 5)		North
e Michael Baker Jr., Inc.	Nechelik Channel	
CD-2 Gravel Access CD-2 Gravel Access (1 of 5)		This and the second sec
2, 2000 (1 of 5) Michael Baker Jr., Inc. 2000 SPRING BREAKUP COLVIL LE RIVER DELTA		CD-2 Gravel Access
2, 2000 (1 of 5) Michael Baker Jr., Inc. 2000 SPRING BREAKUP COLVILLE RIVER DELTA		
2, 2000 (1 of 5) Michael Baker Jr., Inc. 2000 SPRING BREAKUP COLVILLE RIVER DELTA		2 .
Michael Baker Jr., Inc. Project 24540-157-0000 2000 SPRING BREAKUP COLVILLE RIVER DELTA		
Michael Baker Jr., Inc. 10 Project 24540-157-0000 COLVILLE RIVER DELTA	, 2000 (1 of 5)	
10 Project 24540-157-0000 COLVILLE RIVER DELTA	, 2000 (1 of 5)	
	, 2000 (1 of 5) Michael Baker Jr., Inc.	2000 SPRING BREAKUP

		North
		CD-2 Gravel Access
		Ice Sheet Lake
une 12. 2000	(3 of 5)	
-,		
Pakar		
ate: 20-Sep-00	Project: 24540-157-0000	COLVILLE RIVER DELTA
	File: A-2 figures	
IAR		

Rafted 5.8' thick ice pan, 15' to 20' on a side. (6/09/00)

Rafted 5.9' thick ice pan, 15' to 20' on a side. (6/09/00)

Baker Michael Baker Jr., Inc.		
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: A-5 figure.doc
Checked: JWA		Scale:

2000 SPRING BREAKUP COLVILLE RIVER DELTA

figure:

RAFTED ICE NEAR HEAD OF NECHELIK CHANNEL

Appendix B

Water Surface Elevations and Observations

List of Figures:

Figure B-1	Temporary Staff Gage Locations
Figure B-2	Permanent Staff Gage Locations

List of Tables:

Table B-1	Water Surface Elevations and Observations at Permanent Staff Gage #1
Table B-2	Water Surface Elevations and Observations at Permanent Staff Gage #3
Table B-3	Water Surface Elevations and Observations at Permanent Staff Gage #4
Table B-4	Water Surface Elevations and Observations at Permanent Staff Gage #6
Table B-5	Water Surface Elevations and Observations at Permanent Staff Gage #7
Table B-6	Water Surface Elevations and Observations at Permanent Staff Gage #8
Table B-7	Water Surface Elevations and Observations at Survey Monument #1
Table B-8	Water Surface Elevations and Observations at Temporary Bench Mark 01D
Table B-9	Water Surface Elevations and Observations at Temporary Bench Mark 01U
Table B-10	Water Surface Elevations and Observations at Survey Monument #12
Table B-11	Water Surface Elevations and Observations at Survey Monument #22
Table B-12	Water Surface Elevations and Observations Near Survey Monument #35
Table B-13	Summary of Breakup Data Obtained at the Head of the Colville River Delta, $1962 - 2000$

		Water Surface	
Date	Time	Elevation (feet)	Observations
06-02-00			Set faceplate on Staff Gage #1 from 1.48 to approximately 15.00 feet.
06-03-00	10:11	1.49	
06-08-00	13:40	~1.00	Water does not quite touch staff gage at this point. No continuous ice either upstream or downstream of gage.
06-09-00	11:18	3.22	± 0.02 feet
	18:08	3.47	± 0.02 feet
06-10-00	08:35	5.80	± 0.03 feet
	18:20	7.05	± 0.05 feet
06-11-00	08:24	7.95	± 0.01 feet
	20:58	8.31	\pm 0.02 feet. Ice floes are present in channel. Intermediate high water mark of 8.46 recorded.
06-12-00	07:23	8.80	\pm 0.05 feet. Ice floe 6 inches upstream of gage. Could not see chalk line due to ice floe. Ice floes still present, with some beached about 300 feet downstream of gage on left bank.
High Water Mark		9.10	± 0.05 feet
06-13-00	09:25	7.00	± 0.03 feet
	17:25	6.36	± 0.01 feet
06-14-00	09:05	5.32	\pm 0.01 feet. Ice floes still present in channel.
	20:05	4.80	± 0.01 feet
06-15-00	08:37	4.19	± 0.03 feet
	21:27	3.77	± 0.01 feet
06-16-00	08:14	3.40	\pm 0.05 feet. Faceplate is slightly bent between 3.0 and 5.0 feet.
	17:55	3.05	± 0.05 feet
06-17-00	08:07	2.62	
	20:07	2.24	± 0.02 feet
06-18-00	10:39	1.83	± 0.02 feet
06-19-00	16:20	1.29	\pm 0.02 feet. Straightened staff gage faceplate.

Table B-1: Water Surface Elevations and Observations at Permanent Staff Gage #1

Notes:

1. Coordinates for Staff Gage #1 are longitude 5975948.0, latitude 386920.3 and are Alaska State Plane, Zone 4, NAD 27.

2. Elevations are based on an elevation of 2.16 feet (BPMSL) located at the top of the 1-inch angle iron welded on the 5-inch drill stem staff gage support, which was surveyed by LCMF Incorporated.

Alpine Facilities Spring 2000 Breakup Monitoring, Alpine Development Project 24540-MBJ-DOC-001, November 21, 2000

		Water Surface	
Date	Time	Elevation (feet)	Observations
06-03-00	14:12	5.39	Placed staff gage faceplate from 6.67 to 15.07 feet. Standing water in hole at staff gage
06-04-00	14:39	5.37	Standing water around staff gage
06-08-00	10:59	5.34	Intermediate high water mark of 5.40 feet recorded
06-09-00	09:33	6.70	± 0.01 feet
	13:27	7.21	± 0.02 feet
	17:09	7.20	± 0.02 feet
	23:08	7.38	± 0.03 feet
06-10-00	10:40	7.61	± 0.02 feet
	14:23	7.77	± 0.03 feet
	15:34	7.87	± 0.04 feet
	17:20	7.87	± 0.03 feet
	18:45	7.89	± 0.02 fee.
06-11-00	08:57	7.87	Intermediate high water mark of 7.96 feet recorded
	12:08	7.92	± 0.01 feet
	14:26	7.97	± 0.02 feet
	15:42	7.96	± 0.02 feet.
06-12-00	08:00	9.18	± 0.02 feet
High Water Mark		9.48	± 0.02 feet
06-13-00	07:59	6.57	± 0.03 feet
	14:50	6.00	± 0.02 feet
06-14-00	09:48	5.36	Standing water. No flow.
	17:54		No flow.
Notes:			
1. Coordinates for Staff Gage #3 are longitude 5975040.8, latitude 379259.2 and are Alaska State Plane, Zone 4, NAD 27.			

Table B-2: Water Surface Elevations and Observations at Permanent Staff Gage #3

Elevations are based on an elevation of 6.00 feet (BPMSL) located at the top of the 1-inch angle iron welded on the 5-inch drill stem staff gage support

which was surveyed by LCMF Incorporated.

		Water Surface Elevation	
Date	Time	(feet)	Observations
06-03-00			Placed staff gage faceplate from 6.67 to 13.32 feet.
06-04-00	14:54	5.46	Standing water around gage.
06-08-00	10:53	5.42	
06-09-00	09:31	6.28	± 0.01 feet
	13:28	6.47	± 0.03 feet
	17:09	6.46	± 0.02 feet
	23:09	6.60	± 0.02 feet
06-10-00	10:41	7.01	± 0.02 feet
	14:24	7.17	± 0.03 feet
	15:36	7.26	± 0.03 feet
	17:22	7.34	± 0.03 feet
	18:46	7.38	± 0.02 feet
06-11-00	08:58	7.55	± 0.01 feet. Intermediate high water mark of 7.71 recorded.
	12:07	7.65	± 0.01 feet
	14:27	7.71	± 0.02 feet
	15:43	7.71	± 0.03 feet
06-12-00	08:01	8.48	± 0.02 feet
High Water Mark		8.75	± 0.02 feet
06-13-00	08:00	6.47	± 0.02 feet
	14:51	5.96	± 0.01 feet
06-14-00	09:48	5.34	Standing water. No flow
	17:54		No flow.
Mada			

Table B-3: Water Surface Elevations and Observations at Permanent Staff Gage #4

Notes:

1. Coordinates for Staff Gage #4 are longitude 5975173.9, latitude 379222.5 and are Alaska State Plane, Zone 4, NAD 27.

2. Elevations are based on an elevation of 6.47 feet (BPMSL) located at the top of the 1-inch angle iron welded on the 5-inch drill stem staff gage support which was surveyed by LCMF Incorporated.

		Water Surface	
Date	Time	feet)	Observations
06-03-00	15:24	7.20	Placed staff gage face plates from 9.99 to 15.0 feet. Standing water at staff gage.
06-04-00	15:29	7.20	Standing water at gage.
06-08-00	10:06	7.24	Standing water at staff gage. Intermediate high water mark of 7.27 recorded.
06-09-00	08:59	7.26	
	17:23	7.37	\pm 0.02 feet. There is water flowing, but it is not passing through the road at this location due to snow/ice blocked culverts.
06-10-00	10:19	7.84	\pm 0.02 feet. There is water flowing, but it is not passing through the road at this location due to snow/ice blocked culverts.
	19:11	8.07	± 0.03 feet
06-11-00	09:15	7.89	Intermediate high water mark of 8.16 recorded.
	17:11	8.00	± 0.02 feet
06-12-00	08:35	9.25	± 0.04 feet
High Wa	ter Mark	9.64	± 0.02 feet
06-13-00	08:18	7.47	± 0.01 feet
	15:07	7.38	± 0.01 feet
06-14-00	10:30	7.22	Standing water. No flow.
	17:45		No flow.
Notes:			
1. Coordina	ates for Staff	f Gage #6 are	longitude 5974982.6, latitude 373555.5 and are Alaska State Plane, Zone 4, NAD 27.
2. Elevations are based on an elevation of 7.20 feet (DDMCL) levels det the ten of the 1 inch engle inconverted of the 5 inch drill store staff even summert			

Table B-4: Water Surface Elevations and Observations at Permanent Staff Gage #6

2. Elevations are based on an elevation of 7.30 feet (BPMSL) located at the top of the 1-inch angle iron welded on the 5-inch drill stem staff gage support which was surveyed by LCMF Incorporated.

