2008 ASDP Water Quality Monitoring Report

Submitted by

Michael Baker, Jr., Inc. 1400 West Benson Blvd., Suite 200 Anchorage, Alaska 99503

> December 2008 114416-MBJ-DOC-001

Contents

1.0	Introduction	1-1
2.0	Methods	2-1
2.1	Sample Location Selection	
2.2	On Site Water Quality Parameters	
2.	2.1 Instrument Calibration	2-5
2.3	Laboratory Sample Collection and Analytical Analysis	2-6
2.	3.1 Sample Collection	
2.	3.2 Analytical Analysis	
3.0	Results	
3.1	Field Conditions	
3.2	On Site Water Quality Results	
3.	2.1 Specific Conductance	
3.	2.2 Dissolved Oxygen and Water Temperature	
3.	2.3 Salinity	
3.	2.4 Turbidity	
3.3	Laboratory Findings	
4.0	Discussion	4-1
5.0	References	5-1

Figures

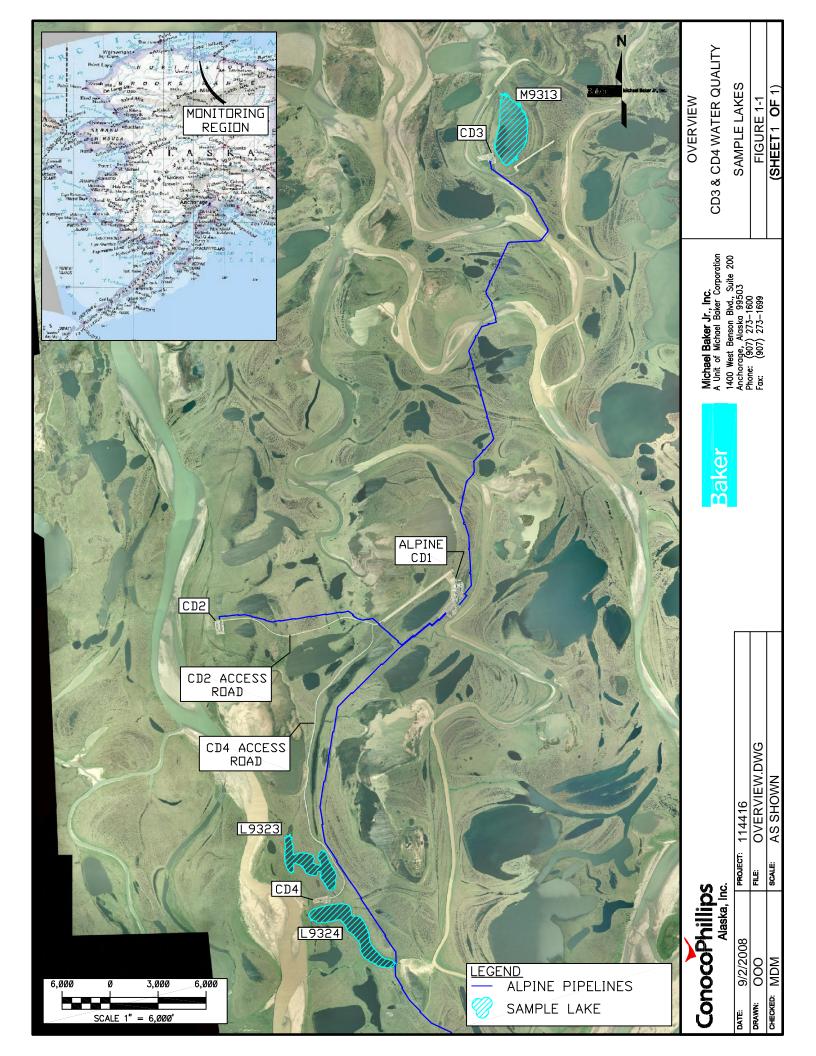
Figure 1-1	2008 ASDP Water Quality Monitoring Site Plan.	1-2	
Figure 2-1	Lake M9313 Sampling Location	2-3	
Figure 2-2	Lakes L9323 and L9324 Sampling Locations	2-4	

Tables

-5 -2
-3
-4
-4

Appendices

Appendix A August 27, 2008 Laboratory Water Quality Analysis Results Appendix B 2007 Field and Laboratory Water Quality Result Summaries


1.0 Introduction

During the 1998/1999 winter season, ConocoPhillips Alaska, Inc. (CPAI) initiated construction of the Alpine Facility (CD1 and CD2) in the Colville River Delta. Implementation of the Alpine Satellites Development Plan (ASDP) during the 2004/2005 winter season expanded Alpine operations. Construction included placement of gravel facilities for two new satellite drill sites: CD3 and CD4. The CD3 pad development includes an airstrip and its access road, apron, and taxiway. The CD4 pad development includes an access road that runs parallel to the existing Alpine sales pipeline, which connects to the CD2 access road.

During the summer of 2007, a water quality monitoring program was conducted to satisfy North Slope Borough zoning stipulations. The program targeted waterbodies adjacent to the CD3 and CD4 gravel facilities. Three sampling lakes were identified: M9313 near CD3, and L9323 and L9324 located north and south of CD4, respectively. In 2008, the monitoring program was repeated. An overview of the three study lakes relative to Alpine facilities is presented in Figure 1-1.

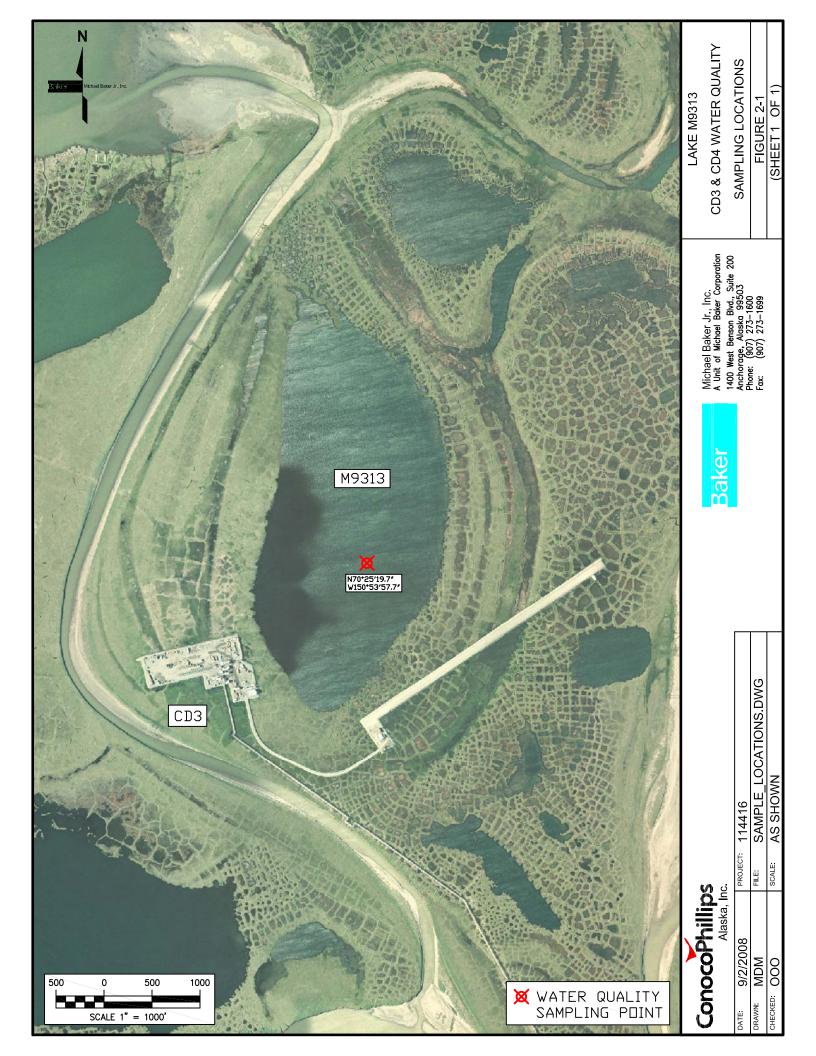
The water quality monitoring program included in situ sampling of temperature, dissolved oxygen (DO), salinity, and specific conductance. Turbidity was measured ex situ from collected water samples. Additional water samples were collected for laboratory analysis of dissolved hydrocarbons and metals. The ex situ laboratory testing regime was reduced in 2008 based on a lack of observable contaminants in 2007. A single sampling event was performed in August.

