## HARVEST ESTIMATE AND ASSOCIATED INFORMATION FOR THE 2003 COLVILLE RIVER FALL FISHERY



Prepared by

MJM Research 1012 Shoreland Drive Lopez Island, WA 98261

for

ConocoPhillips Alaska, Inc., P.O. Box 100360 Anchorage, AK 99510-0360

©ConocoPhillips Alaska, Inc. This document is copyright ConocoPhillips Alaska and can not be released or published without the express written consent of ConocoPhillips Alaska, Inc.

## HARVEST ESTIMATE AND ASSOCIATED INFORMATION FOR THE 2003 COLVILLE RIVER FALL FISHERY

Conducted by:

Lawrence L. Moulton and Brent T. Seavey MJM Research 1012 Shoreland Drive Lopez Island, WA 98261

Prepared for:

ConocoPhillips Alaska, Inc., P.O. Box 100360 Anchorage, AK 99510-0360

## EXECUTIVE SUMMARY

Moulton, L.L and B.T. Seavey. Harvest estimate and associated information for the 2004 Colville River fall fishery.

The objectives of the 2003 study were to continue obtaining estimates of the total effort and catch for the fall gill net fishery in the Colville River delta, which targets qaaqtaq (Arctic cisco), including harvests of both the village of Nuiqsut and the commercial fishery. Similar to previous years, a daily count was made of the nets fishing from mid October to late November.

The fishery began around October 16, which is considered slightly late. The 2003 fishery was characterized by moderate catches of qaaqtaq (Arctic cisco) through the season. While the 2003 catch rate in the Nigliq Channel was up substantially from 2001 and 2002, it was near the 10-year average. Catches in 2001 and 2002 had been the lowest seen for both the Nuiqsut and commercial fishery, thus th e2003 catches provided some relief from the recent trend of low abundance. The catch of iqalussaq (least cisco), the primary by-catch species, was near the average for the period of record (1985-2003).

The catch rate of qaaktaq (Arctic cisco) in 2004 should be similar to that seen in 2003. This prediction is based on the abundance of fish between 260-300 mm in the Prudhoe Bay region during summer 2003. The 2003 harvest was supported almost completely by larger fish of the 1997 year class. Catches in fyke nets from summer studies in Prudhoe Bay indicate there continues to be a substantial pool of fish that will be available for harvest by fall 2004. Fish caught in 2004 should be larger than those in 2003 because of growth in the 1997 and 1998 year classes.that will comprise the catch.

Catch rates of qaaktaq (Arctic cisco) in 2005 will likely again decline to a low level as the 1997 and 1998 year classes mature and leave the area.

| LIST OF FIGURES iv                              |
|-------------------------------------------------|
| LIST OF TABLES vi                               |
| INTRODUCTION 1                                  |
| METHODS                                         |
| RESULTS                                         |
| Distribution of Fishing Effort 7                |
| Catch Composition 8                             |
| Comparative Catch Rates                         |
| Estimated Total Catch                           |
| Size and Age of Harvested Fish                  |
| Information from Returned Tagged Fish 11        |
| Predictability in Arctic cisco Harvest Rates 11 |
| DISCUSSION                                      |
| PREDICTIONS FOR 2004                            |
| ACKNOWLEDGMENTS                                 |
| LITERATURE CITED                                |
| DATA APPENDIX                                   |

# LIST OF FIGURES

| Figure 1. | Colville Delta region showing locations of major fishing areas                               | 1  |
|-----------|----------------------------------------------------------------------------------------------|----|
| Figure 2. | Major fishing areas on the Nigliq Channel with location of salinity monitoring stations.     |    |
|           |                                                                                              | 2  |
| Figure 3. | Fishing areas on the lower Colville River and Outer Delta region                             | :3 |
| Figure 4. | Trends in fishing effort in the Colville Delta fall Fishery, 1985-2003 by number of ne       | ts |
| and effor | in net-days (1 net-day = 24 hrs fishing per 18 m of net, all meshes combined)2               | 4  |
| Figure 5. | Distribution of fishing effort in the Nigliq Channel by fishing area, all meshes combine     | d, |
| 1986 to 2 | 2003                                                                                         | 5  |
| Figure 6. | Salinity distribution in the Nigliq Channel, Colville Delta, during the fall gill net fisher | y, |
| 1986-200  | 3                                                                                            | 7  |
| Figure 7. | Salinities measured at 3 m below the ice surface at Nigliq Channel fishing areas, 1990       | _  |
| 2003      |                                                                                              | 9  |
| Figure 8. | Mean daily catch rate of Arctic cisco in 76-mm (3 inch) mesh in the Nigliq Channel,          |    |
| 1986-200  | 3                                                                                            | 1  |
| Figure 9. | Catch rates of Arctic cisco and least cisco in the Colville River delta commercial fisher    | у, |
| 1967 - 20 | 02 (using catch rates corrected for varying effort)                                          | 2  |
| Figure 10 | . Catch of Arctic cisco and least cisco by harvest area in the Nigliq Channel, 1985 to 200   | 3. |
|           | 3                                                                                            | 3  |

| Figure 11. Length frequencies of Arctic cisco caught in fyke nets near Prud   | hoe Bay compared to   |
|-------------------------------------------------------------------------------|-----------------------|
| those caught by gill net in the Nigliq Channel fishery, 1985-2003 (fyke net l | ength frequencies for |
| fish caught after August 15, i.e. after summer growth period)                 |                       |

Figure 12. Trend in mean length for least cisco caught in 76-mm (3 inch) mesh in the Nuiqsut fall fishery, 1986-2003.

| Figure 13. Catch | h rates of young-of-the-year | (YOY) Arctic cisco | by year class in | Prudhoe Bay fyke |
|------------------|------------------------------|--------------------|------------------|------------------|
| nets, 1985-2003. |                              |                    |                  |                  |

| Figure 18.  | Relationship between | village and | commercial | catch rates | of Arctic | cisco in | 76-mm (3 |
|-------------|----------------------|-------------|------------|-------------|-----------|----------|----------|
| inch) mesh, | , 1985-2003          |             |            |             |           |          | 41       |

# LIST OF TABLES

| Table 1. Estimated onset of fishing effort in the Nuiqsut fall fishery, 1985-2003.                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Observed and effort-adjusted CPUE values for the Colville Delta commercial fishery, 1967      - 2003.                                                                |
| Table 3. Catch contribution by species as observed during fisher interviews in the Nigliq Channel,         by percent of sampled catch (does not include commercial fishery). |
| Table 4. Mean catch rate of Arctic cisco in 76-mm (3 inch) mesh gill nets in the Colville Delta fallfishery, 1985-2003 (in fish per day per 18 m of net)                      |
| Table 5. Mean catch rate of least cisco in 76-mm (3 inch) mesh gill nets in the Colville Delta fallfishery, 1985-2003 (in fish per day per 18 m of net)                       |
| Table 6. Estimated harvest during the Colville Delta fall fisheries by species, in number of fish,1967-2003                                                                   |
| Table 7. Mean fork length of least cisco caught in 76-mm (3 inch) mesh gill nets during the Nuiqsut fall fishery, 1986-2003.                                                  |
| Table 7. Estimated numbers and biomass of harvested Arctic cisco and least cisco by year for village and commercial fisheries in the Colville Delta, 1985 – 2003              |
| Table 8. Data used to predict Arctic cisco harvest rates in the Colville Delta fall fishery.       50                                                                         |

# HARVEST ESTIMATE AND ASSOCIATED INFORMATION FOR THE 2003 COLVILLE RIVER FALL FISHERY

Lawrence L. Moulton

and

Brent T. Seavey

### **INTRODUCTION**

For nearly 30 years, there were concerns that causeways built in the coastal region of the Alaskan Beaufort Sea to support coastal developments were causing changes in the summer feeding habitat of anadromous fishes in the region (Furniss 1975; USACE 1980, 1984). A variety of studies have been conducted in the coastal region since the mid-1970's to gain basic biological, distribution and habitat utilization information needed to address these concerns (Furniss 1975; Bendock 1979; Craig and Haldorson 1981; Griffiths and Gallaway 1982; Critchlow 1983; Griffiths et al. 1983; Woodward-Clyde Consultants 1983; Moulton and Fawcett 1984; Envirosphere 1987, LGL 1990, 1992, 1993, 1995).

The anadromous fishes that are the subject of these studies provide an important food resource for the Inupiat communities of the Alaskan Arctic Coastal Plain and have been fished for many generations. The qaaqtaq (Arctic cisco, *Coregonus autumnalis*), in particular, is a highly prized food resource. This species is harvested near Kaktovik in late summer and in the Colville River delta after ice forms during fall. In addition to subsistence harvests, there is a commercial fishery that has operated in the Colville River delta since the early 1950's. Prior to 1985, there was little information on the subsistence harvests of anadromous fishes, although detailed information existed on the commercial fishery (Craig and Haldorson 1981; Gallaway et al. 1983; Moulton et al. 1986a; Craig 1987).

The concerns expressed over possible effects of causeways to the anadromous fishes of the region, especially Arctic cisco, raised concerns among local people that their traditional fishery resource would, in turn, be affected. The local government for Alaska's Arctic Coastal Plain region, the

North Slope Borough, requested that information be collected to assess the fisheries in the Colville River, which were considered to be most at risk. The study reported here was begun in 1985 in response to that request. The initial year of investigation included a study of fish use of the Colville River delta region and evaluation of both summer and fall fisheries (Fawcett et al. 1986; Moulton et al. 1986b). Following years (1986 to 2003) focused on the fall fishery for Arctic cisco and iqalussaq (least cisco, *C. sardinella*).

Arctic cisco targeted by the fall fishery are derived from spawning stocks in the Mackenzie River, with young-of-the year fish recruiting into the Colville region during August or September, as described by Gallaway et al. (1983). The recruitment of age 0 Arctic cisco into the Colville River region is aided by westerly currents generated by the predominantly easterly winds in the Beaufort Sea region. Strength of recruitment has been correlated to the percentage of easterly winds from June to September (Fechhelm and Fissel 1988). Arctic cisco return to the Mackenzie River at maturity to spawn, thus are only available to the fishery for two or three years prior to maturity. Anadromous least cisco being harvested spawn and winter entirely in the Colville Delta and lower river.

This study of the 2003 fishery constitutes the eighteenth year that the fishery in the delta was subjected to a harvest estimate. Results from 1985 to 2002 are reported in Moulton and Field (1988), previous editions of the Endicott Monitoring Program Annual Report Series and Moulton (2001, 2003). Additional information on the fall gill net fishery in the Colville River was developed by George and Nageak (1986) and George and Kovalsky (1986).

In previous years, information on the commercial fishery was provided by the fisherman operating that fishery. In 2003, however, he decided not to participate in the fishery assessment, thus the assessment for 2003 is only on the Nuiqsut fishery conducted in the Nigliq Channel. The objectives of the 2003 survey were to 1) continue to obtain estimates of effort and catch for the fall fishery in the Nigliq channel of the Colville River, which targets Arctic cisco, 2) evaluate the harvest predictions made prior to the fishing season, and 3) evaluate methods to predict catches in future years.

#### **METHODS**

The study area includes the Colville River from the Itkillik River downstream to Harrison Bay (Figure 1). The 2003 study was restricted to three areas of concentrated fishing effort in the Nigliq Channel: 1) the Upper Nigliq Channel near Nuiqsut, 2) the Nanuk area of the Nigliq Channel, and 3) the Nigliq Delta (Figure 2).

The assessment and monitoring of the fall under-ice fishery based in Nuiqsut began on 15 October and continued through the third week in November. Fishing began on October 16, which was a later than normal start date for this fishery (Table 1).

Salinity measurements were taken every other day with a YSI 30 salinity/conductivity/temperature meter at standard locations in three monitoring areas on the Nigliq Channel (Figure 2). Salinity was measured from a vertical profile of the water column at 0.5 m increments.

During the main fishing season, village catches were sampled daily for species composition, number of fish caught, and fork length to the nearest mm. Fish were examined for tags, fin clips, and dye marks applied by other fish studies in the region. Whenever catch data were collected, set duration, net length, net depth (e.g. the width of the net) and mesh size data were also recorded so that catch-per-unit-effort (CPUE) could be calculated for the net set. Effort was calculated in net-days by using the start and end dates for each net. Effort data were adjusted for the various net lengths and set durations by standardizing net length to 18 m and set duration to 24 h.

The nets in the village fishery are of variable length with 18 and 24-m nets being the most common. In 2003, net depth was measured on nets used in the Nigliq Channel. Seventy-one of the 73 nets were 1.8 m deep, with the remainder being 1.2 m. In 1993 and 1994, estimates of the total catch were made both with and without a correction for net depth. The 1993 estimate containing the correction for net depth was 4.4% greater than the estimate based solely on net length and set duration, while in 1994 the correction resulted in an error 3% less than the uncorrected estimate. A correction for net depth was not made in 2003 because virtually all the nets were 1.8 m deep.

Within the main sampling areas, catch rates (CPUE) were estimated by obtaining catch and effort data by mesh size in each fishing area during the season. For each mesh size in each fishing area, the total observed catch was divided by the total observed effort to provide the CPUE estimate. The catch rates for each mesh size by area were then multiplied by the total effort estimated for each mesh size/area combination, and the estimated catches were summed to provide the estimates of total catch.

In the village fishery, 76-mm (3 inch) mesh nets were the preferred gear. Catch rate indices used for comparisons among areas and years and evaluation of changes in length distributions were based on 76-mm (3 inch) mesh. For the 2003 report, some of the abundance indices were re-calculated in a consistent manner to ensure comparability of the data. As a result, some of the numbers changed between this report and previous versions. The changes were mostly minor and did not affect trends or statistical results.

In previous years, otoliths were obtained from Arctic cisco and least cisco caught in 76-mm (3 inch) mesh in the commercial fishery to estimate the age distribution of the harvest. Otoliths were not obtained during 2003, thus there was no age group analysis for this year. Otoliths from previous years were read using the break-and-burn technique. The otolith is broken across the transverse axis, held over a flame until the edge begins to discolor, and placed in isopropyl alcohol to be viewed with a dissecting microscope at 30 power. Annuli appear as narrow dark rings between the wider, lighter annual growth bands.

Information obtained from annual measurements of length frequency, length/weight relationships and estimated catches by mesh size was used to estimate the annual harvested biomass for Arctic cisco and least cisco from 1985 to 2003. Length/weight relationships and length frequency data were used to estimate the mean weight of a harvested fish by mesh size for each year, then the total estimated harvest for that mesh size was multiplied by the mean weight. A composite length frequency was generated for mesh sizes in which length frequencies were not determined on an annual basis.

Information from the commercial fishery was not obtained in 2003, but records of the previous data are included in the report for comparative purposes. Records of catch and effort have been maintained for the Colville Delta commercial fishery since 1967 (summarized in Gallaway et al. 1983, 1989). Effort data are recorded as the beginning and end date of each net set. Catch data are recorded as the catch by species for each net whenever the nets are checked. Usually the nets are checked daily or every other day, although longer sets are sometimes made. From 1967 to 1986, the fishery records were maintained by Mr. Jim Helmericks. In 1987, a second fishery operation was initiated by Mr. Harmon (Bud) Helmericks. Data from 1987 to 1991 contain estimates of the effort and catch for both operations. Since 1992, the fishery has reverted to a single operation. The data are converted to catch rates (CPUE) by dividing the total season harvest by the total effort expended.

Prior to 1981, the total effort expended by the commercial fisheries averaged 908 net-days (standard deviation = 295) and was never less than 500 net-days. Between 1982 and 1990, the effort averaged 475 net-days (standard deviation = 186). There is a significant inverse correlation between catch rate and effort (r = -0.545, 45 df, a=0.01). The relationship is statistically identical for Arctic cisco and least cisco catch rates. Because of this correlation between effort and catch rate, the data were adjusted to remove the linearity from the relationship. Use of the unadjusted data would provide inflated estimates of catch rates in years when effort is low. The adjustment consisted of calculating a correction factor for each observed effort based on the correlations through 1990. The correction factor was calculated as follows:

 $CF_i = CPUE_{Ei} - CPUE_m$ 

where  $CF_i$  = correction factor for effort estimate i

 $CPUE_{Ei}$  = linear estimate of catch rate associated with effort i

 $CPUE_m$  = estimated catch rate associated with the mean of the observed effort

The correction factor was then subtracted from the observed catch rates to provide an adjusted catch rate (Table 2). The adjusted catch rates were used for all subsequent analyses. The trend of the revised CPUE estimates is similar to that of the observed CPUE. The primary effects of the

adjustment are a slight increase in CPUE in the early years of the data set and a decrease in the post-1980 period for years in which effort was low, which was the desired effect of the adjustment.

#### RESULTS

### **Distribution of Fishing Effort**

**Village Fishery**. The total estimated effort by Nuiqsut villagers in the Nigliq Channel fall fishery was 1,656 net-days, about 8% below the average for the 1993-2002 period (Figure 4). From 1985 to 2003 the number of Nuiqsut fishing groups (a family or group of families fishing cooperatively) participating in the under-ice fishery ranged between 21 and 35, using 29 to 83 separate nets. In 2003, 31 fishing groups using 73 nets were identified. The trend in the number of nets being used is not statistically significant, however effort measured in net-days has been increasing significantly over the period of record (Figure 4). Effort in 2003 was highest in the Nigliq Delta area, followed by the Upper Nigliq area (Figure 5).

Effort has gradually shifted downstream in the Nigliq Channel during the eighteen years of monitoring (Figure 5). From 1985 to 1989, between 65 to 74% of the effort within the channel was expended in the Upper Nigliq area. In 1993, effort in the Nanuk area exceeded that of the Upper Nigliq area for the first time, and in 2003 over 76% of the Nigliq Channel effort was in the Nigliq Delta area. Since 1998, the Nigliq Delta has had the highest effort of the three Nigliq Channel areas.

Salinity is monitored in conjunction with the fishery because Arctic cisco are commonly associated with salinities in the range of 15 to 25‰ (parts per thousand). During east winds, the water level in the river drops, and the channels become fresh. When the wind reverses to the west, water levels rise and saline water moves into the delta, which brings in Arctic cisco, and displaces least cisco, piquktuuq (humpback whitefish, *Coregonus pidschian*) and aanaakliq (broad whitefish, *C. nasus*). From 1985 to 1993, with the exception of 1988, salinity in the Nigliq Channel near the village reached 10 to 15‰ by the beginning of November (Figure 6). In contrast, during 1997 and 1998 the salinity exceeded 20‰ in both the Nanuk and Nigliq Delta areas through the fishing season. In 2003, salinity in the Nigliq Channel was moderate to high compared to previous years, with the Upper Nigliq increasing to near 10‰ by the end of the season (Figure 7). In the Nanuk region, salinity rose from 13‰ at the onset of fishing to near 20‰ by late November. Salinity in the Nigliq

Delta was 18‰ at the onset of fishing, and gradually increased to over 22‰ by the end of monitoring. This salinity distribution is considered ideal for Arctic cisco fishing.

**Commercial Fishery**. The commercial fishery has operated at a low level of effort since 1993 (Figure 4). There has been a declining trend in effort, and effort in 2003, while not quantified, was reported to be low (J. Helmericks, personal communication, 2003).

#### **Catch Composition**

Arctic cisco, the target species, comprised over 66% of the total observed catch in the Nigliq Channel in 2003 (Table 3). Least cisco also accounted for 22% of the observed catch, with humpback whitefish third most abundant at 9%. In 2003, tiipuq (Bering cisco, *C. laurettae*) abundance remained low. In 1990, the species was more numerous than in the past and an effort was made to quantify their contribution to the 1990 harvest. Since 1991, their occurrence in the harvest has remained low. Siquilaraaq (round whitefish, *Prosopium cylindraceum*) occur in high abundance within the lower Colville River and delta (Fawcett et al. 1986), but rarely appear in the harvest. Their small size and narrow body allow them to pass through the meshes used in the fishery. More uugaq (saffron cod, *Eleginus gracilis*) were caught in the fishery than in previous years, with 109 observed in the catch monitoring. While high salinity in the main fishing areas may have allowed this marine fish to enter the delta, previous years with similar salinities did not produce a similar high catch.

### **Comparative Catch Rates**

**Village Catch Rates**. Overall, the Arctic cisco catch rates in the Nigliq Channel were slightly above average for the period 1985-2003, although they were over 2.5 times higher than the low catch rates observed in 2002, and over 5 times greater than the historically low rate observed in 2001 (Table 4). While there is considerable variation on a daily basis, catches tend to remain high through the season when Arctic cisco are abundant, and remain low when they are scarce (Figure 8). Least cisco mean catch rates in Nigliq Channel areas were lower than the previous ten-year average, but were

not unusual (Table 5).

**Commercial Catch Rates**. The effort-adjusted catch rate for Arctic cisco (see Methods) in the commercial fishery was not estimated in 2003, but the historical rates are included for comparison to recent village harvest rates (Table 2). The mean annual catch rate for Arctic cisco and least cisco has been recorded for one of the commercial fisheries since 1967 (Figure 9). Values are reported in fish/day/46 m net to maintain continuity with previous reports on this fishery.

## **Estimated Total Catch**

The total estimated catch of Arctic cisco in the Nigliq Channel (23,369 fish, 9,986 kg) was the fifth highest for the Nigliq Channel (Figure 10, Appendix Table 2). The least cisco total catch was also the fifth highest for the Nigliq Channel, about 47% above the recent 10-year average (Figure 10, Appendix Table 3). Humpback whitefish continued to be a significant portion of the catches (Table 6). Broad whitefish harvest remained at low levels.

## Size and Age of Harvested Fish

A comparison of the length frequencies of Arctic cisco captured in 76-mm (3 inch) mesh gill nets to those captured in fyke nets has been used in past reports to evaluate the effect of strong and weak year-classes on the fishery, for both catch rate and size of harvested fish (Figure 11). The movement of dominant year classes through the fishery has a profound effect on the size of fish harvested, even when mesh size was held constant. For example, the length frequency of Arctic cisco from fyke nets in the coastal region during the late summer of 1995 (after 14 August) indicated that there was a group of fish, primarily from the 1990 recruitment (LGL Alaska 1992), that was just becoming large enough to be caught by 76-mm (3 inch) mesh gill nets in 1995 (Figure 11). In 1996 and 1997, virtually all members of this group were of sufficient size to be harvested. The length frequencies for 2003 indicate that there was a large group of fish slightly too small to be caught by the 76 mm mesh gill nets. This group will grow to harvestable size by fall, 2004 and will likely comprise most of the harvest at that time.

The mean length of least cisco caught in the 76-mm (3 inch) mesh nets in 2003 was similar to that observed in recent years (Table 8, Figure 12). Least cisco have shown a decreasing trend in mean size during the period of study.

Information from the fyke nets fished in Prudhoe Bay during the summer is used to obtain information on the relative strength of Arctic cisco year classes when they recruit into the region as young-of-the-year (YOY) (Figure 13). Abundant year classes in the mid-1980's produced high catches in the early 1990's, while the abundant 1990 and 1992 year classes produced high catches in 1997-1998 (Figure 10). The absence of a dominant year class from 1993 to 1996 resulted in the recent period of low catches. Based on the YOY, and subsequent year indices, the 1997 recruitment appears to be strong and is providing some relief from the recent years (2000-2002) of low catch.

Ages of Arctic cisco taken in the fishery were estimated from 1984 to 2002 (Figure 14). The age data were used to partition the catch rate in the commercial fishery by year class to evaluate the relative year class strength (Figure 15). The cumulative catch rate for a year class can be used as an index to year class productivity. The analysis demonstrates why 1986 had such a high catch rate; i.e., two abundant year classes (1979 and 1980) had reached a harvestable size in the same year. In subsequent years, the abundance of these year classes decreased and they were replaced by later year classes. The 1987 year class, which dominated the fishery from 1992 to 1994, was essential gone by 1996. The cumulative harvest of this year class has surpassed any other single year class in abundance. The 1990 year class contributed the second highest cumulative harvest, and was responsible for the high catch rates in 1996 and 1997. Subsequent years classes have been much less abundant, which is responsible for the low catch rates in recent years.

Least cisco are only sampled every other year for age structure because of their slow growth rate and the relative stability of the population. The distribution of ages in least cisco has not shown a change in year class dominance, which is consistent with the hypothesis that the least cisco captured in the fishery were from a relatively stable Colville River population. There was, however, a continuing upward shift in the mean age of the harvested fish since 1978. In 1978, the mean age was 9.6 years;

while in 1995, the mean age was 12.5 years. In subsequent years, the mean age has remained over 11 years. This upward shift in age, combined with smaller size (see above), may reflect reduced mortality in the population. As previously presented, there has been a substantial reduction in the commercial fishing effort since 1980. This reduction in effort may account for much of the reduced mortality that has allowed the mean age of harvested fish to increase.

### **Information from Returned Tagged Fish**

Tag returns continue to dwindle, since tags have not been released in great numbers since 1993. During 2003, 1 tag was recovered from the Nuiqsut fishery. The return was from a large Arctic cisco that had been released in 1993. The fish had probably returned to the Colville region after spawning in the Mackenzie River.

## Predictability in Arctic cisco Harvest Rates

The mean catch rate of large Arctic cisco in Prudhoe Bay fyke nets one year prior to entering the fishery is regressed against the catch in 76-mm (3 inch) mesh gill nets used in the commercial fishery in the following year to evaluate the suitability of this size group as a predictor of catch. The best predictor of gill net catch rate is the fyke net catch rate of 260-300 mm Arctic cisco during the summer prior to entering the fishery. After an additional summer of growth, this group typically grows into the 300-340 mm size range that is highly vulnerable to 76-mm (3 inch) mesh gill nets. The correlation between fyke net catches of 260-300 mm Arctic cisco and the next year's catch of 300-340 mm fish is statistically significant (p=0.02) (Table 9, Figure 17).

The harvest rate for 300-340 mm Arctic cisco was predicted for 1994 through 2002 using the relationship between commercial gill net catches and fyke net catches the prior year. The comparison of the predictions to actual harvest rates is as follows:

|      |           |        | Percent |
|------|-----------|--------|---------|
| Year | Predicted | Actual | Error   |
| 1994 | 15.3      | 15.0   | -2%     |
| 1995 | 35.6      | 32.2   | -30%    |
| 1996 | 59.1      | 130.0  | +98%    |
| 1997 | 55.4      | 50.1   | -10%    |
| 1998 | 66.6      | 20.1   | -68%    |
| 1999 | 56.1      | 26.7   | -52%    |
| 2002 | 52.5      | 12.7   | -76%    |

Lack of fyke net sampling in Prudhoe Bay during 1999 and 2000 precluded making predictions for 2000 and 2001.

The actual CPUE from 1997 to 2002 was less than predicted, and it is clear there is often substantial deviation between the predicted and actual CPUE's. Much of this deviation can be explained for a given year after close examination of the details for a given year. Examples of known reasons for the high deviation include annual differences in salinity distribution and changes in timing of the fishery. For 2002, there is some evidence that summer 2001 was a poor growth year and most fish of the 1997 year class did not reach harvestable size by age 5 (see, for example, Figure 11).

The village catch rate for Arctic cisco in the Nigliq Channel is correlated with the commercial catch rate observed in the Outer Delta, indicating that Arctic cisco abundance fluctuates similarly throughout the lower delta within a given year (p = 0.001, Table 9, Figure 18). Catch rates of least cisco between the two areas show no relationship (p=0.62).

The predicted catch rate in the commercial fishery for 2003 was 111 fish/day/45 m gill net, which would be equivalent to 17.5 fish/day using the 18-m standard gill net index for the Nigliq Channel. The actual catch rate in the commercial fishery was not obtained, but the actual Nigliq Channel catch rate was 14.4 fish/day/18m, or 17% lower than predicted. Using the relationships described above for abundance of 260-300mm Arctic cisco in Prudhoe Bay fyke nets and the gill net catch rates, the

2004 predicted catch rate in Nigliq Channel is 16.4 fish/day/18m, or similar to that seen in 2003. This prediction assumes that the salinity distribution in the fishing areas will be suitable for Arctic cisco, as happened in 2003.

#### DISCUSSION

The 2003 fishery was characterized by moderate abundance of Arctic cisco caused by recruitment of the 1997 year class into the fishery. Early catch rates in the Nigliq Delta area were high when periodic west winds brought high salinity water into the area, inducing fish to move upstream. Catches then decreased through the season. Studies from previous years have established that Arctic cisco move into the Colville River channels as salinity increases after ice formation (Moulton and Field 1988; Moulton 1994). For years in which salinity does not increase, such as 1988 and 1999, catches of Arctic cisco are lower than expected. In 2003, salinity was high in the Nigliq Delta and Nanuk areas through the season, and increased steadily through the fishing season in the Upper Nigliq area, thus the main group of Arctic cisco moved into the Nigliq Channel early in the season and was available for harvest. Bering cisco, which had been unusually abundant and a dominant portion of the catch in 1990, remained essentially absent in 2003. Humpback whitefish again formed a significant portion of the harvest in 2003.