		Water Surface	
Date	Time	Elevation (feet)	Observations
06-03-00			Placed staff gage faceplate from 13.32 to 9.99 feet.
06-08-00	10:03	7.17	Standing at staff gage.
06-09-00	08:58	7.17	
	17:23	7.25	
06-10-00	10:22	7.23	No indication of flow through culverts.
	19:13	7.47	± 0.01 feet
06-11-00	09:21	7.68	Intermediate high water mark of 7.76 recorded.
	17:09	7.77	± 0.01 feet
06-12-00	08:33	~8.50	Could not determine exact elevation due to unsafe wading conditions.
High Water Mark		8.84	
06-13-00	08:20	7.48	± 0.01 feet
	15:09	7.36	± 0.01 feet
06-14-00	10:32	7.18	Standing water. No flow.
	17:45		No flow.
Notes: 1. Coordina 2. Elevation	ates for Staf	f Gage #7 are	e longitude 5975132.9, latitude 373586.4 and are Alaska State Plane, Zone 4, NAD 27.

Table B-5: Water Surface Elevations and Observations at Permanent Staff Gage #7

which was surveyed by LCMF Incorporated.

		Water Surface	
Date	Time	feet)	Observations
06-03-00			Placed staff gage faceplate from 9.99 to 15.07 feet.
06-08-00	09:40	8.06	Standing water at staff gage. Intermediate high water mark of 8.12 recorded.
06-09-00	08:43	8.06	Standing water at staff gage.
	17:30		Standing water at staff gage.
06-10-00	10:14		Standing water at staff gage.
06-11-00	09:26		Standing water at staff gage.
06-12-00	08:45	8.84	Water flowing around CD-2 pad. No high water mark at this time.
High Wa	ter Mark	9.11	
06-13-00	08:32		Standing water at staff gage.
06-14-00	10:48	8.06	Standing water at staff gage.
	15:48		Standing water at staff gage.
Notes:			

Table B-6: Water Surface Elevations and Observations at Permanent Staff Gage #8

1. Coordinates for Staff Gage #8 are longitude 5974854.9, latitude 371261.2 and are Alaska State Plane, Zone 4, NAD 27.

2. Elevations are based on an elevation of 8.76 feet (BPMSL) located at the top of the 1-inch angle iron welded on the 5-inch drill stem staff gage support which was surveyed by LCMF Incorporated.

Table B-7: Water Surface Elevations and Observations at Survey Monument #1

		Water Surface Elevation	
Date	Time	(feet)	Observations
6-8-00	08:23	11.26	Ice sheet over the channel is continuous and about 1000' across.
	09:42	11.64	Ice sheet over the channel is continuous and about 1000' across.
	11:51	11.75	Ice sheet over the channel is continuous and about 1000' across.
	15:40	12.24	Ice sheet over the channel is continuous and about 1000' across.
6-9-00	06:50	15.68	Ice sheet over the channel is continuous and about 1000' across. Non-moving ice rubble exists for the other 2000'.
	14:37	18.98	Ice sheet over the channel is only along the east bank and about 35' across.
High Wa	ter Mark	19.33	
6-10-00	15:20	18.61	Ice sheet over the channel is only along the east bank and about 35' across.
	19:20	18.18	
6-11-00	10:57	15.94	
6-12-00		15.54	
6-13-00		13.21	
Notes:			

Notes:

1. Elevations are based on an elevation of 27.74 feet (BPMSL) for Monument 1, which was established by Lounsbury & Associates in 1996.

2. GPS coordinates for Monument 1 are N 70° 09' 58.3" W 150° 56' 12.6" (NAD 27). The GPS coordinates were obtained with a Garmin GPS II global positioning system.

3. The distance along the flow path from Monument 1 to TBM01D is approximately 2134 feet.

4. The distance along the flow path from Monument 1 to TBM01U is approximately 2010 feet.

Table B-8: Water Surface Elevations and Observations at Temporary Bench Mark 01D

		Water Surface Elevation	
Date	Time	(feet)	Observations
6-8-00	08:27	N/A	Water level had not reached first gauge. Ice sheet over the channel is continuous and about 1000' across.
	09:45	N/A	Water level had not reached first gauge. Ice sheet over the channel is continuous and about 1000' across.
	11:53	N/A	Water level had not reached first gauge. Ice sheet over the channel is continuous and about 1000' across.
6-9-00	07:21	15.49	Ice sheet over the channel is continuous and about 1000' across. Non-moving ice rubble exists for the other 2000'.
	00:29	15.82	Ice sheet over the channel is continuous and about 1000' across. Non-moving ice rubble exists for the other 2000'.
	14:40	18.87	Ice sheet over the channel is only along the east bank and about 35' across.
High Water	r Mark	18.87	
6-10-00	15:23	18.43	Ice sheet over the channel is only along the east bank and about 35' across.
6-11-00	11:00	N/A	All gages are dry or destroyed.
Notes: 1. The elev	vations are	based on an elev	vation of 28.62 feet (BPMSL) for TBM01D, which was established by Michael Baker Jr., Inc. in 2000. The elevation of

TBM01D was based on an elevation of 27.74 feet (BPMSL) for Monument 1, which was established by Lounsbury and Associates in 1996.

2. The distance along the flow path from Monument 1 to TBM01D is approximately 2134 feet.

3. The distance along the flow path from Monument 1 to TBM01U is approximately 2010 feet.

Table B-9: Water Surface Elevations and Observations at Temporary Bench Mark 01U

		Water Surface	
D (T •	Elevation	
Date	Time	(feet)	Observations
6-8-00	08:21	11.46	Ice sheet over the channel is continuous and about 1000' across.
	09:40	11.88	Ice sheet over the channel is continuous and about 1000' across.
	11:45	11.97	Ice sheet over the channel is continuous and about 1000' across.
6-9-00	06:46	16.61	Ice sheet over the channel is continuous and about 1000' across. Non-moving ice rubble exists for the other 2000'.
	09:21	17.56	Ice sheet over the channel is continuous and about 1000' across. Non-moving ice rubble exists for the other 2000'.
	14:34	19.23	Ice sheet over the channel is only along the east bank and about 35' across.
High Wate	er Mark	19.88	
6-10-00	15:15	18.53	Ice sheet over the channel is only along the east bank and about 35' across.
6-11-00	10:55	17.51	
6-12-00	17:15	16.38	
Notes: 1. The ele	vations are	based on an ele	vation of 28.03 feet (BPMSL) for TBM01U, which was established by Michael Baker Jr., Inc. in 2000. The elevation of

TBM01U was based on an elevation of 27.74 feet (BPMSL) for Monument 1, which was established by Lounsbury and Associates in 1996.

2. The distance along the flow path from Monument 1 to TBM01D is approximately 2134 feet.

3. The distance along the flow path from Monument 1 to TBM01U is approximately 2010 feet.

Date	Time	Water Surface Elevation (feet)	Observations
6-8-00	08:32 09:50 12:06	7.02 7.31 7.62	Ice sheet over the channel is continuous and about 600' across. Ice sheet over the channel is continuous and about 600' across. Ice sheet over the channel is continuous and about 600' across.
6-9-00	07:29 14:49	9.64 10.24	Ice sheet over the channel is continuous and about 500' across. Ice sheet over the channel is continuous and about 500' across.
6-10-00	15:41	10.68	Ice sheet over the channel is continuous and about 200' across.
6-11-00	11:07	10.82	
6-12-00 High Wate 6-15-00	er Mark	13.26	The peak water surface elevation probably occurred between the morning of $6/12 - 6/13$ based on local observations.
Notes:			

Table B-10: Water Surface Elevations and Observation at Survey Monument #12

Elevations are based on an elevation of 10.13 feet (BPMSL) for Monument 12, which was established by Lounsbury & Associates in 1996
 GPS coordinates for Monument 12 are N 70° 14' 58.3" W 150° 01' 23.5" (NAD 27) which were surveyed by Lounsbury and Associates.

Date	Time	Water Surface Elevation (feet)	Observations					
6-8-00 08:40 4.08 09:50 4.26 12:11 4.54		4.08 4.26 4.54	ce sheet over the channel is continuous and about 300' across. = 0.02 ft. Ice sheet over the channel is continuous and about 300' across. = 0.02 ft. Ice sheet over the channel is continuous and about 300' across.					
6-9-00	07:41	6.79	\pm 0.02 ft. Ice sheet over the channel is continuous and about 200' across.					
6-9-00	15.06	7.47	\pm 0.05ft. Ice sheet over the channel is continuous and about 200' across.					
6-10-00	0 15:58 7.94		\pm 0.05 ft. Ice sheet over the channel is continuous and about 175' across.					
6-11-00	11:30	7.85						
6-12-00 High Wat 6-15-00	er Mark	9.58	The peak water surface elevation probably occurred between the morning of $6/12 - 6/13$ based on local observations.					
Notes: 1. Elevatio 2. GPS co	ons are based	on an elevation of or Monument 2	of 10.13 feet (BPMSL) for Monument 22, which was established by Lounsbury & Associates in 1996. 22 are N 70° 19' 06.3" W 151° 03' 10.4" (NAD 27) which were surveyed by Lounsbury and Associates.					