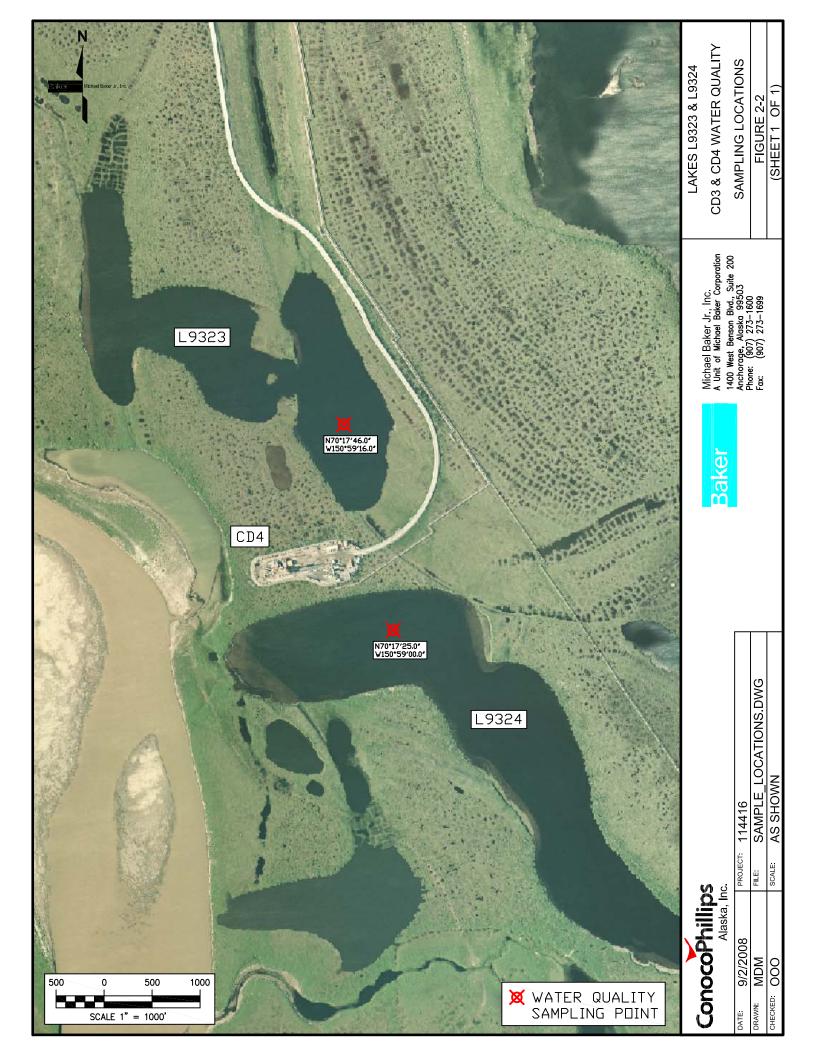
This 2008 ASDP Water Quality Monitoring Report presents the field investigation procedures, sampling and analytical methods used, and resulting water quality data and analyses. Laboratory analyses identified targeted constituent concentrations well below state and national recommended water quality criteria and standards.

2.0 Methods

Field investigations were conducted at each lake on August 27, 2008. Lakes L9323 and L9324 were accessed via the CD4 access road and pad. Maritime Helicopters provided access to Lake M9313. Each predefined sampling location was identified and confirmed using a hand-held global positioning system (GPS) unit referenced to the North American Datum of 1983 (NAD83).

In situ water quality data and analytical sample collection was performed by a two person team, each in an inflatable kayak, with an attached support raft for transport of the sampling equipment. In situ water quality instruments were provided by TTT Environmental. Analytical sample bottles and storage coolers were provided by Analytica International, Inc. (Analytica). Field surveys were also conducted to identify possible inflow and outflow sources.


All safety precautions, as outlined in the North Slope Water Resources 2008 Health, Safety and Environmental Safety Plan (Baker 2008), were followed. A travel plan was submitted to Alpine Security in advance of each sampling event. Personnel were equipped with personal flotation devices and a CPAI-provided radio. Measures were taken to avoid animal interaction during all field activities.


Field sampling methods were based on USGS (2006), Ward and Harr (1990), and U.S. Army Corps of Engineers (1987) methods. Assumptions used in this study were that each lake was hydraulically isolated with no overland inflow or outflow, and that lakes were well-mixed lacking significant stratification. Hydraulic isolation was confirmed with aerial and ground observations of lakes. Well-mixed conditions were confirmed with in situ measurements prior to analytic sample collection. Methods pertaining to sample collection, storage, and transport for laboratory analysis were supplemented with instructions provided by Analytica.

2.1 Sample Location Selection

The sampling locations for Lake M9313 (Figure 2-1) and Lakes L9323 and L9324 (Figure 2-2) are identified in the referenced figures. Lake bathymetry was used to select a single sampling location at each lake. Site selection was based on maximum depth and relative proximity to gravel facilities. Specific locations were confirmed with depth soundings.

The major assumption of this water quality study is that data collected at specific stations are representative of conditions throughout the water body. Past in situ monitoring of North Slope lakes indicates that hydraulically isolated lakes are well-mixed during open water conditions. The likelihood of homogeneous conditions, which can be verified with in situ measurements, supports the use of single point sampling.

2.2 On Site Water Quality Parameters

In situ water quality was measured at three-foot intervals throughout the water column. Turbidity of three replicate water samples from each lake was measured ex situ. A tabulation of equipment (meters) and associated parameters is presented in Table 2-1.

Meter	Parameter	In/ex situ	Units
	Temperature		°C
Vel 20	Conductivity		μS/cm
YSI 30	Specific Conductance (SC)	In situ	μS/cm
	Salinity	in Situ	ppt
Hach HQ-40d LDO	Dissolved Oxygen (DO)		mg/L
Hach HQ-400 LDO	Dissolved Oxygen (DO)		%
Hach 2100P Turbidometer	Turbidity	Ex situ	NTU

Table 2-1 On Site Water Quality Parameters

2.2.1 Instrument Calibration

All meters were calibrated according to the manufacturer's specifications. A summary of calibration procedures is presented below.

Daily: Prior to sampling, a calibration check was performed on the Turbidometer and the YSI 30 using calibration solutions provided by the manufacturer. Meters were recalibrated as per manufacturers' instructions if readings were incorrect. The calibration check was again performed at the end of the day. According to the Hach representative (TTT Environmental), daily calibration of the HQ-40d LDO meter is not required.

Prior To and Following Each Sampling Event: Meters were returned to the manufacturers' representative for complete maintenance servicing according to the manufacturers' specifications.

2.3 Laboratory Sample Collection and Analytical Analysis

2.3.1 Sample Collection

Prior to analytic sample collection, in situ sampling was performed to confirm well-mixed water quality constituents within the water column at the sample location. Because no oxycline or thermocline was apparent (Table 3-1) a single point sample was collected. In the event of lake stratification, multiple samples would have been collected throughout the water column and combined for laboratory analysis. Samples were collected from mid-depth of the water column using a 500mL stainless steel bomb sampler. The bomb sampler was given a thorough native-water rinse at each lake prior to sampling to minimize cross contamination of samples.

Sample vials provided by Analytica were stored in the provided cooler before, during, and after sample collection to maintain adequate storage temperatures. Field samples were transported to Analytica within two days of collection. The procedures for transport and transfer are described in Appendix A as part of the Analytica analysis report.

2.3.2 Analytical Analysis

ADEC AK102 – Diesel Range Organics (DRO)

This method, developed by ADEC, is based on a solvent extraction, gas chromatography (GC) procedure for the detection of semi-volatile petroleum products such as diesels. Other nonpetroleum compounds of similar characteristics may be detected with this method. Samples spiked with a surrogate (o-Terphenyl) are extracted with methylene chloride. The GC is temperature programmed to facilitate separation of organic compounds detected by a flame ionization detector (FID). Quantification is based on FID response compared to a diesel calibration standard.

ADEC AK103 – Residual Range Organics (RRO)

This method, developed by ADEC, was originally designed to measure lubricating or motor oils and other heavy petroleum products in soils. The ADEC *Underground Storage Tanks Procedures Manual* (ADEC 2002) identifies the method as adequate for determining such compounds in solution. The method is an extension of ADEC AK102, employing solvent extractions and gas chromatographs (GC) to identify heavier residual range organics (RRO). Quantification is based on FID response compared to a residuals calibration standard.

SW6010B-ICP-RCRA – Trace Metals

This method, developed by the EPA Office of Solid Waste, employs inductively coupled plasmaatomic emission spectroscopy (ICP-AES) to determine trace elements, including metals, in solution. The Resource Conservation Recovery Act (RCRA) mandates metals testing in public water via the SW6010B method. Elements tested include arsenic, cadmium, chromium and lead. Quantities are determined from intensities of dispersed element-specific emission spectra lines.

SW7470A – Mercury in Liquid Waste

This EPA method employs a cold-vapor atomic adsorption procedure approved for determining mercury concentration in liquid wastes. The basis of this method is the radiation adsorption characteristics of vaporized mercury. Any mercury within the sample is reduced to the elemental state and aerated from solution. Adsorption is measured as a function of mercury concentration.

3.0 Results

3.1 Field Conditions

On August 27, mean daily temperature and wind velocities were approximately 42 °F and 3 miles per hour (mph), gusting to 9 mph. Light precipitation was encountered throughout the day. No surface sheen was observed on any lake during either of the sampling events.

3.2 On Site Water Quality Results

Measured water quality results from the August sampling event are tabulated in Table 3-1. Measured water quality results for the 2007 sampling events are presented in Appendix B. A summary and comparison of the resulting values are described below.

3.2.1 Specific Conductance

Conductivity is a measure of water's ionic activity and content. Measured values of a given water body change substantially with changes in water temperature as resistance, used to measure conductivity, drops with increasing temperature. To adequately compare multiple water sources, conductivity is corrected to a standard temperature of 25 °C using the measured water temperature and a standard temperature correction coefficient. Because conductivity was directly measured, resulting values are tabulated here (Table 3-1); however, to provide a direct comparison of the three lakes, the calculated specific conductance is used as the basis of discussion.

Specific conductance values varied little within the water column, but were notably different between lakes. The average specific conductance in M9313 was 805 μ S/cm, 116 μ S/cm in L9323, and 78 μ S/cm in L9324. Values were relatively consistent with those observed in August of 2007. Lakes M9313 and L9323 increased only 7% from 757 μ S/cm and 108 μ S/cm in 2007, respectively. Conversely, Lake L9324 decreased 11% from 87 μ S/cm in 2007.