In the past, knowledge of Arctic cisco juvenile recruitment into the region as a whole and information on growth rates prior to recruitment into the fishery has allowed some prediction of impending increases or decreases in the Arctic cisco catch rate (Figure 18). Unpredictable variables, such as the distribution of saline water in the delta, and possible variations in natural mortality, growth and maturation rates, make accurate predictions of catch rates unlikely. In 2003, the fishery did not respond as expected, with catch rates remaining lower than predicted. The 1990 year class has fully matured and left the region. The 1997 year class, which was expected to support the 2003 harvest, apparently did not grow as expected and a lower proportion of the fish than normal reached harvestable size. Catches should improve substantially in 2003 when the 1997 year class fully recruits into the fishery and larger members of the 1998 year class begin to enter the fishery.

#### **PREDICTIONS FOR 2004**

Based on the catch rates of 260-300 mm Arctic cisco in Prudhoe Bay during 2003, it is likely that 2004 gill net catch rates will be similar to those observed in 2003. The 2003 harvest was supported almost completely by larger fish from the 1997 year class. In 2004, the remaining fish from this year class will have grown large enough to be harvested by the gill nets used in the Colville Delta fishery (see Figure 11). The 2004 harvest will be supplemented with fish from the 1998 year class, which appears to be of moderate abundance. Catches will likely decrease in 2005, when both the 1997 and 1998 year classes will be maturing and leaving the Colville region.

If the catches of 260-300 mm Arctic cisco from fyke nets in the Prudhoe Bay region in 2003 are used as predictors of abundance, then the catches in the Colville Delta commercial fishery (76-mm [3 inch] mesh) will be around 67 fish per day per 46 m of net (or 27 fish per day per 18 m of net) for fish in the range of 300-340 mm, which will likely form 80-90% of the harvest. In the Nigliq Channel, catches may approach 17 fish per day per 18 m of net. Most of the remaining 10 to 20 % will be larger fish from the 1998 year class. As is usually the case, variability in this estimate could result from salinity distribution, competing fishers, or reduced growth rates during the summer of 2003.

## ACKNOWLEDGMENTS

The study was funded by the ConocoPhillips Alaska, Inc. The study was administered by Caryn Rea of ConocoPhillips Alaska. Field support was provided by Matt Kopec and Nuiqsut residents, including Jerry Pausanna and Bryan Nukapigak

### LITERATURE CITED

- Bendock, T.N. 1979. Beaufort Sea estuarine fishery study. Pp. 670-729 in Environmental Assessment of the Alaskan Continental Shelf, Final Reports of Principal Investigators. Vol. 4. BLM/NOAA OCSEAP, Boulder, CO. 4: 670-729.
- Craig, P.C. 1987. Subsistence fisheries at coastal villages in the Alaskan Arctic, 1970-1986.Minerals Management Service, Anchorage, AK. Alaska OCS Socioeconomic Studies Program.Technical Report 129. 63 p.
- Craig, P.C., and L. Haldorson. 1981. Beaufort Sea barrier island-lagoon ecological process studies: Final Report, Simpson Lagoon (Part 4, Fish). Pp. 384-678 *in* Environmental Assessment of the Alaskan Continental Shelf, Final Reports of Principal Investigators. Vol. 7. BLM/NOAA OCSEAP, Boulder, CO.
- Critchlow, K.R. 1983. Fish study. Pp. 1–327 in Prudhoe Bay Waterflood Environmental Monitoring Program 1982. Report by Woodward–Clyde Consultants for Alaska District, U.S. Army Corps of Engineers, Anchorage, AK.
- Envirosphere Company. 1987. Endicott Environmental Monitoring Program, Final Report, 1985. Alaska District, U.S. Army Corps of Engineers, Anchorage, AK. 7 vols.
- Fawcett, M.H., L.L. Moulton, and T.A. Carpenter. 1986. Colville River Fishes: 1985 Biological Report. Chap. 2. Colville River Fish Study. 1985 Annual Report. Prepared by Entrix, Inc., Anchorage, AK, for ARCO Alaska, Inc., North Slope Borough, and City of Nuiqsut. 86 p.
- Fechhelm, R.G., and D.B. Fissel. 1988. Wind-aided recruitment of Canadian Arctic cisco (*Coregonus autumnalis*) into Alaskan waters. Can. J. Fish. Aquat. Sci. 45:906-910.

Furniss, R.A. 1975. Prudhoe Bay study. Inventory and cataloging of arctic area waters. Alaska

Dept. Fish and Game. Federal Aid in Fish Restoration, Annual Report of Progress, 1974-1975, Project F-9-7, 16(G-I-1):31-47.

- Gallaway, B.J., W.J. Gazey, and L.L. Moulton. 1989. Population trends for the Arctic cisco (*Coregonus autumnalis*) in the Colville River of Alaska as reflected by the commercial fishery. Biol. Pap. Univ. Alaska. 24:153-165.
- Gallaway, B.J., W.B. Griffiths, P.C. Craig, W.J. Gazey, and J.W. Helmericks. 1983. An assessment of the Colville River delta stock of Arctic cisco -- migrants from Canada? Biol. Pap. Univ. Alaska. 21:4-23.
- George, J.C., and R. Kovalsky. 1986. Observations on the Kupigruak Channel (Colville River) subsistence fishery. October 1985. Dept. of Wildlife Management, North Slope Borough, Barrow, AK. 60 p.
- George, J.C., and B.P. Nageak. 1986. Observations on the Colville River subsistence fishery at Nuiqsut, Alaska. Dept. of Wildlife Management, North Slope Borough, Barrow, AK. 35 p.
- Griffiths, W. and B.J. Gallaway. 1982. Prudhoe Bay Waterflood Project fish monitoring program 1981. Pp. D1-D98 *in* Prudhoe Bay Waterflood Environmental Monitoring Program. Vol. 4.
  Report by LGL Alaska Research Associates, Inc. for Woodward-Clyde Consultants and Alaska District, U.S. Army Corps of Engineers, Anchorage, AK.
- Griffiths, W.B., D.R. Schmidt, R.G. Fechhelm, B.J. Gallaway, R.E. Dilinger, Jr., W. Gazey, W.H. Neill, and J.S. Baker. 1983. Fish ecology. Vol. 3 *in* B.J. Gallaway and R. Britch, editors. Environmental Summer Studies (1982) for the Endicott Development. Report by LGL Alaska Research Associates, Inc. and Northern Technical Services for Sohio Alaska Petroleum Co., Anchorage, AK. 342 p.
- LGL (see LGL Alaska Research Associates, Inc.)

- LGL Alaska Research Associates, Inc. 1990. The 1988 Endicott Development Fish Monitoring Program. Vol. II: Recruitment and Population Studies, Analysis of 1988 Fyke Net Data. Anchorage, AK. Report for BP Exploration (Alaska) Inc. and North Slope Borough. 317 p.
- LGL Alaska Research Associates, Inc. 1992. The 1990 Endicott Development Fish Monitoring Program. Vol. II: Analysis of Fyke Net Data. Anchorage, AK. Report for BP Exploration (Alaska) Inc. and North Slope Borough. 160 p.
- LGL Alaska Research Associates, Inc. 1994. The 1993 Endicott Development Fish Monitoring Program. Vol. I: Fish and Hydrography Data Report. Anchorage, AK. Report for BP Exploration (Alaska) Inc. and North Slope Borough. 217 p.
- LGL Alaska Research Associates, Inc. 1996. The 1995 Endicott Development Fish Monitoring Program. Vol. I: Fish and Hydrography Data Report. Anchorage, AK. Report for BP Exploration (Alaska) Inc. and North Slope Borough. 180 p.
- LGL Alaska Research Associates, Inc. 2000. The 1999 Point Thomson Unit nearshore marine fish study. Report for BP Exploration (Alaska) Inc. Anchorage, AK. 71 p + appendices.
- Moulton, L.L. 1994. The 1993 Endicott Development Fish Monitoring Program. Vol. II: The 1993Colville River Fishery. Report by MJM Research, Bainbridge Island, WA, for BP Exploration(Alaska) Inc. and North Slope Borough. 60 p. + App.
- Moulton, L.L. 1995. The 1994 Endicott Development Fish Monitoring Program. Vol. II: The 1994Colville River Fishery. Report by MJM Research, Bainbridge Island, WA, for BP Exploration(Alaska) Inc. and North Slope Borough. 55 p. + App.
- Moulton, L.L. 2001. Harvest estimate and associated information for the 2000 Colville River fall fishery. Report by MJM Research to Phillips Alaska, Inc and BP Exploration (Alaska). Lopez

Island, WA. 53p. + appendices.

Moulton, L.L. 2003. Harvest estimate and associated information for the 2002 Colville River fall fishery. Report by MJM Research to ConocoPhillips Alaska, Inc. Lopez Island, WA. 161p.

Moulton, L.L. and M.H. Fawcett. 1984. Oliktok Point Fish Studies - 1983. Woodward-Clyde Consultants. Report for Kuparuk River Unit, Anchorage, AK. 77 p.

Moulton, L.L., and L.J. Field. 1988. Assessment of the Colville River fall fishery 1985-1987. Report by Environmental Sciences and Engineering, Inc. for ARCO Alaska, Inc., North Slope Borough, and the City of Nuiqsut. 42 p.

Moulton L.L., J. Field, and S. Brotherton. 1986b. Assessment of the Colville River fishery in 1985. Chap. 3 *in* Colville River Fish Study, Final Report. Report by Entrix Inc. for ARCO Alaska Inc., North Slope Borough, and the City of Nuiqsut. 83 p.

Moulton, L.L., B.J. Gallaway, M.H. Fawcett, W.B. Griffiths, K.R. Critchlow, R.G. Fechhelm, D.R. Schmidt, and J.S. Baker. 1986a. 1984 Central Beaufort Sea Fish Study. Waterflood Monitoring Program Fish Study. Report by Entrix, Inc., LGL Ecological Research Associates, Inc., and Woodward-Clyde Consultants, for Envirosphere Co. Anchorage, AK. 300 p.

USACE (see U.S. Army Corps of Engineers)

U.S. Army Corps of Engineers, Alaska District. 1980. Prudhoe Bay Oil Field Waterflood Project. Final Environmental Impact Statement. Anchorage, AK. 3 vols.

U.S. Army Corps of Engineers, Alaska District and Environmental Research and Technology, Inc. 1984. Endicott Development Project. Final Environmental Impact Statement. Anchorage, AK. 3 vols.

Woodward-Clyde Consultants. 1983. Lisburne Development Area: 1983 environmental studies. Report for ARCO Alaska Inc., Anchorage, AK. 722 p

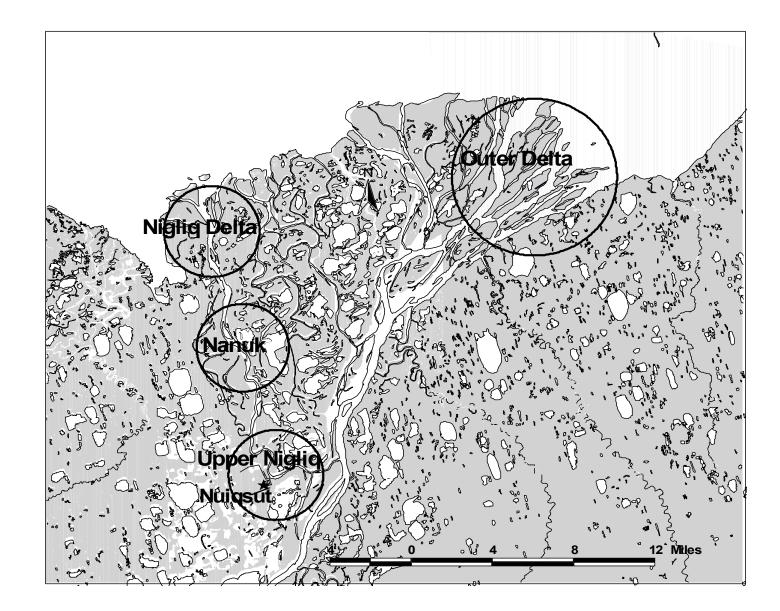



Figure 1. Colville Delta region showing locations of major fishing areas.

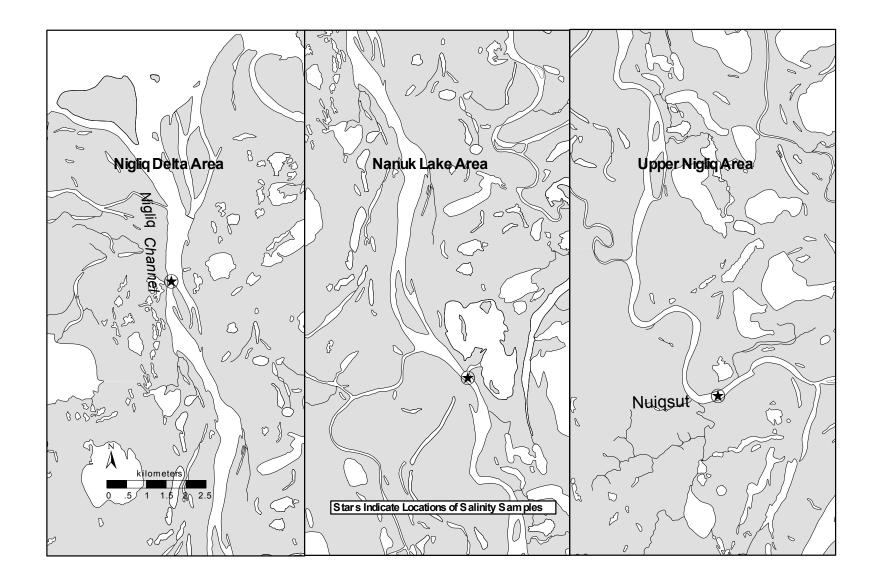



Figure 2. Major fishing areas on the Nigliq Channel with location of salinity monitoring stations.

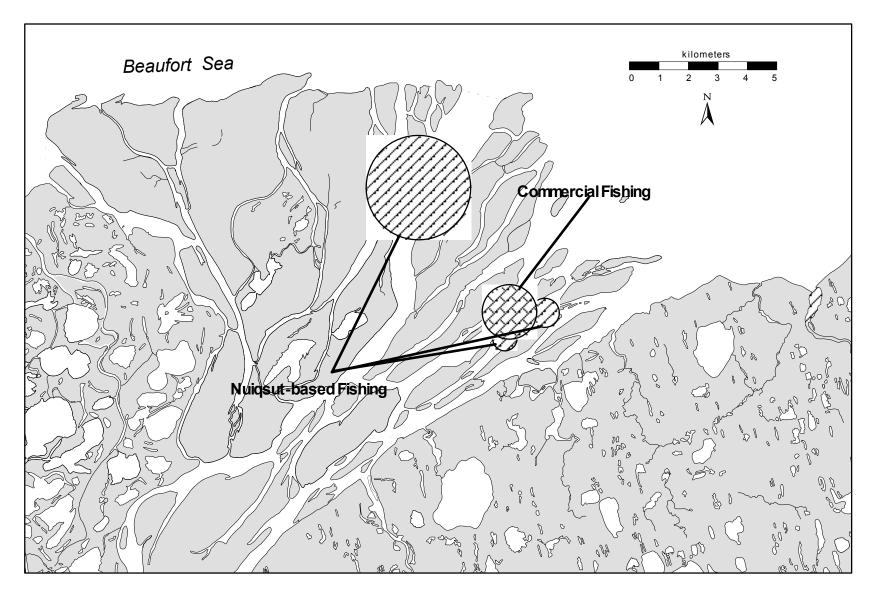
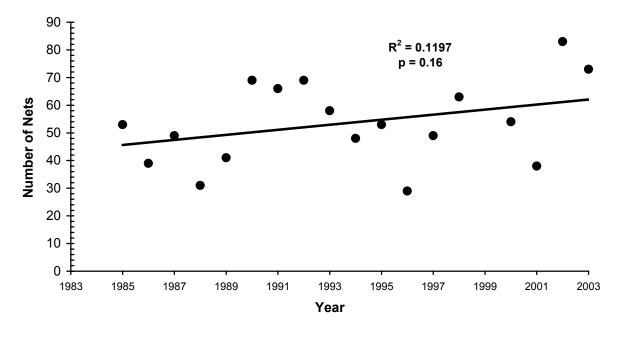
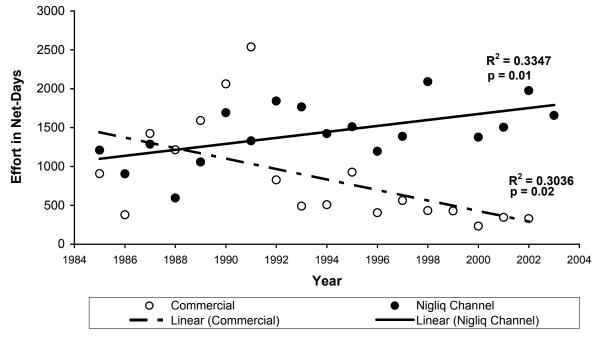





Figure 3. Fishing areas on the lower Colville River and Outer Delta region.



a. Number of Nets



b. Estimated Fishing Effort

Figure 4. Trends in fishing effort in the Colville Delta fall Fishery, 1985-2003 by number of nets and effort in net-days (1 net-day = 24 hrs fishing per 18 m of net, all meshes combined).

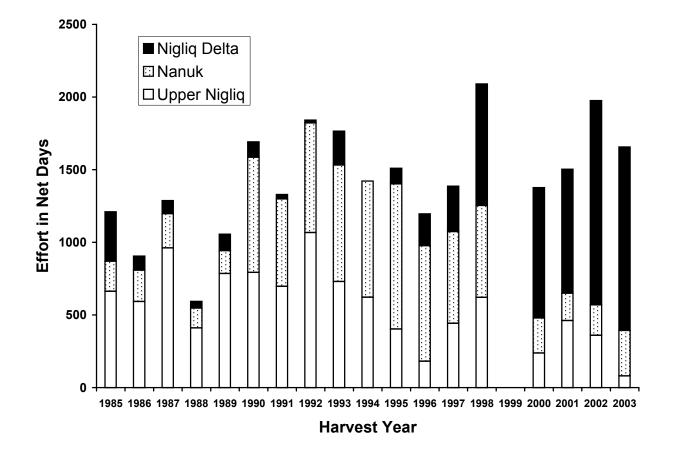



Figure 5. Distribution of fishing effort in the Nigliq Channel by fishing area, all meshes combined, 1986 to 2003.

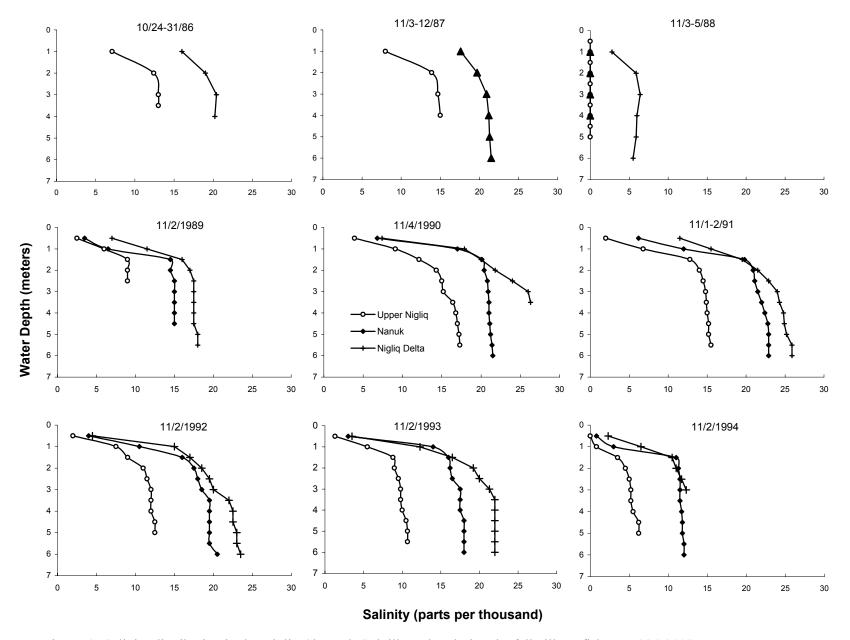



Figure 6. Salinity distribution in the Nigliq Channel, Colville Delta, during the fall gill net fishery, 1986-2003.

26

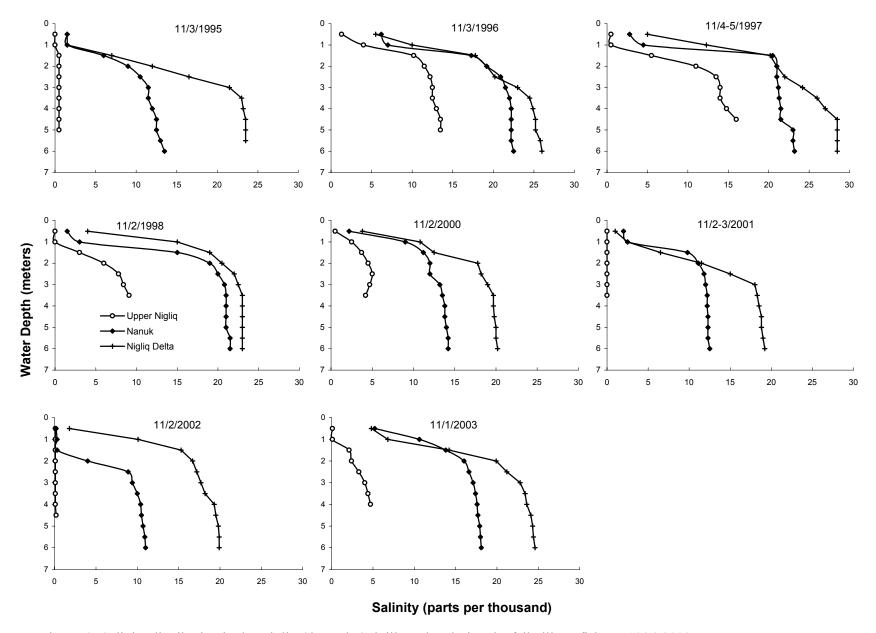



Figure 6. Salinity distribution in the Nigliq Channel, Colville Delta, during the fall gill net fishery, 1986-2003.

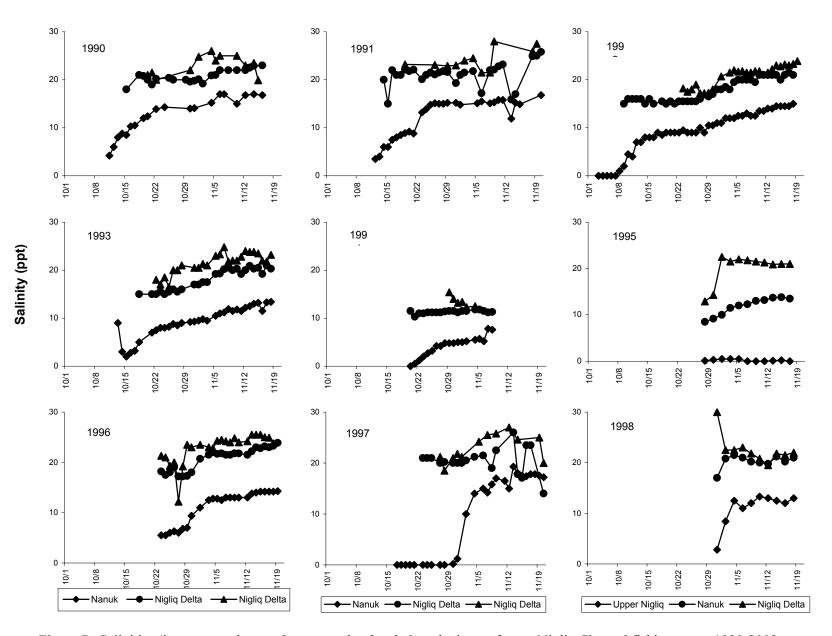



Figure 7. Salinities (in parts per thousand) measured at 3 m below the ice surface at Nigliq Channel fishing areas, 1990-2003.

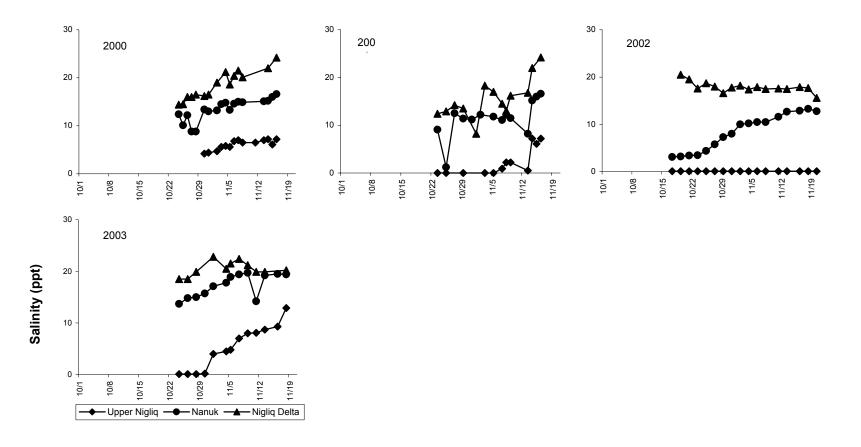



Figure 7. Salinities (in parts per thousand) measured at 3 m below the ice surface at Nigliq Channel fishing areas, 1990-2003.

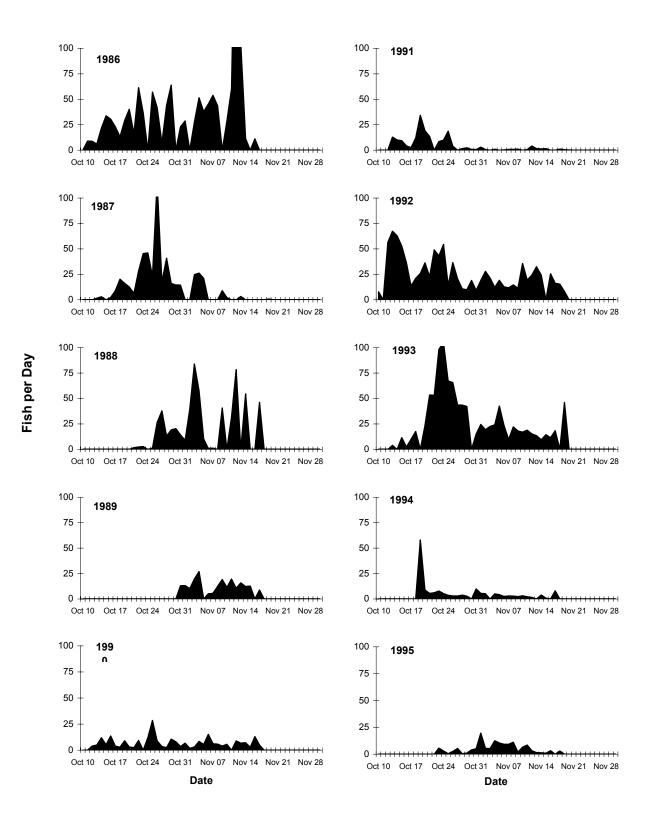



Figure 8. Mean daily catch rate of Arctic cisco in 76-mm (3 inch) mesh in the Nigliq Channel, 1986-2003.