Table B-11: Water Surface Elevation and Observations at Survey Monument #22

		Water Surface Elevation	
Date	Time	(feet)	Observations
6-10-00	22.45	6.26	
6-11-00	01:20	6.30	
	03:30	6.34	
	05:45	6.93	
	06:12	7.01	
	06:45	7.09	
	07:05	7.18	
	07:30	7.26	
	07:50	7.18	
	08:15	7.18	
	08:30	7.26	
	09:00	7.30	
	09:21	7.34	
	10:15	7.34	
	11:30	7.34	
High Water Mark	12:35	7.39	
	13:50	7.32	
	14:30	7.22	
	15:45	7.01	
	18:10	7.09	
	19:30	7.01	
	20:15 21:40	6.93 6.84	

Table B-12: Water Surface Elevations and Observations near Survey Monument #35

Table B-12 (continued): Water Surface Elevations and Observations near Survey Monument #35

Date	Time	Water Surface Elevation (feet)	Observations
6-12-00	00:30	6.68	
	06:30	6.26	
	08:00	6.09	
	13:30	5.76	
	16:00	5.59	
Notes:			

Notes:

1. Elevations are based on an elevation of 5.57 feet (BPMSL) for Monument 35, which was established by Lounsbury & Associates in 1996.

2. GPS coordinates for Monument 35 are N 70° 25' 58.1" W 150° 22' 49.1" (NAD 27) which were surveyed by Lounsbury and Associates.

3. Observations made by Jim & Tina Helmricks on the south side of their residence.

Table B-13: Summary of Breakup Data Obtained at the Head of the Colville River Delta, 1962 – 2000

Year	Approximate Date Water Began to Flow	Peak Water Surface Elevation (ft)	Peak Breakup Discharge (cfs)	Date of Peak Water Surface Elevation	Notes
2000	8 June	19.33	580,000	11 June	1, 2
1999	22 May	13.97	203,000	30 May	1.3.4
1998	21 May	18.11	213,000	29 May	1, 5
1997	20 May	15.05	177,000	29 May	1
1996	15 May	17.19	160,000	26 May	1, 6
1995	8 May	15.7	233,000	16 May	7
1994	16 May	13.0	159,000	25 May	7
1993	-	20.0	379,000	31 May	7
1992	-	14.7	188,000	2 June	7
1977	_	19.9	407,000	7 June	7
1973	25 May	_	_	8 June	7
1971	23 May	—	—	2 June	7
1964	28 May	_	_	3 June	7
1962	19 May	13.2	215,000	14 June	7

Notes:

- 1. Water surface elevations are based on monuments set by Lounsbury & Associates in 1996 and are based on British Petroleum mean sea level (BPMSL).
- 2. The peak breakup discharge was estimated to range between 570,000 to 590,000 cfs.
- 3. Data from Michael Baker Jr., Inc., 1999, 1999 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. Prepared for ARCO Alaska, Inc., Anchorage, Alaska.
- 4. Water was flowing in the Colville River at Umiat on this day. It is not known if this was the first day of flow. Therefore, it is not known if water was flowing on the delta prior to this date.
- 5. Data from Michael Baker Jr., Inc., 1998, 1998 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. Prepared for ARCO Alaska, Inc., Anchorage, Alaska.
- 6. Data from Shannon & Wilson, Inc., 1996, 1996 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. Prepared for Michael Baker Jr., Inc., Anchorage, Alaska.
- 7. Data from Jorgenson et al., 1996, *Geomorphology and Hydrology of the Colville River Delta, Alaska, 1995.* Prepared for ARCO Alaska, Inc., and Kuukpik Unit Owners, Anchorage, Alaska. The water surface elevations presented in this report were based on an elevation of 41.99 feet for the USCGS monument "River". In 1996 Lounsbury & Associates surveyed USCGS monument "River" and tied it to BPMSL. The elevation of "River", based on BPMSL, is 41.83 feet. The values presented in this table are based on the elevation for "River" that is based on BPMSL.

Appendix C

Channel Ice Observations

List of Figures:

- Figure C-1 Low Water Channel Ice Survey June 6, 2000 at 15:00 Hours
- Fibure C-2 Low Water Channel Ice Survey June 7, 2000 at 10:00 Hours
- Figure C-3 Low Water Channel Ice Survey June 8, 2000 at 15:43 Hours
- Figure C-4 Low Water Channel Ice Survey June 9, 2000
- Figure C-5 Low Water Channel Ice Survey June 10, 2000 at 18:00 Hours
- Figure C-6 Low Water Channel Ice Survey June 12, 2000 at 15:30 Hours

Appendix D

Observations at Culverts and Bridges

List of Figures:

- Figure D-1 Alpine Development, Culvert Locations and Naming Conventions
- Figure D-2Alpine Facility Culvet C-1
- Figure D-3Alpine Facility Culvet C-2
- Figure D-4 Alpine Facility Culvet C-3
- Figure D-5 Alpine Facility Culvet C-4
- Figure D-6 Alpine Facility Culvet C-5
- Figure D-7Alpine Facility Culvet C-6
- Figure D-80 Alpine Facility Culvet C-7
- Figure D-91 Alpine Facility Culvet C-8
- Figure D-102 Alpine Facility Culvet C-9
- Figure D11 Alpine Facility Culvet C-10
- Figure D-12 Alpine Facility Culvet C-11
- Figure D-13 Alpine Facility Culvet C-12
- Figure D-14 Alpine Facility Culvet C-13
- Figure D-15 Alpine Facility Culvet C-14
- Figure D-16 Alpine Facility Culvet C-15
- Figure D-17 Alpine Facility Culvet C-16
- Figure D-18 Alpine Facility Culvet C-17
- Figure D-19 Alpine Facility Culvet C-18, C-19, C-20. C-21
- Figure D-20 Alpine Facility Culvet C-22
- Figure D-21 Alpine Facility Culvet C-23
- Figure D-22 Alpine Facility Culvet C-24
- Figure D-23 Alpine Facility West Bridge
- Figure D-24 Alpine Facility East Bridge

List of Tables

Table D-1	Flow Observations at Culverts
Table D-2	Depressions in Tundra Adjacent to North Side of Culverts
Table D-3	Depressions in Tundra Adjacent to South Side of Culverts
Table D-4	Comparison of Culver End Point Water Surface Elevations
Table D-5	CD-2 Access Road, Culvert Discharge Measurements on June 10, 2000
Table D-6	CD-2 Access Road, Culvert Discharge Measurements on June 11, 2000
Table D-7	East Bridge Discharge Measurement on June 9, 2000
Table D-8	East Bridge Discharge Measurement on June 11, 2000
Table D-9	West Bridge Discharge Measurement on June 10, 2000
Table D-10	West Bridge Discharge Measurement on June 11, 2000

Date	Time	Culvert #	Observations						
06-04-00		C-1	Water from Nanuk Lake on south side of culvert, cannot pass to north side due to snow/ ice blockage.						
		C-2	ater from Nanuk Lake on south side of culvert, cannot pass to north side due to snow/ ice blockage.						
		C-3	ater from Nanuk Lake on south side of culvert, cannot pass to north side due to snow/ ice blockage.						
		C-4	Water from Nanuk Lake on south side of culvert, cannot pass to north side due to snow/ ice blockage. Standing water from melting on north side of culvert.						
06-09-00	09:20	C-4	Water flowing from south to north through culvert. No apparent snow or ice blockage in culvert.						
	09:36	C-3	Water flowing from south to north through culvert. No apparent snow or ice blockage in culvert.						
	09:42	C-2	Water flowing from south to north through culvert. No apparent snow or ice blockage in culvert.						
	09:58	C-1	Water flowing from south to north through culvert. No apparent snow or ice blockage in culvert.						
06-10-00	10:10		Most culverts on south side of road near CD-2 have water in them. Some have flow completely through, while others are still blocked by snow/ ice on the north side of the road.						
	19:13	C-21	Water flowing from south to north through culvert.						
			he staff gage #6 reading is representative of the water surface elevation on the south side of culverts C-17, 21-24.						
			The staff gage #7 reading is representative of the water surface elevation on the north side of culverts C-17, 21-24.						
06-11-00	09:18	C-20	Water flowing from south to north through culvert.						
06-12-00	08:02	C-1, 2, 3	South side of culvert is completely under water.						
	08:35	C-18 - 21	South side of culvert is completely under water and there is flow through all culverts.						
06-13-00	08:04	C-1 - 4	Water is still flowing from south to north but the depth of flow is less than on 6/12.						
	08:07	C-5	No flow through culvert.						
	08:09	C-11 - 21	Flow has changed direction such that flow is now from north to south. C-15 had no flow.						
	08:29	C-22, 23, 24	Minimal flow through culverts. The direction of flow is now from north to south.						
06-14-00	09:48	C-1 - 5	No flow through culverts. Standing water on south side.						
	10:17	C-11 - 14	Direction of flow is from north to south.						
	10:17	C-15	No flow is present and there is standing water on both ends of the culvert.						
	10:17	C-16	Minimal flow through culverts. The direction of flow is now from north to south.						
	10:17	C-17 - 21	No flow through culverts.						
06-15-00		C11 - 24	These culverts are on the west side of a high point in the Swale area. During initial flooding stages, the water coming from the Nanuk Lake area passed from south to north. But once the water started to recede, the flow changed direction and began flowing from north to south through the culverts.						