3.2.2 Dissolved Oxygen and Water Temperature

Overall, DO values varied little between lakes and between sampling years. In 2008, the average DO was measured at 11.79 milligrams per liter [mg/L] in Lake M9313, 11.93 mg/L in L9323,

and 20.07 mg/L in Lake L9324. The %-saturation at each lake was 99.82%, 102.64%, and 103.67%, respectively. A 100% saturation level is based on standard temperature and pressure conditions. Variation from standard values can result in DO concentrations greater than 100%. No significant oxycline or thermocline was apparent within the sampled water columns. Temperatures ranged from 7.7 °C in M9313 to 8.4 °C in L9324.

3.2.3 Salinity

Salinity remained consistent with depth and between sampling years. The greatest values occurred in Lake M9313 at 0.4 parts per thousand (ppt). Lakes L9323 and L9324 had no notable salinity.

Location Time	Depth (ft)	Turibidity NTU	Depth (ft)	Temp (⁰ C)	Conductivity (µS/cm)	Specific Conductance (µS/cm)	DO (mg/L)	DO (Percent Saturation)	Salinity (ppt)
			Surface	7.7	540	807	-	-	0.4
			2.0	7.7	540	806	DO S/cm) (Percent mg/L) S 307 - - 306 11.87 100.4 306 11.87 100.4 306 11.85 100.3 306 11.84 100.2 306 11.84 100.2 306 11.84 100.0 306 11.81 100.0 306 11.81 100.0 306 11.81 100.0 306 11.77 99.7 306 11.75 99.5 306 11.74 99.4 306 11.71 99.2 306 11.74 99.4 306 11.74 99.4 306 11.74 99.2 305 11.65 98.7 797 - - 16.2 12.00 103.2 16.2 11.98 103.1 16.2 11.99 102.5 15.8 11.88 102.5	0.4	
			4.0	7.7	540	806	11.85	100.3	0.4
			6.0	7.7	540	806	11.84	mg/L) Saturation) (- - - 11.87 100.4 - 11.87 100.3 - 11.85 100.3 - 11.84 100.2 - 11.84 100.0 - 11.81 100.0 - 11.81 100.0 - 11.77 99.7 - 11.75 99.5 - 11.75 99.5 - 11.74 99.4 - 11.74 99.4 - 11.74 99.2 - 11.65 98.7 - - - - 12.01 103.3 - 12.00 103.2 - 11.98 103.1 - 11.99 103.1 - 11.92 102.5 - 11.94 102.7 - 11.92 102.5 - 11.88 1	0.4
			8.0	7.7	540	806	11.84		0.4
			10.0	7.7	540	806	(µ\$/cm) (mg/L) Saturation) (pp 807 - - 0. 806 11.87 100.4 0. 806 11.85 100.3 0. 806 11.85 100.3 0. 806 11.84 100.2 0. 806 11.84 100.2 0. 806 11.81 100.0 0. 806 11.81 100.0 0. 806 11.77 99.7 0. 806 11.77 99.7 0. 806 11.74 99.4 0. 806 11.74 99.4 0. 806 11.74 99.4 0. 806 11.74 99.4 0. 806 11.78 99.5 0. 116.2 12.00 103.2 0. 116.2 12.00 103.2 0. 116.2 11.98 102.9 0. 116.2<	0.4	
M9313	26.0	0.65	12.0	7.7	540	806	11.81	100.0	0.4
11:10 a.m.	26.0	0.65	14.0	7.7	540	806	11.81	100.0	0.4
11.10 a.m.			16.0	7.7	540	806	11.77	99.7	0.4
			18.0	7.7	540	806	11.75	99.5	0.4
			20.0	7.7	540	806	11.74	99.4	0.4
			22.0	7.7	540	806	11.71	99.2	0.4
			24.0	7.7	539	805	11.65	98.7	0.4
			26.0	7.7	533	797	-	-	0.4
			Surface	8.4	79.3	116.2	12.01	103.3	0.1
			2.0	8.4	79.3	116.2	12.00	103.2	0.1
		1.96	4.0	8.4	79.3	116.2	11.98	103.1	0.1
			6.0	8.3	79.3	116.2	11.99	103.1	0.1
			8.0	8.3	79.3	116.2	11.96	102.9	0.1
	19.8		10.0	8.3	79.3	116.2	11.95	102.8	0.1
11:10 a.m. L9323 3:50 p.m.			12.0	8.3	79.3	116.2	11.94	102.7	0.1
			14.0	8.3	79.3	116.2	11.92	102.5	0.1
			16.0	8.3	79.1	115.8	11.88	102.3	0.1
			18.0	8.3	78.4	115.0	11.79	101.6	0.1
			19.0	8.3	78.3	114.8	11.78	101.5	0.1
			Surface	8.4	53.1	77.8	12.09	103.9	0.0
11:10 a.m. L9323 3:50 p.m.			2.0	8.4	53.1		12.09	103.9	0.0
	0.7	2.40	4.0	8.4	53.1	77.8	12.08	103.8	0.0
	9.7	3.40	6.0	8.4	53.1	77.8	12.07	103.7	0.0
			8.0	8.4	53.1	77.8	12.04	103.4	0.0
			9.0	8.4	53.1				0.0

(2) Turbidity was measured using a Hach-2100P Turbidometer

(3) Salinity, conductivity, specific conductance, and temperature were measured using a YSI-30 meter

(4) Dissolved oxygen measurements were obtained using a Hach HQ40d LDO meter

3.2.4 Turbidity

Turbidity was variable between lakes and monitoring years. Reported values increased 73% in L9323 and 25% in L9324 and dropped 35% in M9313 between 2007 and 2008.

3.3 Laboratory Findings

Water quality results from ex situ laboratory analyses are tabulated in Table 3-2 through Table 3-4. Analytical results provided by Analytica are presented in Appendix A. Laboratory analyses results for the 2007 sampling events are presented in Appendix B. A summary and comparison of the resulting values are described below.

All of the targeted compounds and metals were non-detectable (ND) in all lakes except for low levels of barium. Barium was detected in all lakes. The greatest measured concentration was 0.23 mg/L; well below the water quality standard of 2 mg/L identified by the EPA (EPA 2006) and adopted in the Alaska Water Quality Standards (ADEC 2006). Barium concentrations decreased in all lakes between August 2007 and 2008; 0.25 to 0.23 mg/L in M9313, 0.053 to 0.050 mg/L in L9323, and 0.058 to 0.047 mg/L in L9324. Chromium, detected in Lake L9324 in August 2007, was not detected in 2008.

Lab Sample	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery	LCL	UCL
Number							(%)		
A0809003-03C	SW6010B-ICP-RCRA	Mercury	ND	mg/L	0.00020	0.000050	-	-	-
A0809003-03B	ADEC AK103-RRO	Residual Range Organics	ND	mg/L	0.52	0.21	-	-	-
A0809003-03B	ADEC AK103-KKO	Squalane	0.054	mg/L	0.0052	0.0021	104	50	150
A0809003-03A	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.10	0.0062	-	-	-
A0809003-03A	ADEC AR102-DRO	o-Terphenyl	0.04	mg/L	0.00069	0.0038	76.2	50	120
		Arsenic	ND	mg/L	0.10	0.015	-	-	-
		Barium	0.23	mg/L	0.010	0.00016	-	-	-
		Cadmium	ND	mg/L	0.0060	0.00051	-	-	-
A0809003-03C	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.010	0.0018	-	-	-
		Lead	ND	mg/L	0.050	0.011	-	-	-
		Selenium	ND	mg/L	0.10	0.026	-	-	-
		Silver	ND	mg/L	0.015	0.00066	-	-	-
Notes:									
1. PQL: Practical Q	Juantification Limit								
2. MDL: Method D	Detection Limit								
3. SS Recovery: Sp	iked Sample Recovery (% of	original)							
4. LCL: Lower Cor	nfidence Limit								
5. UCL: Upper Cor	nfidence Limit								
6. Surrogates are in	talicized								

Table 3-2	Lake M9313 Laboratory Analysis Results

Lab Sample	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery	LCL	UCL
Number							(%)		
A0809003-01C	SW6010B-ICP-RCRA	Mercury	ND	mg/L	0.00020	0.00050	-	-	-
A0809003-01B	ADEC AK103-RRO	Residual Range Organics	ND	mg/L	0.52	0.21	-	-	-
A0809003-01B	ADEC AR103-RRO	Squalane	0.051	mg/L	0.0052	0.0021	98.7	50	150
A0809003-01A	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.10	0.0062	-	-	-
A0809005-01A	ADEC ART02-DRO	o-Terphenyl	0.040	mg/L	0.00069	0.0038	77.0	50	120
		Arsenic	ND	mg/L	0.10	0.015	-	-	-
		Barium	0.050	mg/L	0.010	0.00016	-	-	-
		Cadmium	ND	mg/L	0.0060	0.00051	-	-	-
A0809003-01C	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.010	0.0018	-	-	-
		Lead	ND	mg/L	0.050	0.011	-	-	-
		Selenium	ND	mg/L	0.10	0.026	-	-	-
		Silver	ND	mg/L	0.015	0.00066	-	-	-
Notes:									
1. PQL: Practical C	Quantification Limit								
2. MDL: Method I	Detection Limit								
3. SS Recovery: Sp	piked Sample Recovery (% of	original)							
4. LCL: Lower Con	nfidence Limit								
5. UCL: Upper Co	nfidence Limit								
6. Surrogates are i	italicized								

Table 3-4 Lake L9324 Laboratory Analysis Results	Table 3-4	Lake L9324 Laboratory Analysis Results
--	-----------	--