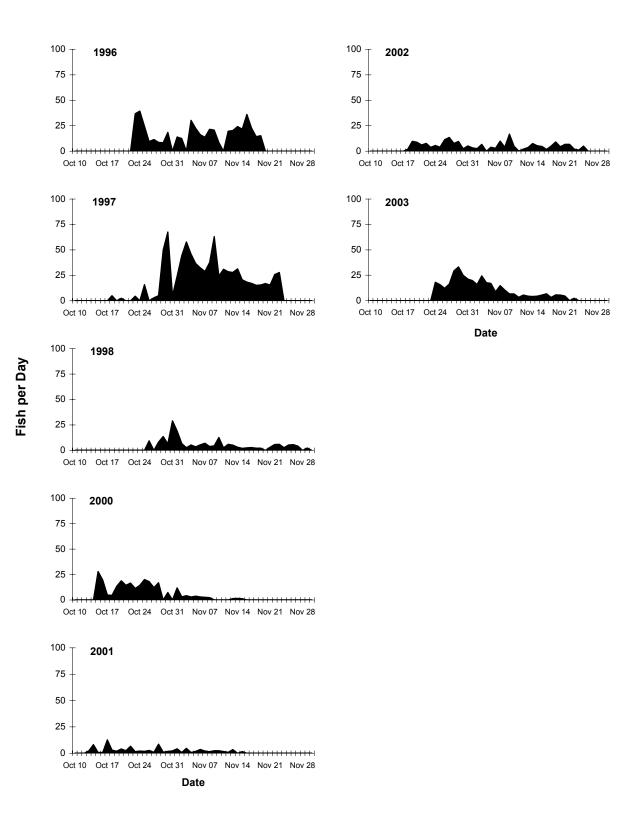
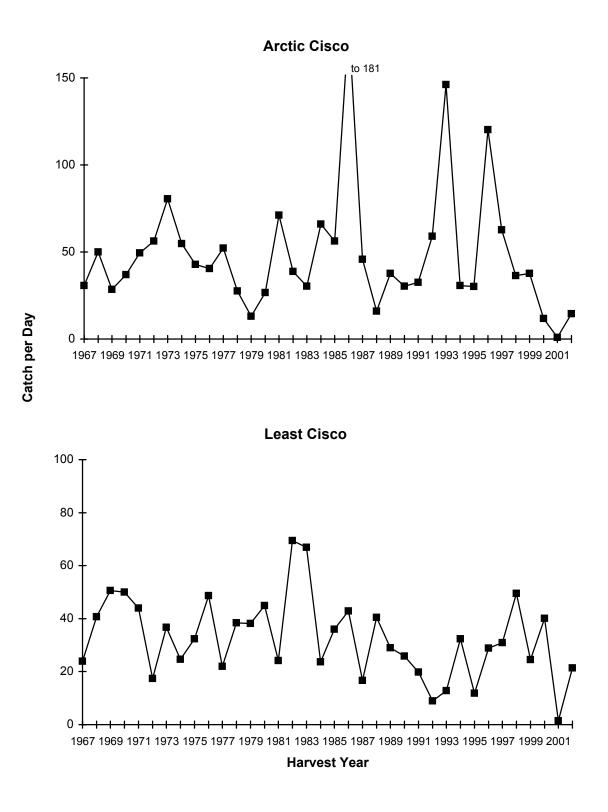
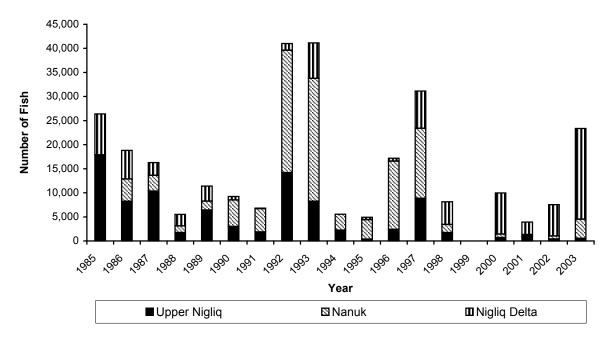
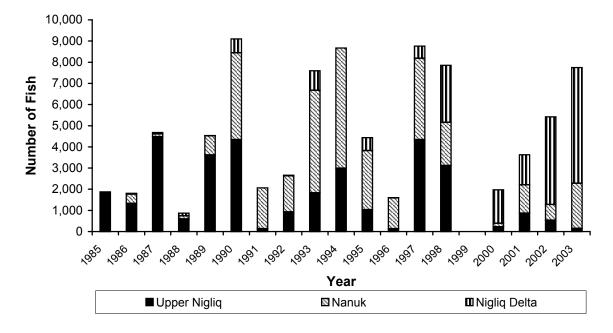
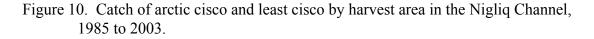



Figure 8. Mean daily catch rate of Arctic cisco in 76-mm (3 inch) mesh in the Nigliq Channel, 1986-2003.



Figure 9. Catch rates of arctic cisco and least cisco in the Colville River delta commercial fishery, 1967-2002 (using catch rates ajusted for varying effort - see text).



a. Arctic Cisco



b. Least Cisco



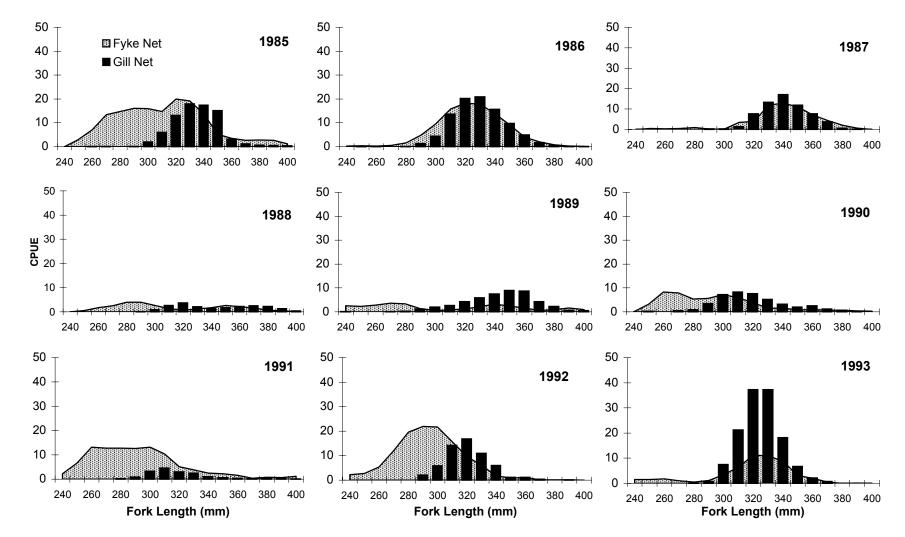



Figure 11. Length frequencies of Arctic cisco caught in fyke nets near Prudhoe Bay compared to those caught by 76-mm (3 inch) gill nets in the Nigliq Channel fishery, 1985-2003 (fyke net length frequencies for fish caught after August 14, i.e. after summe growth period). (Length frequencies scaled by CPUE to reflect annual changes in Arctic cisco abundance, Prudhoe Bay fyke nets not fished from 1998-2000)

34

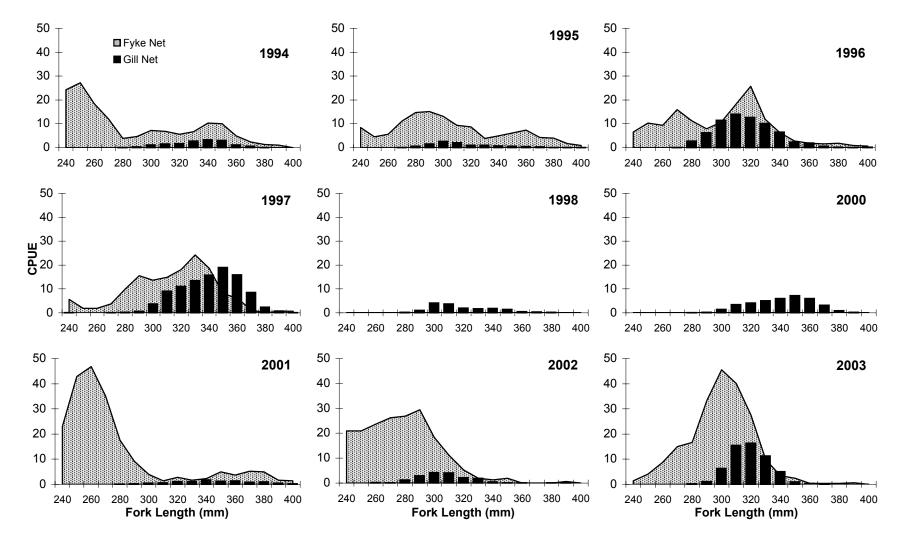



Figure 11. Length frequencies of Arctic cisco caught in fyke nets near Prudhoe Bay compared to those caught by 76-mm (3 inch) gill nets in the Nigliq Channel fishery, 1985-2003 (fyke net length frequencies for fish caught after August 14, i.e. after summe growth period). (Length frequencies scaled by CPUE to reflect annual changes in Arctic cisco abundance, Prudhoe Bay fyke nets not fished from 1998-2000)

35

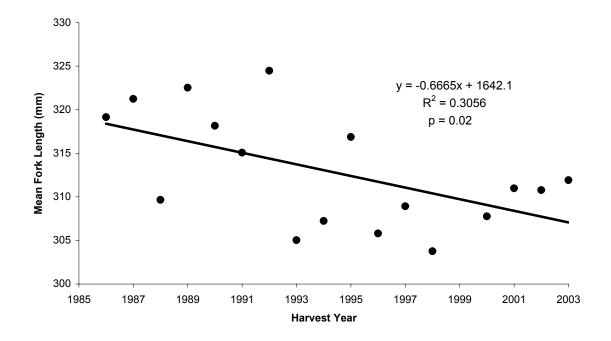



Figure 12. Trend in mean length for least cisco caught in 76-mm (3 inch) mesh in the Nuiqsut fall fishery, 1986-2003.

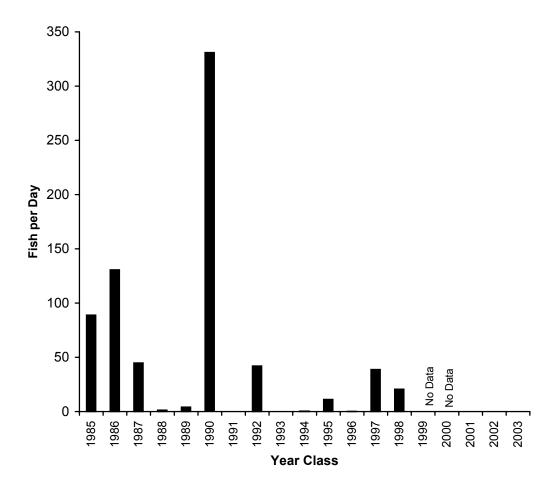



Figure 13. Catch rates of young-of-the-year (YOY) arctic cisco by year class ir Prudhoe Bay fyke nets, 1985-2002.

(source: LGL Alaska Research Associates 2000, B. Fechhelm, pers. comm. 2003, 2004).

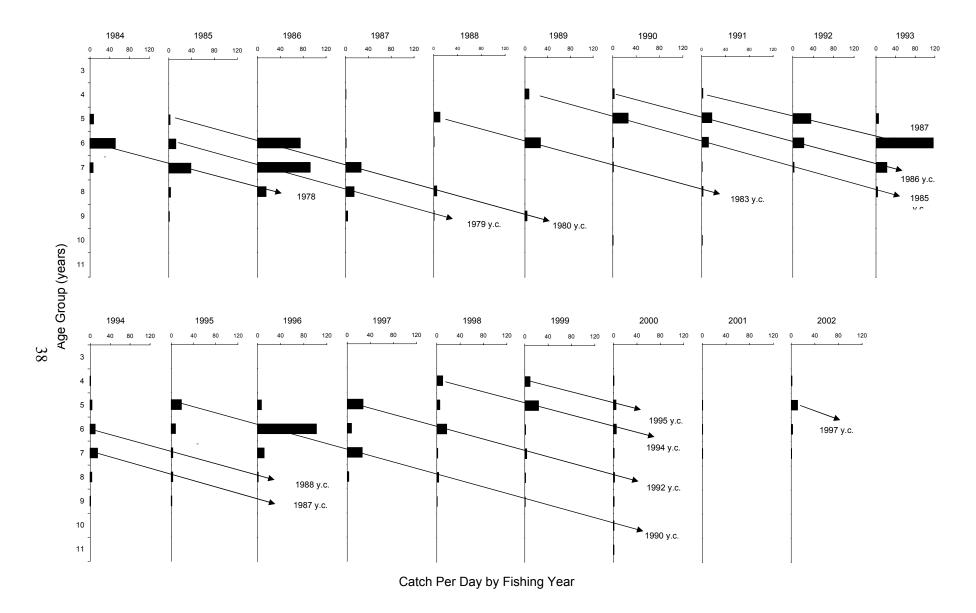



Figure 14. Age distribution of Arctic cisco caught in the Colville River commercial fishery, 1984 - 2002, scaled to CPUE (from fish caught in 76-mm mesh nets, arrows indicate progression of year classes through the fishery).

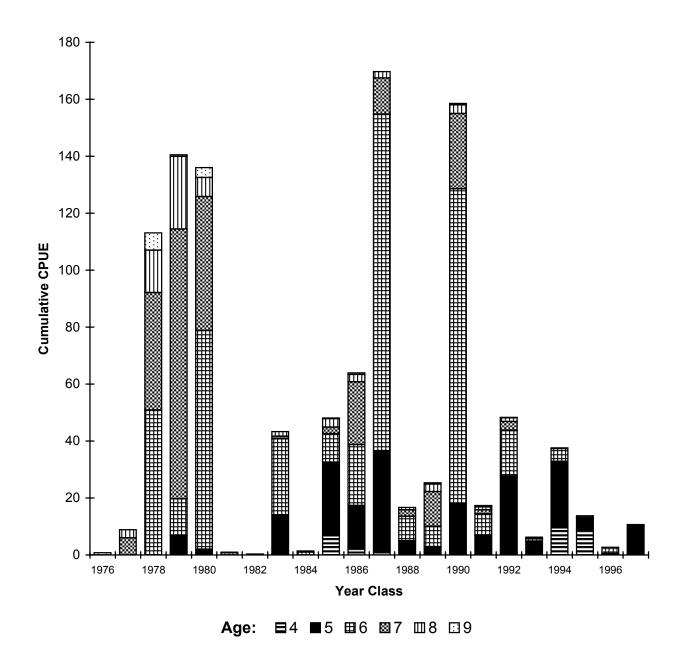
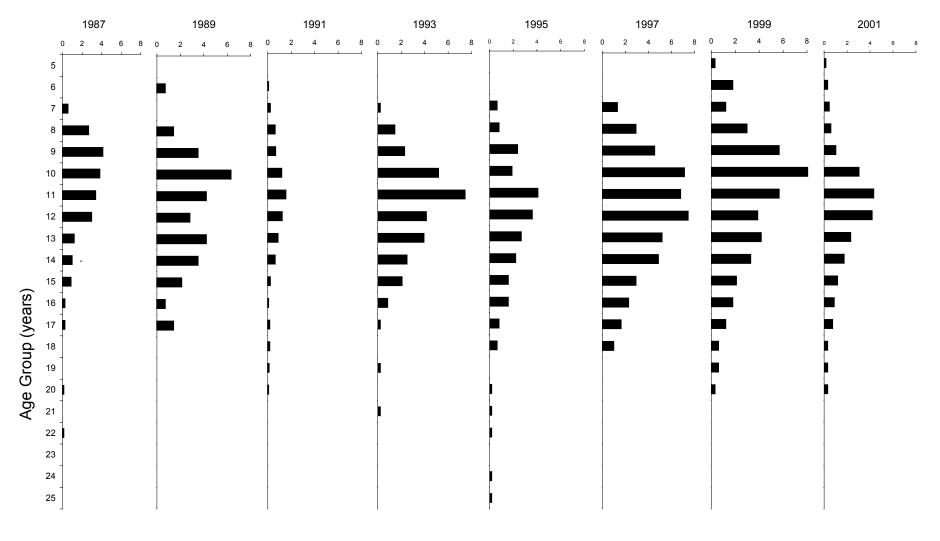




Figure 15. Cumulative harvest for each year class of Arctic cisco, expressed as cumulative catch rate for harvest years 1984 to 2002.



Catch Per Day by Fishing Year

Figure 16. Age distribution of least cisco caught in the Colville River commercial fishery, 1987 - 2001, scaled to CPUE (from fish caught in 76-mm mesh nets, arrows indicate progression of year classes through the fishery).

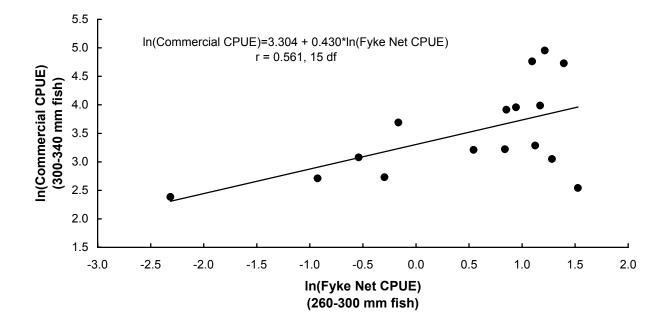



Figure 17. Relationship between commercial catch rate of 300-340 mm Arctic cisco in 76-mm (3 inch) mesh and fyke net catch rate for 260-300 mm fish the prior year.

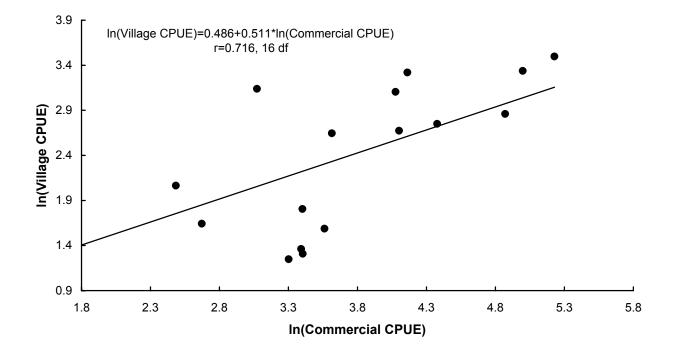



Figure 18. Relationship between village and commercial catch rates of arctic cisco in 76-mm (3 inch) mesh, 1985-2002.

| Onset of<br>YearOnset of<br>Fishing1985Oct 21986Oct 31987Oct 81988Oct 141989Oct 221990Oct 61991Oct 121992Sep 261993Oct 31994Oct 3                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1985         Oct 2           1986         Oct 3           1987         Oct 8           1988         Oct 14           1989         Oct 22           1990         Oct 6           1991         Oct 12           1992         Sep 26           1993         Oct 3           1994         Oct 3 |
| 1986       Oct 3         1987       Oct 8         1988       Oct 14         1989       Oct 22         1990       Oct 6         1991       Oct 12         1992       Sep 26         1993       Oct 3         1994       Oct 3                                                                |
| 1987       Oct 8         1988       Oct 14         1989       Oct 22         1990       Oct 6         1991       Oct 12         1992       Sep 26         1993       Oct 3         1994       Oct 3                                                                                         |
| 1988Oct 141989Oct 221990Oct 61991Oct 121992Sep 261993Oct 31994Oct 3                                                                                                                                                                                                                         |
| 1989         Oct 22           1990         Oct 6           1991         Oct 12           1992         Sep 26           1993         Oct 3           1994         Oct 3                                                                                                                      |
| 1990         Oct 6           1991         Oct 12           1992         Sep 26           1993         Oct 3           1994         Oct 3                                                                                                                                                    |
| 1991         Oct 12           1992         Sep 26           1993         Oct 3           1994         Oct 3                                                                                                                                                                                 |
| 1992Sep 261993Oct 31994Oct 3                                                                                                                                                                                                                                                                |
| 1993         Oct 3           1994         Oct 3                                                                                                                                                                                                                                             |
| 1994 Oct 3                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                             |
| 1995 Oct 16                                                                                                                                                                                                                                                                                 |
| 1996 Sep 28                                                                                                                                                                                                                                                                                 |
| 1997 Oct 13                                                                                                                                                                                                                                                                                 |
| 1998 Sep 28                                                                                                                                                                                                                                                                                 |
| 1999                                                                                                                                                                                                                                                                                        |
| 2000 Oct 3                                                                                                                                                                                                                                                                                  |
| 2001 Oct 6                                                                                                                                                                                                                                                                                  |
| 2002 Oct 14                                                                                                                                                                                                                                                                                 |
| 2003 Oct 16                                                                                                                                                                                                                                                                                 |

Table 1. Estimated onset of fishing effort in the Nuiqsut fall fishery, 1985-2003.

Average start date for 1985-2003 = October 7.

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |        | A       | Arctic Cisco | )                 | Least Cisco |        |                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|---------|--------------|-------------------|-------------|--------|--------------------------|--|--|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | Total  |         |              |                   | Total       | Actual | Adjusted                 |  |  |
| 1968 $1,427$ $41,948$ $29.4$ $50.0$ $19,086$ $13.4$ 1969 $699$ $19,593$ $28.0$ $28.5$ $35,001$ $50.1$ 1970 $562$ $22,685$ $40.4$ $37.0$ $30,650$ $54.5$ 1971 $1,422$ $41,312$ $29.1$ $49.5$ $23,887$ $16.8$ 1972 $646$ $37,101$ $57.4$ $56.4$ $12,183$ $18.9$ 1973 $993$ $71,575$ $72.1$ $80.7$ $25,191$ $25.4$ 1974 $947$ $44,937$ $47.5$ $54.8$ $14,122$ $14.9$ 1975 $759$ $30,953$ $40.8$ $42.9$ $22,476$ $29.6$ 1976 $996$ $31,659$ $31.8$ $40.5$ $37,046$ $37.2$ 1977 $576$ $31,796$ $55.2$ $52.2$ $14.961$ $26.0$ 1978 $1,077$ $18,058$ $16.8$ $27.7$ $25,761$ $23.9$ 1979 $620$ $9,268$ $14.9$ $13.2$ $25.097$ $40.5$ 1980 $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ 1981 $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ 1982 $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ 1983 $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ 1984 $371$ $27,686$ $74.6$ $66.0$ $13,076$ $45.2$ 1985 $363$ $23,678$ $65.2$ $56.4$ </td <td>Year</td> <td>Effort</td> <td>Harvest</td> <td>CPUE</td> <td>CPUE<sup>a</sup></td> <td>Harvest</td> <td>CPUE</td> <td><b>CPUE</b><sup>a</sup></td> | Year      | Effort | Harvest | CPUE         | CPUE <sup>a</sup> | Harvest     | CPUE   | <b>CPUE</b> <sup>a</sup> |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1967      | 774    | 21,904  | 28.3         | 30.8              | 15,982      | 20.6   | 24.0                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1968      | 1,427  | 41,948  | 29.4         | 50.0              | 19,086      | 13.4   | 40.7                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1969      | 699    | 19,593  | 28.0         | 28.5              | 35,001      | 50.1   | 50.6                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1970      | 562    | 22,685  | 40.4         | 37.0              | 30,650      | 54.5   | 50.0                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1971      | 1,422  | 41,312  | 29.1         | 49.5              | 23,887      | 16.8   | 44.0                     |  |  |
| 1974 $947$ $44,937$ $47.5$ $54.8$ $14,122$ $14.9$ $1975$ $759$ $30,953$ $40.8$ $42.9$ $22,476$ $29.6$ $1976$ $996$ $31,659$ $31.8$ $40.5$ $37,046$ $37.2$ $1977$ $576$ $31,796$ $55.2$ $52.2$ $14,961$ $26.0$ $1978$ $1,077$ $18,058$ $16.8$ $27.7$ $25,761$ $23.9$ $1979$ $620$ $9,268$ $14.9$ $13.2$ $25,097$ $40.5$ $1980$ $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ $1981$ $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $7,955$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,73$                                                                                                                                            | 1972      | 646    | 37,101  | 57.4         | 56.4              | 12,183      | 18.9   | 17.5                     |  |  |
| 1975 $759$ $30,953$ $40.8$ $42.9$ $22,476$ $29.6$ $1976$ $996$ $31,659$ $31.8$ $40.5$ $37,046$ $37.2$ $1977$ $576$ $31,796$ $55.2$ $52.2$ $14,961$ $26.0$ $1978$ $1,077$ $18,058$ $16.8$ $27.7$ $25,761$ $23.9$ $1979$ $620$ $9,268$ $14.9$ $13.2$ $25,097$ $40.5$ $1980$ $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ $1981$ $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$                                                                                                                                            | 1973      | 993    | 71,575  | 72.1         | 80.7              | 25,191      | 25.4   | 36.7                     |  |  |
| 1976 $996$ $31,659$ $31.8$ $40.5$ $37,046$ $37.2$ $1977$ $576$ $31,796$ $55.2$ $52.2$ $14,961$ $26.0$ $1978$ $1,077$ $18,058$ $16.8$ $27.7$ $25,761$ $23.9$ $1979$ $620$ $9,268$ $14.9$ $13.2$ $25,097$ $40.5$ $1980$ $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ $1981$ $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$ $68.7$ $59.0$ $7,284$ $22.0$ $1993$ $196$ $31,310$                                                                                                                                             | 1974      | 947    | 44,937  | 47.5         | 54.8              | 14,122      | 14.9   | 24.6                     |  |  |
| 1977 $576$ $31,796$ $55.2$ $52.2$ $14,961$ $26.0$ $1978$ $1,077$ $18,058$ $16.8$ $27.7$ $25,761$ $23.9$ $1979$ $620$ $9,268$ $14.9$ $13.2$ $25,097$ $40.5$ $1980$ $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ $1981$ $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$ $68.7$ $59.0$ $7,284$ $22.0$ $1993$ $196$ $31,310$ $159.7$ $146.3$ $6,037$ $30.8$ $1994$ $203$ $8,958$                                                                                                                                             | 1975      | 759    | 30,953  | 40.8         | 42.9              | 22,476      | 29.6   | 32.4                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1976      | 996    | 31,659  | 31.8         | 40.5              | 37,046      | 37.2   | 48.7                     |  |  |
| 1979 $620$ $9,268$ $14.9$ $13.2$ $25,097$ $40.5$ $1980$ $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ $1981$ $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$ $68.7$ $59.0$ $7,284$ $22.0$ $1993$ $196$ $31,310$ $159.7$ $146.3$ $6,037$ $30.8$ $1994$ $203$ $8,958$ $44.1$ $30.8$ $10,176$ $50.1$ $1995$ $368$ $14,311$ $38.9$ $30.1$ $8,633$ $23.5$ $1996$ $162$ $21,817$ <td>1977</td> <td>576</td> <td>31,796</td> <td>55.2</td> <td>52.2</td> <td>14,961</td> <td>26.0</td> <td>22.0</td>                             | 1977      | 576    | 31,796  | 55.2         | 52.2              | 14,961      | 26.0   | 22.0                     |  |  |
| 1980 $1,209$ $14,753$ $12.2$ $26.8$ $30,982$ $25.6$ $1981$ $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$ $68.7$ $59.0$ $7,284$ $22.0$ $1993$ $196$ $31,310$ $159.7$ $146.3$ $6,037$ $30.8$ $1994$ $203$ $8,958$ $44.1$ $30.8$ $10,176$ $50.1$ $1995$ $368$ $14,311$ $38.9$ $30.1$ $8,633$ $23.5$ $1996$ $162$ $21,817$ $134.7$ $120.2$ $7,796$ $48.1$ $1997$ $225$ $16,990$ <                                                                                                                                            | 1978      | 1,077  | 18,058  | 16.8         | 27.7              | 25,761      | 23.9   | 38.4                     |  |  |
| 1981 $501$ $38,176$ $76.2$ $71.2$ $15,504$ $30.9$ $1982$ $328$ $15,975$ $48.7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$ $68.7$ $59.0$ $7,284$ $22.0$ $1993$ $196$ $31,310$ $159.7$ $146.3$ $6,037$ $30.8$ $1994$ $203$ $8,958$ $44.1$ $30.8$ $10,176$ $50.1$ $1995$ $368$ $14,311$ $38.9$ $30.1$ $8,633$ $23.5$ $1996$ $162$ $21,817$ $13.47$ $120.2$ $7,796$ $48.1$ $1997$ $225$ $16,990$ $75.5$ $62.8$ $10,754$ $47.8$ $1998$ $173$ $8,752$ <td>1979</td> <td>620</td> <td>9,268</td> <td>14.9</td> <td>13.2</td> <td>25,097</td> <td>40.5</td> <td>38.1</td>                               | 1979      | 620    | 9,268   | 14.9         | 13.2              | 25,097      | 40.5   | 38.1                     |  |  |
| 1982 $328$ $15,975$ $48,7$ $38.9$ $27,085$ $82.6$ $1983$ $520$ $18,162$ $34.9$ $30.4$ $37,909$ $72.9$ $1984$ $371$ $27,686$ $74.6$ $66.0$ $13,076$ $35.2$ $1985$ $363$ $23,678$ $65.2$ $56.4$ $17,383$ $47.9$ $1986$ $151$ $29,595$ $196.0$ $181.3$ $9,444$ $62.5$ $1987$ $570$ $27,948$ $48.3$ $45.9$ $11,930$ $20.9$ $1988$ $485$ $10,470$ $21.6$ $16.0$ $23,196$ $47.8$ $1989$ $636$ $24,802$ $39.0$ $37.6$ $19,595$ $30.8$ $1990$ $825$ $21,772$ $25.6$ $30.3$ $17,064$ $20.7$ $1991$ $1,015$ $23,731$ $23.4$ $32.5$ $7,743$ $7.6$ $1992$ $331$ $22,754$ $68.7$ $59.0$ $7,284$ $22.0$ $1993$ $196$ $31,310$ $159.7$ $146.3$ $6,037$ $30.8$ $1994$ $203$ $8,958$ $44.1$ $30.8$ $10,176$ $50.1$ $1995$ $368$ $14,311$ $38.9$ $30.1$ $8,633$ $23.5$ $1996$ $162$ $21,817$ $134.7$ $120.2$ $7,796$ $48.1$ $1997$ $225$ $16,990$ $75.5$ $62.8$ $10,754$ $47.8$ $1998$ $173$ $8,752$ $50.6$ $36.4$ $11,822$ $68.3$ $1999$ $171$ $8,872$                                                                                                                                                  | 1980      | 1,209  | 14,753  | 12.2         | 26.8              | 30,982      | 25.6   | 45.0                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1981      | 501    | 38,176  | 76.2         | 71.2              | 15,504      | 30.9   | 24.2                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1982      | 328    | 15,975  | 48.7         | 38.9              | 27,085      | 82.6   | 69.5                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1983      | 520    | 18,162  | 34.9         | 30.4              | 37,909      | 72.9   | 66.9                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1984      | 371    | 27,686  | 74.6         | 66.0              | 13,076      | 35.2   | 23.7                     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1985      | 363    | 23,678  | 65.2         | 56.4              | 17,383      | 47.9   | 36.1                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1986      | 151    | 29,595  | 196.0        | 181.3             | 9,444       | 62.5   | 42.9                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1987      | 570    | 27,948  | 48.3         | 45.9              | 11,930      | 20.9   | 16.7                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988      | 485    | 10,470  | 21.6         | 16.0              | 23,196      | 47.8   | 40.5                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1989      | 636    | 24,802  | 39.0         | 37.6              | 19,595      | 30.8   | 29.0                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1990      | 825    | 21,772  | 25.6         | 30.3              | 17,064      | 20.7   | 25.9                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1991      | 1,015  | 23,731  | 23.4         | 32.5              | 7,743       | 7.6    | 19.8                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1992      | 331    | 22,754  | 68.7         | 59.0              | 7,284       | 22.0   | 9.0                      |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1993      | 196    | 31,310  | 159.7        | 146.3             | 6,037       | 30.8   | 12.8                     |  |  |
| 199616221,817134.7120.27,79648.1199722516,99075.562.810,75447.819981738,75250.636.411,82268.319991718,87251.937.67,43043.52000932,61928.211.75,75861.920011381,92413.91.02,97621.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1994      | 203    | 8,958   | 44.1         | 30.8              | 10,176      | 50.1   | 32.4                     |  |  |
| 199722516,99075.562.810,75447.819981738,75250.636.411,82268.319991718,87251.937.67,43043.52000932,61928.211.75,75861.920011381,92413.91.02,97621.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1995      | 368    | 14,311  | 38.9         | 30.1              | 8,633       | 23.5   | 11.8                     |  |  |
| 19981738,75250.636.411,82268.319991718,87251.937.67,43043.52000932,61928.211.75,75861.920011381,92413.91.02,97621.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1996      | 162    | 21,817  | 134.7        | 120.2             | 7,796       | 48.1   | 28.9                     |  |  |
| 19991718,87251.937.67,43043.52000932,61928.211.75,75861.920011381,92413.91.02,97621.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1997      | 225    | 16,990  | 75.5         | 62.8              | 10,754      | 47.8   | 30.9                     |  |  |
| 2000932,61928.211.75,75861.920011381,92413.91.02,97621.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1998      | 173    | 8,752   | 50.6         | 36.4              | 11,822      | 68.3   | 49.5                     |  |  |
| 2001 138 1,924 13.9 1.0 2,976 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1999      | 171    | 8,872   | 51.9         | 37.6              | 7,430       | 43.5   | 24.5                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000      | 93     | 2,619   | 28.2         | 11.7              | 5,758       | 61.9   | 40.1                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2001      | 138    | 1,924   | 13.9         | 1.0               | 2,976       | 21.6   | 1.4                      |  |  |
| 2002 132 3,933 29.8 14.3 3,303 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2002      | 132    | 3,935   | 29.8         | 14.5              | 5,503       | 41.7   | 21.3                     |  |  |
| 1992-2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1992-2001 |        |         |              |                   |             |        |                          |  |  |
| Mean:20613,83166.653.67,86741.8 <sup>a</sup> The relationship used to adjust the CPUE for effort is based on the correlation between CPUE and effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |        |         |              |                   |             |        | 24.1                     |  |  |