Table D-1:Flow Observations at Culverts

						Depression at Inlet			
Observation Date	New Culvert Number	Old Culvert Number	Invert Elevation (ft)	Water Depth (ft)	Water Surface Elevation (ft)	Max Depth from Culvert Invert (ft)	Max Width (ft)	Max Length (ft)	See Note
06-15-00	CN-24	1	6.42	0.97	7.39	1.03	12	11	1, 2
06-15-00	CN-23	2	6.38	0.97	7.35	0.83	21	12	1, 2
06-15-00	CN-22	3	5.72	1.64	7.36	0.76	20	5	1, 2
06-17-00	CN-21	4	5.27	2.06	7.33	1.04	17.9	13.6	1, 2, 3
06-17-00	CN-20	5	5.39	1.92	7.31	0.98	9.2	11	1, 2, 4
06-17-00	CN-19	6	5.28	2.10	7.38	1.2	10.5	11.5	1, 2, 4
06-17-00	CN-18	7	5.35	1.98	7.33	0.52	14.4	11	1, 2, 3
06-17-00	CN-17	8	6.10	1.28	7.38	0.72	24.3	6	1, 2
06-17-00	CN-16	9	6.83	0.36	7.19	0.84	16.5	6.8	1, 2
06-17-00	CN-15	10	6.61	0.46	7.07	2.54	29.4	21.4	1, 2
06-17-00	CN-14	11	6.42	0.56	6.98	2.24	22.2	14.5	1, 2
06-17-00	CN-13	12	6.12	1.06	7.18	0.34	8.7	9	1, 2
06-18-00	CN-12	13	6.17	0.72	6.89	1.68	23.2	15.3	1, 2
06-18-00	CN-11	14	6.01	0.98	6.99	0.82	25.8	11.6	1, 2
06-18-00	CN-10	15	6.73	0.66	7.39	1.14	22.6	7.7	1, 2
06-18-00	CN-9	16	8.59	-0.36	8.23	1.36	17.1	8.1	1, 6
06-18-00	CN-8	17	8.42	0.26	8.68	0.54	15	4	1, 2, 6
06-18-00	CN-7	18	7.52	0.98	8.50	1.32	21.5	15.5	1, 2
06-18-00	CN-6	19	8.07	-0.59	7.48	1.09	16	6.8	1, 2, 6
06-18-00	CN-5	N/A	6.34	0.18	6.52	-	-	-	1, 2, 7
06-18-00	CN-4	N/A	5.28	0.22	5.50	-	-	-	1, 2, 7
06-18-00	CN-3	N/A	5.24	0.00	5.24	-	-	-	1, 2, 6, 7
06-18-00	CN-2	N/A	4.57	0.20	4.77	-	-	-	1, 2, 7
06-18-00	CN-1	N/A	4.38	0.00	4.38	-	-	-	1, 2, 7

Table D-2: Depressions in Tundra Adjacent to North Side of Culverts

Notes:

1. Depression appears to be from construction effort.

2. No measurable flow present in culvert.

3. Width of depression is equal to the distance from the edge of vegetation to mid-distance between culverts.

4. Width of depression is equal to mid-distance to mid-distance between culverts.

5. Maximum depression depth may be due to scour, rather than construction efforts.

6. Ice/snow is present in the culvert.

7. An articulated concrete mat is present at the end of the culvert.

						D	epression at I	nlet	
Observation Date	New Culvert Number	Old Culvert Number	Invert Elevation (ft)	Water Depth (ft)	Water Surface Elevation (ft)	Max Depth from Culvert Invert (ft)	Max Width (ft)	Max Length (ft)	See Note
06-15-00	CS-24	1	5.86	1.66	7.52	0.44	11.0	7.0	1, 2
06-15-00	CS-23	2	6.23	1.24	7.47	0.96	17.0.	6.0	1, 2
06-15-00	CS-22	3	5.82	1.72	7.54	0.58	20.0.	12.0	1, 2
06-17-00	CS-21	4	5.52	1.94	7.46	1.26	13.7.	27.2	1, 2, 3
06-17-00	CS-20	5	5.40	1.92	7.32	1.48	10.3	27.6	1, 2, 4
06-17-00	CS-19	6	5.50	1.90	7.40	1.4	9.7	28.5	1, 2, 4
06-17-00	CS-18	7	5.46	1.98	7.44	1.42	16.2	30.7	1, 2, 3
06-17-00	CS-17	8	6.02	1.36	7.38	1.34	24.2	22.8	1, 2
06-17-00	CS-16	9	6.79	0.46	7.25	1.54	24.0	21.0	1, 2
06-17-00	CS-15	10	6.49	0.78	7.27	1.22	26.4	20.2	1, 2
06-17-00	CS-14	11	6.72	0.39	7.11	2.21	24.0	29.6	1, 2
06-17-00	CS-13	12	6.16	0.98	7.14	1.12	45.0	21.8	1, 2
06-18-00	CS-12	13	6.53	0.52	7.05	1.38	26.0	35.3	1, 2
06-18-00	CS-11	14	6.02	0.99	7.01	0.81	25.0	26.0	1, 2, 5
06-18-00	CS-10	15	6.40	1.00	7.40	1.1	23.0	14.6	1, 2, 5
06-18-00	CS-9	16	8.46	0.32	8.78	0.68	20.4	18.3	1, 2, 6
06-18-00	CS-8	17	8.20	0.60	8.80	0.8	25.0	15.5	1, 2, 6
06-18-00	CS-7	18	7.56	0.98	8.54	1.02	20.6	17.0	1, 2
06-18-00	CS-6	19	7.96	-0.48	7.48	1.98	24.5	20.0	1, 2, 6
06-18-00	CS-5	N/A	6.32	0.32	6.64	1.08	33.0	33.0	1, 2
06-18-00	CS-4	N/A	5.47	-0.50	4.97	1	10.6	5.3	1, 2, 6
06-18-00	CS-3	N/A	5.09	0.08	5.17	0.72	12.3.	5.0	1, 2
06-18-00	CS-2	N/A	4.34	0.42	4.76	0.28	14.8	4.0	1, 2
06-18-00	CS-1	N/A	4.20	0.20	4.40	0.5	10.3	2.6	1, 2
Notes:									

Table D-3: Depressions in Tundra Adjacent to South Side of Culverts

Depression appears to be from construction effort.
 No measurable flow present in culvert.

3. Width of depression is equal to the distance from the edge of vegetation to mid-distance between culverts.

4. Width of depression is equal to mid-distance to mid-distance between culverts.

5. Maximum depression depth may be due to scour, rather than construction efforts.

Ice/snow is present in the culvert. 6.

7. An articulated concrete mat is present at the end of the culvert.

Date	Culvert North Side	Water Surface Elevation (feet)	Culvert South Side	Water Surface Elevation (feet)	Water Surface Elevation Difference
6/15/00	CN-24	7.39	CS-24	7.52	0.13
	CN-23	7.35	CS-23	7.47	0.12
	CN-22	7.36	CS-22	7.54	0.18
6/17/00	CN-21	7.33	CS-21	7.46	0.13
	CN-20	7.31	CS-20	7.32	0.01
	CN-19	7.38	CS-19	7.40	0.02
	CN-18	7.33	CS-18	7.44	0.11
	CN-17	7.38	CS-17	7.38	0.00
	CN-16	7.19	CS-16	7.25	0.06
	CN-15	7.07	CS-15	7.27	0.20
	CN-14	6.98	CS-14	7.11	0.13
	CN-13	7.18	CS-13	7.14	-0.04
6/18/00	CN-12	6.89	CS-12	7.05	0.16
	CN-11	6.99	CS-11	7.01	0.02
	CN-10	7.39	CS-10	7.40	0.01
	CN-9	8.23	CS-9	8.78	0.55
	CN-8	8.68	CS-8	8.80	0.12
	CN-7	8.50	CS-7	8.54	0.04
	CN-6	7.48	CS-6	7.48	0.00
	CN-5	6.52	CS-5	6.64	0.12
	CN-4	5.50	CS-4	4.97	-0.53
	CN-3	5.24	CS-3	5.17	-0.07
	CN-2	4.77	CS-2	4.76	-0.01
	CN-1	4.38	CS-1	4.40	0.02

 Table D-4 Difference in Water Surface Elevation Between Inlet and Outlet of Culverts

				D	ISCHAI	RGE ME	ASUREMEN	T NOTES				
LOCATION:	Culverts on	downstream	side of	flow be	tween Cl	D-1 and C	CD-2.					
Date: June	10, 2000	Party:	J. Abra	ams, J. C	Charton, .	J. Aldrich						
Width:	ft Area	53.9	ft ²	Vel:	3.58	fps	G.H.	:		Disch.:	192.8	cfs
No Secs.		G.H. chang	ge:			in.:		hrs.:			Susp.:	
Method coef.:			Hor. A	Angle co	ef.			Sus. Coef.:	N	1eter No.		
		Gage	e Readi	ngs				Type of meter	: Р	rice AA		
Time	Recorder		Inside			Outside	9	Date rated:	F	actory		
17:20	S.G. #	3 (U/S)				W.S.E.	= 7.87 + - 0.02	3 Meter:	f	t. above botto	n of weight.	
17:22	S.G. #	4 (D/S)				W.S.E.	= 7.34 + - 0.03	3 Spin before m	eas. 2	min 2 sec	after 1 min	25 sec
	 							Method:	wading rod			
	 							(0.4 depth meas	surements		
	i 											
	Į											
Weighted M.G.H.	, !					+		Levels obtaine	ed:			
G.H. corrections												
Correct M.G.H.	<u>i</u>		<u>i</u>						e 11 ·	1.4.		
Measurement rat	ea:							Rating based	on following c	conditions:		
Cross section:								Weethow		in aE@a		
								weather:	A	lf OF @: Votor oF@:		
Gage: Othor:									V	valer or @:		
Other. Record Removed								Intoka fluchad				
Observer								Intake nushed				
 Control												
Remarks		Water sur	face elev	vations	are relat	ive to BI	MSL. Discha	rge measuremen	ts taken at the	outlet of the c	ilverts	
								150 mousuremen				
G.H. of zero flow								ft.				
											Page 1 of 2	