Lab Sample	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery	LCL	UCL
Number							(%)		
A0809003-02C	SW6010B-ICP-RCRA	Mercury	ND	mg/L	0.00020	0.000050	-	-	-
A0809003-02B	ADEC AK103-RRO	Residual Range Organics	ND	mg/L	0.52	0.21	-	-	-
A0809003=02B	ADEC ARTOS-RRO	Squalane	0.054	mg/L	0.0052	0.0021	103	50	150
A0809003-02A	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.10	0.0062	-	-	-
A0809003-02A	ADEC AR102-DRO	o-Terphenyl	0.043	mg/L	0.00069	0.0038	81.7	50	120
		Arsenic	ND	mg/L	0.10	0.015	-	-	-
		Barium	0.047	mg/L	0.010	0.00016	-	-	-
		Cadmium	ND	mg/L	0.0060	0.00051	-	-	-
A0809003-02C	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.010	0.0018	-	-	-
		Lead	ND	mg/L	0.050	0.011	-	-	-
		Selenium	ND	mg/L	0.10	0.026	-	-	-
		Silver	ND	mg/L	0.015	0.00066	-	-	-
Notes:									
1. PQL: Practical O	Quantification Limit								
2. MDL: Method I	Detection Limit								
3. SS Recovery: Sp	piked Sample Recovery (% of o	original)							
4. LCL: Lower Con	nfidence Limit								
5. UCL: Upper Co									
6. Surrogates are i	italicized								

4.0 Discussion

In situ water quality parameters varied little, both with depth and between the two monitoring years, in the three sampled lakes. Turbidity was variable between lakes and monitoring years. Aquatic organisms are generally not affected by turbidity below 10 NTU. The maximum turbidity observed in 2008 was 3.4 NTU. Turbidity is a measure of the concentration of total suspended solids (TSS) in a water body. The greatest source of turbidity in the open water zone of most lakes is typically phytoplankton or algae. Algal turbidity varies seasonally and with depth in a complex manner in response to physical, chemical, and biological changes in the lake and cannot be directly linked to drilling activities at Alpine facilities.

Analytica reported no issues or concerns regarding the state or quality of samples received. Laboratory analysis of lake water samples yielded no evidence of targeted contaminants at any lake, except for barium. Barium was identified in all three of the sample lakes at concentrations below federal and state water quality standards. Concentrations decreased in all lakes from August 2007 to 2008: 8% in Lake M9313, 6% in L9323, and 19% in L9323. Barium is not uncommon in arctic waters at concentrations similar to those presented here (Guay and Falkner 1998).

The results of these analyses suggest the gravel access roads and pads for CD3 and CD4 have no measureable impact to the water quality of adjacent lakes.

5.0 References

- Alaska Department of Environmental Conservation (ADEC). 2006. Water quality standards. 18 AAC 70.
 - _____. 2002. Underground storage tanks procedures. Division of Spill Prevention and Response, Contaminated Sites Program.
- Guay, C.K. and K.K. Falkner. 1998. A survey of dissolved barium in the estuaries of major arctic rivers and adjacent seas. *Continental Shelf Research* 18:8 859-882.
- Michael Baker Jr., Inc. 2008. North Slope water resources 2008 health, safety and environmental safety plan. Prepared for ConocoPhillips Alaska, Inc.
- Moulton, L.L. 2004. Monitoring of water-source lakes in the Alpine Development Project: 1992-2003. January 2004. MJM Research. Prepared for ConocoPhillips Alaska, Inc.
- United States Army Corps of Engineers (USACE). 1987. Reservoir water quality analysis. Engineering Manual EM-1110-2-1201.
- United States Environmental Protection Agency (EPA). 2006. 2006 Edition of the drinking water standards and health advisories. EPA 822-R-06-013.
- United States Geological Survey (USGS). 2006. National field manual for the collection of water-quality data. Book 9 Handbooks for Water-Resources Investigations. Chapter A4 Collection of water samples.
- Ward, J.R. and C.A. Harr eds. 1990. Methods for collection and processing surface-water and bed-material samples for physical and chemical analyses. Open-File Report 90-147.

Appendix A August 27, 2008 Laboratory Water Quality Analysis Results

9/12/2008 Michael Baker Jr Inc 1400 W. Benson Blvd. Ste 200 STE 200 Anchorage, AK 99503 Attn: Ozzy Orwick SP-Analytica, Inc.-Anchorage 4307 Arctic Blvd. Anchorage, AK 99503 Phone: 907-258-2155 Fax: 907-258-6634

Work Order #: A0809003 Date: 9/12/2008 Work ID: Lake Sampling Date Received: 8/28/2008 Proj #: Lake Sampling

Sample Identification

Lab Sample Number	Client Description	Lab Sample Number	Client Description
A0809003-01	Lake L9323	A0809003-02	Lake L9324
A0809003-03	Lake M9313		

Enclosed are the analytical results for the submitted sample(s). Please review the CASE NARRATIVE for a discussion of any data and/or quality control issues. Listings of data qualifiers, analytical codes, key dates, and QC relationships are provided at the end of the report.

Sincerely,

Kristen Stone Project Manager

"The Science of Analysis, The Art of Service"

Case Narrative

Analytica Alaska Inc. Work Order: A0809003

Samples were prepared and analyzed according to EPA or equivalent methods outlined in the following references:

Test Methods for Evaluating Solid Waste, USEPA SW-846, Third Edition, Revision 4, December 1996.

Method AK102 For the Determination of Diesel Range Organics, Revision 3.0, 01/31/96.

Method AK103 For the Determination of Residual Range Organics, Revision 2.0, 01/31/96.

SAMPLE RECEIPT: Three (3) samples were received on 8/28/2008 9:45:00 AM at a temperature of 3.5°C at Analytica-Anchorage. The samples were received in good condition and in order per chain of custody.

Comments:

The samples were transferred for analysis at Analytica Environmental Laboratories (AEL); 12189 Pennsylvania St. Thornton, CO 80241 where they were received at a temperature of 5.7°C in good condition and in order per chain of custody.

REVIEW FOR COMPLIANCE WITH ANALYTICA QA PLAN A summary of our review is shown below.

All analytical results contained in this report have been reviewed under Analytica's internal quality assurance and quality control program. Any deviations in quality control parameters for specific analyses are noted in the following text. A complete quality assurance report, including laboratory control, matrix spike, and sample duplicate recoveries is kept on file in our office and is available upon request.

All method specifications were met for the following tests:

Test Method: ADEC AK102 - DRO - Aqueous Test Method: ADEC AK103 - RRO - Aqueous Test Method: SW6010B - ICP - RCRA - Aqueous Test Method: SW7470A - Mercury in Liquid Waste by CVAA - Total Hg - Aqueous

Detailed Anal Workorder (SDG):	ytical Report A0809003				Ar	nalyti	ca Alaska Iı	nc.			
Project: Client:	Lake Sampli Michael Bak	0									
Client Project Number: Report Section:	-	^{ng} t Sampl	e Re	port							
Client Sample Name:	Lake L9	323									
Matrix:	Aqueous					(Collection Da	ate:	8/27/2008	4:00:0	00PM
1	A0809003-01B 9/3/2008	• Thornton					Analysis D Instrument: File Name:	:	9/9/200 GC_E 080908):50AM
Prep Method ID:	3510C T080903015						Dilution Fa	ictor:	1		
1	As Received						Analyst Ini Prep Extra		R.S 1.00	ml	
<u>Analvte</u> Residual Range Organics	<u>CASNo</u> n/a	<u>Result</u> ND	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.52	<u>MDL</u> 0.21				<u>r</u>	r <mark>un #:</mark> 1
<u>Surrogate</u> Squalane	<u>CASNo</u> 111-01-3	<u>Result</u> 0.051	<u>Flags</u>	<u>Units</u> mg/L	<u>POL</u> 0.0052	<u>N</u> 0.002	1DL <u>Spike</u> 21 0.052	<u>% Recov</u> 98.7	<u>LCL</u> 50	<u>UCL</u> 150	<u>run #:</u> 1
Prep Date: Analytical Method ID: Prep Method ID: Prep Batch Number:	A0809003-01A 9/8/2008 ADEC AK102 - DRO 3510C T080903014	- Thornton					Analysis D Instrument: File Name: Dilution Fa	: ictor:	9/8/200 GC_E 080908 1		2:21PM
P	As Received 970.00 ml						Analyst Ini Prep Extra		R.S 1.00	ml	
<u>Analyte</u> Diesel Range Organics	<u>CASNo</u> n/a	<u>Result</u> ND	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.10	<u>MDL</u> 0.006				<u>r</u>	un #: 1
<u>Surrogate</u> o-Terphenyl	<u>CASNo</u> 84-15-1	<u>Result</u> 0.040	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.00069		<u>1DL</u> <u>Spike</u> 8 0.052	<u>% Recov</u> 77.0	<u>LCL</u> 50	<u>UCL</u> 120	<u>run #:</u> 1
Prep Date: Analytical Method ID: Prep Method ID: Prep Batch Number:	A0809003-01C 9/8/2008 SW6010B - ICP - RCR. 3010A T080908012						Analysis D Instrument File Name: Dilution Fa	: ictor:	9/10/20 ICP_2 E09108 1		15:00PM
1	As Received 50.00 ml						Analyst Ini Prep Extra		rm 50.00	ml	
<u>Analyte</u> Arsenic	<u>CASNo</u> 7440-38-2	<u>Result</u> ND	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.10	<u>MDL</u> 0.01				<u>r</u>	un #: 1
Barium	7440-39-3	0.050		mg/L	0.010	0.000	16				
Cadmium	7440-43-9	ND		mg/L	0.0060	0.000	51				
Chromium	7440-47-3	ND		mg/L	0.010	0.001	8				
Lead	7439-92-1	ND		mg/L	0.050	0.01	1				
Selenium	7784-49-2	ND		mg/L	0.10	0.02	6				
Silver											