Table 2. Observed and effort-adjusted CPUE values for the Colville Delta commercial fishery, 1967 - 2002 (CPUE = fish/day/46 m net).

<sup>a</sup> The relationship used to adjust the CPUE for effort is based on the correlation between CPUE and effort during the period 1967-1990.

| Species            | 1985  | 1986  | 1987  | 1988  | 1989  | 1990  | 1991  | 1992   | 1993   | 1994  | 1995  | 1996  | 1997   | 1998  | 2000  | 200  |
|--------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|--------|-------|-------|------|
| Arctic cisco       | 69.5  | 95.9  | 71.8  | 90.6  | 66.2  | 39.6  | 62.8  | 89.2   | 85.4   | 39.6  | 34.7  | 81.9  | 74.8   | 39.6  | 79.4  | 35.  |
| Bering Cisco       | (a)   | (a)   | (a)   | (a)   | (a)   | 21.8  | 1.2   | 0.1    | 0.02   | 0.1   | 0.2   | 0.0   | 0.0    | 0.0   | 0.1   | 0.   |
| Least cisco        | 14.8  | 3.8   | 18.7  | 8.3   | 23.7  | 30.2  | 30.0  | 6.0    | 11.1   | 44.6  | 35.0  | 4.8   | 22.9   | 50.8  | 14.0  | 29.  |
| Broad whitefish    | 15.1  | 0.3   | 5.5   | 0.6   | 7.0   | 5.3   | 1.0   | 0.2    | 0.3    | 2.2   | 7.6   | 0.1   | 1.3    | 0.4   | 0.2   | 5.   |
| Humpback whitefish | 0.5   | 0.03  | 3.8   | 0.5   | 3.1   | 2.9   | 3.8   | 0.1    | 0.4    | 13.2  | 22.3  | 0.4   | 0.9    | 8.9   | 6.0   | 27.  |
| Arctic grayling    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.   |
| Rainbow smelt      | 0.2   | 0.03  | 0.01  | 0.0   | 0.03  | 0.2   | 1.0   | 0.0    | 0.04   | 0.3   | 0.2   | 0.1   | 0.0    | 0.0   | 0.3   | 0.   |
| Round whitefish    | 0.0   | 0.01  | 0.0   | 0.0   | 0.0   | 0.0   | 0.03  | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0    | 0.2   | 0.0   | 0.   |
| Dolly Varden char  | 0.0   | 0.0   | 0.03  | 0.0   | 0.0   | 0.1   | 0.0   | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.   |
| Northern Pike      | 0.0   | 0.0   | 0.00  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.   |
| Saffron cod        | 0.0   | 0.0   | 0.03  | 0.0   | 0.03  | 0.03  | 0.04  | 0.0    | 0.01   | 0.0   | 0.0   | 0.02  | 0.0    | 0.0   | 0.03  | 0.   |
| Burbot             | 0.0   | 0.0   | 0.06  | 0.1   | 0.03  | 0.01  | 0.09  | 0.0    | 0.0    | 0.0   | 0.1   | 0.02  | 0.0    | 0.0   | 0.0   | 1.   |
| Arctic flounder    | 0.0   | 0.0   | 0.00  | 0.0   | 0.00  | 0.00  | 0.00  | 0.0    | 0.0    | 0.0   | 0.0   | 0.02  | 0.0    | 0.0   | 0.0   | 0.   |
| Fourhorn sculpin   | (b)   | 4.4    | 2.7    | (b)   | (b)   | 12.5  | (b)    | (b)   | (b)   | (t   |
| Total Observed:    | 2,705 | 8,952 | 6,826 | 2,948 | 2,946 | 7,911 | 7,576 | 24,305 | 17,155 | 3,792 | 7,155 | 5,730 | 19,758 | 6,481 | 3,871 | 3,51 |

Table 3. Catch contribution by species as observed during fisherman interviews in the Nigliq Channel, by percent of sampled cat 1985-2003 (does not include commercial fishery).

(a) = included with Arctic cisco prior to 1990(b) = always present but not counted

Table 4. Mean catch rate of arctic cisco in 76-mm (3 inch) mesh gill nets in the Nuiqsut fall fishery, 1985-2003 (in fish per day per 18 m of net).

|                    |        |       |        | Nigliq  | Outer Colv | ville Delta |
|--------------------|--------|-------|--------|---------|------------|-------------|
|                    | Upper  |       | Nigliq | Channel | Main       | East        |
| Year               | Nigliq | Nanuk | Delta  | Average | Channel    | Channel     |
| 1985               |        |       |        | 14.5    | 76.1       |             |
| 1986               | 19.2   | 29.9  | 65.8   | 33.0    | 62.0       |             |
| 1987               | 11.0   | 29.1  | 21.1   | 15.6    | 47.6       |             |
| 1988               | 6.4    | 8.1   | 55.7   | 23.1    | 19.3       |             |
| 1989               | 10.9   | 18.0  | 24.7   | 14.1    |            |             |
| 1990               | 4.4    | 7.5   | 7.3    | 6.1     |            |             |
| 1991               | 3.7    | 4.1   | 2.0    | 3.9     |            |             |
| 1992               | 15.3   | 17.8  | 51.5   | 22.3    | 54.1       |             |
| 1993               | 16.1   | 36.5  | 27.2   | 28.1    | 207.1      |             |
| 1994               | 3.7    | 3.4   |        | 3.5     | 35.5       |             |
| 1995               | 1.1    | 3.2   | 22.3   | 3.7     | 21.4       | 7.6         |
| 1996               | 11.5   | 18.6  |        | 17.5    | 28.6       | 45.8        |
| 1997               | 21.3   | 27.8  | 41.4   | 27.7    |            |             |
| 1998               | 2.0    | 2.6   | 7.8    | 4.9     |            |             |
| 1999               |        |       |        |         |            |             |
| 2000               | 1.0    | 3.5   | 9.6    | 7.9     |            |             |
| 2001               | 1.5    | 1.6   | 2.9    | 2.5     |            |             |
| 2002               | 0.9    | 3.7   | 6.3    | 5.2     |            |             |
| 2003               | 5.3    | 14.4  | 13.6   | 13.6    |            |             |
| 1993-2002          |        |       |        |         |            |             |
| Mean               | 6.6    | 11.2  | 16.8   | 11.2    | 73.2       | 26.7        |
| Standard Deviation | 7.7    | 13.1  | 14.0   | 10.5    | 89.5       | 27.0        |

(see Appendix Table A-12 for supporting data on the Nigliq Channel)

-- = not available

Table 5. Mean catch rate of least cisco in 76-mm (3 inch) mesh gill nets in the Nuiqsut fall fishery, 1985-2003 (in fish per day per 18 m of net).

|                    |        |       |        | Nigliq  | Outer Colville Delta |
|--------------------|--------|-------|--------|---------|----------------------|
|                    | Upper  |       | Nigliq | Channel | Main                 |
| Year               | Nigliq | Nanuk | Delta  | Average | Channel              |
| 1985               |        |       |        | 2.7     | 47.4                 |
| 1986               | 1.3    | 0.6   | 0.5    | 1.0     | 18.3                 |
| 1987               | 5.5    | 1.9   | 0.4    | 4.1     | 15.4                 |
| 1988               | 1.6    | 0.7   | 2.8    | 1.9     | 57.9                 |
| 1989               | 3.7    | 1.1   | 0.5    | 2.8     |                      |
| 1990               | 4.8    | 2.8   | 6.5    | 4.0     |                      |
| 1991               | 0.3    | 0.8   | 0.0    | 0.7     |                      |
| 1992               | 0.8    | 0.7   | 1.6    | 0.9     | 8.1                  |
| 1993               | 1.7    | 3.1   | 1.7    | 2.4     |                      |
| 1994               | 3.3    | 3.7   |        | 3.6     |                      |
| 1995               | 4.7    | 2.8   | 7.8    | 3.4     |                      |
| 1996               | 0.4    | 1.0   |        | 0.9     |                      |
| 1997               | 11.5   | 12.2  | 3.8    | 10.5    |                      |
| 1998               | 5.9    | 6.9   | 6.0    | 6.2     |                      |
| 1999               |        |       |        |         |                      |
| 2000               | 1.4    | 1.6   | 1.7    | 1.7     |                      |
| 2001               | 2.1    | 9.8   | 2.4    | 2.9     |                      |
| 2002               | 1.5    | 4.5   | 2.2    | 2.2     |                      |
| 2003               | 2.1    | 4.4   | 2.3    | 2.7     |                      |
| 1993-2002          |        |       |        |         |                      |
| Mean               | 3.6    | 5.1   | 3.7    | 3.8     |                      |
| Standard Deviation | 3.4    | 3.8   | 2.4    | 2.9     |                      |

(see Appendix Table A-13 for supporting data on the Nigliq Channel)

-- = not available

|      | Arctic (             | Cisco                | Least C    | lisco   | Humpback V | Whitefish | Broad Wh   | nitefish |
|------|----------------------|----------------------|------------|---------|------------|-----------|------------|----------|
|      | Commercial           | Village              | Commercial | Village | Commercial | Village   | Commercial | Village  |
| Year | Harvest <sup>a</sup> | Harvest <sup>b</sup> | Harvest    | Harvest | Harvest    | Harvest   | Harvest    | Harvest  |
| 1967 | 21,904               |                      | 15,982     |         | 356        |           |            |          |
| 1968 | 41,948               |                      | 19,086     |         | 172        |           |            |          |
| 1969 | 19,593               |                      | 35,001     |         | 3,136      |           |            |          |
| 1970 | 22,685               |                      | 30,650     |         | 345        |           |            |          |
| 1971 | 41,312               |                      | 23,887     |         | 183        |           |            |          |
| 1972 | 37,101               |                      | 12,183     |         | 1,481      |           |            |          |
| 1973 | 71,575               |                      | 25,191     |         | 5,733      |           |            |          |
| 1974 | 44,937               |                      | 14,122     |         | 4,802      |           |            |          |
| 1975 | 30,953               |                      | 22,476     |         | 1,946      |           |            |          |
| 1976 | 31,659               |                      | 37,046     |         | 1,793      |           |            |          |
| 1977 | 31,796               |                      | 14,961     |         | 1,366      |           |            |          |
| 1978 | 18,058               |                      | 25,761     |         | 2,758      |           |            |          |
| 1979 | 9,268                |                      | 25,097     |         | 1,102      |           |            |          |
| 1980 | 14,753               |                      | 30,982     |         | 4,232      |           |            |          |
| 1981 | 38,176               |                      | 15,504     |         | 469        |           |            |          |
| 1982 | 15,975               |                      | 27,085     |         |            |           |            |          |
| 1983 | 18,162               |                      | 37,909     |         |            |           |            |          |
| 1984 | 27,686               |                      | 13,076     |         |            |           |            |          |
| 1985 | 23,678               | 46,681               | 17,383     | 15,814  |            |           |            | 1,148    |
| 1986 | 29,595               | 33,523               | 9,444      | 6,805   |            | 79        |            | 229      |
| 1987 | 27,948               | 20,847               | 11,930     | 6,114   | 1,880      | 957       |            | 1,239    |
| 1988 | 10,470               | 6,098                | 23,196     | 2,320   | 6,945      | 70        |            | 58       |
| 1989 | 24,802               | 12,892               | 19,595     | 6,035   | 5,804      | 421       | 69         | 1,306    |
| 1990 | 21,772               | 11,224               | 17,064     | 9,100   | 4,581      | 200       | 2          | 416      |
| 1991 | 23,731               | 8,269                | 7,743      | 3,193   | 1,658      | 634       | 11         | 206      |
| 1992 | 22,754               | 45,401               | 7,284      | 2,659   | 5,209      | 30        | 208        | 130      |
| 1993 | 31,310               | 46,944               | 6,037      | 7,599   | 5,339      | 1,057     | 19         | 534      |
| 1994 | 8,958                | 10,956               | 10,176     | 8,669   | 8,827      | 2,736     | 8          | 936      |
| 1995 | 14,311               | 8,573                | 8,633      | 8,573   | 10,860     | 6,395     | 186        | 1,514    |
| 1996 | 21,817               | 41,205               | 7,796      | 15,854  | 6,425      | 6,105     | 258        | 326      |
| 1997 | 16,990               | 33,274               | 10,754     | 10,002  | 1,721      | 365       | 13         | 486      |
| 1998 | 8,752                | 13,559               | 11,822     | 19,323  | 5,279      | 4,681     | 13         | 91       |
| 1999 | 8,872                |                      | 7,430      |         | 6,875      |           | 436        |          |
| 2000 | 2,619                | 9,956                | 5,758      | 1,973   | 3,706      | 1,062     | 4          | 3        |
| 2001 | 1,924                | 3,935                | 2,976      | 3,630   | 6,184      | 2,576     |            | 979      |
| 2002 | 3,935                | 7,533                | 5,503      | 5,422   | 4,185      | 2,765     |            | 268      |
| 2003 |                      | 23,369               |            | 7,748   |            | 3,685     |            | 176      |

Table 6. Estimated harvest during the Colville Delta fall fisheries by species, in number of fish, 1967-2003.

<sup>a</sup>Commercial harvest numbers provided by J. Helmericks, 1996-2002 <sup>v</sup> 2000-2003 village harvest represents only the Nigliq Channel harves

|      |           |         | Village   | Harvest |                |           | Commerc | ial Harvest |         |         |           |
|------|-----------|---------|-----------|---------|----------------|-----------|---------|-------------|---------|---------|-----------|
|      | Arctic    | Cisco   |           | Cisco   | Bering Cisco   | Arctic    | cisco   | Least       | Cisco   |         | Harvested |
|      | Catch     | Biomass | Catch     | Biomass | Catch Biomass  | Catch     | Biomass | Catch       | Biomass | Total   | Biomass   |
| Year | (in fish) | (kg)    | (in fish) | (kg)    | (in fish) (kg) | (in fish) | (kg)    | (in fish)   | (kg)    | Catch   | (kg)      |
| 1985 | 46,681    | 19,478  | 15,814    | 5,298   | trace          | 23,678    | 10,146  | 17,596      | 6,021   | 103,769 | 40,942    |
| 1986 | 33,522    | 14,414  | 6,804     | 2,176   | trace          | 29,456    | 12,640  | 9,000       | 2,959   | 78,782  | 32,189    |
| 1987 | 20,926    | 9,800   | 6,178     | 2,020   | trace          | 27,494    | 12,945  | 11,939      | 4,117   | 66,537  | 28,882    |
| 1988 | 6,098     | 2,951   | 2,321     | 793     | trace          | 10,480    | 5,264   | 23,040      | 8,121   | 41,939  | 17,129    |
| 1989 | 12,892    | 6,497   | 6,036     | 1,844   | trace          | 24,802    | 12,697  | 19,640      | 7,006   | 63,370  | 28,043    |
| 1990 | 11,224    | 4,407   | 9,100     | 2,584   | 8,652 5,474    | 21,105    | 8,634   | 17,049      | 5,513   | 67,130  | 26,613    |
| 1991 | 8,269     | 2,852   | 3,193     | 754     | trace          | 23,698    | 8,695   | 7,744       | 1,838   | 42,904  | 14,139    |
| 1992 | 45,402    | 15,700  | 2,658     | 777     | trace          | 22,754    | 8,391   | 7,284       | 2,513   | 78,098  | 27,380    |
| 1993 | 46,944    | 18,615  | 7,599     | 2,093   | trace          | 31,310    | 12,725  | 6,037       | 1,795   | 91,890  | 35,229    |
| 1994 | 10,956    | 4,502   | 8,669     | 2,455   | trace          | 8,958     | 4,037   | 10,176      | 3,153   | 38,758  | 14,147    |
| 1995 | 8,574     | 3,463   | 8,573     | 2,487   | trace          | 14,311    | 5,353   | 8,633       | 2,658   | 40,091  | 13,961    |
| 1996 | 41,205    | 15,387  | 15,854    | 4,645   | trace          | 21,817    | 8,124   | 7,796       | 2,375   | 86,672  | 30,531    |
| 1997 | 33,274    | 14,487  | 10,002    | 2,979   | trace          | 16,990    | 7,186   | 10,754      | 3,228   | 71,020  | 27,880    |
| 1998 | 13,559    | 5,435   | 19,323    | 5,487   | trace          | 8,752     | 3,501   | 11,822      | 3,443   | 53,455  | 17,866    |
| 2000 | 9,956     | 4,851   | 1,973     | 641     | trace          | 2,619     | 1,218   | 5,758       | 1,873   | 20,306  | 8,583     |
| 2001 | 3,935     | 1,886   | 3,630     | 1,089   | trace          | 1,924     | 913     | 2,976       | 925     | 12,465  | 4,813     |
| 2002 | 7,533     | 2,669   | 5,422     | 1,555   | trace          | 3,935     | 1,424   | 5,503       | 1,710   | 22,393  | 7,358     |
| 2003 | 23,369    | 9,986   | 7,748     | 2,327   | trace          |           |         |             |         |         |           |

Table 7. Estimated numbers and biomass of harvested Arctic cisco and least cisco by year for village and commercial fisheriesin the Colville Delta, 1985-2003 (Bering cisco included for 1990).

| Table 8. Mean fork length of least cisco caught in 76-mm (3 inch) mesh gill nets during |
|-----------------------------------------------------------------------------------------|
| the Nuiqsut fall fishery, 1986-2003.                                                    |

|      | Mean   |           |         |
|------|--------|-----------|---------|
|      | Length | Standard  | Number  |
| Year | (mm)   | Deviation | of Fish |
| 1986 | 319.1  | 18.6      | 148     |
| 1987 | 321.3  | 18.7      | 52      |
| 1988 | 309.7  | 22.4      | 137     |
| 1989 | 322.5  | 25.5      | 238     |
| 1990 | 318.2  | 21.7      | 267     |
| 1991 | 315.1  | 25.2      | 294     |
| 1992 | 324.5  | 25.4      | 145     |
| 1993 | 305.0  | 15.2      | 157     |
| 1994 | 307.2  | 17.3      | 218     |
| 1995 | 316.9  | 22.2      | 236     |
| 1996 | 305.8  | 15.0      | 123     |
| 1997 | 308.9  | 23.9      | 173     |
| 1998 | 303.8  | 19.0      | 513     |
| 1999 |        |           |         |
| 2000 | 307.8  | 20.6      | 129     |
| 2001 | 311.0  | 19.4      | 515     |
| 2002 | 310.8  | 21.2      | 688     |
| 2003 | 311.9  | 19.1      | 588     |

|         | year-1       |               |            | Adjusted      | Nigliq        |
|---------|--------------|---------------|------------|---------------|---------------|
|         | Prudhoe Bay  | Commercial    |            | Commercial    | Channel       |
|         | Fyke Net     | CPUE          | Commercial | 3 inch Mesh   | 3 inch Mesh   |
| Harvest | CPUE         | (300-340 mm)  | Proportion | CPUE          | CPUE          |
| Year    | (260-300 mm) | (45-m of net) | 300-340 mm | (45-m of net) | (18-m of net) |
| 1985    | 2.57         | 52.2          | 0.864      | 60.5          | 14.5          |
| 1986    | 3.37         | 141.7         | 0.760      | 186.5         | 33.0          |
| 1987    | 0.85         | 40.0          | 0.502      | 79.7          | 15.6          |
| 1988    | 0.10         | 10.8          | 0.502      | 21.6          | 23.1          |
| 1989    | 0.74         | 15.3          | 0.413      | 37.1          | 14.1          |
| 1990    | 0.58         | 21.7          | 0.724      | 30.0          | 6.1           |
| 1991    | 1.72         | 24.8          | 0.832      | 29.7          | 3.9           |
| 1992    | 3.22         | 54.0          | 0.916      | 58.9          | 22.3          |
| 1993    | 4.03         | 113.1         | 0.763      | 148.1         | 28.1          |
| 1994    | 0.40         | 15.0          | 0.553      | 27.2          | 3.5           |
| 1995    | 2.31         | 25.1          | 0.833      | 30.1          | 3.7           |
| 1996    | 2.99         | 117.0         | 0.896      | 130.5         | 17.5          |
| 1997    | 2.35         | 50.1          | 0.780      | 64.3          | 27.7          |
| 1998    | 3.61         | 21.1          | 0.600      | 35.2          | 4.9           |
| 1999    | 3.08         | 26.7          | 0.710      | 37.6          | -             |
| 2000    |              | 5.1           | 0.423      | 12.0          | 7.9           |
| 2001    |              | 0.3           | 0.322      | 1.0           | 2.5           |
| 2002    | 4.60         | 12.7          | 0.877      | 14.5          | 5.2           |
| 2003    | 10.71        |               |            |               | 13.6          |
| 2004    | 8.03         |               |            |               |               |
| Mean:   |              |               | 0.682      |               |               |

Table 9. Data used to predict Arctic cisco harvest rates in the Colville Delta fall fishery.