Table D-5: CD-2 Access Road, Culvert Discharge Measurements on June 10, 2000

							VELO	OCITY			
Culvert #	Time	Culvert	Donth	Observ.	Revo-	Time In	At Point	Mean in-	Aroo	Discharge	Description
	TIM	(in.)	(ft)	ueptii	lutions	seconds	(fps)	(fps)	(s.f.)	(cfs)	Description
CN-4	18:00	48"	2.0	0.4	80	42	4.16	3.87	6.3	24.3	
CN-5	18:05	48"	1.0	0.4	N/A	N/A		0.00	0.0	0.0	Standing Water, Culvert full of snow.
CN-3	18:18	48"	2.2	0.4	80	44	3.98	3.70	7.1	26.2	
CN-2	18:27	48"	2.9	0.4	80	43	4.07	3.79	9.8	36.9	
CN-1	18.32	48"	3.0	04	60		2 99	2 78	10.1	28.1	
	10.52	10		0.1		·	2.99	2.70	10.1	20.1	
East Bridge	18:38		2.7	0.4	80	48	3.65			0.0	
CN-17	19:05	48"	0.8	0.4	60	43	3.06	2.85	3.1	8.7	Dottom of culture is filled with ice. Top of
	19100										ice is 2.60 and 2.90 feet below top of
CS-17		48"	1.0	N/A	N/A	N/A	N/A				culvert at inlet and outlet respectively.
CN-21	19:21	48"	0.6	0.4	60	41	3.21	2.99	2.3	6.8	
			010					>			Bottom of culvert is filled with ice. Top of
CS-21	19:17	48"	1.2	N/A	N/A	N/A	N/A				culvert at inlet and outlet respectively.
<u></u>	40.00	40.0					2.00				
CN-22	19:28	48"	2.1	0.4	80	45	3.89	3.62	6.7	24.2	Bottom of culvert is ice covered at inlet.
CS-22	19:24	48"	2.6	N/A	N/A	N/A	N/A				Top of ice is 3.93 feet below top of culvert. There is no ice at the outlet.
CN-23	19:34	48"	1.5	0.4	90	40	4.91	4.57	4.3	19.7	No ice at inlet or outlet.
CS-23	19:32	48"	2.1	N/A	N/A	N/A	N/A				
CN-24	19:40	48"	1.5	0.4	100	49	4.46	4.15	4.3	17.9	
CS-24	19:38	48"	2.3	N/A	N/A	N/A	N/A				
Total									53.9	192.8	Page 2 of 2

Table D-5 (continued): CD-2 Access Road, Culvert Discharge Measurements on June 10, 2000

				DISCH	ARGE MI	EASUREMENT	NOTES			
LOCATION:	Culverts on o	downstream	side of flor	w between	CD-1 and	CD-2.				
Date: June	11, 2000	Party:	J. Abrams	, J. Packer						
Width:	ft Area:	75.2	ft^2 V	7el: 2.84	fps	G.H.:		Disch.:	213.3	cfs
No Secs.		G.H. chang	ge:		in.:		hrs.:	S	Susp.:	
Method coef.:			Hor. Ang	le coef.			Sus. Coef.:	Meter No.		
		Gage	Readings				Type of meter:	Price AA		
Time	Recorder		Inside		Outsid	le	Date rated:	Factory		
15:42	S.G. # 3	3 (U/S)	¦ 		W.S.E	$E = 7.96 \pm 0.02$	Meter:	ft. above bottom	of weight.	
15:43	S.G. # 4	4 (D/S)			W.S.F	$E = 7.71 \pm 0.03$	Spin before meas.	2 min 20 sec a	fter 2 min	29 sec
							Method: wading r	od		
			 				0.6 depth	measurements		
			+							
	į									
Weighted M.G.H.							Levels obtained:			
G.H. corrections										
Correct M.G.H.	l,									
Measurement rat	ed:						Rating based on follow	ving conditions:		
Cross section:							XX7 41	At E@.		
Flow:							weather:	Alr of @: Watan aE@:		
Gage:								water or @:		
Outer: Decord Demoved							Intoko fluchodi			
Obsorvor							Intake nusneu.			
Observer										
Control										
Remarks		Water surf	face elevati	ons are re	lative to R	PMSL Dischar	oe measurements taken	at the outlet of the cul	verts	
		, ater sur					50 mousurements taken			
G.H. of zero flow:							ft.			
								F	Page 1 of 2	

Table D-6: CD-2 Access Road, Culvert Discharge Measurements on June 11, 2000

							VELC	OCITY			
Culvert		Culvert		Observ.	Revo-	Time In		Mean in-			
#	Time	Dia.	Depth	depth	lutions	seconds	At Point	vertical	Area	Discharge	Description
		(in.)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
CN-1	16:30	48"	3.3	0.6	40	56	1.58	1.58	11.1	17.5	
CN 2	16.25	40"	2.2	0.6	60	40	2.00	2.60	10.9	20.0	
CN-2	10:23	48	3.2	0.0	00	49	2.09	2.09	10.8	29.0	
CN-3	16.17	48"	25	0.6	72	49	3 22	3.22	83	26.6	
011 3	10.17		2.5	0.0	72		5.22	5.22	0.5	20.0	
CN-4	16:37	48"	2.5	0.6	60	46	2.86	2.86	8.3	23.6	
CN-5	16:44	48"	1.5	0.6	80	49	3.57	3.57	4.3	15.4	
CN-17	16:57	48"	2.0	0.6	80	52	3.37	3.37	6.3	21.2	No ice at outlet
CN-20	17:06										Could not measure due to snow over outlet
() I A I											
CN-21	17:05	48"	2.8	0.6	60	52	2.53	2.53	9.4	23.8	No ice at outlet
CN 22	17.16	40"	2.2	0.6	60	40	2.12	2.12	75	22.4	
CIN-22	17:10	48	2.3	0.0	00	42	5.15	5.15	7.5	23.4	
CN-23	17.23	48"	16	0.6	80	49	3 57	3 57	47	16.8	No ice at outlet
011 25	17.23		1.0	0.0			5.57			10.0	
CN-24	17:29	48"	1.6	0.6	80	51	3.43	3.43	4.7	16.1	No ice at outlet
Total									75.2	213.3	Page 2 of 2

Table D-6 (continued): CD-2 Access Road, Culvert Discharge Measurements on June 11, 2000

			DISCHA	ARGE ME	ASUREMEN?	<u>r notes</u>				
LOCATION:	Alpine Development	t - East Bridge								
Date: June 9,	2000 Party:	J. Aldrich, J	Abrams							
Width: 437.4	ft Area: 1218	5.0 ft ² Vel:	3.27	fps	G.H.:			Disch.:	3979.5	cfs
No Secs. 14	5 G.H. c ł	nange:	0.08	in.:	1.42	hrs.:			Susp.:	
Method coef.:		Hor. Angle	coef.			Sus. Coef.:		Meter No.		
	Ga	ige Readings				Type of met	er:	Price AA		
Time	Recorder	Inside		Outside		Date rated:		Factory		
21:17	S.G. # 3 (U/S)			W.S.E.	$= 7.30 \pm 0.03$	Meter:	0.5	ft. above botto	om of weight.	
21:15	S.G. # 4 (D/S)			W.S.E.	$= 6.53 \pm 0.03$	Spin before	meas.	2 min 6 sec	after 1 min 4	0 sec
						Method:	Suspension -	- hand line with	15 lbs sounding	g weight
21:35 Start Meas.							0.2, 0.4, 0.8	depth measurem	nents	
23:00 End Meas.	i 									
	<u>_</u>									
23:08	S.G. # 3 (U/S)			W.S.E.	$= 7.38 \pm 0.03$					
23:09	S.G. # 4 (D/S)			W.S.E.	$= 6.60 \pm 0.02$					
		i								
Weighted M.G.H.						Levels obtai	ned:			
G.H. corrections]				
Correct M.G.H.					·····					
Measurement rated:	: Fair					Rating based	d on following	g conditions:		
Cross section:	Very U	niform								
Flow:	Very U	niform				Weather:	Foggy	Air oF@:		
Gage:								Water oF@:		
Other:										
Record Removed:						Intake flush	ed:			
Observer										
Control	Bridge '	Opening								
										1
Remarks	Water a	surface elevation	is are rela	tive to BPN	/ISL. Bridge h	nas sheet pile a	butments, and	14 pile bents or	n 30-foot center	s supporting
	the cent	ter of the bridge.	Each pile ł	bent consist	s of four 30-in	ch diameter pi	les on 8-foot c	centers (oriented	in the flow dir	ection).
	Immedi	iately downstream	from the H	bridge, there	e remained sor	ne ice that had	not been erod	ed. There may	have been ice u	nder the
G.H. of zero flow:	bridge ((and water surface	e) from the	ice pad that	t had been buil	It during the w	inter. Velocity	v behind the pile	es is estimated	based on the
	June 10). 2000 measurem	ent on the	West bridge	2	6		,		
		, 2000			·				Page 1 of 3	