Detailed Ana	lytical Report	Analy	tica Alaska Inc.	
Workorder (SDG):	A0809003			
Project:	Lake Sampling			
Client:	Michael Baker Jr Inc			
Client Project Number	: Lake Sampling			
Report Section	Client Sample I	Report		
Client Sample Name:	Lake L9323		1	
Matrix:	Aqueous		Collection Date:	8/27/2008 4:00:00PM
The following test was	conducted by: Analytica - Thornton			
Lab Sample Number:	A0809003-01C		Analysis Date:	9/11/2008 2:16:36PM
Prep Date:	9/9/2008		Instrument:	CVAA_1
Analytical Method ID:	SW7470A - Mercury in Liquid Waste by	CVAA - Total Hg	File Name:	B090908W.W
Prep Method ID:	7470A		Dilution Factor:	1
Prep Batch Number:	T080909006			
Report Basis:	As Received		Analyst Initials:	DL
Sample prep wt./vol:	30.00 ml		Prep Extract Vol:	30.00 ml
Analyte Mercury	<u>CASNo</u> <u>Result</u> <u>F</u> 7439-97-6 ND	ags Units PQL MI mg/L 0.00020 0.00		<u>run #:</u> 1

Workorder (SDG):A0809003Project:Lake SamplingClient:Michael Baker Jr IncClient Project Number:Lake SamplingReport Section:Client Sample ReportClient Sample Name:Lake L9324Matrix:AqueousCollection Date:8/27/2008 5:00:00PMThe following test was conducted by: Analytica - ThorntonLab Sample Number:A0809003-02BPrep Date:9/3/20089/3/2008Analysis Date:9/3/2008S:09:27AMPrep Date:9/3/2008Prep Date:9/3/2008Prep Method ID:3510CPrep Method ID:3510CPrep Batch Number:T080903015Report Basis:As ReceivedSample prep wt./vol:960.009 Go.00ml
Report Section:Client Sample ReportClient Sample Name:Lake L9324Matrix:AqueousCollection Date:8/27/2008 5:00:00PMMatrix:AqueousCollection Date:8/27/2008 5:09:27AMThe following test was conducted by: Analytica - ThorntonAnalysis Date:9/9/2008 5:09:27AMLab Sample Number:A0809003-02BAnalysis Date:9/9/2008 5:09:27AMPrep Date:9/3/2008Analytical Method ID:ADEC AK103 - RROFile Name:08090822.DPrep Method ID:3510CDilution Factor:1Prep Batch Number:T080903015Analyst Initials:R.SReport Basis:As ReceivedAnalyst Initials:R.SSample prep wt./vol:960.00mlPrep Extract Vol:1.00
Matrix:AqueousCollection Date:8/27/2008 5:00:00PMThe following test was conducted by: Analytica - ThorntonLab Sample Number:A0809003-02BAnalysis Date:9/9/2008 5:09:27AMPrep Date:9/3/2008Instrument:GC_EAnalytical Method ID:ADEC AK103 - RROFile Name:08090822.DPrep Method ID:3510CDilution Factor:1Prep Batch Number:T080903015RROFile Name:Nalyst Initials:Report Basis:As ReceivedAnalyst Initials:R.SSample prep wt./vol:960.00mlPrep Extract Vol:1.00
MatrixInqueousThe following test was conducted by: Analytica - ThorntonLab Sample Number:A0809003-02BAnalysis Date:9/9/2008 5:09:27AMPrep Date:9/3/2008Instrument:GC_EAnalytical Method ID:ADEC AK103 - RROPrep Method ID:3510CPrep Batch Number:T080903015Report Basis:As ReceivedSample prep wt./vol:960.00 mlPrep Extract Vol:1.00 ml
Lab Sample Number:A0809003-02BAnalysis Date:9/9/2008 5:09:27AMPrep Date:9/3/2008Instrument:GC_EAnalytical Method ID:ADEC AK103 - RROFile Name:08090822.DPrep Method ID:3510CDilution Factor:1Prep Batch Number:T080903015T080903015Instrument:R.SReport Basis:As ReceivedAnalyst Initials:R.SSample prep wt./vol:960.00 mlPrep Extract Vol:1.00 ml
Report Basis:As ReceivedAnalyst Initials:R.SSample prep wt./vol:960.00 mlPrep Extract Vol:1.00 ml
AnalyteCASNoResultFlagsUnitsPQLMDLResidual Range Organicsn/aNDmg/L0.520.211
Surrogate CASNo Result Flags Units POL MDL Spike % Recov LCL UCL run #: Squalane 111-01-3 0.054 mg/L 0.0052 0.0021 0.052 103 50 150 1
The following test was conducted by: Analytica - ThorntonLab Sample Number:A0809003-02AAnalysis Date:9/8/20089:51:04PMPrep Date:9/8/2008Instrument:GC_EAnalytical Method ID:ADEC AK102 - DROFile Name:08090813.DPrep Method ID:3510CDilution Factor:1Prep Batch Number:T080903014Kas ReceivedAnalyst Initials:R.SReport Basis:As ReceivedAnalyst Initials:R.SSample prep wt./vol:960.00 mlPrep Extract Vol:1.00 mlAnalyteCASNoResultFlags UnitsPQL MDLrun #:
Diesel Range Organics n/a ND mg/L 0.10 0.0062 1 Surrogate o-Terphenyl CASNo 84-15-1 Result 0.043 Flags mg/L Units 0.00069 PQL 0.0038 MDL Spike 0.052 % Recov 81.7 UCL 50 run #: 120
The following test was conducted by: Analytica - ThorntonLab Sample Number:A0809003-02CAnalysis Date:9/10/2008 12:45:00PMPrep Date:9/8/2008Instrument:ICP_2Analytical Method ID:SW6010B - ICP - RCRAFile Name:E09108APrep Method ID:3010ADilution Factor:1Prep Batch Number:T080908012T080908012TmmReport Basis:As ReceivedAnalyst Initials:rmSample prep wt./vol:50.00mlPrep Extract Vol:50.00
AnalyteCASNoResultFlagsUnitsPQLMDLrun #:Arsenic7440-38-2NDmg/L0.100.0151
Barium 7440-39-3 0.047 mg/L 0.010 0.00016
Cadmium 7440-43-9 ND mg/L 0.0060 0.00051
Chromium 7440-47-3 ND mg/L 0.010 0.0018
Lead 7439-92-1 ND mg/L 0.050 0.011
Selenium 7784-49-2 ND mg/L 0.10 0.026
Silver 7440-22-4 ND mg/L 0.015 0.00066

Detailed Ana	lytical Report	Analytica Alaska Inc.	
Workorder (SDG):	A0809003		
Project:	Lake Sampling		
Client:	Michael Baker Jr Inc		
Client Project Number	: Lake Sampling		
Report Section	Client Sample Repo	rt	
Client Sample Name:	Lake L9324		
Matrix:	Aqueous	Collection Date:	8/27/2008 5:00:00PM
The following test was	conducted by: Analytica - Thornton		
Lab Sample Number:	A0809003-02C	Analysis Date:	9/11/2008 2:18:50PM
Prep Date:	9/9/2008	Instrument:	CVAA_1
Analytical Method ID:	SW7470A - Mercury in Liquid Waste by CVAA	- Total Hg File Name:	B090908W.W
Prep Method ID:	7470A	Dilution Factor:	1
Prep Batch Number:	T080909006		
Report Basis:	As Received	Analyst Initials:	DL
Sample prep wt./vol:	30.00 ml	Prep Extract Vol:	30.00 ml
Analyte Mercury	CASNoResultFlagsUni7439-97-6NDmg/		<u>run #:</u> 1