Relationship between Prudhoe Bay fyke nets and commercial fishery 300-340 mm CPUE: ln(Commercial CPUE)=3.304 + 0.430\*ln(Fyke Net CPUE)r = 0.561, 15 df

Relationship between Commercial fishery 76-mm mesh CPUE and Nigliq Channel CPUE: ln(Nigliq CPUE)=0.4862+0.511\*ln(Commercial CPUE) r=0.716, 16 df DATA APPENDIX

# LIST OF APPENDIX TABLES

| Appendix Table 1. Total estimated fishing effort in the Colville fall fishery 1985 - 2002 (in net-days |
|--------------------------------------------------------------------------------------------------------|
| per 18 m of gill net)                                                                                  |
|                                                                                                        |
| Appendix Table 2. Total estimated catch of arctic cisco in the Colville Delta fall fishery, 1985-2002  |
| (in numbers of fish)                                                                                   |
|                                                                                                        |
| Appendix Table 3. Total estimated catch of least cisco in the Colville Delta fall fishery, 1985-2002   |
| (in numbers of fish)                                                                                   |
| Annendiz Table 4 Fishing offert in the Miglig Channel by fishen 2002                                   |
| Appendix Table 4. Fishing effort in the Nigliq Channel by fisher, 2003                                 |
| Appendix Table 5. Estimated effort by Nuiqsut fishers by mesh size and fishing area, 2003.             |
|                                                                                                        |
|                                                                                                        |
| Appendix Table 6. Estimated catch of Arctic cisco in the Nigliq Channel, 2003                          |
|                                                                                                        |
| Appendix Table 7. Estimated catch of least cisco in the Nigliq Channel, 2003                           |
|                                                                                                        |
| Appendix Table 8. Estimated catch of broad whitefish in the Nigliq Channel, 2003A-12                   |
| Appendix Table 9. Estimated catch of humpback whitefish in the Nigliq Channel, 2003                    |
| Appendix Table 7. Estimated caten of numpoack wintensi in the fyight channel, 2005                     |
| Appendix Table 10. Estimated catch of Bering cisco in the Nigliq Channel, 2003                         |
|                                                                                                        |
| Appendix Table 11. Length frequency by mesh size for Arctic cisco and least cisco, 2003 Colville       |
| Delta fall fishery                                                                                     |
|                                                                                                        |
| Appendix Table A-12. Calculation of Arctic cisco catch rate in 76-mm mesh in the Nigliq Channel,       |

| 1986-2003                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appendix Table A-13. Calculation of least cisco catch rate in 76-mm mesh in the Nigliq Channel, 1986-2003                                                                                                              |
| Appendix Table 14. Age frequencies of Arctic cisco caught in 76 mm mesh, 1976-2002A-18                                                                                                                                 |
| Appendix Table 15. Age frequencies of least cisco caught in 76 mm mesh, 1976-2002A-19                                                                                                                                  |
| Appendix Table 16. Calculation of harvested biomass for Arctic cisco in the Colville Delta fall fishery, 1985-2003                                                                                                     |
| Appendix Table 17. Calculation of harvested biomass for least cisco in the Colville Delta fall fishery, 1985-2003                                                                                                      |
| Appendix Table 18. Catch rate of Arctic cisco in the commercial fishery by year-class, 1984-2002 (outlined boxes indicate year-class CPUE at age-5, based on CPUE corrected for effect of variable effort, 76-mm mesh) |
| Appendix Table 19. Mean weight and CPUE by mesh size in the Nigliq Channel fishery, 1986-<br>2003                                                                                                                      |
| Appendix Table 20. Salinity profiles from the Nigliq Channel, Colville Delta, 2003A-26                                                                                                                                 |
| Appendix Table 21. Cumulative length frequencies of Arctic cisco and least cisco by mesh size,<br>Nuiqsut fishery, 1986-2003 (data used to evaluate mesh selectivity)                                                  |
| Appendix Table 22. Cumulative length frequencies of Arctic cisco by mesh size, commercial fishery, 1985-2002 (data used to evaluate mesh selectivity)                                                                  |
| A-3                                                                                                                                                                                                                    |

|         |                 | Vil   | lage Effo       | ort            |               |                  |            |       |
|---------|-----------------|-------|-----------------|----------------|---------------|------------------|------------|-------|
| Year    | Upper<br>Nigliq | Nanuk | Nigliq<br>Delta | Outer<br>Delta | Main<br>River | Total<br>Village | Commercial | Total |
| 1985    | 663             | 207   | 340             | 543            |               | 1,753            | 908        | 2,661 |
| 1986    | 592             | 216   | 97              | 365            |               | 1,270            | 378        | 1,648 |
| 1987    | 961             | 236   | 90              | 89             |               | 1,376            | 1,424      | 2,800 |
| 1988    | 411             | 136   | 47              | 37             |               | 631              | 1,213      | 1,844 |
| 1989    | 786             | 157   | 114             | 98             |               | 1,155            | 1,590      | 2,745 |
| 1990    | 793             | 793   | 106             | 142            |               | 1,834            | 2,063      | 3,897 |
| 1991    | 697             | 601   | 31              | 28             | 108           | 1,465            | 2,538      | 4,003 |
| 1992    | 1,067           | 755   | 19              | 39             |               | 1,880            | 828        | 2,707 |
| 1993    | 730             | 802   | 233             | 28             |               | 1,793            | 490        | 2,283 |
| 1994    | 622             | 800   | 0               | 152            |               | 1,574            | 508        | 2,082 |
| 1995    | 403             | 1,000 | 108             | 443            | 198           | 2,151            | 925        | 3,076 |
| 1996    | 182             | 795   | 219             | 622            |               | 1,818            | 405        | 2,223 |
| 1997    | 443             | 631   | 313             | 59             |               | 1,446            | 563        | 2,008 |
| 1998    | 621             | 632   | 836             | 435            |               | 2,525            | 433        | 2,958 |
| 1999    |                 |       |                 |                |               |                  | 428        | 428   |
| 2000    | 238             | 240   | 898             |                |               | 1,377            | 233        | 1,609 |
| 2001    | 461             | 189   | 854             |                |               | 1,503            | 345        | 1,848 |
| 2002    | 360             | 209   | 1,407           |                |               | 1,976            | 330        | 2,306 |
| 2003    | 80              | 313   | 1,263           |                |               | 1,656            | NR         |       |
| 1993-20 | 02              |       |                 |                |               |                  |            |       |
| Mean:   | 451             | 589   | 541             |                |               | 1,796            | 466        | 2,082 |
| StDev:  | 182             | 302   | 473             |                |               | 375              | 187        | 737   |

Appendix Table 1. Total estimated fishing effort by in the Colville River fall fishery, 1985-2003 (in net-days per 18-m of gill net).

NR = not reported

|      |        | Niglio | q Channel    |                | Outer Colv | ville Delta |            | Total   | Total      |        |  |
|------|--------|--------|--------------|----------------|------------|-------------|------------|---------|------------|--------|--|
|      | Upper  |        | Ν            | ligliq Channel | Main       | East        |            | Village | Commercial | Total  |  |
| Year | Nigliq | Nanuk  | Nigliq Delta | Total          | Channel    | Channel     | Main River | Catch   | Catch      | Harves |  |
| 1985 | 17,878 | NA     | 8,500        | 26,378         | 12,397     | 7,906       |            | 46,681  | 23,678     | 70,3:  |  |
| 1986 | 8,239  | 4,636  | 5,924        | 18,799         | 14,724     | 0           |            | 33,523  | 29,456     | 62,9'  |  |
| 1987 | 10,331 | 3,310  | 2,635        | 16,276         | 4,571      | 0           |            | 20,847  | 27,494     | 48,34  |  |
| 1988 | 1,736  | 1,401  | 2,374        | 5,511          | 587        | 0           |            | 6,098   | 10,480     | 16,5   |  |
| 1989 | 6,403  | 1,866  | 3,123        | 11,392         | 1,500      | 0           |            | 12,892  | 24,802     | 37,6   |  |
| 1990 | 2,979  | 5,538  | 706          | 9,224          | 2,000      | 0           |            | 11,224  | 21,105     | 32,32  |  |
| 1991 | 1,866  | 4,853  | 91           | 6,810          | 1,025      | 0           | 434        | 8,269   | 23,731     | 32,0   |  |
| 1992 | 14,182 | 25,444 | 1,375        | 41,001         | 4,400      | 0           |            | 45,401  | 22,754     | 68,1:  |  |
| 1993 | 8,243  | 25,525 | 7,375        | 41,144         | 5,800      | 0           |            | 46,944  | 31,310     | 78,2:  |  |
| 1994 | 2,230  | 3,326  | 0            | 5,556          | 5,400      | 0           |            | 10,956  | 8,958      | 19,9   |  |
| 1995 | 379    | 4,037  | 489          | 4,905          | 1,400      | 1,853       | 415        | 8,573   | 14,311     | 22,8   |  |
| 1996 | 2,404  | 14,170 | 598          | 17,172         | 13,571     | 10,462      | 0          | 41,205  | 21,817     | 63,0   |  |
| 1997 | 8,834  | 14,554 | 7,743        | 31,130         | 2,144      | 0           | 0          | 33,274  | 16,990     | 50,20  |  |
| 1998 | 1,730  | 1,697  | 4,721        | 8,148          |            |             |            | 8,148   | 8,752      | 16,9   |  |
| 1999 |        |        |              |                |            |             |            |         | 8,872      |        |  |
| 2000 | 688    | 735    | 8,533        | 9,956          |            |             |            | 9,956   |            | 12,5   |  |
| 2001 | 1,044  | 279    | 2,612        | 3,935          |            |             |            | 3,935   | 1,924      | 5,8:   |  |
| 2002 | 384    | 641    | 6,508        | 7,533          |            |             |            | 7,533   | 3,935      | 11,4   |  |
| 2003 | 543    | 3,975  | <i>,</i>     | 23,369         |            |             |            | 23,369  |            |        |  |

| Appendix Table 2. | Total estimated catch of arctic cisco in the Colville Delta fall fishery, 1985-2003. |  |
|-------------------|--------------------------------------------------------------------------------------|--|
| (in numbe         | rs of fish).                                                                         |  |

|      |        | Nigli | q Channel    |                | Outer Colv | ville Delta |            | Total   | Total      |         |
|------|--------|-------|--------------|----------------|------------|-------------|------------|---------|------------|---------|
|      | Upper  |       | N            | ligliq Channel | Main       | East        |            | Village | Commercial | Total   |
| Year | Nigliq | Nanuk | Nigliq Delta | Total          | Channel    | Channel     | Main River | Catch   | Catch      | Harvest |
| 1985 | 1,871  | NA    | . 0          | 1,871          | 8,698      | 5,245       |            | 15,814  | 33,410     | 49,224  |
| 1986 | 1,329  | 440   | 38           | 1,807          | 4,998      | 0           |            | 6,805   | 15,805     | 22,610  |
| 1987 | 4,483  | 124   | . 74         | 4,681          | 1,433      | 0           |            | 6,114   | 18,053     | 24,167  |
| 1988 | 600    | 143   | 123          | 866            | 1,454      | 0           |            | 2,320   | 25,360     | 27,680  |
| 1989 | 3,621  | 898   | 16           | 4,535          | 1,500      | 0           |            | 6,035   | 25,630     | 31,665  |
| 1990 | 4,348  | 4,098 | 654          | 9,100          |            | 0           |            | 9,100   | 26,149     | 35,249  |
| 1991 | 136    | 1,929 | 0            | 2,065          |            | 0           | 1,128      | 3,193   | 10,931     | 14,124  |
| 1992 | 927    | 1,706 | 26           | 2,659          |            | 0           |            | 2,659   | 9,943      | 12,601  |
| 1993 | 1,832  | 4,839 | 928          | 7,599          |            | 0           |            | 7,599   | 13,636     | 21,234  |
| 1994 | 2,990  | 5,679 | 0            | 8,669          |            | 0           |            | 8,669   | 18,845     | 27,514  |
| 1995 | 1,039  | 2,782 | 615          | 4,436          |            | 3,731       | 406        | 8,573   | 17,206     | 25,779  |
| 1996 | 136    | 1,450 | 15           | 1,601          | 7,982      | 6,271       | 0          | 15,854  | 23,650     | 39,504  |
| 1997 | 4,344  | 3,845 | 572          | 8,761          | 1,241      | 0           | 0          | 10,002  | 10,754     | 20,756  |
| 1998 | 3,120  | 2,042 | 2,691        | 7,853          |            |             |            | 7,853   | 11,822     | 19,675  |
| 1999 |        |       |              |                |            |             |            |         | 7,430      |         |
| 2000 | 225    | 168   | 1,580        | 1,973          |            |             |            | 1,973   | 5,758      | 7,731   |
| 2001 | 871    | 1,337 | 1,421        | 3,630          |            |             |            | 3,630   | 2,976      | 6,606   |
| 2002 | 538    | 741   | 4,143        | 5,422          |            |             |            | 5,422   | 5,503      | 10,925  |
| 2003 | 152    | 2,134 | 5,462        | 7,748          |            |             |            | 7,748   |            | ·<br>   |

Appendix Table 3. Total estimated catch of least cisco in the Colville Delta fall fishery, 1985-200 (in numbers of fish)

|            |              |         | Net    | Net   |      |            |            |
|------------|--------------|---------|--------|-------|------|------------|------------|
| Fisher     |              | Fishing | Length | Depth | Mesh | Start      | End        |
| Code       | Net          | Area    | (m)    | (m)   | (mm) | Date       | Date       |
| 1          | А            | 650     | 30     | 1.8   | 64   | 10/21/2003 | 11/14/2003 |
| 1          | В            | 650     | 24     | 1.8   | 76   | 10/25/2003 | 11/14/2003 |
| 4          | А            | 670     | 24     | 1.8   | 64   | 10/19/2003 | 11/7/2003  |
| 4          | В            | 670     | 24     | 1.8   | 64   | 10/19/2003 | 10/26/2003 |
| 4          | С            | 670     | 30     | 1.8   | 76   | 10/20/2003 | 11/8/2003  |
| 4          | D            | 670     | 24     | 1.8   | 76   | 10/20/2003 | 11/7/2003  |
| 4          | Е            | 670     | 24     | 1.8   | 64   | 11/7/2003  | 11/16/2003 |
| 4          | F            | 670     | 24     | 1.8   | 76   | 11/8/2003  | 11/14/2003 |
| 7          | А            | 670     | 24     | 1.2   | 70   | 11/1/2003  | 11/7/2003  |
| 7          | В            | 670     | 24     | 1.8   | 76   | 11/1/2003  | 11/7/2003  |
| 7          | С            | 650     | 30     | 1.8   | 76   | 11/3/2003  | 11/17/2003 |
| 7          | D            | 650     | 24     | 1.2   | 70   | 11/3/2003  | 11/12/2003 |
| 15         | А            | 650     | 18     | 1.8   | 89   | 10/25/2003 | 11/16/2003 |
| 15         | В            | 650     | 18     | 1.8   | 76   | 10/26/2003 | 11/4/2003  |
| 24         | А            | 650     | 18     | 1.8   | 76   | 10/21/2003 | 11/7/2003  |
| 24         | В            | 650     | 18     | 1.8   | 76   | 10/21/2003 | 11/22/2003 |
| 25         | А            | 670     | 30     | 1.8   | 76   | 10/17/2003 | 11/1/2003  |
| 25         | В            | 670     | 24     | 1.8   | 89   | 11/3/2003  | 11/11/2003 |
| 25         | С            | 670     | 9      | 1.8   | 76   | 11/5/2003  | 11/11/2003 |
| 25         | D            | 650     | 30     | 1.8   | 76   | 11/21/2003 | 11/24/2003 |
| 25         | Е            | 610     | 30     | 1.8   | 76   | 11/22/2003 | 11/24/2003 |
| 30         | А            | 670     | 24     | 1.8   | 76   | 10/19/2003 | 11/8/2003  |
| 30         | В            | 610     | 24     | 1.8   | 76   | 11/23/2003 | 11/24/2003 |
| 31         | А            | 610     | 18     | 1.8   | 76   | 11/10/2003 | 11/16/2003 |
| 32         | А            | 670     | 24     | 1.8   | 76   | 10/23/2003 | 11/8/2003  |
| 32         | В            | 670     | 30     | 1.8   | 89   | 10/23/2003 | 11/13/2003 |
| 33         | А            | 670     | 24     | 1.8   | 76   | 10/19/2003 | 11/24/2003 |
| 33         | В            | 670     | 18     | 1.8   | 89   | 10/20/2003 | 10/28/2003 |
| 33         | С            | 670     | 24     | 1.8   | 76   | 10/28/2003 | 11/24/2003 |
| 37         | А            | 670     | 30     | 1.8   | 76   | 10/16/2003 | 11/5/2003  |
| 41         | А            | 670     | 24     | 1.8   | 76   | 11/3/2003  | 11/24/2003 |
| 41         | В            | 670     | 24     | 1.8   | 76   | 11/2/2003  | 11/24/2003 |
| 42         | А            | 670     | 30     | 1.8   | 64   | 10/23/2003 | 11/24/2003 |
| 42         | В            | 670     | 30     | 1.8   | 76   | 10/26/2003 | 11/24/2003 |
| 48         | А            | 650     | 24     | 1.8   | 89   | 10/23/2003 | 11/21/2003 |
| 48         | В            | 650     | 18     | 1.8   | 76   | 10/23/2003 | 11/21/2003 |
| 48         | С            | 670     | 18     | 1.8   | 76   | 10/23/2003 | 11/24/2003 |
| 51         | А            | 670     | 18     | 1.8   | 89   | 10/23/2003 | 11/10/2003 |
| 51         | В            | 670     | 24     | 1.8   | 76   | 10/23/2003 | 11/19/2003 |
| 51         | C            | 670     | 24     | 1.8   | 64   | 10/24/2003 | 11/19/2003 |
| <i>U</i> 1 | $\mathbf{c}$ | 010     |        | 1.0   | ~ '  | 10,21,2000 |            |

Appendix Table 4. Fishing effort in the Nigliq Channel by fisher, 2003.

|        |     |         | Net    | Net   |      |            |            |
|--------|-----|---------|--------|-------|------|------------|------------|
| Fisher |     | Fishing | Length | Depth | Mesh | Start      | End        |
| Code   | Net | Area    | (m)    | (m)   | (mm) | Date       | Date       |
| 54     | А   | 670     | 24     | 1.8   | 89   | 10/21/2003 | 11/18/2003 |
| 54     | В   | 670     | 18     | 1.8   | 89   | 10/22/2003 | 10/26/2003 |
| 54     | С   | 670     | 24     | 1.8   | 76   | 10/16/2003 | 11/18/2003 |
| 56     | А   | 670     | 24     | 1.8   | 76   | 10/18/2003 | 11/8/2003  |
| 56     | В   | 670     | 24     | 1.8   | 76   | 10/29/2003 | 11/8/2003  |
| 57     | А   | 670     | 24     | 1.8   | 76   | 11/1/2003  | 11/15/2003 |
| 57     | В   | 670     | 24     | 1.8   | 76   | 11/8/2003  | 11/18/2003 |
| 61     | А   | 670     | 24     | 1.8   | 76   | 10/18/2003 | 11/15/2003 |
| 61     | В   | 670     | 24     | 1.8   | 76   | 10/28/2003 | 11/24/2003 |
| 63     | А   | 670     | 30     | 1.8   | 76   | 10/19/2003 | 11/24/2003 |
| 64     | А   | 670     | 30     | 1.8   | 76   | 10/26/2003 | 11/15/2003 |
| 64     | В   | 650     | 30     | 1.8   | 76   | 11/17/2003 | 11/24/2003 |
| 65     | А   | 650     | 24     | 1.8   | 127  | 11/5/2003  | 11/6/2003  |
| 65     | В   | 650     | 18     | 1.8   | 76   | 11/5/2003  | 11/24/2003 |
| 66     | А   | 610     | 24     | 1.8   | 89   | 10/19/2003 | 10/27/2003 |
| 66     | В   | 650     | 30     | 1.8   | 76   | 10/26/2003 | 10/30/2003 |
| 66     | С   | 670     | 24     | 1.8   | 76   | 10/29/2003 | 11/11/2003 |
| 66     | D   | 670     | 30     | 1.8   | 76   | 10/30/2003 | 11/11/2003 |
| 69     | А   | 670     | 30     | 1.8   | 76   | 10/19/2003 | 11/6/2003  |
| 69     | В   | 670     | 24     | 1.8   | 89   | 10/20/2003 | 10/29/2003 |
| 72     | А   | 670     | 24     | 1.8   | 76   | 10/18/2003 | 11/16/2003 |
| 72     | В   | 670     | 24     | 1.8   | 70   | 11/1/2003  | 11/16/2003 |
| 72     | С   | 670     | 30     | 1.8   | 89   | 11/6/2003  | 11/18/2003 |
| 72     | D   | 670     | 24     | 1.8   | 76   | 11/21/2003 | 11/24/2003 |
| 73     | А   | 670     | 24     | 1.8   | 70   | 11/1/2003  | 11/12/2003 |
| 73     | В   | 670     | 24     | 1.8   | 76   | 11/1/2003  | 11/12/2003 |
| 76     | А   | 670     | 24     | 1.8   | 76   | 11/15/2003 | 11/24/2003 |
| 78     | А   | 610     | 30     | 1.8   | 76   | 10/26/2003 | 11/12/2003 |
| 85     | А   | 650     | 24     | 1.8   | 76   | 10/21/2003 | 11/5/2003  |
| 85     | В   | 610     | 24     | 1.8   | 76   | 11/7/2003  | 11/24/2003 |
| 86     | А   | 670     | 30     | 1.8   | 76   | 10/18/2003 | 11/1/2003  |
| 86     | В   | 670     | 30     | 1.8   | 76   | 10/25/2003 | 11/24/2003 |
| 87     | А   | 670     | 24     | 1.8   | 51   | 11/12/2003 | 11/24/2003 |

Appendix Table 4. Fishing effort in the Nigliq Channel by fisher, 2003.

Fisher Code: numerical code used to identify individual fishers, used constantly across years.

Area: 610 = Upper Nigliq; 650 = Nanuk; 670 = Nigliq Delta; 100 = Outer Delta

Start = Date net was set at a location

End = Date net was removed from a location

Appendix Table 5. Estimated effort by Nigliq Channel fishermen by mesh size and fishing area, 2003.

|          | Mesh  |           |          |           |           | Oct 31- |           |           | Mesh  | Area   |
|----------|-------|-----------|----------|-----------|-----------|---------|-----------|-----------|-------|--------|
| Area     | (mm)  | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 | Total | Total  |
| Upper N  | igliq |           |          |           |           |         |           |           |       |        |
|          | 64    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0     | 0.0       | 0.0       | 0.0   |        |
|          | 76    | 0.0       | 0.0      | 0.0       | 6.7       | 27.3    | 24.3      | 11.3      | 69.7  |        |
|          | 89    | 0.0       | 0.0      | 1.3       | 9.3       | 0.0     | 0.0       | 0.0       | 10.7  | 80.3   |
| Nanuk    |       |           |          |           |           |         |           |           |       |        |
|          | 64    | 0.0       | 0.0      | 0.0       | 16.7      | 16.7    | 8.3       | 0.0       | 41.7  |        |
|          | 70    | 0.0       | 0.0      | 0.0       | 0.0       | 8.0     | 4.0       | 0.0       | 12.0  |        |
|          | 76    | 0.0       | 0.0      | 0.0       | 56.7      | 65.7    | 53.3      | 23.3      | 199.0 |        |
|          | 89    | 0.0       | 0.0      | 0.0       | 14.3      | 23.3    | 20.3      | 2.7       | 60.7  | 313.3  |
| Nigliq D | elta  |           |          |           |           |         |           |           |       |        |
|          | 51    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0     | 9.3       | 6.7       | 16.0  |        |
|          | 64    | 0.0       | 0.0      | 2.7       | 42.3      | 43.3    | 39.3      | 8.3       | 136.0 |        |
|          | 70    | 0.0       | 0.0      | 0.0       | 0.0       | 32.0    | 13.3      | 0.0       | 45.3  |        |
|          | 76    | 0.0       | 0.0      | 34.3      | 248.7     | 353.3   | 222.3     | 70.0      | 928.7 |        |
|          | 89    | 0.0       | 0.0      | 0.0       | 54.7      | 51.3    | 30.7      | 0.0       | 136.7 | 1262.7 |

Estimated Effort in Net-Days by 10-day Interval

Estimated Nigliq Total: 1,656.3

Appendix Table 6. Estimated catch of arctic cisco in the Nigliq Channel, 2003.

|              | Mesh |           |          |           |           | Oct 31- |           |           |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 |
| Upper Nigliq |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           |           |         |           |           |
|              | 76   |           |          |           | 4.5       | 13.5    | 4.5       | 3.0       |
|              | 89   |           |          | 0.0       | 0.0       |         |           |           |
| Nanuk        |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           | 18.0      | 15.4    | 4.5       |           |
|              | 70   |           |          |           |           | 19.0    | 3.3       |           |
|              | 76   |           |          |           | 21.2      | 19.4    | 5.3       | 5.3       |
|              | 89   |           |          |           | 21.0      | 1.2     | 0.1       | 0.1       |
| Nigliq Delta |      |           |          |           |           |         |           |           |
| •            | 51   |           |          |           |           |         | 21.5      | 13.9      |
|              | 64   |           |          | 45.0      | 45.0      | 31.4    | 7.1       | 7.1       |
|              | 70   |           |          |           |           | 8.7     | 6.8       |           |
|              | 76   |           |          | 26.6      | 26.6      | 14.4    | 3.9       | 5.3       |
|              | 89   |           |          |           | 7.2       | 4.1     | 0.2       |           |

## Estimated Arctic Cisco Harvest by 10-day Interval

|              | Mesh |           |          |           |           | Oct 31- |           |           | Mesh   | Area   |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|--------|--------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 | Total  | Total  |
| Upper Nigliq |      |           |          |           |           |         |           |           |        |        |
|              | 64   | 0         | 0        | 0         | 0         | 0       | 0         | 0         | 0      |        |
|              | 76   | 0         | 0        | 0         | 30        | 369     | 110       | 34        | 543    |        |
|              | 89   | 0         | 0        | 0         | 0         | 0       | 0         | 0         | 0      | 543    |
| Nanuk        |      |           |          |           |           |         |           |           |        |        |
|              | 64   | 0         | 0        | 0         | 300       | 257     | 38        | 0         | 594    |        |
|              | 70   | 0         | 0        | 0         | 0         | 152     | 13        | 0         | 165    |        |
|              | 76   | 0         | 0        | 0         | 1,201     | 1,275   | 283       | 124       | 2,883  |        |
|              | 89   | 0         | 0        | 0         | 301       | 28      | 3         | 0         | 333    | 3,975  |
| Nigliq Delta |      |           |          |           |           |         |           |           |        |        |
| •            | 51   | 0         | 0        | 0         | 0         | 0       | 200       | 93        | 293    |        |
|              | 64   | 0         | 0        | 120       | 1,905     | 1,362   | 279       | 59        | 3,726  |        |
|              | 70   | 0         | 0        | 0         | 0         | 278     | 90        | 0         | 368    |        |
|              | 76   | 0         | 0        | 914       | 6,617     | 5,092   | 865       | 371       | 13,859 |        |
|              | 89   | 0         | 0        | 0         | 392       | 210     | 6         | 0         | 607    | 18,852 |

Estimated Nigliq Channel Harvest: 23,369

Appendix Table 7. Estimated catch of least cisco in the Nigliq Channel fishery, 2003.

|              | Mesh |           |          |           |           | Oct 31- |           |           |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 |
| Upper Nigliq |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           |           |         |           |           |
|              | 76   |           |          |           | 3.0       | 3.0     | 2.1       | 0.0       |
|              | 89   |           |          | 0.0       | 0.0       |         |           |           |
| Nanuk        |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           | 30.2      | 16.7    | 4.8       |           |
|              | 70   |           |          |           |           | 9.1     | 4.3       |           |
|              | 76   |           |          |           | 6.5       | 4.7     | 3.9       | 3.9       |
|              | 89   |           |          |           | 17.0      | 0.3     | 0.0       | 0.0       |
| Nigliq Delta |      |           |          |           |           |         |           |           |
|              | 51   |           |          |           |           |         | 13.1      | 15.0      |
|              | 64   |           |          | 37.4      | 37.4      | 11.5    | 9.9       | 9.9       |
|              | 70   |           |          |           |           | 1.0     | 3.3       |           |
|              | 76   |           |          | 4.5       | 4.5       | 2.0     | 1.0       | 1.6       |
|              | 89   |           |          |           | 2.5       | 0.9     | 0.1       |           |

Estimated Least Cisco CPUE by 10-day Interval (numbers in bold are estimates)

### Estimated Least Cisco Harvest by 10-day Interval

|              | Mesh |           |          |           |           | Oct 31- |           |           | Mesh  | Area  |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|-------|-------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 | Total | Total |
| Upper Nigliq |      |           |          |           |           |         |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 0         | 0       | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 20        | 82      | 50        | 0         | 152   |       |
|              | 89   | 0         | 0        | 0         | 0         | 0       | 0         | 0         | 0     | 152   |
| Nanuk        |      |           |          |           |           |         |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 503       | 278     | 40        | 0         | 822   |       |
|              | 70   | 0         | 0        | 0         | 0         | 73      | 17        | 0         | 90    |       |
|              | 76   | 0         | 0        | 0         | 371       | 305     | 206       | 90        | 972   |       |
|              | 89   | 0         | 0        | 0         | 244       | 6       | 0         | 0         | 250   | 2,134 |
| Nigliq Delta |      |           |          |           |           |         |           |           |       |       |
| •            | 51   | 0         | 0        | 0         | 0         | 0       | 122       | 100       | 222   |       |
|              | 64   | 0         | 0        | 100       | 1,585     | 499     | 388       | 82        | 2,654 |       |
|              | 70   | 0         | 0        | 0         | 0         | 33      | 43        | 0         | 76    |       |
|              | 76   | 0         | 0        | 155       | 1,119     | 709     | 232       | 110       | 2,324 |       |
|              | 89   | 0         | 0        | 0         | 136       | 47      | 4         | 0         | 187   | 5,462 |

Estimated Nigliq Channel Harvest: 7,748

Appendix Table 8. Estimated catch of broad whitefish in the Nigliq Channel fishery, 2003.

|              | Mesh |           |          |           |           | Oct 31- |           |           |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 |
| Upper Nigliq |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           |           |         |           |           |
|              | 76   |           |          |           | 0.0       | 0.0     | 0.0       | 0.0       |
|              | 89   |           |          | 12.0      | 12.0      |         |           |           |
| Nanuk        |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           | 2.0       | 0.0     | 0.0       |           |
|              | 70   |           |          |           |           | 0.0     | 0.0       |           |
|              | 76   |           |          |           | 0.1       | 0.0     | 0.0       | 0.0       |
|              | 89   |           |          |           | 0.0       | 0.0     | 0.0       | 0.0       |
| Nigliq Delta |      |           |          |           |           |         |           |           |
|              | 51   |           |          |           |           |         | 0.0       | 0.0       |
|              | 64   |           |          | 0.0       | 0.0       | 0.0     | 0.0       | 0.0       |
|              | 70   |           |          |           |           |         | 0.0       | 0.0       |
|              | 76   |           |          | 0.0       | 0.0       | 0.0     | 0.0       | 0.0       |
|              | 89   |           |          |           | 0.0       | 0.0     | 0.0       |           |

Estimated Broad Whitefish CPUE by 10-day Interval (numbers in bold are estimates)