Table D-7: East Bridge Discharge Measurement on June 9, 2000

Angle	Dist.						VELO	OCITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	0										R.E.W.
0.9781	12	21.8	2.76	0.2	90	42	4.68	3.94	60.0	236.3	
				0.8	80	52	3.37				
	23	2.5	2.78					2.30	7.0	16.0	Behind 30-inch pile
0.9336	38	27.5	2.80	0.2	100	43	5.08	3.71	77.0	285.4	
				0.8	60	46	2.86				
	53	2.5	2.76					2.07	6.9	14.3	Behind 30-inch pile
0.9272	68	27.5	2.71	0.2	100	53	4.12	3.18	74.5	237.0	
				0.8	70	56	2.74				
	83	2.5	2.70					1.87	6.7	12.6	Behind 30-inch pile
0.9272	98	27.5	2.68	0.2	80	42	4.16	3.04	73.7	223.8	
				0.8	50	46	2.39				
	113	2.5	2.90					1.72	7.3	12.4	Behind 30-inch pile
0.9272	128	27.5	2.90	0.2	80	44	3.98	2.85	79.8	227.0	
				0.8	50	51	2.16				
	143	2.5	2.90					1.72	7.3	12.5	Behind 30-inch pile
0.9272	158	27.5	2.90	0.2	80	41	4.26	2.87	79.8	228.9	
				0.8	50	57	1.93				
	173	2.5	3.03					1.73	7.6	13.0	Behind 30-inch pile
0.9272	188	27.5	3.15	0.2	80	42	4.16	2.86	86.6	247.4	
				0.8	50	55	2.00				
	203	2.5	2.84					1.89	7.1	13.4	Behind 30-inch pile
0.9272	218	27.5	2.52	0.4	100	55	3.98	3.43	69.3	237.8	
	233	2.5	2.56					2.07	6.4	13.2	Behind 30-inch pile
0.9272	248	27.5	2.60	0.4	80	44	3.98	3.43	71.5	245.4	
	263	2.5	2.60					2.07	6.5	13.4	Behind 30-inch pile
0.9272	278	27.5	2.60	0.4	80	44	3.98	3.43	71.5	245.4	
	293	2.5	2.70					1.99	6.8	13.4	Behind 30-inch pile
0.9272	308	27.5	2.80	0.2	100	49	4.46	3.18	77.0	244.5	
				0.8	50	46	2.39			 	L
	323	2.5	2.75]			<u> </u>	2.03	6.9	14.0	Behind 30-inch pile

 Table D-7 (continued): East Bridge Discharge Measurement on June 9, 2000

Page 2 of 3

Angle	Dist.						VELC	OCITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
0.9272	338	27.5	2.70	0.2	100	48	4.55	3.56	74.3	264.4	
		[0.8	60	42	3.13				
	353	2.5	2.85					2.13	7.1	15.2	Behind 30-inch pile
0.9272	368	27.5	3.00	0.2	100	45	4.85	3.52	82.5	290.3	
		[0.8	60	48	2.74				
	383	2.5	3.00					2.15	7.5	16.1	Behind 30-inch pile
0.9205	398	27.5	3.0	0.2	100	42	5.20	3.63	82.5	299.2	
		[0.8	50	41	2.68				
	413	2.5	2.80					2.44	7.0	17.1	Behind 30-inch pile
0.9063	425.5	23.2	2.6	0.4	100	41	5.32	4.48	60.2	269.9	
	437.4			<u> </u>						<u> </u> _	L.E.W.
Total:		437.4							1218.0	3979.5	Page 3 of 3

 Table D-7 (continued): East Bridge Discharge Measurement on June 9, 2000

					DISCHA	RGE ME	CASUREMENT	F NOTES				
LOCATION:	Alpine I	Development -	East B	Bridge Sv	vale Area							
Date: June 11	, 2000	Party:	J. A	ldrich, J	. Abrams, J	J. Packer						
Width: 437.4	ft Are	a: 1672.7	ft ²	Vel:	1.71	fps	G.H.:			Disch.:	2854.0	cfs
No Secs. 15		G.H. chai	nge:		0.05	in.:	1.88	hrs.:			Susp.:	
Method coef.:			Ho	r. Angle	coef.			Sus. Coef.:		Meter No.		
		Gage	Read	ings				Type of met	er:	Price AA		
Time	Recorde	er	Insi	ide		Outsid	e	Date rated:		Factory		
12:07	S.G. # 3	(U/S)				W.S.E	$. = 7.92 \pm 0.01$	Meter:	1	ft. above bott	om of weight.	
12:08	S.G. # 4	(D/S)				W.S.E	$. = 7.65 \pm 0.01$	Spin before	meas.	2 min 17 sec	after 2 min 2	20 sec
	İ							Method:	Bridge ree	el w/ 30 lb soundi	ng weight	
12:24 Start Meas.	¦ 								0.2, 0.6, 0	.8 depth measure	ments	
14:17 End Meas.	¦ 											
	<u> </u>											
14:26	S.G. # 3	(U/S)				W.S.E	$. = 7.97 \pm 0.02$					
14:27	S.G. # 4	(D/S)				W.S.E	$. = 7.71 \pm 0.02$					
	¦					-4						
Weighted M.G.H.	i }					i -4		Levels obtai	ned:			
G.H. corrections	 											
Correct M.G.H.						1]				
Measurement rated:		Fair to Go	od					Rating base	d on follow	ing conditions:		
Cross section:		Uniform										
Flow:		Uniform						Weather:	Overcast,	Air oF@:		
Gage:									Fog	Water oF@:		
Other:												
Record Removed:								Intake flush	ed:			
Observer												
Control		Bridge Op	ening									
		TT 7 4	e			· · •			1	114 1 1 .	20.6	
Remarks		Water su	riace of	elevatior	is are relat	tive to BI	MSL. Bridge	has sheet pile	abutments,	and 14 pile bents	on 30-foot cen	ters
		supporting	g the co	enter of t	he bridge.	Each pile	e bent consists c	of four 30-inch	i diameter p	iles on 8-foot cen	ters (oriented i	n the flow
G.H. of zero flow:		direction).	Velo	city behi	nd the pile	s is estim	ated based on th	ie June 10, 20	00 measurer	ment at the West	oridge.	
											Page 1 of 3	

Table D-8: East Bridge Discharge Measurement on June 11, 2000

Angle	Dist.						VELC	OCITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	0		3.90								R.E.W.
1.000	12	21.8	3.80	0.2	50	47	2.34	2.16	82.7	178.1	
				0.8	50	56	1.97				
	23	2.5	3.79					1.23	9.5	11.6	Behind 30-inch pile
0.966	38	27.5	3.78	0.2	50	49	2.24	1.92	104.0	199.3	
				0.8	50	64	1.73				
	53	2.5	3.78					1.09	9.5	10.3	Behind 30-inch pile
0.883	68	27.5	3.78	0.2	50	49	2.24	1.69	104.0	175.3	
				0.8	30	42	1.58				
	83	2.5	3.69					1.03	9.2	9.5	Behind 30-inch pile
0.848	98	27.5	3.60	0.6	40	43	2.05	1.74	99.0	172.1	
	113	2.5	3.79					0.99	9.5	9.4	Behind 30-inch pile
0.848	128	27.5	3.98	0.2	40	40	2.20	1.56	109.5	170.3	
				0.8	30	45	1.47				
	143	2.5	3.88					0.98	9.7	9.5	Behind 30-inch pile
0.866	158	27.5	3.78	0.2	50	48	2.29	1.69	104.0	175.5	
				0.8	40	55	1.61				
	173	2.5	4.19					0.93	10.5	9.7	Behind 30-inch pile
0.875	188	27.5	4.60	0.2	50	49	2.24	1.39	126.5	176.0	
				0.8	30	71	0.941				
	203	2.5	4.13					0.97	10.3	10.0	Behind 30-inch pile
0.891	218	27.5	3.65	0.6	40	43	2.05	1.83	100.4	183.3	
	233	2.5	3.65					1.11	9.1	10.1	Behind 30-inch pile
0.866	248	27.5	3.65	0.6	40	41	2.15	1.86	100.4	186.9	
	263	2.5	3.65					1.10	9.1	10.0	Behind 30-inch pile
0.866	278	27.5	3.65	0.6	40	43	2.05	1.78	100.4	178.2	
	293	2.5	3.70					1.08	9.3	10.0	Behind 30-inch pile
0.819	308	27.5	3.75	0.2	50	42	2.61	1.82	103.1	188.0	
				0.8	40	48	1.84				
	323	2.5	3.77					1.06	9.4	10.0	Behind 30-inch pile
0.755	338	27.5	3.78	0.2	50	41	2.68	1.69	104.0	175.7	

Table D-8 (continued): East Bridge Discharge Measurement on June 11, 2000

Page 2 of 3

Angle	Dist.						VELC	OCITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
				0.8	40	49	1.80				
	353	2.5	3.89	[1.06	9.7	10.3	Behind 30-inch pile
0.743	368	27.5	4.00	0.2	60	45	2.92	1.81	110.0	199.5	
		1		0.8	40	45	1.96				
	383	2.5	3.95	[1.10	9.9	10.9	Behind 30-inch pile
0.719	398	27.5	3.90	0.2	60	42	3.13	1.85	107.3	197.9	
		T		0.8	40	44	2.00				
	413	2.5	3.76	[1.12	9.4	10.5	Behind 30-inch pile
0.695	425.5	23.2	3.62	0.6	50	41	2.68	1.86	83.8	156.0	
	437.4		3.45								L.E.W.
TOTAL		437.4							1672.7	2854.0	Page 3 of 3