Detailed Ana Workorder (SDG):	lytical Report A0809003				Ar	nalyti	ca Alaska Iı	nc.			
Project: Client:	Lake Sampli Michael Bak	0									
Client Project Numbe Report Section	-	^{ng} t Sampl	le Re	port							
Client Sample Name:	Lake M9	9313									
Matrix:	Aqueous					(Collection D	ate:	8/27/2008	11:45:	00AM
Lab Sample Number: Prep Date: Analytical Method ID:		• Thornton					Analysis D Instrument File Name:	:	9/9/200 GC_E 080908		8:14AM
Prep Method ID: Prep Batch Number: Report Basis: Sample prep wt./vol:	3510C T080903015 As Received 960.00 ml						Dilution Fa Analyst Ini Prep Extra	tials:	1 R.S 1.00	ml	
<u>Analvte</u> Residual Range Organics	<u>CASNo</u> n/a	<u>Result</u> ND	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.52	<u>MDL</u> 0.21				r	r <mark>un #:</mark> 1
<u>Surrogate</u> Squalane	<u>CASNo</u> 111-01-3	<u>Result</u> 0.054	<u>Flags</u>	<u>Units</u> mg/L	<u>POL</u> 0.0052	<u>N</u> 0.002	ADL <u>Spike</u> 21 0.052	<u>% Recov</u> 104	<u>LCL</u> 50	<u>UCL</u> 150	<u>run #:</u> 1
The following test was Lab Sample Number: Prep Date: Analytical Method ID: Prep Method ID: Prep Batch Number: Report Basis: Sample prep wt./vol:	3510C T080903014 As Received	- Thornton					Analysis D Instrument File Name: Dilution Fa Analyst Ini Prep Extra	: ictor: tials:	9/8/200 GC_E 080908 1 R.S 1.00		9:34PM
<u>Analyte</u> Diesel Range Organics	<u>CASNo</u> n/a	<u>Result</u> ND	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.10	<u>MDL</u> 0.006	-			<u>r</u>	r <mark>un #:</mark> 1
<u>Surrogate</u> o-Terphenyl	<u>CASNo</u> 84-15-1	<u>Result</u> 0.040	<u>Flags</u>	<u>Units</u> mg/L	<u>PQL</u> 0.00069		<u>ADL</u> <u>Spike</u> 38 0.052	<u>% Recov</u> 76.2	<u>LCL</u> 50	<u>UCL</u> 120	<u>run #:</u> 1
Lab Sample Number: Prep Date: Analytical Method ID: Prep Method ID: Prep Batch Number: Report Basis:	conducted by: Analytica - A0809003-03C 9/8/2008 SW6010B - ICP - RCR. 3010A T080908012 As Received						Analysis D Instrument File Name: Dilution Fa Analyst Ini	: ictor: tials:	ICP_2 E09108 1 rm	ΒA	50:00PM
Sample prep wt./vol: <u>Analvte</u>	<u>CASNo</u>	<u>Result</u>	<u>Flags</u>	<u>Units</u>		MDL		act Vol:	50.00	ml <u>r</u>	un #:
Arsenic Barium	7440-38-2 7440-39-3	ND 0.23		mg/L mg/L	0.10 0.010	0.01					1
Cadmium	7440-39-3	0.23 ND		mg/L	0.010	0.000					
Chromium	7440-47-3	ND		mg/L	0.010	0.001					
Lead	7439-92-1	ND		mg/L	0.050	0.01					
Selenium	7784-49-2	ND		mg/L	0.10	0.02					
Silver	7440-22-4	ND		mg/L	0.015	0.000					
	, . .			2	-						

Detailed Ana	lytical Report	Analy	tica Alaska Inc.	
Workorder (SDG):	A0809003			
Project:	Lake Sampling			
Client:	Michael Baker Jr Inc			
Client Project Number	: Lake Sampling			
Report Section	Client Sample	Report		
Client Sample Name:	Lake M9313		7	
Matrix:	Aqueous		Collection Date:	8/27/2008 11:45:00AM
The following test was	conducted by: Analytica - Thornton			
Lab Sample Number:	A0809003-03C		Analysis Date:	9/11/2008 2:21:10PM
Prep Date:	9/9/2008		Instrument:	CVAA_1
Analytical Method ID:	SW7470A - Mercury in Liquid Waste b	y CVAA - Total Hg	File Name:	B090908W.W
Prep Method ID:	7470A		Dilution Factor:	1
Prep Batch Number:	T080909006			
Report Basis:	As Received		Analyst Initials:	DL
Sample prep wt./vol:	30.00 ml		Prep Extract Vol:	30.00 ml
Analyte Mercury	<u>CASNo</u> <u>Result</u> <u>J</u> 7439-97-6 ND	Elags Units PQL MI mg/L 0.00020 0.00		<u>run #:</u> 1

Detailed Analyti	ical Report	Analytica Alaska Inc.	
Workorder (SDG): A	0809003		
Project:	Lake Sampling		
Client:	Michael Baker Jr	Inc	
Client Project Number:	Lake Sampling		
	QC	BATCH ASSOCIATIONS - BY METHOD BLANK	C C C C C C C C C C C C C C C C C C C
Lab Project ID:	91,767	Lab Project Number: A0809003	
	,		Prep Date: 9/8/2008
Lab Method Blank Id:	T080903014-MB		
Prep Batch ID:	T080903014		
Method:	ADEC AK102 - DI	RO	
This Method blank and	sample preparation batch a	re associated with the following samples, spikes, and	duplicates:
SampleNum	ClientSampleName	DataFile	AnalysisDate
T080903014-LCS	LCS	08090809.D	9/8/2008 6:35:45PM
T080903014-LCSD	LCSD	08090810.D	9/8/2008 7:24:46PM
A0809003-01A	Lake L9323	08090812.D	9/8/2008 9:02:21PM
A0809003-02A	Lake L9324	08090813.D	9/8/2008 9:51:04PM
A0809003-03A	Lake M9313	08090815.D	9/8/2008 10:39:34PM
A0809005-05A	Lake W19919	0000014.D	7/6/2000 10.57.541 M
	T000002015 MD		Prep Date: 9/3/2008
Lab Method Blank Id: Prep Batch ID:	T080903015-MB		
-	T080903015 ADEC AK103 - RF	20	
Method:			d
		are associated with the following samples, spikes, and DataFile	
SampleNum	ClientSampleName	<u>DataFile</u>	AnalysisDate
T080903015-LCS	LCS	08090819.D	9/9/2008 2:43:12AM
T080903015-LCSD	LCSD	08090820.D	9/9/2008 3:31:56AM
A0809003-01B	Lake L9323	08090821.D	9/9/2008 4:20:50AM
A0809003-02B	Lake L9324	08090822.D	9/9/2008 5:09:27AM
A0809003-03B	Lake M9313	08090823.D	9/9/2008 5:58:14AM
			Prep Date: 9/8/2008
Lab Method Blank Id:	T080908012-MB		
Prep Batch ID:	T080908012		
Method:	SW6010B - ICP - 1	RCRA	
This Method blank and	sample preparation batch a	re associated with the following samples, spikes, and	duplicates:
SampleNum	<u>ClientSampleName</u>	DataFile	AnalysisDate
A0809003-01C	Lake L9323	E09108A	9/10/2008 12:15:00PM
A0809003-02C	Lake L9324	E09108A	9/10/2008 12:45:00PM
A0809003-03C	Lake M9313	E09108A	9/10/2008 12:50:00PM
T080908012-LCS	LCS	E09108A	9/10/2008 12:05:00PM
T080908012-LCSD	LCSD	E09108A	9/10/2008 12:10:00PM
A0809003-01C-DUP	DUP	E09108A	9/10/2008 12:20:00PM
A0809003-01C-MS	MS	E09108A	9/10/2008 12:25:00PM
A0809003-01C-MSD		E09108A	9/10/2008 12:30:00PM
	PDS	E09108A	9/10/2008 12:35:00PM
A0007003-01C-1D5	100	L07100A	210/2000 12.33.001 WI

Detailed Analytical Report

Analytica Alaska Inc.

Workorder (SDG):	A0809003
Project:	Lake Sampling
Client:	Michael Baker Jr Inc
Client Project Number:	Lake Sampling

QC BATCH ASSOCIATIONS - BY METHOD BLANK

Lab Project ID:	91,767	Lab Project Number:	A0809003		
				Prep Date:	9/9/2008
Lab Method Blank Id:	T080909006-MB				
Prep Batch ID:	T080909006				
Method:	SW7470A - Mercu	ary in Liquid Waste by CVA	A - Total Hg		
This Method blank and	sample preparation batch	are associated with the following	ng samples, spikes, and	duplicates:	
SampleNum	<u>ClientSampleName</u>	DataF	ile	<u>AnalysisDat</u>	<u>e</u>
A0809003-01C	Lake L9323	B090	908W.WKS	9/11/2008	2:16:36PM
A0809003-02C	Lake L9324	B090	908W.WKS	9/11/2008	2:18:50PM
A0809003-03C	Lake M9313	B090	908W.WKS	9/11/2008	2:21:10PM
B0808203-02D	Batch QC	B090	908W.WKS	9/11/2008	2:23:25PM
J0809022-01F	Batch QC	B090	908W.WKS	9/11/2008	3:14:00PM
T080909006-LCS	LCS	B090	908W.WKS	9/11/2008	2:07:39PM
T080909006-LCSD	LCSD	B090	908W.WKS	9/11/2008	2:09:42PM
B0808203-02D-DUP	DUP	B090	908W.WKS	9/11/2008	2:25:29PM
J0809022-01F-DUP	DUP	B090	908W.WKS	9/11/2008	3:16:18PM
B0808203-02D-MS	MS	B090	908W.WKS	9/11/2008	2:42:59PM
J0809022-01F-MS	MS	B090	908W.WKS	9/11/2008	3:18:32PM
B0808203-02D-MSD	MSD	B090	908W.WKS	9/11/2008	2:45:05PM
J0809022-01F-MSD	MSD	B090	908W.WKS	9/11/2008	3:20:46PM
B0808203-02D-PDS	PDS	B090	908W.WKS	9/11/2008	2:47:10PM
J0809022-01F-PDS	PDS	B090	908W.WKS	9/11/2008	3:22:53PM

Detailed Analytical Report

Analytica Alaska Inc.

Workorder (SDG)[•] A0809003

workorder (SDG).	A0809005
Project:	Lake Sampling
Client:	Michael Baker Jr Inc
Client Project Number:	Lake Sampling

DATA FLAGS AND DEFINITIONS

The PQL is the Method Quantitation Limit as defined by USACE.

Reporting Limit: Limit below which results are shown as "ND". This may be the PQL, MDL, or a value between. See the report conventions below.