### Estimated Broad Whitefish Harvest by 10-day Interval

|              | Mesh |           | Oct 31-  |           |           |       |           |           |       |       |
|--------------|------|-----------|----------|-----------|-----------|-------|-----------|-----------|-------|-------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9 | Nov 10-19 | Nov 20-29 | Total | Total |
| Upper Nigliq |      |           |          |           |           |       |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 89   | 0         | 0        | 16        | 112       | 0     | 0         | 0         | 128   | 128   |
| Nanuk        |      |           |          |           |           |       |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 33        | 0     | 0         | 0         | 33    |       |
|              | 70   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 8         | 1     | 0         | 0         | 10    |       |
|              | 89   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     | 43    |
| Nigliq Delta |      |           |          |           |           |       |           |           |       |       |
|              | 51   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 64   | 0         | 0        | 0         | 2         | 0     | 0         | 0         | 2     |       |
|              | 70   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 2         | 0     | 0         | 0         | 3     |       |
|              | 89   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     | 4     |

Estimated Nigliq Channel Harvest: 176

Appendix Table 9. Estimated catch of humpback whitefish in the Nigliq Channel fishery, 2003.

|              | Mesh |           |          |           |           | Oct 31- |           |           |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 |
| Upper Nigliq |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           |           |         |           |           |
|              | 76   |           |          |           | 3.3       | 6.0     | 1.9       | 0.6       |
|              | 89   |           |          | 31.5      | 31.5      |         |           |           |
| Nanuk        |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           | 3.6       | 1.6     | 0.0       |           |
|              | 70   |           |          |           |           | 0.6     | 1.0       |           |
|              | 76   |           |          |           | 4.6       | 4.5     | 0.6       | 0.6       |
|              | 89   |           |          |           | 7.0       | 9.6     | 0.0       | 0.0       |
| Nigliq Delta |      |           |          |           |           |         |           |           |
| 0 1          | 51   |           |          |           |           |         | 0.0       | 0.0       |
|              | 64   |           |          | 2.8       | 2.8       | 0.2     | 0.6       | 0.6       |
|              | 70   |           |          |           |           | 0.1     | 0.3       |           |
|              | 76   |           |          | 4.4       | 4.4       | 0.3     | 0.1       | 0.6       |
|              | 89   |           |          |           | 7.8       | 1.1     | 0.1       |           |

Estimated Humpback Whitefish CPUE by 10-day Interval (numbers in bold are estimates)

### Estimated Humpback Whitefish Harvest by 10-day Interval

|              | Mesh |           |          |           |           | Oct 31- |           |           | Mesh  | Area  |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|-------|-------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 | Total | Total |
| Upper Nigliq |      |           |          |           |           |         |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 0         | 0       | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 22        | 164     | 46        | 7         | 238   |       |
|              | 89   | 0         | 0        | 42        | 294       | 0       | 0         | 0         | 336   | 574   |
| Nanuk        |      |           |          |           |           |         |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 60        | 27      | 0         | 0         | 87    |       |
|              | 70   | 0         | 0        | 0         | 0         | 5       | 4         | 0         | 9     |       |
|              | 76   | 0         | 0        | 0         | 262       | 298     | 33        | 14        | 608   |       |
|              | 89   | 0         | 0        | 0         | 100       | 223     | 0         | 0         | 324   | 1,027 |
| Nigliq Delta |      |           |          |           |           |         |           |           |       |       |
|              | 51   | 0         | 0        | 0         | 0         | 0       | 0         | 0         | 0     |       |
|              | 64   | 0         | 0        | 7         | 119       | 10      | 22        | 5         | 164   |       |
|              | 70   | 0         | 0        | 0         | 0         | 2       | 3         | 0         | 5     |       |
|              | 76   | 0         | 0        | 152       | 1,098     | 122     | 17        | 43        | 1,432 |       |
|              | 89   | 0         | 0        | 0         | 424       | 54      | 4         | 0         | 482   | 2,083 |

Estimated Nigliq Channel Harvest: 3,685

Appendix Table 10. Estimated catch of Bering cisco in the Nigliq Channel fishery, 2003.

|              | Mesh |           |          |           |           | Oct 31- |           |           |
|--------------|------|-----------|----------|-----------|-----------|---------|-----------|-----------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9   | Nov 10-19 | Nov 20-29 |
| Upper Nigliq |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           |           |         |           |           |
|              | 76   |           |          |           | 0.0       | 0.0     | 0.0       | 0.0       |
|              | 89   |           |          | 0.0       | 0.0       |         |           |           |
| Nanuk        |      |           |          |           |           |         |           |           |
|              | 64   |           |          |           | 0.4       | 0.0     | 0.0       |           |
|              | 70   |           |          |           |           | 0.0     | 0.0       |           |
|              | 76   |           |          |           | 0.4       | 0.4     | 0.0       | 0.0       |
|              | 89   |           |          |           | 0.0       | 0.2     | 0.0       | 0.0       |
| Nigliq Delta |      |           |          |           |           |         |           |           |
| 0 1          | 51   |           |          |           |           |         | 0.0       | 0.0       |
|              | 64   |           |          | 0.0       | 0.0       | 0.0     | 0.0       | 0.0       |
|              | 70   |           |          |           |           | 0.0     | 0.0       |           |
|              | 76   |           |          | 0.0       | 0.0       | 0.0     | 0.0       | 0.0       |
|              | 89   |           |          |           | 0.0       | 0.0     | 0.0       |           |

Estimated Bering Cisco CPUE by 10-day Interval (numbers in bold are estimates)

### Estimated Bering Cisco Harvest by 10-day Interval

|              | Mesh |           |          |           |           |       | Mesh      | Area      |       |       |
|--------------|------|-----------|----------|-----------|-----------|-------|-----------|-----------|-------|-------|
| Area         | (mm) | Sep 21-30 | Oct 1-10 | Oct 11-20 | Oct 21-30 | Nov 9 | Nov 10-19 | Nov 20-29 | Total | Total |
| Upper Nigliq |      |           |          |           |           |       |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 89   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     | 0     |
| Nanuk        |      |           |          |           |           |       |           |           |       |       |
|              | 64   | 0         | 0        | 0         | 7         | 0     | 0         | 0         | 7     |       |
|              | 70   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 0         | 22        | 27    | 2         | 1         | 52    |       |
|              | 89   | 0         | 0        | 0         | 0         | 4     | 0         | 0         | 4     | 63    |
| Nigliq Delta |      |           |          |           |           |       |           |           |       |       |
|              | 51   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 64   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 70   | 0         | 0        | 0         | 0         | 0     | 0         | 0         | 0     |       |
|              | 76   | 0         | 0        | 1         | 7         | 6     | 0         | 0         | 14    |       |
|              | 89   | 0         | 0        | 0         | 1         | 0     | 0         | 0         | 1     | 15    |

Estimated Nigliq Channel Harvest: 78

Appendix Table 11. Length frequency by mesh size for arctic cisco and least cisco, 2003 Colville Delta fall fishery.

| Fork   | Mesh (mm) |     |    |       |     | Fork   | Mesh (mm) |     |    |        |    |
|--------|-----------|-----|----|-------|-----|--------|-----------|-----|----|--------|----|
| Length |           |     |    |       |     | Length |           |     |    |        |    |
| (mm)   | 51        | 64  | 70 | 76    | 89  | (mm)   | 51        | 64  | 70 | 76     | 89 |
| 200    |           |     |    |       |     | 200    |           |     | 1  |        |    |
| 210    |           | 1   |    |       |     | 210    |           |     |    |        |    |
| 220    |           |     |    | 1     |     | 220    |           |     |    |        |    |
| 230    | 1         |     |    |       |     | 230    | 1         |     |    | 1      |    |
| 240    | 9         | 1   |    |       |     | 240    | 2         | 1   |    | 2      | 1  |
| 250    | 9         | 4   |    |       |     | 250    | 6         | 7   | 1  | 4      | 2  |
| 260    | 27        | 7   |    |       |     | 260    | 15        | 25  |    | 5      |    |
| 270    | 26        | 28  | 1  | 1     |     | 270    | 17        | 57  | 1  | 8      | 2  |
| 280    | 16        | 68  | 2  | 10    | 2   | 280    | 13        | 75  | 3  | 25     | 5  |
| 290    | 9         | 92  | 7  | 40    | 3   | 290    | 7         | 67  | 15 | 76     | 5  |
| 300    | 4         | 108 | 22 | 225   | 14  | 300    | 1         | 50  | 23 | 127    | 24 |
| 310    | 2         | 64  | 23 | 546   | 30  | 310    | 3         | 27  | 10 | 161    | 10 |
| 320    | 4         | 52  | 29 | 578   | 48  | 320    |           | 11  | 9  | 94     | 10 |
| 330    |           | 25  | 9  | 400   | 48  | 330    |           | 4   | 1  | 49     | 5  |
| 340    |           | 8   | 5  | 178   | 35  | 340    |           | 3   |    | 18     | 1  |
| 350    |           | 1   |    | 35    | 18  | 350    |           | 1   |    | 9      |    |
| 360    |           |     |    | 15    | 8   | 360    |           | 1   |    | 4      |    |
| 370    |           |     |    | 3     | 6   | 370    |           | 1   |    | 1      | 1  |
| 380    |           |     |    |       | 3   | 380    |           |     |    | 2      |    |
| 390    |           | 1   | 1  | 1     |     | 390    |           |     |    | 2<br>2 |    |
| 400    |           |     |    | 1     | 1   | 400    |           |     |    |        |    |
| 410    |           |     |    |       |     | 410    |           |     |    |        |    |
| 420    |           |     |    |       |     | 420    |           |     |    |        |    |
| 430    |           |     |    |       |     | 430    |           |     |    |        |    |
| 440    |           |     |    |       |     | 440    |           |     |    |        |    |
| 450    |           |     |    |       |     | 450    |           |     |    |        |    |
| Total: | 107       | 460 | 99 | 2,034 | 216 | Total: | 65        | 330 | 64 | 588    | 66 |

#### ARCTIC CISCO

#### LEAST CISCO

|         | U        | Jpper Nigli | iq                                      |          | Nanuk      |           | l        | Nigliq Delt | a         | Ni       | igliq Chan<br>Total | nel       |
|---------|----------|-------------|-----------------------------------------|----------|------------|-----------|----------|-------------|-----------|----------|---------------------|-----------|
|         | Observed |             | , i i i i i i i i i i i i i i i i i i i | Observed |            |           | Observed |             |           | Observed |                     |           |
|         | Catch    | Observed    | CPUE                                    | Catch    | Observed   | CPUE      | Catch    | Observed    | CPUE      | Catch    | Observed            | CPUE      |
| Harvest | (no. of  | Effort      | (fish per                               | (No. of  | Effort     | (Fish per | (No. of  | Effort      | (Fish per | (No. of  | Effort              | (Fish per |
| Year    | Fish)    | (net-days)  | net Day)                                | Fish)    | (Net-days) | Net Day)  | Fish)    | (Net-days)  | Net Day)  | Fish)    | (Net-days)          | Net Day)  |
| 1986    | 2,218    | 115.7       | 19.2                                    | 752      | 25.1       | 29.9      | 3,379    | 51.3        | 65.8      | 6,349    | 192.2               | 33.0      |
| 1987    | 1,451    | 131.7       | 11.0                                    | 948      | 32.6       | 29.1      | 661      | 31.3        | 21.1      | 3,060    | 195.7               | 15.6      |
| 1988    | 366      | 56.9        | 6.4                                     | 146      | 18.0       | 8.1       | 2,078    | 37.3        | 55.7      | 2,590    | 112.3               | 23.1      |
| 1989    | 993      | 90.8        | 10.9                                    | 258      | 14.3       | 18.0      | 535      | 21.7        | 24.7      | 1,786    | 126.8               | 14.1      |
| 1990    | 650      | 147.1       | 4.4                                     | 1,114    | 148.5      | 7.5       | 202      | 27.6        | 7.3       | 1,966    | 323.1               | 6.1       |
| 1991    | 522      | 143.0       | 3.7                                     | 1,327    | 326.9      | 4.1       | 16       | 8.0         | 2.0       | 1,865    | 477.9               | 3.9       |
| 1992    | 4,825    | 316.2       | 15.3                                    | 2,322    | 130.4      | 17.8      | 4,956    | 96.2        | 51.5      | 12,103   | 542.8               | 22.3      |
| 1993    | 1,709    | 106.2       | 16.1                                    | 5,783    | 158.3      | 36.5      | 1,568    | 57.7        | 27.2      | 9,060    | 322.2               | 28.1      |
| 1994    | 366      | 99.0        | 3.7                                     | 642      | 190.2      | 3.4       | 0        | 0.0         |           | 1,008    | 289.2               | 3.5       |
| 1995    | 56       | 50.3        | 1.1                                     | 568      | 178.3      | 3.2       | 267      | 12.0        | 22.3      | 891      | 240.7               | 3.7       |
| 1996    | 413      | 36.0        | 11.5                                    | 3,591    | 193.3      | 18.6      | 0        | 0.0         |           | 4,004    | 229.3               | 17.5      |
| 1997    | 2,539    | 119.0       | 21.3                                    | 3,586    | 128.8      | 27.8      | 2,207    | 53.3        | 41.4      | 8,332    | 301.2               | 27.7      |
| 1998    | 189      | 92.3        | 2.0                                     | 218      | 83.7       | 2.6       | 1,214    | 155.3       | 7.8       | 1,621    | 331.3               | 4.9       |
| 1999    | 0        | 0.0         |                                         | 0        | 0.0        |           | 0        | 0.0         |           | 0        | 0.0                 |           |
| 2000    | 8        | 8.0         | 1.0                                     | 217      | 62.0       | 3.5       | 1,826    | 190.4       | 9.6       | 2,051    | 260.4               | 7.9       |
| 2001    | 92       | 62.0        | 1.5                                     | 36       | 22.7       | 1.6       | 611      | 208.8       | 2.9       | 739      | 293.4               | 2.5       |
| 2002    | 103      | 115.7       | 0.9                                     | 137      | 36.7       | 3.7       | 2,925    | 460.9       | 6.3       | 3,165    | 613.2               | 5.2       |
| 2003    | 62       | 11.7        | 5.3                                     | 1,495    | 104.0      | 14.4      | 6,187    | 455.7       | 13.6      | 7,744    | 571.3               | 13.6      |

Appendix Table A-12. Calculation of Arctic cisco catch rate in 76-mm mesh in the Nigliq Channel, 1986-2003.

|                 |       | U        | Jpper Nigl | iq        |          | Nanuk     |           | 1        | Nigliq Delt | a         | Ni       | gliq Chanı<br>Total | nel       |
|-----------------|-------|----------|------------|-----------|----------|-----------|-----------|----------|-------------|-----------|----------|---------------------|-----------|
|                 |       | Observed | <u> </u>   | <u> </u>  | Observed |           |           | Observed | <u> </u>    |           | Observed |                     |           |
|                 |       | Catch    | Observed   | CPUE      | Catch    | Observed  | CPUE      | Catch    | Observed    | CPUE      | Catch    | Observed            | CPUE      |
| Ha              | rvest | (No. of  | Effort     | (Fish per | (No. of  | Effort    | (Fish per | (No. of  | Effort      | (Fish per | (No. of  | Effort              | (Fish per |
| Y               | ear   | Fish)    | (Net-days  | Net Day)  | Fish)    | (Net-days | Net Day)  | Fish)    | (Net-days   | Net Day)  | Fish)    | (Net-days           | Net Day)  |
| 19              | 986   | 146      | 115.7      | 1.3       | 16       | 25.1      | 0.6       | 24       | 51.3        | 0.5       | 186      | 192.2               | 1.0       |
| 19              | 987   | 730      | 131.7      | 5.5       | 63       | 32.6      | 1.9       | 12       | 31.3        | 0.4       | 805      | 195.7               | 4.1       |
| 19              | 988   | 93       | 56.9       | 1.6       | 12       | 18.0      | 0.7       | 105      | 37.3        | 2.8       | 210      | 112.3               | 1.9       |
| 19              | 989   | 332      | 90.8       | 3.7       | 16       | 14.3      | 1.1       | 10       | 21.7        | 0.5       | 358      | 126.8               | 2.8       |
| 19              | 990   | 711      | 147.1      | 4.8       | 416      | 148.5     | 2.8       | 179      | 27.6        |           | 1,306    | 323.1               | 4.0       |
| 19              | 991   | 50       | 143.0      |           | 272      | 326.9     | 0.8       | 0        | 8.0         | 0.0       | 322      | 477.9               | 0.7       |
| 19              | 992   | 261      | 316.2      | 0.8       | 88       | 130.4     | 0.7       | 151      | 96.2        | 1.6       | 500      | 542.8               | 0.9       |
| > 19            | 993   | 181      | 106.2      | 1.7       | 498      | 158.3     | 3.1       | 96       | 57.7        | 1.7       | 775      | 322.2               |           |
| - 1             | 994   | 330      | 99.0       |           | 711      | 190.2     | 3.7       | 0        | 0.0         |           | 1,041    | 289.2               | 3.6       |
| <sup>→</sup> 19 | 995   | 238      | 50.3       | 4.7       | 494      | 178.3     | 2.8       | 94       | 12.0        | 7.8       | 826      | 240.7               | 3.4       |
| 19              | 996   | 14       | 36.0       | 0.4       | 195      | 193.3     | 1.0       | 0        | 0.0         |           | 209      | 229.3               | 0.9       |
| 19              | 997   | 1,370    | 119.0      | 11.5      | 1,575    | 128.8     | 12.2      | 203      | 53.3        | 3.8       | 3,148    | 301.2               | 10.5      |
| 19              | 998   | 544      | 92.3       | 5.9       | 577      | 83.7      | 6.9       | 935      | 155.3       | 6.0       | 2,056    | 331.3               | 6.2       |
| 19              | 999   | 0        | 0.0        |           | 0        | 0.0       |           | 0        | 0.0         |           | 0        | 0.0                 |           |
| 20              | 000   | 11       | 8.0        | 1.4       | 97       | 62.0      | 1.6       | 330      | 190.4       | 1.7       | 438      | 260.4               | 1.7       |
| 20              | 001   | 129      | 62.0       | 2.1       | 222      | 22.7      | 9.8       | 491      | 208.8       | 2.4       | 842      | 293.4               | 2.9       |
| 20              | 002   | 176      | 115.7      | 1.5       | 165      | 36.7      | 4.5       | 1,033    | 460.9       | 2.2       | 1,374    | 613.2               | 2.2       |
| 20              | 003   | 25       | 11.7       | 2.1       | 459      | 104.0     | 4.4       | 1,038    | 455.7       | 2.3       | 1,522    | 571.3               | 2.7       |

Appendix Table A-13. Calculation of least cisco catch rate in 76-mm mesh in the Nigliq Channel, 1986-2003.

A-17

|                |      |      |      |      |      |      |      |      |      |      | Perce | nt   |      |      |      |      |      |      |      |      |      |      |
|----------------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Age<br>(Years) | 1976 | 1977 | 1978 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991  | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| 3              | 0.0  | 0.0  | 1.4  | 0.0  | 0.0  | 0.0  | 0.0  | 0.8  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 4              | 0.0  | 0.5  | 10.7 | 0.0  | 0.0  | 0.0  | 0.5  | 0.0  | 18.3 | 7.3  | 4.9   | 0.0  | 0.0  | 0.7  | 0.0  | 0.0  | 0.0  | 28.7 | 24.5 | 3.5  | 10.3 | 7.6  |
| 5              | 3.2  | 57.7 | 10.2 | 10.2 | 3.3  | 0.0  | 0.0  | 63.5 | 0.0  | 86.0 | 51.0  | 59.7 | 3.4  | 10.8 | 59.5 | 5.3  | 43.2 | 14.0 | 65.0 | 33.6 | 16.5 | 72.9 |
| 6              | 54.8 | 15.4 | 74.0 | 77.2 | 21.5 | 41.2 | 1.0  | 1.6  | 72.0 | 3.3  | 33.6  | 36.4 | 79.7 | 31.7 | 23.6 | 84.7 | 11.6 | 48.3 | 2.8  | 37.1 | 37.1 | 14.6 |
| 7              | 6.4  | 23.6 | 0.9  | 9.1  | 68.2 | 50.8 | 59.0 | 0.8  | 0.0  | 2.7  | 1.4   | 3.9  | 14.9 | 46.8 | 7.4  | 9.3  | 41.1 | 4.2  | 8.4  | 4.2  | 14.4 | 4.2  |
| 8              | 29.0 | 1.6  | 2.8  | 0.0  | 4.8  | 8.0  | 32.0 | 31.0 | 0.0  | 0.0  | 5.6   | 0.0  | 2.0  | 9.4  | 7.4  | 0.7  | 4.1  | 9.1  | 2.8  | 11.2 | 4.1  | 0.7  |
| 9              | 6.4  | 0.5  | 0.0  | 0.0  | 1.3  | 0.0  | 7.6  | 2.4  | 9.3  | 0.0  | 0.0   | 0.0  | 0.0  | 0.7  | 2.0  | 0.0  | 0.0  | 1.4  | 1.4  | 4.2  | 12.4 | 0.0  |
| 10             | 0.0  | 0.5  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.3  | 0.7  | 2.1   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 3.5  | 5.2  | 0.0  |
| 11             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 2.8  | 0.0  | 0.0  |
| N =            | 31   | 182  | 215  | est. | est. | 199  | 196  | 126  | est. | 150  | 143   | 154  | 148  | 139  | 148  | 150  | 146  | 151  | 150  | 143  | 97   | 144  |

Appendix Table 14. Age frequencies of arctic cisco caught in 76 mm mesh, 1976-2002.

1984, 1985 and 1989 age distributions estimated by comparing length frequencies of Arctic cisco caught in gill nets to fish caught in fyke nets

|                |                |                  |       |          | I      | Perce | ent  |      |      |      |      |      |      |      |      |      |      |
|----------------|----------------|------------------|-------|----------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Age<br>(Years) | 1976 1977 1978 | 1984 1985 1986 1 | 987 1 | 988 1989 | 1990 1 | 991   | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| 5              | 0.0            |                  | 0.0   | 0.0      |        | 0.0   |      | 0.0  |      | 0.0  |      | 0.0  |      | 0.7  |      | 0.7  |      |
| 6              | 7.4            |                  | 0.0   | 2.3      |        | 0.7   |      | 0.0  |      | 0.0  |      | 0.0  |      | 4.1  |      | 1.3  |      |
| 7              | 14.8           |                  | 2.5   | 0.0      |        | 2.7   |      | 0.7  |      | 2.7  |      | 2.7  |      | 2.7  |      | 2.0  |      |
| 8              | 28.4           |                  | 12.6  | 4.5      |        | 8.0   |      | 4.7  |      | 3.3  |      | 6.1  |      | 6.8  |      | 2.7  |      |
| 9              | 8.6            |                  | 19.6  | 11.4     |        | 8.7   |      | 7.4  |      | 10.0 |      | 9.5  |      | 13.0 |      | 4.7  |      |
| 10             | 7.4            |                  | 18.1  | 20.5     | 1      | 15.3  |      | 16.8 |      | 8.0  |      | 14.9 |      | 18.5 |      | 14.0 |      |
| 11             | 7.4            |                  | 16.1  | 13.6     | 4      | 20.0  |      | 24.2 |      | 17.3 |      | 14.2 |      | 13.0 |      | 20.0 |      |
| 12             | 11.1           |                  | 14.1  | 9.1      | 1      | 16.0  |      | 13.4 |      | 15.3 |      | 15.5 |      | 8.9  |      | 19.3 |      |
| 13             | 4.9            |                  | 5.5   | 13.6     | 1      | 11.3  |      | 12.8 |      | 11.3 |      | 10.8 |      | 9.6  |      | 10.7 |      |
| 14             | 4.9            |                  | 4.5   | 11.4     |        | 8.0   |      | 8.1  |      | 9.3  |      | 10.1 |      | 7.5  |      | 8.0  |      |
| 15             | 0.0            |                  | 4.0   | 6.8      |        | 2.7   |      | 6.7  |      | 6.7  |      | 6.1  |      | 4.8  |      | 5.3  |      |
| 16             | 2.5            |                  | 1.0   | 2.3      |        | 0.7   |      | 2.7  |      | 6.7  |      | 4.7  |      | 4.1  |      | 4.0  |      |
| 17             | 1.2            |                  | 1.0   | 4.5      |        | 2.0   |      | 0.7  |      | 3.3  |      | 3.4  |      | 2.7  |      | 3.3  |      |
| 18             | 1.2            |                  | 0.0   | 0.0      |        | 2.0   |      | 0.0  |      | 2.7  |      | 2.0  |      | 1.4  |      | 1.3  |      |
| 19             | 0.0            |                  | 0.0   | 0.0      |        | 1.3   |      | 0.7  |      | 0.0  |      | 0.0  |      | 1.4  |      | 1.3  |      |
| 20             | 0.0            |                  | 0.5   | 0.0      |        | 0.7   |      | 0.0  |      | 0.7  |      | 0.0  |      | 0.7  |      | 1.3  |      |
| 21             | 0.0            |                  | 0.0   | 0.0      |        | 0.0   |      | 0.7  |      | 0.7  |      | 0.0  |      | 0.0  |      | 0.0  |      |
| 22             | 0.0            |                  | 0.5   | 0.0      |        | 0.0   |      | 0.0  |      | 0.7  |      | 0.0  |      | 0.0  |      | 0.0  |      |
| N =            | 81             |                  | 199   | 44       |        | 150   |      | 149  |      | 150  |      | 148  |      | 146  |      | 150  |      |

| Appendix Table 15. | Age frequencies of least cisco caught in 76 mm mesh, 1976-2002 | • |
|--------------------|----------------------------------------------------------------|---|
|                    |                                                                |   |

Appendix Table 16. Calculation of harvested biomass for arctic cisco in the Colville Delta fall fishery, 1985-2003.