Table D-8 (continued): East Bridge Discharge Measurement on June 11, 2000

DISCHARGE MEASUREMENT NOTES												
LOCATION:	Alpine D	vevelopment - V	West F	3ridge								
Date: June 10	, 2000	Party:	J. A ¹	ldrich, J	Abrams, J	i. Charton						·····
Width: 46.8	ft Area	a: 174.8	ft ²	Vel:	3.30	fps	G.H.:			Disch.:	576.8	cfs
No Secs. 13		G.H. chan	ge:		0	in.:	1.55	hrs.:			Susp.:	
Method coef.:			Hor	. Angle	coef.			Sus. Coef.:		Meter No.		
Gage Readings								Type of met	er:	Price AA		!
Time	Recorde	r	Insi	de		Outside	5	Date rated:		Factory		!
15:34	S.G. # 3 ((U/S)				W.S.E	$. = 7.87 \pm 0.04$	Meter:	0.5	ft. above bott	om of weight.	!
15:36	S.G. #4 ((D/S)				W.S.E	$. = 7.26 \pm 0.03$	Spin before	meas.	1 min 45 sec	after 1 min 3	38 sec
								Method:	Bridge reel	w/ 75 lb soundir	ng weight	!
15:42 Start Meas.									0.2, 0.4, 0.8	depth measurer	nents	J
17:15 End Meas.									,			J
												/
17:20	S.G. # 3 (<u>(U/S)</u>				W.S.E	$. = 7.87 \pm 0.03$					/
17:22	S.G. # 4 ((D/S)				W.S.E	$. = 7.34 \pm 0.02$					J
												!
Weighted M.G.H.	 		i 					Levels obtai	ined:			!
G.H. corrections	 											
Correct M.G.H.	<u> </u>	<u> </u>	Ļ									!
Measurement rated:		Fair to Goc	bd					Rating base	d on followin	ig conditions:		!
Cross section:		Uniform										
Flow:		Uniform						Weather:	Overcast	Air of@:		J
Gage:										Water of @:		J
Other:												J
Record Removea:						·		Intake flush	ed:			!
Observer												!
C		Didae Or										
Control		Briage Ope	ening									
Demontra		Water sur	f000 (lovotio	na oro rola	to BI	MGI Bridge	has shoot pilo	abutmonte ou	nd a pila hant au		enter of the
water surface elevations are relative to brivish. Bridge has sheet pile abutinents, and a pile bent supporting the center of the												
C H of zoro flow:		blidge. Th	e prie	Dent Cor	ISISTS OF TO	ur so-men	i diameter pries	- 011 8-1001 CE11 	lers (onented			
G.II. 01 2010 110								11.			Page 1 of 2	

Table D-9: West Bridge Discharge Measurement on June 10, 2000

Angle	Dist.						VELOCITY				
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	0		4.50								R.E.W.
1.000	4	6.0	4.60	0.2	80	45	3.89	3.55	27.6	98.0	
				0.8	60	41	3.21				
1.000	8	4.0	4.60	0.2	100	55	3.98	3.78	18.4	69.5	
		[0.8	80	49	3.57				
1.000	12	4.0	4.50	0.2	80	47	3.72	3.52	18.0	63.3	
				0.8	80	53	3.31				
1.000	16	4.0	4.40	0.2	80	49	3.57	3.50	17.6	61.6	
				0.8	80	51	3.43				
1.000	20	2.8	4.10	0.2	60	44	2.99	3.12	11.3	35.2	Turbulence around pile
				0.8	80	54	3.25				
1.000	21.5	1.2	4.10	0.2	50	60	1.84	2.26	4.9	11.1	Behind Pile
				0.8	50	41	2.68				
1.000	22.4	1.8	4.10	0.2	25	45	1.23	1.81	7.2	13.0	Behind Pile
				0.8	50	46	2.39				
0.951	25	3.3	3.60	0.2	80	50	3.50	3.36	11.9	39.9	Turbulence around pile
				0.8	70	43	3.56				
0.927	29	4.0	3.70	0.2	80	48	3.65	3.31	14.8	49.1	
				0.8	80	50	3.50				
0.927	33	4.0	3.80	0.2	60	41	3.21	2.45	15.2	37.3	
				0.8	50	53	2.08				
0.985	37	4.0	2.80	0.4	80	50	3.50	3.21	11.2	35.9	
0.998	41	3.5	2.2	0.4	80	43	4.07	3.78	7.7	29.1	
0.995	44	4.3	2.1	0.4	80	43	4.07	3.76	9.0	34.0	
	46.8										L.E.W.
TOTAL		46.8							174.8	576.8	Page 2 of 2