Result Field:

ND = Not Detected at or above the Reporting Limit

NA = Analyte not applicable (see Case Narrative for discussion)

Qualifier Fields:

LOW = Recovery is below Lower Control Limit

HIGH = Recovery, RPD, or other parameter is above Upper Control Limit

E = Reported concentration is above the instrument calibration upper range

Organic Analysis Flags:

B = Analyte was detected in the laboratory method blank

J = Analyte was detected above MDL or Reporting Limit but below the Quant Limit (PQL)

Inorganic Analysis Flags:

J = Analyte was detected above the Reporting Limit but below the Quant Limit (PQL)

W = Post digestion spike did not meet criteria

S = Reported value determined by the Method of Standard Additions (MSA)

Several ways of defining the limit of detection and quantitation are prevalent in the laboratory industry and may appear in Analytica reports. These include the following:

MRL = "minimum reporting level", from the EPA Safe Drinking Water program (SDW)

PQL = "practical quantitation limit", from SW-846

EQL = "estimated quantitation limit", from SW-846

LOQ = "limit of quantitation", from a number of authoritative sources

In Analytica's work, all of these terms have the same meaning, equivalent to the EPA definition of the MRL. This reporting level is supported by a satisfactory calibration data point which is at that level or lower, and also is supported by a method detection limit (MDL) determined by the procedure in 40CFR. The MDL is lower than the MRL and represents an estimate of the level where positive detections have a 99% probability of being real, but where quantitation accuracy is unknown.

The MRL as defined by Analytica is the lowest demonstrated point of known quantitation accuracy.

The MRL should not be confused with the MCL, which is the EPA-defined "maximum contaminant level" allowed for certain regulated targets under specific regulations, such as the National Primary Drinking Water Regulations. Normally, the MRL is set at a level which is much lower than the MCL in order to ensure that levels are well below those limits. Not all target analytes have MCL levels established.

Other Flags may be applied. See Case Narrative for Description

Analytica Alaska Inc.

Detailed Analytical Report

Workorder (SDG):	A0809003
Project:	Lake Sampling
Client:	Michael Baker Jr Inc
Client Project Number:	Lake Sampling

REPORTING CONVENTIONS FOR THIS REPORT

A0809003

<u>TestPkgName</u> 6010B/3010A (Aqueous) - RCRA 7470A/7470A (Aqueous) - Total Hg AK102/3510C (Aqueous) - DRO AK103/3510C (Aqueous) - RRO

- Basis As Received As Received As Received As Received
- <u># Sig Figs</u> 2 2 2 2 2

Reporting Limit Report to PQL

- Report to PQL Report to PQL
- Report to PQL

Name of Sampler: (printed)		Relinquished by: Date Time	96/ E/L M	Relinquished by: Date Time	1:4 april 2/28/28 7:4	Relinquished by: Date Time				LAVE ETS M9313	LARE 69324	LAKE 69323	Client Sample Identification / Location	Kit Prep/Shipping Charge: \$	-	Please socialitist all m	mbakefui	Fax No: 273-1699	Phone No: 273-1607	Report to: OZZY OP WICK	HET AK A9523	MILIAR RALES.	ANALYTICA
		e Received by:	Om.	e Received by:	5474	e Received by:				8127 114	127 17	3/27 16C	Date Time Sampled Sampled		RA DO	metals war	D, cirprRequested Due Date for Results:		Standard	Turna	#Zł0	Public Water System (PWS) ID#:	12189 Pennsylvania St. Thornton, CO 80241 (303) 469-8868 (303) 469-5254 fax
		Date		Date	2 1 0/R/D	Date				15- V	100 1	00	Matrix (S-DW-WW-Ot No. of Contain	ers		4°d.		(pin	Expedited (< 10 days, prior	Turnaround Time for Results (T		m (PWS) ID#:	9503 9503 fax
Shipped Via:		Time Temp/Loc:		Time Custody Seal?:	9:45 Condition of	Time				<		<	DAG /R Pres: (0010) Lot # Pres:	KO				(please specify due date below; addft charges may apply)	10 days, prior authorization required)	sults (TAT)			475 Hall St. 5438 S Fairbanks, AK 99701 Juneau (907) 456-3116 (907) (907) 458-3125 Fax (907) 7
ia:	*			eal?:		Section To							Lot #: Pres: Lot #: Pres:		Kequested Analysis/Method	P.O. or Contract No:				o Name	Account #:		5438 Shaune Drive Juneau, AK 99801 (907) 780-6668 (907) 780-6670 fax
Trent	IR-2	5773	SRB	(ANC	Section To Be Completed by Analytica							Lot #: Pres: Lol #: Pres:		alysis/Method	114416				& Address:	HOSO Cash	Section To be Completed by Analytica	Chain of Custody No:
					FBKS	ca							Lot #: Pres: Field Prese Field Filte								TUV3 Credit Card	Analytica	65832

Appendix B 2007 Field and Laboratory Water Quality Result Summaries

Location Time	Depth (ft)	Turibidity NTU	Depth (ft)	Temp (⁰ C)	Conductivity (µS/cm)	Specific Conductance (µS/cm)	DO (mg/L)	DO (Percent Saturation)	Salinity (ppt)
			Surface	11.8	536	717	10.15	94.2	0.4
			3.0	11.8	536	717	10.13	94.2	0.4
			6.0	11.8	536	717	10.12	94.1	0.4
M9313			9.0	11.8	536	717	10.11	94.0	0.4
10:25 a.m.	24.0	1.66	12.0	11.8	536	717	10.09	93.7	0.4
10.25 d.m.			15.0	11.8	536	717	10.06	93.5	0.4
			18.0	11.8	536	717	10.01	93.0	0.4
			21.0	11.8	536	717	9.92	92.1	0.4
			24.0	11.7	535	717	0.17	1.6	0.4
			Surface	14.0	75.6	95.9	9.97	97.0	0.0
			4.0	13.9	75.7	96.0	9.95	96.9	0.0
L9323			7.0	13.9	75.7	96.0	9.94	96.8	0.0
4:05 p.m.	19.1	1.58	10.0	13.9	75.7	96.0	9.92	96.5	0.0
4.00 p.m.			13.0	13.8	75.6	96.1	9.83	95.5	0.0
			16.0	13.7	75.3	96.1	9.73	94.3	0.0
			19.0	13.2	91.0	117.4	0.13	1.3	0.1
			Surface	14.6	57.0	71.1	9.74	96.1	0.0
L9324	10.2	8.64	4.0	14.5	56.8	71.1	9.72	95.6	0.0
5:40 p.m.	10.2	0.04	7.0	14.2	56.7	71.4	9.64	94.5	0.0
			10.0	14.0	56.6	71.6	9.49	92.8	0.0

July 16, 2007 On Site Water Quality Results

(1) Sample depth is measured from the water surface.

(2) Turbitity was measured using a Hach-2100P Turbidometer
(3) Salinity, conductivity, specific conductance, and temperature were measured using a YSI-30 meter
(4) Dissolved oxygen measurements were obtained using a Hach HQ40d LDO meter

Location Time	Depth (ft)	Turibidity NTU	Depth (ft)	Temp (⁰ C)	Conductivity (µS/cm)	Specific Conductance (µS/cm)	DO (mg/L)	DO (Percent Saturation)	Salinity (ppt)
			Surface	8.9	524	757	10.90	98.7	0.4
			3.0	8.9	524	757	10.90	98.7	0.4
			6.0	8.9	524	756	10.88	98.5	0.4
M9313			9.0	8.9	523	756	10.87	98.4	0.4
2:00 p.m.	243	1.00	12.0	8.9	523	757	10.87	98.4	0.4
2.00 p.m.			15.0	8.8	523	757	10.87	98.3	0.4
			18.0	8.8	522	757	10.87	98.2	0.4
			21.0	8.7	521	757	10.85	97.8	0.4
			24.0	8.6	520	757	10.83	97.5	0.4
			Surface	10.2	72.3	100.7	10.92	102.3	0.0
		1.13	3.0	10.2	72.3	100.7	10.89	102.0	0.0
			6.0	10.2	72.3	100.7	10.86	101.8	0.0
L9323	20.1		9.0	10.2	72.3	100.7	10.81	101.3	0.0
6:00 p.m.	20.1	1.15	12.0	10.2	72.3	100.8	10.76	100.8	0.0
			15.0	10.2	72.2	100.7	10.70	100.2	0.0
			18.0	10.2	72.2	100.7	10.49	98.3	0.0
			20.0	10.0	78.2	109.6	0.13	1.2	0.1
			Surface	10.0	61.2	85.7	11.27	104.7	0.0
L9324	9.8	2.71	3.0	10.0	61.2	85.6	11.27	104.7	0.0
7:30 p.m.	7.0	2.71	6.0	9.9	61.0	85.6	11.28	104.5	0.0
			9.0	9.5	60.2	85.6	11.26	103.4	0.0

August 8, 2007 On Site Water Quality Results

(1) Sample depth is measured from the water surface.