## Arctic Cisco

Estimated Mean Weight by Mesh Size

|              | 19         | 985           | 19     | 86      | 19     | 987     | 19     | 988     | 19     | 989     | 19     | 990     | 19     | 91      | 19     | 992     | 19     | 93      |
|--------------|------------|---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|
| Mesh         | Samp.      | Ave Wgt       | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt |
| (mm)         | Size       | (kg)          | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    |
| 51           | 116        | 0.230         | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   |
| 64           | 381        | 0.284         | 381    | 0.306   | 381    | 0.297   | 381    | 0.313   | 381    | 0.289   | 381    | 0.287   | 381    | 0.279   | 525    | 0.253   | 979    | 0.298   |
| 70           | 786        | 0.354         | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   |
| 76           | 629        | 0.425         | 1,428  | 0.429   | 830    | 0.471   | 773    | 0.484   | 1,601  | 0.518   | 470    | 0.393   | 1,327  | 0.365   | 1,596  | 0.369   | 1,965  | 0.403   |
| 83           | 883        | 0.465         | 883    | 0.475   | 883    | 0.472   | 883    | 0.515   | 883    | 0.514   | 883    | 0.475   | 883    | 0.431   | 233    | 0.454   | 920    | 0.469   |
| 89           | 1,162      | 0.516         | 346    | 0.462   | 122    | 0.539   | 63     | 0.653   | 212    | 0.539   | 223    | 0.555   | 211    | 0.556   | 325    | 0.477   | 870    | 0.469   |
| Estimat      | ted Nigliq | Catch         |        |         |        |         |        |         |        |         |        |         |        |         |        |         |        |         |
| Mesh         |            | 985           | 19     | 86      | 19     | 987     | 19     | 988     | 19     | 989     | 19     | 990     | 19     | 91      | 19     | 992     | 19     | 93      |
| (mm)         | No.        | (kg)          | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    |
| 51           |            | 0             |        | 0       |        | 0       |        | 0       |        | 0       | 36     | 8       | 178    | 41      | 0      | 0       | 0      |         |
| 64           | 5,465      | 1,553         | 1,058  | 323     | 581    | 172     | 61     | 19      | 839    | 243     | 2,143  | 616     | 2,912  | 812     | 11,050 | 2,794   | 6,861  | 2,044   |
| 70           |            | 0             |        | 0       | 801    | 284     | 263    | 93      |        | 0       |        | 0       |        | 0       | 1,921  | 680     | 1,877  | 665     |
| 76           | 14,940     | 6,353         | 14,990 | 6,424   | 10,502 | 4,941   | 5,066  | 2,453   | 6,092  | 3,157   | 5,542  | 2,176   | 3,401  | 1,242   | 25,440 | 9,381   | 24,612 | 9,913   |
| 83           | 1,812      | 843           | 1,928  | 916     | 2,448  | 1,156   | 43     | 22      | 3,349  | 1,721   | 145    | 69      | 283    | 122     | 582    | 265     | 1,080  | 507     |
| 89           | 4,161      | 2,147         | 822    | 380     | 1,945  | 1,048   | 57     | 37      | 1,112  | 599     | 1,358  | 753     | 470    | 261     | 1,948  | 929     | 5,844  | 2,743   |
| 95           |            |               |        |         |        |         |        |         |        |         |        |         |        |         | 61     | 29      | 869    | 408     |
| 102          |            |               |        |         |        |         | 5      | 3       |        |         |        |         |        |         |        |         |        |         |
| → <u>114</u> |            |               |        |         |        |         | 16     | 10      |        |         |        |         |        |         |        |         |        |         |
| Total:       | 26,378     | 10,897        | 18,798 | 8,044   | 16,277 | 7,601   | 5,511  | 2,639   | 11,392 | 5,720   | 9,224  | 3,622   | 7,244  | 2,478   | 41,002 | 14,077  | 41,144 | 16,279  |
| -            | ted Outer  | Delta Catch   |        |         |        |         |        |         |        |         |        |         |        |         |        |         |        |         |
| Mesh         | 19         | 985           | 19     | 86      | 19     | 987     | 19     | 988     | 19     | 989     | 19     | 990     | 19     | 91      | 19     | 992     | 19     | 93      |
| (mm)         | No.        | (kg)          | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    |
| 64           | 682        | 194           |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |
| 70           |            | 0             |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |
| 76           | 19,148     | 8,143         | 13,102 | 5,615   | 4,487  | 2,111   | 420    | 203     | 1,500  | 777     | 2,000  | 785     | 1,025  | 374     | 4,400  | 1,623   | 5,800  | 2,336   |
| 83           |            | 0             | 390    | 185     |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |
| 89           | 473        |               | 1,232  |         | 162    | -       | 167    |         |        | 0       |        | 0       |        | 0       |        | 0       |        | 0       |
| Total:       | 20,303     | 8,581         | 14,724 | 6,370   | 4,649  | 2,199   | 587    | 312     | 1,500  | 777     | 2,000  | 785     | 1,025  | 374     | 4,400  | 1,623   | 5,800  | 2,336   |
| Estimat      |            | nercial Catch |        |         |        |         |        |         |        |         |        |         |        |         |        |         |        |         |
| Mesh         |            | 985           |        | 86      | -      | 987     |        | 988     |        | 989     |        | 990     |        | 91      |        | 992     |        | 93      |
| (mm)         | No.        | (kg)          | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    |
| 76           | 22,831     |               | 28,988 |         | 22,527 |         | 5,056  |         | 18,825 |         | 16,884 |         | 23,046 | 8,414   | 22,754 |         | 29,589 |         |
| 83           | • ·        | 0             |        | 0       | 4,967  |         | 5,277  |         | 5,977  | 3,071   | 4,221  | ,       | 652    | 281     | 0      |         | 1,721  | 807     |
| 89           | 847        |               | 468    |         |        | 0       | 147    |         |        | 0       |        | 0       |        | 0       | 0      | 0       | 0      | 0       |
| Total:       | 23,678     | 10,146        | 29,456 | 12,640  | 27,494 | 12,945  | 10,480 | 5,264   | 24,802 | 12,826  | 21,105 | 8,634   | 23,698 | 8,695   | 22,754 | 8,391   | 31,310 | 12,725  |

Appendix Table 16. continued.

Arctic Cisco Estimated Mean Weight by Mesh Size

|                      | 19         | 994           | 19     | 95      | 19     | 996     | 19     | 97      | 19    | 998     | 20    | 000     | 20    | 01      | 20    | 002     | 20     | 03      |
|----------------------|------------|---------------|--------|---------|--------|---------|--------|---------|-------|---------|-------|---------|-------|---------|-------|---------|--------|---------|
| Mesh                 | Samp.      | Ave Wgt       | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp. | Ave Wgt | Samp. | Ave Wgt | Samp. | Ave Wgt | Samp. | Ave Wgt | Samp.  | Ave Wgt |
| (mm)                 | Size       | (kg)          | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size  | (kg)    | Size  | (kg)    | Size  | (kg)    | Size  | (kg)    | Size   | (kg)    |
| 51                   | 116        | 0.230         | 116    | 0.230   | 116    | 0.230   | 116    | 0.230   | 116   | 0.230   | 116   | 0.230   | 116   | 0.230   | 116   | 0.230   | 116    | 0.230   |
| 64                   | 125        | 0.219         | 1,185  | 0.295   | 1,273  | 0.307   | 1,273  | 0.296   | 1,310 | 0.296   | 1,310 | 0.296   | 1,629 | 0.296   | 264   | 0.258   | 460    | 0.310   |
| 70                   | 786        | 0.354         | 786    | 0.354   | 786    | 0.354   | 786    | 0.354   | 786   | 0.354   | 786   | 0.354   | 786   | 0.354   | 786   | 0.354   | 786    | 0.354   |
| 76                   | 520        | 0.444         | 824    | 0.374   | 1,539  | 0.371   | 788    | 0.420   | 423   | 0.380   | 1,041 | 0.464   | 412   | 0.477   | 1,836 | 0.362   | 2,033  | 0.375   |
| 83                   | 2,036      | 0.477         | 389    | 0.491   | 83     | 0.400   | 259    | 0.460   | 2,767 | 0.460   | 142   | 0.521   | 2,978 | 0.463   | 2,978 | 0.463   | 2,978  | 0.463   |
| 89                   | 166        | 0.547         | 289    | 0.513   | 296    | 0.451   | 875    | 0.468   | 299   | 0.501   | 278   | 0.541   | 278   | 0.541   | 306   | 0.448   | 216    | 0.411   |
| Estimat              | ted Nigliq | Catch         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |        |         |
| Mesh                 | 19         | 994           | 19     | 95      | 19     | 996     | 19     | 97      | 19    | 998     | 20    | 000     | 20    | 01      | 20    | 002     | 20     | 03      |
| (mm)                 | No.        | (kg)          | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.    | (kg)    |
| 51                   | 0          | 0             | 0      | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       | 293    | 67      |
| 64                   | 1,665      | 364           | 307    | 91      | 1,770  | 544     | 435    | 129     | 146   | 43      | 12    | 4       | 375   | 111     | 1,332 | 343     | 4,320  | 1,341   |
| 70                   | 258        | 91            | 134    | 47      |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       | 533    | 189     |
| 76                   | 3,242      | 1,438         | 2,257  | 844     | 13,376 | 4,961   | 18,381 | 7,717   | 5,531 | 2,103   | 6,756 | 3,137   | 2,087 | 996     | 5,263 | 1,904   |        | 0       |
| 83                   | 15         | 7             | 850    | 417     | 512    | 205     | 2,211  | 1,017   | 151   | 69      | 737   | 384     | 223   | 103     | 66    | 31      | 17,284 | 8,003   |
| 89                   | 375        | 205           | 1,357  | 696     | 1,514  | 683     | 10,103 | 4,724   | 2,320 | 1,163   | 2,451 | 1,327   | 1,250 | 677     | 872   | 390     | 939    | 386     |
| 95                   |            | 0             |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |        | 0       |
| 102                  |            |               |        |         |        |         |        |         |       |         |       |         |       |         |       |         |        |         |
| $> \frac{114}{-114}$ |            |               |        |         |        |         |        |         |       |         |       |         |       |         |       |         |        |         |
| Total:               | 5,556      | 2,106         | 4,905  | 2,096   | 17,172 | 6,393   | 31,130 | 13,587  | 8,148 | 3,378   | 9,956 | 4,851   | 3,935 | 1,886   | 7,533 | 2,669   | 23,369 | 9,986   |
| <br>Estimat          | ted Outer  | Delta Catch   |        |         |        |         |        |         |       |         |       |         |       |         |       |         |        |         |
| Mesh                 |            | 994           | -      | 95      |        | 996     |        | 97      |       | 998     |       | 000     |       | 01      |       | 002     | -      | 03      |
| (mm)                 | No.        | (kg)          | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.    | (kg)    |
| 64                   |            | 0             | 90     | 27      | 2,267  |         |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |        | 0       |
| 70                   |            | 0             | 232    | 82      |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |        | 0       |
| 76                   | 5,400      | ,             | 3,287  | 1,230   | 18,963 |         | 2,144  | 900     | 5,411 | 2,057   |       | 0       |       | 0       |       | 0       |        | 0       |
| 83                   |            | 0             | 55     | 27      |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |        | 0       |
| 89                   |            | 0             | 4      | 2       | 2,803  |         |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |        | 0       |
| Total:               | 5,400      | 2,396         | 3,669  | 1,368   | 24,033 | 8,994   | 2,144  | 900     | 5,411 | 2,057   | 0     | 0       | 0     | 0       | 0     | 0       | 0      | 0       |
| Estimat              | ted Comm   | nercial Catch | 1      |         |        |         |        |         |       |         |       |         |       |         |       |         |        |         |
| Mesh                 | 19         | 994           |        | 95      |        | 996     |        | 97      | 19    | 998     |       | 000     | -     | 01      | 20    | 002     | 20     | 03      |
| (mm)                 | No.        | (kg)          | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.    | (kg)    |
| 76                   | 7,054      | ,             | 14,311 | 5,353   | 20,740 | ,       | 15,686 | ,       | 6,579 | ,       | 2,591 | 1,203   | 1,566 |         | 3,935 | ,       | 3,935  | 1,477   |
| 83                   | 1,904      |               | 0      | 0       | 1,077  |         | 1,304  | 600     | 2,173 | ,       | 28    |         | 358   |         |       | 0       |        | 0       |
| 89                   | 0          |               | 0      | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |        | 0       |
| Total:               | 8,958      | 4,037         | 14,311 | 5,353   | 21,817 | 8,124   | 16,990 | 7,186   | 8,752 | 3,501   | 2,619 | 1,218   | 1,924 | 913     | 3,935 | 1,424   | 3,935  | 1,477   |

Appendix Table 17. Calculation of harvested biomass for least cisco in the Colville Delta fall fishery, 1985-2003.

## Least Cisco

Estimated mean weight by mesh size

| 201               | 19          | 985           | 19           | 86            | 198           | 87            | 19            | 88            | 19     | 89            | 19            | 990                   | 19    | 91            | 19        | 992           | 19           | 993           |
|-------------------|-------------|---------------|--------------|---------------|---------------|---------------|---------------|---------------|--------|---------------|---------------|-----------------------|-------|---------------|-----------|---------------|--------------|---------------|
| Mesh              |             | Ave Wgt       | Samp.        | Ave Wgt       | Samp.         | Ave Wgt       | Samp.         | Ave Wgt       | Samp.  | Ave Wgt       | Samp.         | Ave Wgt               | Samp. | Ave Wgt       | Samp.     | Ave Wgt       | Samp.        | Ave Wgt       |
| (mm)              | Size        | (kg)          | Size         | (kg)          | Size          | (kg)          | Size          | (kg)          | Size   | (kg)          | Size          | (kg)                  | Size  | (kg)          | Size      | (kg)          | Size         | (kg)          |
| 51                | 140         | 0.200         | 140          | 0.200         | 140           | 0.200         | 140           | 0.200         | 140    | 0.200         | 140           | 0.200                 | 140   | 0.200         | 140       | 0.200         | 140          | 0.200         |
| 64                | 572         | 0.251         | 572          | 0.263         | 572           | 0.248         | 572           | 0.263         | 572    | 0.255         | 572           | 0.250                 | 572   | 0.237         | 697       | 0.247         | 778          | 0.246         |
| 70                | 106         | 0.290         | 106          | 0.290         | 106           | 0.290         | 106           | 0.290         | 106    | 0.290         | 106           | 0.290                 | 106   | 0.290         | 106       | 0.290         | 106          | 0.290         |
| 76                | 449         | 0.342         | 370          | 0.329         | 400           | 0.344         | 285           | 0.346         | 388    | 0.355         | 267           | 0.317                 | 292   | 0.236         | 124       | 0.345         | 311          | 0.297         |
| 83                | 36          | 0.397         | 36           | 0.382         | 36            | 0.393         | 36            | 0.412         | 36     | 0.406         | 36            | 0.366                 | 36    | 0.385         | 39        | 0.386         | 62           | 0.345         |
| 89                | 430         | 0.329         | 430          | 0.329         | 430           | 0.329         | 430           | 0.329         | 430    | 0.329         | 430           | 0.329                 | 430   | 0.329         | 430       | 0.329         | 430          | 0.329         |
| Estim             | ated Nigliq | Catch         |              |               |               |               |               |               |        |               |               |                       |       |               |           |               |              |               |
| Mesh              |             | 985           | 19           | 86            | 198           | 87            | 10            | 88            | 10     | 89            | 10            | 990                   | 19    | 91            | 19        | 992           | 19           | 993           |
| (mm)              | No.         | (kg)          | No.          | (kg)          | No.           | (kg)          | No.           | (kg)          | No.    | (kg)          | No.           | (kg)                  | No.   | (kg)          | No.       | (kg)          | No.          | (kg)          |
| 51                | -           | 0             | -            | 0             | -             | 0             | -             | 0             | -      | 0             | 545           |                       | 172   |               | 0         |               | 0            |               |
| 64                | 492         |               | 951          | 250           | 1,090         | 270           | 46            |               | 3,086  |               | 3,633         | 909                   | 2,261 | 536           | 1,381     | 341           | 3,739        | 921           |
| 70                |             | 0             |              | 0             | 355           | 103           | 33            |               | -,     | 0             | -,            | 0                     | _,    | 0             | 65        |               | 274          |               |
| 76                | 1,271       |               | 746          | 245           | 2,695         | 926           | 715           |               | 1,247  | 443           | 4,696         | 1,491                 | 726   | 171           | 1,078     |               | 2,745        |               |
| 83                | 27          |               | 59           | 23            | 456           | 179           | 48            |               | 190    | 77            | 15            | 6                     | 24    | 9             | 4         |               | 82           |               |
| 89                | 81          | 27            | 50           | 16            | 149           | 49            | 8             | 3             | 13     |               | 211           | 70                    | 11    | 4             | 127       |               | 754          |               |
| 95                |             |               |              |               |               |               |               | -             |        | -             |               |                       |       | -             | 3         |               | 4            |               |
| 102               |             |               |              |               |               |               | 1             |               |        |               |               |                       |       |               |           |               |              |               |
| ▶ 114             |             |               |              |               |               |               | 16            |               |        |               |               |                       |       |               |           |               |              |               |
| Total:            | 1,871       | 595           | 1,806        | 535           | 4,745         | 1,527         | 867           | 291           | 4,536  | 1,310         | 9,100         | 2,584                 | 3,193 | 754           | 2,658     | 777           | 7,599        | 2,093         |
| <b>4</b> -        | ated Outer  | Delta Catch   |              |               |               |               |               |               |        |               |               |                       |       |               |           |               |              |               |
| Mesh              | 19          | 985           | 19           | 86            | 198           | 87            | 19            | 88            | 19     | 89            | 19            | 990                   | 19    | 91            | 19        | 992           | 19           | 993           |
| (mm)              | No.         | (kg)          | No.          | (kg)          | No.           | (kg)          | No.           | (kg)          | No.    | (kg)          | No.           | (kg)                  | No.   | (kg)          | No.       | (kg)          | No.          | (kg)          |
| 64                | 692         | 173           | 32           | 8             |               | 0             |               | 0             |        | 0             |               | 0                     |       | 0             |           | 0             |              | 0             |
| 76                | 13,175      | 4,504         | 4,924        | 1,619         | 1,417         | 487           | 1,392         | 481           | 1,500  | 533           |               | 0                     |       | 0             |           | 0             |              | 0             |
| 83                |             | 0             | 12           | 5             |               | 0             |               | 0             |        | 0             |               | 0                     |       | 0             |           | 0             |              | 0             |
| 89                | 76          | 25            | 31           | 10            | 16            | 5             | 62            | 20            |        | 0             |               | 0                     |       | 0             |           | 0             |              | 0             |
| Total:            | 13,943      | 4,702         | 4,998        | 1,642         | 1,433         | 492           | 1,454         | 502           | 1,500  | 533           | 0             | 0                     | 0     | 0             | 0         | 0             | 0            | 0             |
| Estim             | ated Comn   | nercial Catch | 1            |               |               |               |               |               |        |               |               |                       |       |               |           |               |              |               |
| Mesh              |             | 985           | 19           | 86            | 198           | 87            | 19            | 88            | 19     | 89            | 19            | 990                   | 19    | 91            | 19        | 992           | 19           | 993           |
|                   |             |               |              |               |               |               |               | (1 )          | NI-    | (1.00)        | N             | (1.00)                | No.   | (1.00)        | NI-       | (1 )          |              | (1)           |
| (mm)              | No.         | (kg)          | No.          | (kg)          | No.           | (kg)          | No.           | (Kg)          | No.    | (K <u>Q</u> ) | No.           | (kg)                  | INO.  | (Kg)          | No.       | (kg)          | No.          | (K <u>G</u> ) |
|                   |             | (kg)<br>5,981 | No.<br>8,988 | (kg)<br>2,955 | No.<br>11,636 | (kg)<br>3,998 | No.<br>20,678 | (kg)<br>7,148 | 19,126 | (kg)<br>6,798 | NO.<br>14,944 | (K <u>g)</u><br>4,744 | 7,666 | (kg)<br>1,808 | <br>7,284 | (kg)<br>2,513 | No.<br>5,939 | (kg)<br>1,761 |
| (mm)              | No.         |               |              |               |               |               |               |               | -      | 6,798         |               |                       |       | 1,808         |           | 2,513         |              | 1,761         |
| <u>(mm)</u><br>76 | No.         | 5,981<br>0    |              | 2,955         | 11,636        | 3,998         | 20,678        | 7,148         | 19,126 | 6,798         | 14,944        | 4,744                 | 7,666 | 1,808         | 7,284     | 2,513         | 5,939        | 1,761         |

Appendix Table 17. (continued)

Least Cisco Estimated mean weight by mesh size

| 201110  | 19         | 994           | 19<br>19 | 995     | 19     | 96      | 19     | 997     | 19     | 998     | 20    | 000     | 20    | 001     | 20    | 002     | 20    | 003     |
|---------|------------|---------------|----------|---------|--------|---------|--------|---------|--------|---------|-------|---------|-------|---------|-------|---------|-------|---------|
| Mesh    | Samp.      | Ave Wgt       | Samp.    | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp.  | Ave Wgt | Samp. | Ave Wgt | Samp. | Ave Wgt | Samp. | Ave Wgt | Samp. | Ave Wgt |
| (mm)    | Size       | (kg)          | Size     | (kg)    | Size   | (kg)    | Size   | (kg)    | Size   | (kg)    | Size  | (kg)    | Size  | (kg)    | Size  | (kg)    | Size  | (kg)    |
| 51      | 140        | 0.200         | 140      | 0.200   | 140    | 0.200   | 140    | 0.200   | 140    | 0.200   | 140   | 0.200   | 140   | 0.200   | 140   | 0.200   | 140   | 0.200   |
| 64      | 778        | 0.253         | 833      | 0.236   | 886    | 0.235   | 886    | 0.242   | 310    | 0.234   | 1,221 | 0.239   | 1,634 | 0.243   | 330   | 0.259   | 330   | 0.259   |
| 70      | 106        | 0.290         | 106      | 0.290   | 106    | 0.290   | 106    | 0.290   | 106    | 0.290   | 106   | 0.290   | 106   | 0.290   | 106   | 0.290   | 106   | 0.290   |
| 76      | 218        | 0.306         | 234      | 0.308   | 123    | 0.302   | 173    | 0.300   | 514    | 0.288   | 328   | 0.325   | 515   | 0.310   | 681   | 0.311   | 587   | 0.310   |
| 83      | 62         | 0.371         | 92       | 0.335   | 92     | 0.367   | 133    | 0.336   | 133    | 0.336   | 133   | 0.336   | 147   | 0.345   | 147   | 0.345   | 147   | 0.345   |
| 89      | 430        | 0.329         | 430      | 0.329   | 430    | 0.329   | 430    | 0.329   | 430    | 0.329   | 430   | 0.329   | 430   | 0.329   | 430   | 0.329   | 430   | 0.329   |
| Estimat | ted Nigliq |               |          |         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |
| Mesh    |            | 994           |          | 995     |        | 96      |        | 997     |        | 998     |       | 000     |       | 001     |       | 002     |       | 003     |
| (mm)    | No.        | (kg)          | No.      | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    |
| 51      |            | 0             |          | 0       |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       | 222   |         |
| 64      | 3,714      |               | 1,476    |         | 600    | 141     | 971    |         | 1,956  |         | 16    |         | 670   |         | 2,619 |         | 3,476 |         |
| 70      | 442        |               | 380      |         |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       | 166   |         |
| 76      | 4,200      | ,             | 2,196    |         | 890    |         | 6,623  | ,       | 5,229  | ,       | 1,690 |         | 2,689 |         | 2,549 |         |       | 0       |
| 83      | 12         |               | 102      |         | 15     |         | 335    |         | 124    |         | 51    |         | 235   |         | 20    |         | 3,448 | ,       |
| 89      | 301        |               | 283      |         | 96     |         | 833    |         | 545    |         | 215   |         | 36    |         | 234   |         | 436   |         |
| 95      |            | 0             |          | 0       |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |
| 102     |            |               |          |         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |
| 114     |            |               |          |         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |
| Total:  | 8,669      | 2,455         | 4,437    | 1,262   | 1,601  | 447     | 8,761  | 2,607   | 7,853  | 2,184   | 1,973 | 641     | 3,630 | 1,089   | 5,422 | 1,555   | 7,748 | 2,327   |
| Estimat | ted Outer  | Delta Catch   |          |         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |
| Mesh    |            | 994           |          | 995     | 19     | 96      | 19     | 997     | 19     | 998     | 20    | 000     | 20    | 001     | 20    | 002     | 20    | 003     |
| (mm)    | No.        | (kg)          | No.      | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    |
| 64      |            | 0             | 708      |         | 1,552  |         |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |
| 76      |            | 0             | 3,333    | 1,026   | 12,700 |         | 1,241  | 372     | 11,470 | 3,303   |       | 0       |       | 0       |       | 0       |       | 0       |
| 83      |            | 0             | 95       | 32      |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |
| 89      |            | 0             | 1        | 0       |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |
| Total:  | 0          | 0             | 4,137    | 1,225   | 14,253 | 4,198   | 1,241  | 372     | 11,470 | 3,303   | 0     | 0       | 0     | 0       | 0     | 0 0     | 0     | 0       |
| Estimat | ted Comn   | nercial Catch | n        |         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |
| Mesh    |            | 994           |          | 995     | 19     | 96      | 19     | 997     | 19     | 998     | 20    | 000     | 20    | 001     | 20    | 002     | 20    | 003     |
| (mm)    | No.        | (kg)          | No.      | (kg)    | No.    | (kg)    | No.    | (kg)    | No.    | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    | No.   | (kg)    |
| 76      | 9,549      |               | 8,633    |         | 7,451  | 2,249   | 10,644 |         | 11,010 |         | 5,693 |         | 2,823 |         | 5,503 |         | 5,503 |         |
| 83      | 627        | ,             | 0,000    | ,       | 345    | ,       | 110    |         | 812    |         | 65    | ,       | 153   |         | 2,200 | 0       | 2,200 | 0       |
| 89      | 0          |               | 0        | 0       |        | 0       |        | 0       |        | 0       |       | 0       |       | 0       |       | 0       |       | 0       |
| Total:  | 10,176     | 3,153         | 8,633    | 2,658   | 7,796  | 2,375   | 10,754 | 2,613   | 11,822 | 3,443   | 5,758 | 1,873   | 2,976 | 927     | 5,503 | 1,710   | 5,503 | 1,704   |
|         |            |               |          |         |        |         |        |         |        |         |       |         |       |         |       |         |       |         |

|       |      |      |       |      |      |      |      | Fishing | Year |       |      |      |       |      |      |      |      |      |      | Yea  |
|-------|------|------|-------|------|------|------|------|---------|------|-------|------|------|-------|------|------|------|------|------|------|------|
| Year  |      |      |       |      |      |      |      |         |      |       |      |      |       |      |      |      |      |      |      | Clas |
| Class | 1984 | 1985 | 1986  | 1987 | 1988 | 1989 | 1990 | 1991    | 1992 | 1993  | 1994 | 1995 | 1996  | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | Tota |
| 1974  | 0.0  |      |       |      |      |      |      |         |      |       |      |      |       |      |      |      |      |      |      | C    |
| 1975  | 0.0  | 0.0  |       |      |      |      |      |         |      |       |      |      |       |      |      |      |      |      |      | (    |
| 976   | 0.0  | 0.8  | 0.0   |      |      |      |      |         |      |       |      |      |       |      |      |      |      |      |      | (    |
| 1977  | 6.0  | 2.9  | 0.0   | 0.0  |      |      |      |         |      |       |      |      |       |      |      |      |      |      |      | 8    |
| 978   | 50.9 | 41.2 | 14.9  | 6.1  | 0.0  |      |      |         |      |       |      |      |       |      |      |      |      |      |      | 11.  |
| 979   | 6.7  | 13.0 | 94.7  | 25.5 | 0.5  | 0.1  |      |         |      |       |      |      |       |      |      |      |      |      |      | 140  |
| 980   |      | 2.0  | 76.8  | 47.0 | 6.7  | 3.5  | 0.2  |         |      |       |      |      |       |      |      |      |      |      |      | 130  |
| 1981  | _    |      | 0.0   | 0.8  | 0.2  | 0.0  | 0.0  | 0.6     |      |       |      |      |       |      |      |      |      |      |      |      |
| 1982  |      | -    |       | 0.0  | 0.3  | 0.0  | 0.0  | 0.0     |      |       |      |      |       |      |      |      |      |      |      | (    |
| 1983  |      |      | -     | 0.4  | 13.7 | 26.7 | 0.8  | 1.7     |      |       |      |      |       |      |      |      |      |      |      | 4    |
| 984   |      |      |       | -    |      | 0.0  | 1.0  | 0.4     |      |       |      |      |       |      |      |      |      |      |      |      |
| 985   |      |      |       |      | 0.2  | 6.8  | 25.8 | 10.0    | 2.3  | 3.0   | 0.2  |      |       |      |      |      |      |      |      | 4    |
| 986   |      |      |       |      |      | -    | 2.2  | 15.2    | 21.4 | 22.0  | 2.5  | 0.6  |       |      |      |      |      |      |      | 6    |
| 1987  |      |      |       |      |      |      |      | 1.5     | 35.2 | 118.1 | 12.7 | 2.2  |       |      |      |      |      |      |      | 169  |
| 988   |      |      |       |      |      |      |      | •       |      | 5.0   | 8.6  | 2.2  | 0.9   |      |      |      |      |      |      | 10   |
| 1989  |      |      |       |      |      |      |      |         |      |       | 2.9  | 7.1  | 12.2  | 2.6  | 0.5  | 0.0  | 0.3  |      |      | 2    |
| 990   |      |      |       |      |      |      |      |         |      | -     | 0.2  | 17.9 | 110.5 | 26.4 | 3.0  | 0.5  | 0.4  |      |      | 159  |
| 1991  |      |      |       |      |      |      |      |         |      |       | L    |      | 7.0   | 7.5  | 1.4  | 1.0  | 0.5  | 0.1  |      | 17   |
| 992   |      |      |       |      |      |      |      |         |      |       |      |      |       | 27.7 | 16.1 | 3.0  | 1.3  | 0.1  |      | 48   |
| 1993  |      |      |       |      |      |      |      |         |      |       |      |      | L     |      | 4.7  | 1.0  | 0.5  | 0.0  |      | (    |
| 994   |      |      |       |      |      |      |      |         |      |       |      |      |       |      | 9.6  | 23.3 | 4.4  | 0.1  | 0.1  | 3'   |
| 995   |      |      |       |      |      |      |      |         |      |       |      |      |       |      |      | 8.8  | 4.0  | 0.4  | 0.6  | 13   |
| 996   |      |      |       |      |      |      |      |         |      |       |      |      |       |      |      | I    | 0.4  | 0.2  | 2.1  | ,    |
| 997   |      |      |       |      |      |      |      |         |      |       |      |      |       |      |      |      |      | 0.1  | 10.6 | 1    |
| 998   |      |      |       |      |      |      |      |         |      |       |      |      |       |      |      |      |      |      | 1.1  |      |
| otal  |      |      |       |      |      |      |      |         |      |       |      |      |       |      |      |      |      |      |      |      |
| CPUE  | 65.9 | 60.5 | 186.5 | 79.7 | 21.6 | 37.1 | 30.0 | 29.7    | 58.9 | 148.1 | 27.2 | 30.1 | 130.5 | 64.3 | 35.2 | 37.6 | 12.0 | 1.0  | 14.5 |      |