 Table D-9 (continued):
 West Bridge Discharge Measurement on June 10, 2000
DISCHARGE MEASUREMENT NOTES													
LOCATION:	Alj	pine Develc	opment - V	Nest F	ridge Sv	wale Area							
Date: June 11	, 20	<u>00 P</u>	'arty:	J Ab	rams, J.	Packer							
Width: 46.8	ft	Area:	193.5	ft ²	Vel:	2.29	fps	G.H.:			Disch.:	443.1	cfs
No Secs. 11		G	J.H. chan	ge:		0	in.:	1	hrs.:			Susp.:	
Method coef.:				Hor	. Angle (coef.		·····	Sus. Coef.:		Meter No.		
			Gage I	Readi	ngs				Type of met	er:	Price AA		
Time	Re	corder		Insid	le		Outside		Date rated:		Factory		
14:26	S.C	3. # 3 (U/S))				W.S.E.	$= 7.97 \pm 0.02$	Meter:	0.5	ft. above botto	m of weight.	
14:27	S.C	3. # 4 (D/S))				W.S.E.	$= 7.71 \pm 0.02$	Spin before	meas.	2 min 17 sec	after 2 min 2	.0 sec
									Method:	Bridge reel	w/ 30 lb soundin	g weight]
14:40 Start Meas.	4									0.2, 0.4, 0.8	depth measurem	ients	!
15:37 End Meas.							-4						!
	. .						_ .						<u> </u>
15:42	S.C	3. # 3 (U/S))				W.S.E.	$= 7.97 \pm 0.02$					<u>/</u>
15:43	S.C	3. # 4 (D/S))				W.S.E.	$= 7.71 \pm 0.03$					<u> </u>
							-4		<u> </u>				
Weighted M.G.H.							-4		Levels obtai	ned:			
G.H. corrections	ļ						_ .						J
Correct M.G.H.	<u> </u>			<u> </u>			<u> </u>						
Measurement rated:		F	air to Goo	d					Rating base	d on followin	g conditions:		
Cross section:		U	Jniform										
Flow:		U	Jniform						Weather:	Overcast	Air oF@:		
Gage:											Water oF@:		/
Other:													!
Record Removed:									Intake flush	ed:			/
Observer													/
~~~~				·									
Control		В	ridge Ope	ning									J
			¥7 4	e	· · · · · · · · · · · · · · · · · · ·		(* 4. DF		1 . 1	1 (	1		(
Remarks			Vater sur	face el	levation	s are relat	live to BP	MSL. Bridge	has sheet pile	abutments, an	id a pile bent sup	porting the cei	ater of the
		10	ridge. The	e pile	bent con	sists of for	ar 30-inch	diameter piles	on 8-foot cen	ters (oriented	in the flow direc	tion). Velocity	y behind the
G.H. of zero flow:		p	ile is estim	hated I	based on	the June	10, 2000 m	neasurement.					!
												Page 1 of 2	

## Table D-10: West Bridge Discharge Measurement on June 11, 2000

Angle	Dist.						VELC	OCITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	0		5.23								R.E.W.
0.940	4	6.0	4.95	0.2	60	45	2.92	2.38	29.7	70.7	
				0.8	40	41	2.15				
1.000	8	4.0	4.85	0.2	50	40	2.74	2.71	19.4	52.6	
				0.8	50	41	2.68				
0.995	12	4.0	4.70	0.2	50	41	2.68	2.40	18.8	45.2	
				0.8	40	41	2.15				
0.974	16	4.0	4.62	0.2	50	41	2.68	2.52	18.5	46.6	
				0.8	50	44	2.5				
0.998	20	3.3	4.55	0.2	50	42	2.61	2.44	14.8	36.1	
				0.8	50	48	2.29				
	22.5	2.5	4.43					1.48	11.1	16.4	Behind 30" pile
0.982	25	3.3	4.30	0.2	50	41	2.68	2.46	14.0	34.4	
				0.8	50	47	2.34				
0.940	29	4.0	4.10	0.2	50	42	2.61	2.30	16.4	37.8	
				0.8	50	48	2.29				
0.899	33	4.0	4.70	0.2	40	43	2.05	1.65	18.8	31.0	
				0.8	30	41	1.62				
0.961	37	4.0	3.10	0.4	40	42	2.10	1.73	12.4	21.4	Instrument swaying
				0.6	40	54	1.64				
0.951	41	3.5	2.80	0.4	60	48	2.74	2.49	9.8	24.4	
				0.6	50	41	2.68				
0.970	44	4.3	2.30	0.4	60	46	2.86	2.68	9.9	26.5	
				0.6	60	46	2.86				
	46.8		2.63								L.E.W.
				]						<b></b>	
				]				[			
				]				[			
TOTAL		46.8							193.5	443.1	Page 2 of 2

 Table D-10 (continued): West Bridge Discharge Measurement on June 11, 2000



CN-1: Looking north at the north end of the culvert. (6/18/00)



CN-1: Looking south at the north end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,
Date: 6/20/00	Project: 24540-157-0000
Drawn: JDA	File: C1.doc
Checked: JWA	Scale:



CS-1: Looking north at the south er	nd of the culvert. (6/18/00)
Baker         Michael Baker Jr., Inc.           Date: 6/20/00         Project: 24540-157-0000	2000 SPRING BREAKUP COLVILLE RIVER DELTA
Drawn: JDA File: C1.doc Checked: JWA Scale:	ALPINE FACILITY – CULVERT C-1



CN-2: Looking north at the north end of the culvert. (6/18/00)



CN-2: Looking south at the north end of the culvert. (6/18/00)

Baker	Mic	hael Baker Jr.		
Date: 6/20/00		Project: 24540-157-0000		
Drawn: JDA		File: C2.doc		
Checked: JWA		Scale:		



	I
CS-2: Looking north at the south e	end of the culvert. (6/18/00)
Baker         Michael Baker Jr.,           Date: 6/20/00         Project: 24540-157-0000           Drawn: JDA         File: C2.doc	2000 SPRING BREAKUP COLVILLE RIVER DELTA D-3
Checked: JWA Scale:	ALPINE FACILITY – CULVERT C-2



CN-3: Looking north at the north end of the culvert. (6/18/00)



CN-3: Looking south at the north end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,			
Date: 6/20/00		Project: 24540-157-0000		
Drawn: JDA		File: C3.doc		
Checked: JWA		Scale:		

D-4 SHEET 1 OF 2

FIGURE:

CS-3: Looking north at the south e	nd of the culvert. (6/18/00)	
Baker Michael Baker Jr., Date: 6/20/00 Project: 24540-157-0000	2000 SPRING BREAKUP COLVILLE RIVER DELTA	FIGURE:
Drawn: JDA File: C3.doc Checked: JWA Scale:	ALPINE FACILITY – CULVERT C-3	D-4 SHEET 2 OF 2



CN-4: Looking north at the north end of the culvert. (6/18/00)



CN-4: Looking south at the north end of the culvert. (6/18/00)

Baker	Mich	ael Baker Jr., Inc.
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C4.doc
Checked: JWA		Scale:



For the southFor the south	<image/>
BakerMichael Baker Jr.,Date: 6/20/00Project: 24540-157-0000Drawn: JDAFile: C4.docChecked: JWAScale:	2000 SPRING BREAKUP COLVILLE RIVER DELTA ALPINE FACILITY – CULVER C-4



CN-5: Looking north at the north end of the culvert. (6/18/00)



CN-5: Looking south at the north end of the culvert. (6/18/00)

Baker	Mic	hael Baker Jr.,
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C5.doc
Checked: JWA		Scale:

ALPINE FACILITY – CULVERT C-5 D-6 SHEET 1 OF 2

FIGURE::

CS-5: Looking north at the south	end of the culvert $(6/18/00)$
CS-5. Looking north at the south	
Baker         Michael Baker Jr., Inc.           Date: 6/20/00         Project: 24540-157-0000	2000 SPRING BREAKUP COLVILLE RIVER DELTA
Drawn: JDA File: C5.doc Checked: JWA Scale:	ALPINE FACILITY – CULVERT C-5



CN-6: Looking south at the north end of the culvert. (6/18/00)



CS-6: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C6.doc
Checked: JWA		Scale:





CN-7: Looking south at the north end of the culvert. (6/18/00)



CS-7: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C7.doc
Checked: JWA		Scale:

FIGURE: D-8 SHEET 1 OF 1



CN-8: Looking south at the north end of the culvert. (6/18/00)



CS-8: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr., Inc.	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C8.doc
Checked: JWA		Scale:





CN-9: Looking south at the north end of the culvert. (6/18/00)



CS-9: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C9.doc
Checked: JWA		Scale:

ALPINE FACILITY – CULVERT C-9

FIGURE::



CN-10: Looking north at the north end of the culvert. (6/18/00)



CN-10: Looking south at the north end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C10.doc
Checked: JWA		Scale:

ALPINE FACILITY – CULVERT C-10

FIGURE:

D-11 SHEET 1 OF 2



CS-10: Looking south at the south end of the culvert. (6/18/00)



CS-10: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C10.doc
Checked: JWA		Scale:

ALPINE FACILITY – CULVERT C-10

FIGURE:

**D-11** SHEET 2 OF 2



CN-11: Looking south at the north end of the culvert. (6/18/00)



CS-11: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00	Project: 24540-157-0000	
Drawn: JDA	File: C11.doc	
Checked: JWA	Scale:	





CN-12: Looking south at the north end of the culvert. (6/18/00)



CS-12: Looking north at the south end of the culvert. (6/18/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C12.doc
Checked: JWA		Scale:





CN-13: Looking south at the north end of the culvert. (6/17/00)



CS-13: Looking north at the south end of the culvert. (6/17/00)

Baker	Michael Baker Jr.,	2000 SPRING BREAKUP COLVILLE RIVER DELTA	FIGURE:
Date: 6/20/00	Project: 24540-157-0000		D_1/
Drawn: JDA	File: C13.doc	ALDINE FACILITY CULVEDT C 12	
Checked: JWA	Scale:	ALFINE FACILITY – COLVERT C-15	SHEETTOPT



CN-14: Looking south at the north end of the culvert. (6/17/00)



CS-14: Looking north at the south end of the culvert. (6/17/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00	Project: 2	24540-157-0000
Drawn: JDA	File: C1	4.doc
Checked: JWA	Scale:	





CN-15: Looking south at the north end of the culvert. (6/17/00)



CS-15: Looking north at the south end of the culvert. (6/17/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C15.doc
Checked: JWA		Scale:





CN-16: Looking south at the north end of the culvert. (6/17/00)



CS-16: Looking north at the south end of the culvert. (6/17/00)

Baker	Michael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000
Drawn: JDA		File: C16.doc
Checked: JWA		Scale:





CN-17: Looking south at the north end of the culvert. (6/17/00)



CS-17: Looking north at the south end of the culvert. (6/17/00)

Baker	Mic	hael Baker Jr.,	) (
Date: 6/20/00		Project: 24540-157-0000	1
Drawn: JDA		File: C17.doc	1
Checked: JWA		Scale:	] (

2000 SPRING BREAKUP COLVILLE RIVER DELTA ALPINE FACILITY – CULVERT C-17

FIGURE: D-18 SHEET 1 OF 1





CN-22: Looking north at the north end of the culvert. (6/15/00)



CN-22: Looking south at the north end of the culvert. (6/15/00)

Baker	Mic	hael Baker Jr.,	
Date: 6/20/00		Project: 24540-157-0000	
Drawn: JDA		File: C22.doc	
Checked: JWA		Scale:	







CN-23: Looking south at the north end of the culvert. (6/15/00)



CS-23: Looking north at the south end of the culvert. (6/15/00)





CN-24: Looking south at the north end of the culvert. (6/15/00)



CN-24: Looking north at the south end of the culvert. (6/15/00)

Baker N	Aichael Baker Jr.,	2000 SPRING BREAKUP COLVILLE RIVER DELTA	FIGURE:
Drawn: JDA	Project: 24540-157-0000 File: C24.doc	$\Delta I PINE FACILITY = CULVERT C-24$	D-22
Checked: JWA	Scale:	ALI INE I ACIEITI – COEVERT C-24	SHEET FOF T



Up-stream side of the Small (West) Bridge taken from the East abutment on the CD-2 access road looking Northwest, on 10-Jun-00.



Up-stream side of the Small (West) Bridge taken from the East abutment on the CD-2 access road looking Northwest, on 12-Jun-00.

Baker	Mic	hael Baker Jr.,
Date: 20-Sep-00		Project: 24540-157-0000
Drawn: TAR		File: Brid01.doc
Checked: TAR		Scale:

2000 SPRING BREAKUP COLVILLE RIVER DELTA

ALPINE FACILITY - WEST BRIDGE





Up-stream side of the Large (East) Bridge taken from the West abutment on the CD-2 access road looking Northeast, on 12-Jun-00.



Down-stream side of the Large (East) Bridge taken from the West abutment on the CD-2 access road looking East, on 12-Jun-00.

Baker Michael Baker Jr.,		2000 SPRING BREAKUP	FIGURE:
Date: 20-Sep-00	Project: 24540-157-0000	COLVILLE RIVER DELTA	
Drawn: TAR	File: Brid02.doc		D-24
Checked: TAR	Scale:	ALPINE FACILITY – EAST BRIDGE	

## Appendix E

## **High Water Line at Alpine Facilities**

## **List of Figures**

Figure E-1 Alpine Facility – High Water Line (3 sheets)





Photo 1: Looking east along the north side of the embankment on the road to CD-2 near culvert CN-24. (6/15/00)



Photo 2: Looking east along the south side of the embankment on the road to CD-2 near culvert CS-24. (6/15/00)

Baker	Aichael Baker Jr.,	2000 SPRING BREAKUP	Figure:
Date: 6/20/00	Project: 24540-157-0000	COLVILLE RIVER DELTA	E-1
Drawn: JDA	File: embankmt.doc	ALPINE FACILITY – HIGH WATER LINE	
Checked: JWA	Scale:		SHEET 1 OF 3



Photo 3: Looking east along the north side of the embankment on the road to CD-2 near culvert CN-5. (6/18/00)



Photo 4: Looking west along the north side of the embankment on the road to CD-2 near culvert CN-5. (6/18/00)

Baker	Aichael Baker Jr.,	2000 SPRING BREAKUP	Figure:
Date: 6/20/00	Project: 24540-157-0000	COLVILLE RIVER DELTA	∐ E-1
Drawn: JDA	File: embankmtdoc	ALPINE FACILITY – HIGH WATER LINE	11
Checked: JWA	Scale:		SHEET 2 OF 3