Appendix Table 18. Catch rate of arctic cisco in the commercial fishery by year-class, 1984-2002 (outlined boxes indicate year-class CPUE at age-5, based on CPUE corrected for effect of variable effort, 76-mm mesh).

boxes indicate CPUE at age-5

A-24

Appendix Table 19. Mean weight and CPUE by mesh size in the Nigliq Channel fishery, 1986-2003.

| Arctic Cisco                  |
|-------------------------------|
| Mean Weight (kg) by Mesh Size |
| NC 1                          |

| Mesh |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (mm) | 1986  | 1987  | 1988  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 2000  | 2001  | 2002  | 2003  |
| 51   | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 |
| 64   | 0.306 | 0.297 | 0.313 | 0.289 | 0.287 | 0.279 | 0.253 | 0.298 | 0.219 | 0.295 | 0.307 | 0.296 | 0.296 | 0.296 | 0.296 | 0.258 | 0.310 |
| 70   | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 | 0.354 |
| 76   | 0.429 | 0.471 | 0.484 | 0.518 | 0.393 | 0.365 | 0.369 | 0.403 | 0.444 | 0.374 | 0.371 | 0.420 | 0.380 | 0.464 | 0.477 | 0.362 | 0.375 |
| 83   | 0.475 | 0.472 | 0.515 | 0.514 | 0.475 | 0.431 | 0.454 | 0.469 | 0.477 | 0.491 | 0.400 | 0.460 | 0.460 | 0.521 | 0.463 | 0.463 | 0.463 |
| 89   | 0.462 | 0.539 | 0.653 | 0.539 | 0.555 | 0.556 | 0.477 | 0.469 | 0.547 | 0.513 | 0.451 | 0.468 | 0.501 | 0.541 | 0.541 | 0.448 | 0.411 |
| 95   | 0.462 | 0.539 | 0.653 | 0.539 | 0.555 | 0.556 | 0.477 | 0.469 | 0.547 | 0.513 | 0.513 | 0.513 | 0.513 | 0.513 | 0.513 | 0.513 | 0.513 |
|      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

Mean CPUE by Mesh Size

| Mesh |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| (mm) | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 2000 | 2001 | 2002 | 2003 |
| 51   |      |      |      |      | 5.7  | 44.5 |      |      |      |      |      |      |      |      |      |      | 18.3 |
| 64   | 15.4 | 9.9  | 3.7  | 5.3  | 22.4 | 26.6 | 44.5 | 33.3 | 6.7  | 4.6  | 27.2 | 12.9 | 2.2  | 1.0  | 4.0  | 7.5  | 24.3 |
| 70   |      | 26.7 | 6.4  |      |      |      | 15.4 | 10.7 | 2.3  | 4.0  |      |      |      |      |      |      | 8.1  |
| 76   | 23.5 | 16.1 | 12.4 | 12.5 | 11.0 | 4.4  | 24.7 | 33.0 | 4.2  | 3.0  | 17.5 | 25.4 | 4.4  | 9.6  | 2.7  | 4.6  | 14.4 |
| 83   | 14.7 | 8.4  | 1.5  | 3.0  | 5.6  | 3.7  | 14.9 | 15.6 | 0.6  | 5.3  | 3.1  | 17.5 | 10.2 | 6.7  | 1.6  | 0.8  |      |
| 89   | 10.3 | 11.4 | 0.8  | 4.5  | 8.2  | 1.2  | 4.7  | 11.6 | 1.7  | 2.9  | 2.2  | 20.1 | 3.0  | 4.4  | 2.5  | 1.6  | 4.5  |
| 95   |      |      |      |      |      |      | 3.1  | 19.3 |      |      |      |      |      |      |      |      |      |

| Least | Cisco  |      |
|-------|--------|------|
| Maan  | Waight | (1.0 |

| Mean ' | Weight | (kg) by | Mesh | Size |
|--------|--------|---------|------|------|
|--------|--------|---------|------|------|

| Least C                                    | 1300                       |                                    |                                  |                    |                            |                            |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    |                            |
|--------------------------------------------|----------------------------|------------------------------------|----------------------------------|--------------------|----------------------------|----------------------------|--------------------------|---------------------------|---------------------------|----------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|--------------------|----------------------------|
| Mean W                                     | eight (kg                  | ) by Mes                           | sh Size                          |                    |                            |                            |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    |                            |
| Mesh                                       |                            |                                    |                                  |                    |                            |                            |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    |                            |
| (mm)                                       | 1986                       | 1987                               | 1988                             | 1989               | 1990                       | 1991                       | 1992                     | 1993                      | 1994                      | 1995                       | 1996               | 1997               | 1998               | 2000              | 2001              | 2002               | 2003                       |
| 51                                         | 0.200                      | 0.200                              | 0.200                            | 0.200              | 0.200                      | 0.200                      | 0.200                    | 0.200                     | 0.200                     | 0.200                      | 0.200              | 0.200              | 0.200              | 0.200             | 0.200             | 0.200              | 0.200                      |
| 64                                         | 0.263                      | 0.248                              | 0.263                            | 0.255              | 0.250                      | 0.237                      | 0.247                    | 0.246                     | 0.253                     | 0.236                      | 0.235              | 0.242              | 0.234              | 0.239             | 0.243             | 0.259              | 0.259                      |
| 70                                         | 0.290                      | 0.290                              | 0.290                            | 0.290              | 0.290                      | 0.290                      | 0.290                    | 0.290                     | 0.290                     | 0.290                      | 0.290              | 0.290              | 0.290              | 0.290             | 0.290             | 0.290              | 0.290                      |
| 76                                         | 0.329                      | 0.344                              | 0.346                            | 0.355              | 0.317                      | 0.236                      | 0.345                    | 0.297                     | 0.306                     | 0.308                      | 0.302              | 0.300              | 0.288              | 0.325             | 0.310             | 0.311              | 0.310                      |
| 83                                         | 0.382                      | 0.393                              | 0.412                            | 0.406              | 0.366                      | 0.385                      | 0.386                    | 0.345                     | 0.371                     | 0.335                      | 0.367              | 0.336              | 0.336              | 0.336             | 0.345             | 0.345              | 0.345                      |
| 89                                         | 0.329                      | 0.329                              | 0.329                            | 0.329              | 0.329                      | 0.329                      | 0.329                    | 0.329                     | 0.329                     | 0.329                      | 0.329              | 0.329              | 0.329              | 0.329             | 0.329             | 0.329              | 0.329                      |
| 95                                         | 0.382                      | 0.393                              | 0.412                            | 0.406              | 0.366                      | 0.385                      | 0.386                    | 0.345                     | 0.371                     | 0.335                      | 0.335              | 0.335              | 0.335              | 0.336             | 0.336             | 0.336              | 0.336                      |
|                                            |                            |                                    |                                  |                    |                            |                            |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    |                            |
| Mean Cl                                    | PUE by N                   | Mesh Siz                           | e                                |                    |                            |                            |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    |                            |
| Mean Cl<br>Mesh                            | PUE by N                   | Mesh Siz                           | e                                |                    |                            |                            |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    |                            |
|                                            | <u>PUE by N</u><br>1986    | Mesh Siz<br>1987                   | e<br>1988                        | 1989               | 1990                       | 1991                       | 1992                     | 1993                      | 1994                      | 1995                       | 1996               | 1997               | 1998               | 2000              | 2001              | 2002               | 2003                       |
| Mesh                                       |                            |                                    |                                  | 1989               | 1990<br>46.6               | 1991<br>43.0               | 1992                     | 1993                      | 1994                      | 1995                       | 1996               | 1997               | 1998               | 2000              | 2001              | 2002               | 2003<br>13.9               |
| Mesh<br>(mm)                               |                            |                                    |                                  | 1989<br>19.5       |                            |                            | 1992<br>5.5              | 1993<br>18.1              | 1994<br>15.0              | 1995<br>22.1               | 1996<br>11.5       | 1997<br>28.8       | 1998<br>30.1       | 2000              | 2001              | 2002               |                            |
| Mesh<br>(mm)<br>51                         | 1986                       | 1987                               | 1988                             |                    | 46.6                       | 43.0                       |                          |                           |                           |                            |                    |                    |                    |                   |                   |                    | 13.9                       |
| Mesh<br>(mm)<br>51<br>64                   | 1986                       | 1987<br>18.7                       | 1988<br>2.8                      |                    | 46.6                       | 43.0                       | 5.5                      | 18.1                      | 15.0                      | 22.1                       |                    |                    |                    |                   |                   |                    | 13.9<br>19.6               |
| Mesh<br>(mm)<br>51<br>64<br>70             | 1986<br>13.8               | 1987<br>18.7<br>11.8               | 1988<br>2.8<br>1.4               | 19.5               | 46.6<br>33.5               | 43.0<br>13.9               | 5.5<br>0.5               | 18.1<br>1.6               | 15.0<br>3.9               | 22.1<br>11.4               | 11.5               | 28.8               | 30.1               | 1.3               | 7.1               | 14.8               | 13.9<br>19.6<br>1.7        |
| Mesh<br>(mm)<br>51<br>64<br>70<br>76       | 1986<br>13.8<br>1.2        | 1987<br>18.7<br>11.8<br>4.1        | 1988<br>2.8<br>1.4<br>1.7        | 19.5<br>2.8        | 46.6<br>33.5<br>4.7        | 43.0<br>13.9<br>0.7        | 5.5<br>0.5<br>1.1        | 18.1<br>1.6<br>3.7        | 15.0<br>3.9<br>5.4        | 22.1<br>11.4<br>2.9        | 11.5<br>1.1        | 28.8<br>9.2        | 30.1<br>4.2        | 1.3<br>2.4        | 7.1<br>3.5        | 14.8<br>2.2        | 13.9<br>19.6<br>1.7        |
| Mesh<br>(mm)<br>51<br>64<br>70<br>76<br>83 | 1986<br>13.8<br>1.2<br>0.5 | 1987<br>18.7<br>11.8<br>4.1<br>1.6 | 1988<br>2.8<br>1.4<br>1.7<br>1.7 | 19.5<br>2.8<br>0.9 | 46.6<br>33.5<br>4.7<br>0.3 | 43.0<br>13.9<br>0.7<br>0.3 | 5.5<br>0.5<br>1.1<br>0.1 | 18.1<br>1.6<br>3.7<br>1.2 | 15.0<br>3.9<br>5.4<br>0.5 | 22.1<br>11.4<br>2.9<br>0.6 | 11.5<br>1.1<br>0.6 | 28.8<br>9.2<br>2.6 | 30.1<br>4.2<br>8.4 | 1.3<br>2.4<br>0.5 | 7.1<br>3.5<br>1.7 | 14.8<br>2.2<br>0.2 | 13.9<br>19.6<br>1.7<br>2.9 |

Appendix Table 20. Salinity profiles from the Nigliq Channel, Colville Delta, 2003.

RK = River Kilometer, as measured from the mouth of Nigliq Channel Depth in meters from upper surface of ice, salinity in ppt

Upper Nigliq (RK 29)

| Depth |        |        |        |        |       |       |       |       |       |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| (m)   | Oct 24 | Oct 26 | Oct 28 | Oct 30 | Nov 1 | Nov 4 | Nov 5 | Nov 7 | Nov 9 | Nov 11 | Nov 13 | Nov 16 | Nov 18 | Nov 21 | Nov 23 |
| 0.5   | 0.1    | 0.1    | 0.1    | 0.1    | 0.1   | 0.1   | 0.1   | 0.3   | 0.3   | 0.7    | 0.5    | 0.4    | 0.3    | 0.4    | 0.5    |
| 1.0   | 0.1    | 0.1    | 0.1    | 0.1    | 0.1   | 0.1   | 0.1   | 0.9   | 0.5   | 0.8    | 0.5    | 5.7    | 0.8    | 0.4    | 0.9    |
| 1.5   | 0.1    | 0.1    | 0.1    | 0.1    | 2.1   | 1.9   | 0.2   | 1.7   | 1.8   | 5.1    | 4.9    | 8.2    | 8.9    | 7.7    | 8.3    |
| 2.0   | 0.1    | 0.1    | 0.1    | 0.1    | 2.4   | 3.8   | 3.8   | 4.4   | 4.6   | 7.0    | 7.9    | 8.6    | 10.8   | 8.5    | 9.0    |
| 2.5   | 0.1    | 0.1    | 0.1    | 0.2    | 3.3   | 4.1   | 4.5   | 5.3   | 7.1   | 7.6    | 8.4    | 9.0    | 12.9   | 9.2    | 9.5    |
| 3.0   | 0.1    | 0.1    | 0.1    | 0.2    | 4.0   | 4.5   | 4.8   | 7.0   | 8.0   | 8.1    | 8.7    | 9.3    | 12.9   | 9.6    | 9.7    |
| 3.5   | 0.1    | 0.1    | 0.1    | 0.4    | 4.4   | 4.8   | 5.6   | 7.4   | 8.3   | 8.7    | 9.1    | 9.5    | 13.0   | 9.6    | 9.8    |
| 4.0   | 0.1    | 0.1    | 0.1    | 0.7    | 4.7   | 4.8   | 5.6   | 8.0   | 10.8  | 9.0    | 9.1    | 9.7    | 14.7   | 9.7    | 10.0   |

Nanuq Lake (RK 15)

| Depth |        |        |        |        |       |       | Sal   | linity (ppt) |       |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|-------|-------|-------|--------------|-------|--------|--------|--------|--------|--------|--------|
| (m)   | Oct 24 | Oct 26 | Oct 28 | Oct 30 | Nov 1 | Nov 4 | Nov 5 | Nov 7        | Nov 9 | Nov 11 | Nov 13 | Nov 16 | Nov 18 | Nov 21 | Nov 23 |
| 0.5   | 0.2    | 0.6    | 2.0    | 3.6    | 5.2   | 2.5   | 3.3   | 5.6          | 5.2   | 5.8    | 7.9    | 5.9    | 5.9    | 5.4    | 6.1    |
| 1.0   | 0.2    | 0.8    | 3.8    | 3.7    | 10.6  | 5.0   | 3.4   | 8.1          | 10.5  | 5.8    | 8.1    | 6.8    | 9.1    | 5.5    | 7.0    |
| 1.5   | 0.3    | 1.9    | 7.9    | 13.0   | 13.8  | 15.1  | 13.9  | 13.6         | 18.7  | 10.9   | 11.6   | 17.1   | 16.9   | 8.0    | 8.9    |
| 2.0   | 11.2   | 14.3   | 13.1   | 13.9   | 16.0  | 17.2  | 17.5  | 17.2         | 19.5  | 13.2   | 18.4   | 19.0   | 18.4   | 19.1   | 19.3   |
| 2.5   | 13.5   | 14.6   | 14.5   | 15.3   | 16.6  | 17.6  | 18.5  | 19.3         | 19.6  | 13.7   | 18.8   | 19.4   | 19.1   | 19.3   | 19.3   |
| 3.0   | 13.7   | 14.8   | 15.0   | 15.7   | 17.1  | 17.8  | 18.9  | 19.4         | 19.7  | 14.2   | 19.2   | 19.5   | 19.4   | 19.5   | 19.5   |
| 3.5   | 13.9   | 15.0   | 15.2   | 15.8   | 17.4  | 18.0  | 19.1  | 19.5         | 19.8  | 14.4   | 19.6   | 19.6   | 19.8   | 19.5   | 19.6   |
| 4.0   | 14.1   | 15.1   | 15.2   | 16.4   | 17.6  | 18.4  | 19.1  | 19.8         | 19.8  | 14.7   | 19.7   | 19.7   | 19.6   | 19.6   | 19.6   |
| 4.5   | 14.4   | 15.3   | 15.3   | 16.4   | 17.7  | 18.5  | 19.2  | 20.0         | 20.1  | 14.8   | 19.7   | 19.9   | 19.8   | 19.8   | 19.6   |
| 5.0   | 14.4   | 15.4   | 15.5   | 16.5   | 17.9  | 18.7  | 19.3  | 20.4         | 20.2  | 15.1   | 19.8   | 19.9   | 19.9   | 19.8   | 20.0   |
| 5.5   | 14.8   | 15.6   | 15.5   | 16.6   | 18.0  | 18.8  | 19.5  | 20.5         | 20.2  | 15.8   | 20.0   | 20.0   | 19.9   | 20.0   | 20.2   |
| 6.0   | 14.9   | 15.7   | 15.5   | 16.8   | 18.1  | 19.0  | 19.7  | 20.5         | 20.2  | 16.1   | 20.1   | 20.1   | 20.0   | 20.0   | 20.7   |
| 6.5   | 15.0   | 15.7   | 15.5   | 16.8   | 18.6  | 19.1  | 19.8  | 20.5         | 20.1  | 16.4   | 20.1   | 20.2   | 20.0   | 20.1   | 20.9   |
| 7.0   | 15.0   | 15.8   | 15.5   | 16.8   | 18.6  | 19.2  | 19.8  | 20.6         | 19.9  | 16.4   | 20.1   | 20.2   | 20.1   | 20.1   | 20.9   |

A-26

| Depth |        |        |        |       |       | Sa    | linity (ppt) |       |        |        |        |        |        |
|-------|--------|--------|--------|-------|-------|-------|--------------|-------|--------|--------|--------|--------|--------|
| (m)   | Oct 24 | Oct 26 | Oct 28 | Nov 1 | Nov 4 | Nov 5 | Nov 7        | Nov 9 | Nov 11 | Nov 13 | Nov 18 | Nov 21 | Nov 23 |
| 0.5   | 0.6    | 0.7    | 2.8    | 4.8   | 4.9   | 5.5   | 6.5          | 7.8   | 7.8    | 8.0    | 8.7    | 9.6    | 9.1    |
| 1.0   | 0.6    | 0.7    | 3.8    | 6.8   | 9.1   | 5.9   | 7.5          | 18.3  | 8.0    | 11.1   | 9.0    | 16.3   | 12.9   |
| 1.5   | 11.3   | 10.2   | 12.2   | 14.2  | 15.5  | 16.8  | 10.4         | 19.9  | 18.4   | 18.4   | 9.2    | 19.3   | 13.4   |
| 2.0   | 13.9   | 14.6   | 16.5   | 19.9  | 18.3  | 19.4  | 19.7         | 20.5  | 19.4   | 18.8   | 17.7   | 20.6   | 19.8   |
| 2.5   | 11.5   | 17.6   | 19.6   | 21.2  | 20.1  | 20.5  | 21.2         | 20.9  | 19.7   | 19.7   | 19.2   | 20.7   | 21.3   |
| 3.0   | 18.5   | 18.5   | 19.9   | 22.8  | 20.5  | 21.5  | 22.4         | 21.2  | 19.9   | 19.9   | 20.2   | 21.6   | 22.0   |
| 3.5   | 19.2   | 19.3   | 20.1   | 23.4  | 23.8  | 23.2  | 22.8         | 21.7  | 20.3   | 21.0   | 20.5   | 22.0   | 22.9   |
| 4.0   | 19.7   |        | 20.6   | 23.6  | 24.1  | 24.4  | 23.1         | 22.0  | 20.8   | 21.4   | 20.5   | 22.5   | 23.3   |
| 4.5   | 20.9   |        | 21.3   | 24.1  |       | 24.5  | 23.3         | 22.9  | 20.8   | 22.0   | 20.8   | 23.0   | 23.5   |
| 5.0   | 21.8   |        | 21.7   | 24.3  |       | 24.6  | 23.3         | 23.7  | 21.4   | 22.5   | 20.9   | 23.2   | 23.8   |
| 5.5   | 22.3   |        | 21.9   | 24.4  |       |       | 24.3         | 22.6  | 21.3   | 22.4   | 21.1   | 23.2   | 24.1   |
| 6.0   | 22.5   |        | 22.2   | 24.6  |       |       | 24.3         | 22.4  | 21.1   | 22.8   | 21.1   | 23.2   | 24.1   |
| 6.5   | 22.5   |        | 22.3   | 24.7  |       |       | 24.3         | 22.4  | 20.8   | 22.8   | 21.1   | 23.2   | 24.1   |

Appendix Table 20. Salinity profiles from the Nigliq Channel, Colville Delta, 2003 (continued).

Nigliq Delta (RK 6)

Appendix Table 21. Cumulative length frequencies of Arctic cisco and least cisco by mesh size, Nuiqsut fishery, 1986-2003. (data used to evaluate mesh selectivity)

| Arctic Ci | sco - Vil | lage Cat | tch      |            |       |       | Least Ci | isco - Vi | lage Cat  | tch       |         |      |
|-----------|-----------|----------|----------|------------|-------|-------|----------|-----------|-----------|-----------|---------|------|
| Fork      |           |          |          |            |       |       |          |           |           |           |         |      |
| Length    |           | Villag   | e Mesh S | Sizes in i | nches |       |          | V         | 'illage M | esh Sizes | s in mm |      |
| (mm)      | 2.00      | 2.50     | 2.75     | 3.00       | 3.25  | 3.50  | 2.00     | 2.50      | 2.75      | 3.00      | 3.25    | 3.50 |
| 200       | 0         | 0        | 0        | 2          | 0     | 0     | 1        | 1         | 1         | 6         | 0       | 2    |
| 210       | 1         | 3        | 0        | 0          | 0     | 1     | 4        | 1         | 1         | 3         | 0       | 1    |
| 220       | 0         | 1        | 1        | 4          | 1     | 0     | 14       | 3         | 0         | 2         | 0       | 0    |
| 230       | 1         | 2        | 0        | 5          | 0     | 0     | 12       | 10        | 0         | 6         | 0       | 3    |
| 240       | 9         | 3        | 0        | 3          | 0     | 0     | 14       | 33        | 0         | 11        | 0       | 8    |
| 250       | 11        | 51       | 0        | 10         | 0     | 1     | 15       | 120       | 1         | 15        | 2       | 15   |
| 260       | 31        | 125      | 0        | 6          | 0     | 1     | 27       | 237       | 0         | 36        | 1       | 18   |
| 270       | 28        | 229      | 9        | 30         | 1     | 3     | 19       | 380       | 3         | 90        | 1       | 25   |
| 280       | 16        | 320      | 22       | 215        | 3     | 7     | 16       | 379       | 9         | 312       | 9       | 21   |
| 290       | 9         | 386      | 62       | 749        | 5     | 38    | 13       | 295       | 20        | 722       | 11      | 34   |
| 300       | 4         | 365      | 160      | 2,227      | 33    | 100   | 2        | 203       | 30        | 975       | 18      | 47   |
| 310       | 2         | 241      | 224      | 3,532      | 136   | 193   | 3        | 121       | 21        | 976       | 19      | 42   |
| 320       | 4         | 159      | 157      | 3,303      | 301   | 369   | 0        | 61        | 11        | 639       | 17      | 51   |
| 330       | 0         | 80       | 84       | 2,726      | 469   | 731   | 0        | 34        | 6         | 406       | 26      | 30   |
| 340       | 0         | 38       | 44       | 1,848      | 542   | 1,064 | 0        | 12        | 1         | 195       | 11      | 35   |
| 350       | 0         | 19       | 11       | 1,132      | 345   | 1,027 | 0        | 5         | 0         | 100       | 11      | 23   |
| 360       | 0         | 7        | 5        | 644        | 242   | 797   | 0        | 4         | 2         | 65        | 10      | 31   |
| 370       | 0         | 3        | 3        | 355        | 160   | 454   | 0        | 1         | 0         | 28        | 5       | 19   |
| 380       | 0         | 3        | 3        | 173        | 72    | 280   | 0        | 1         | 0         | 21        | 3       | 12   |
| 390       | 0         | 4        | 1        | 93         | 27    | 117   | 0        | 1         | 0         | 13        | 3       | 8    |
| 400       | 0         | 0        | 0        | 40         | 13    | 68    | 0        | 0         | 0         | 0         | 0       | 4    |
| 410       | 0         | 0        | 0        | 14         | 2     | 35    | 0        | 0         | 0         | 0         | 0       | 2    |
| 420       | 0         | 0        | 0        | 2          | 6     | 15    | 0        | 0         | 0         | 0         | 0       | 2    |
| 430       | 0         | 0        | 0        | 1          | 1     | 2     | 0        | 0         | 0         | 0         | 0       | 0    |
| 440       | 0         | 0        | 0        | 1          | 1     | 4     | 0        | 0         | 0         | 0         | 0       | 0    |
| 450       | 0         | 0        | 0        | 1          | 1     | 0     | 0        | 0         | 0         | 0         | 0       | 0    |
| Total:    | 116       | 2,039    | 786      | 17,116     | 2,361 | 5,307 | 140      | 1,902     | 106       | 4,621     | 147     | 433  |

| Mesh Size in: | inches | mm |
|---------------|--------|----|
|               | 2.00   | 51 |
|               | 2.50   | 64 |
|               | 2.75   | 70 |
|               | 3.00   | 76 |
|               | 3.25   | 83 |
|               | 3.50   | 89 |

| Appendix Table 22. | Cumulative    | length frequer | ncies of Arc | tic cisco l | by mesh | i size, | commercial |  |
|--------------------|---------------|----------------|--------------|-------------|---------|---------|------------|--|
| fishery, 198       | 5-2002. (data | used to evalu  | ate mesh se  | electivity) |         |         |            |  |

|        | lisco - C | ommer | ciai Ca | licii |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
|--------|-----------|-------|---------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Fork   | ~         | –     |         |       |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
| Length |           |       |         |       |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
| (mm)   | 1985      | 1986  | 1987    | 1988  | 1989 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | Total |
| 200    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 210    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 220    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 230    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 240    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 250    | 1         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1     |
| 260    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 270    | 1         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1     |
| 280    | 2         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 3    | 1    | 0    | 0    | 0    | 0    | 0    | 2    | 0    | 8     |
| 290    | 7         | 1     | 0       | 2     | 4    | 7    | 16   | 0    | 0    | 25   | 5    | 8    | 1    | 1    | 0    | 4    | 8    | 89    |
| 300    | 36        | 8     | 0       | 18    | 22   | 16   | 45   | 0    | 12   | 77   | 23   | 19   | 19   | 10   | 5    | 13   | 28   | 351   |
| 310    | 92        | 39    | 5       | 50    | 35   | 60   | 109  | 17   | 28   | 106  | 50   | 36   | 41   | 37   | 4    | 16   | 52   | 777   |
| 320    | 103       | 51    | 22      | 69    | 24   | 54   | 129  | 56   | 39   | 68   | 91   | 57   | 30   | 62   | 23   | 26   | 77   | 981   |
| 330    | 112       | 49    | 61      | 38    | 35   | 54   | 84   | 91   | 40   | 52   | 47   | 41   | 46   | 60   | 51   | 23   | 47   | 931   |
| 340    | 67        | 43    | 88      | 26    | 49   | 24   | 46   | 65   | 47   | 30   | 13   | 42   | 44   | 44   | 65   | 37   | 18   | 748   |
| 350    | 21        | 27    | 93      | 31    | 79   | 8    | 9    | 55   | 58   | 12   | 8    | 28   | 51   | 23   | 56   | 43   | 4    | 606   |
| 360    | 13        | 19    | 49      | 41    | 66   | 9    | 9    | 10   | 50   | 13   | 2    | 15   | 31   | 18   | 62   | 46   | 4    | 457   |
| 370    | 7         | 8     | 20      | 47    | 35   | 3    | 3    | 5    | 21   | 8    | 3    | 4    | 24   | 18   | 34   | 49   | 5    | 294   |
| 380    | 3         | 4     | 10      | 43    | 24   | 3    | 0    | 1    | 1    | 4    | 6    | 0    | 8    | 11   | 30   | 38   | 6    | 192   |
| 390    | 5         | 1     | 1       | 24    | 8    | 2    | 1    | 0    | 0    | 4    | 2    | 0    | 4    | 8    | 12   | 18   | 2    | 92    |
| 400    | 1         | 0     | 1       | 7     | 12   | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 6    | 8    | 26   | 2    | 69    |
| 410    | 0         | 0     | 0       | 0     | 5    | 2    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 1    | 0    | 13   | 0    | 22    |
| 420    | 0         | 0     | 0       | 0     | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 3    | 0    | 6     |
| 430    | 0         | 0     | 0       | 0     | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 2     |
| 440    | 0         | 0     | 0       | 0     | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2     |
| 450    | 0         | 0     | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Total: | 471       | 250   | 350     | 396   | 400  | 250  | 451  | 300  | 300  | 400  | 250  | 250  | 300  | 300  | 351  | 357  | 253  | 5,629 |

Arctic cisco - Commercial Catch