(2) Turbitity was measured using a Hach-2100P Turbidometer
(3) Salinity, conductivity, specific conductance, and temperature were measured using a YSI-30 meter
(4) Dissolved oxygen measurements were obtained using a Hach HQ40d LDO meter

Lab Sample Number	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery (%)	LCL	UCL
A0707191-03A	ADEC AK103-RRO	Residual Range Organics	ND	mg/L	0.51	0.21	-	-	-
A0/0/191-03A	ADEC AR103-RRO	Squalane	0.023	mg/L	0.0051	0.0021	45	50	150
A0707191-03A	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.10	0.0061	-	-	-
A0/0/191-05A	ADEC ARIO2-DRO	o-Terphenyl	0.026	mg/L	0.00068	0.0038	50.2	50	120
		Acenaphthene	ND	ug/L	5.2	0.47	-	-	-
		Acenaphthylene	ND	ug/L	5.2	0.53	-	-	-
		Anthracene	ND	ug/L	5.2	0.45	-	-	-
		Benzo(a)anthracene	ND	ug/L	5.2	0.35	-	-	-
		Benzo(a)pyrene	ND	ug/L	5.2	0.27	-	-	-
		Benzo(b)fluoranthene	ND	ug/L	5.2	0.30	-	-	-
		Benzo(g,h,i)perylene	ND	ug/L	5.2	0.40	-	-	-
		Benzo(k)fluoranthene	ND	ug/L	5.2	0.39	-	-	-
	625-Base-Neutrals and Acids	Chrysene	ND	ug/L	5.2	0.21	-	-	-
A0707191-03E	by GC/MS - PAH	Dibenzo(a,h)anthracene	ND	ug/L	5.2	0.35	-	-	-
	by GC/WS - I All	Fluoranthene	ND	ug/L	5.2	0.53	-	-	-
		Fluorene	ND	ug/L	5.2	0.49	-	-	-
		Indeno(1,2,3-cd)pyrene	ND	ug/L	5.2	0.23	-	-	-
		Naphthalene	ND	ug/L	10	0.64	-	-	-
		Phenanthrene	ND	ug/L	5.2	0.45	-	-	-
		Pyrene	ND	ug/L	5.2	0.41	-	-	-
		2-Fluorobiphenyl	84	ug/L	5.2	0.29	80.7	43	116
		D14-Terphenyl	99	ug/L	5.2	0.12	94.8	33	141
		D5-Nitrobenzene	83	ug/L	5.2	0.21	79.3	35	114
		Arsenic	ND	mg/L	0.10	0.015	-	- 50 - - - - - - - - - - - - - - - - - -	-
		Barium	0.19	mg/L	0.01	0.00016	-	- 50 - - - - - - - - - - - - - - - - - -	-
		Cadmium	ND	mg/L	0.006	0.00051	-	-	-
A0707191-03D	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.01	0.0018	-	-	-
		Lead	ND	mg/L	0.05	0.011	-	-	-
		Selenium	ND	mg/L	0.10	0.026	-	-	-
		Silver	ND	mg/L	0.015	0.00066	-	-	-
A0707191-03D	SW7470A - Mercury in Liquid Waste by CVAA - Total Hg	Mercury	ND	mg/L	0.0002	0.00005	-	-	-
A0707191-03B	1664 Hexane Extractable	Hexane-Extractable	ND	mg/L	5.2	1.5	_	_	-
A0/0/191-05B	Materials - TPH w/SGT	Material		-			-	-	-
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.22	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.17	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.21	-	-	-
	602 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
A0707191-03C	GC/PID - BTEX &	Chlorobenzene	ND	ug/L	1.0	0.19	-	-	-
	Chlorobenzene	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.20	-	-	-
		p-Bromofluorobenzene	26	ug/L	0.5	0.12	97.6	80	120
A0707191-03C	ADEC AK101-GRO	Gasoline Range Organics	ND	ug/L	100	21	-	-	-
10/0/191-03C	ADEC AKI01-OKO	p-Bromofluorobenzene	25	ug/L	1.5	0.5	92.8	50	150
		Benzene	ND	ug/L	1.0	0.074	-	-	-
	Aromatic VOCs by GC/PID	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
Trip Blank	via method 8021B-BTEX	Toluene	ND	ug/L	1.0	0.078	-	-	-
	via memou ou21D-D1EA	Xylenes, Total	ND	ug/L	2.0	0.200	-	-	-
		p-Bromofluorobenzene	26	ug/L	0.5	0.120	94.9	80	120

Lake M9313 July 16, 2007 Laboratory Analysis Results

(2) MDL: Method Detection Limit

(2) MDL. Method Detection Limit
(3) SS Recovery: Spiked Sample Recovery (% of original)
(4) LCL: Lower Confidence Limit
(5) UCL: Upper Confidence Limit

(6) Surrogates are italicized

Number A0707191-01A A0707191-01A	ADEC AK103-RRO	Residual Range Organics	ND				(%)		
	ADEC AK105-KKO			mg/L	0.51	0.21	-	-	-
A0707191-01A		Squalane	0.038	mg/L	0.0051	0.0021	74	50	150
	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.10	0.0061	-	-	-
	ADDEC ARTICZ-DIG	o-Terphenyl	0.034	mg/L	0.00068	0.0038	67.1	50	120
		Acenaphthene	ND	ug/L	5.2	0.47	-	-	-
		Acenaphthylene	ND	ug/L	5.2	0.53	-	-	-
		Anthracene	ND	ug/L	5.2	0.45	-	-	-
		Benzo(a)anthracene	ND	ug/L	5.2	0.35	-	-	-
		Benzo(a)pyrene	ND	ug/L	5.2	0.27	-	-	-
		Benzo(b)fluoranthene	ND	ug/L	5.2	0.30	-	-	-
		Benzo(g,h,i)perylene	ND	ug/L	5.2	0.40	-	-	-
		Benzo(k)fluoranthene	ND	ug/L	5.2	0.39	-	-	-
6	625-Base-Neutrals and Acids	Chrysene	ND	ug/L	5.2	0.21	-	-	-
A0707191-01E	by GC/MS - PAH	Dibenzo(a,h)anthracene	ND	ug/L	5.2	0.35	-	-	-
	-	Fluoranthene	ND	ug/L	5.2	0.53	-	-	-
		Fluorene	ND	ug/L	5.2	0.49	-	-	-
		Indeno(1,2,3-cd)pyrene	ND	ug/L	5.2	0.23	-		-
		Naphthalene	ND	ug/L	10	0.64 0.45	-		-
		Phenanthrene	ND	ug/L	5.2		-		-
		Pyrene	ND	ug/L	5.2	0.41	-		110
		2-Fluorobiphenyl D14-Terphenyl	69 70	ug/L	5.2 5.2	0.29 0.12	66.7 67.7		116
		D5-Nitrobenzene	70	ug/L ug/L	5.2 5.2	0.12	67.6		141 114
		Arsenic	ND	mg/L	0.10	0.015	-		114
		Barium	0.051	mg/L mg/L	0.10	0.00016	-	- 50 - - - - - - - -	-
		Cadmium	ND	mg/L mg/L	0.006	0.00010	-		-
A0707191-01D	SW6010B-ICP-RCRA	Chromium	ND	mg/L mg/L	0.000	0.0018	-		-
A0/0/191-01D	SW0010B-ICI-KCKA	Lead	ND	mg/L mg/L	0.01	0.0013			
		Selenium	ND	mg/L mg/L	0.05	0.026	-		-
		Silver	ND	mg/L mg/L	0.015	0.00066	_		
	SW7470A - Mercury in	Silver	112		0.015	0.00000			
A0707191-01D	Liquid Waste by CVAA - Total Hg	Mercury	ND	mg/L	0.0002	0.00005	-	-	-
A0707191-01B	1664 Hexane Extractable Materials - TPH w/SGT	Hexane-Extractable Material	ND	mg/L	5.1	1.5	-	-	-
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.22	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.17	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.21	-	-	-
	502 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
A0707191-01C	GC/PID - BTEX &	Chlorobenzene	ND	ug/L	1.0	0.19	-	-	-
	Chlorobenzene	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.20	-		-
		p-Bromofluorobenzene	26	ug/L	0.5	0.12	97.4		120
A0707191-01C	ADEC AK101-GRO	Gasoline Range Organics	ND	ug/L	100	21	-		-
		p-Bromofluorobenzene	26	ug/L	1.5	0.5	94.7	50	150
		Benzene	ND	ug/L	1.0	0.074	-	-	-
Trip Dlank	Aromatic VOCs by GC/PID	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
Trip Blank	via method 8021B-BTEX	Toluene Vulence, Total	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND 26	ug/L	2.0	0.200 0.120	- 94.9	-	120
Notes:		p-Bromofluorobenzene	26	ug/L	0.5	0.120	94.9	80	120

Lake L9323 July 16, 2007 Laboratory Analysis Results

(4) LCL: Lower Confidence Limit

(5) UCL: Upper Confidence Limit(6) Surrogates are italicized

Lab Sample	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery	LCL	UCL
Number		Residual Range Organics	ND	mg/L	0.52	0.21	(%)		
A0707191-02A	ADEC AK103-RRO	Squalane	0.023	mg/L	0.0052	0.21	44.9	50	150
		Diesel Range Organics	1.2	mg/L	0.10	0.0062	-	-	-
A0707191-02A	ADEC AK102-DRO	o-Terphenyl	0.033	mg/L	0.00069	0.0038	65	50	120
		Acenaphthene	ND	ug/L	5.3	0.48	-	-	-
		Acenaphthylene	ND	ug/L	5.3	0.54	-	-	-
		Anthracene	ND	ug/L	5.3	0.46	-	-	-
		Benzo(a)anthracene	ND	ug/L	5.3	0.36	-	-	-
		Benzo(a)pyrene	ND	ug/L	5.3	0.28	-	-	-
		Benzo(b)fluoranthene	ND	ug/L	5.3	0.31	-	-	-
		Benzo(g,h,i)perylene	ND	ug/L	5.3	0.41	-	-	-
		Benzo(k)fluoranthene	ND	ug/L	5.3	0.4	-	-	-
	625-Base-Neutrals and Acids	Chrysene	ND	ug/L	5.3	0.21	-	-	-
A0707191-02E	by GC/MS - PAH	Dibenzo(a,h)anthracene	ND	ug/L	5.3	0.36	-	-	-
	by GC/MS - I All	Fluoranthene	ND	ug/L	5.3	0.54	-	-	-
		Fluorene	ND	ug/L	5.3	0.51	-	-	-
		Indeno(1,2,3-cd)pyrene	ND	ug/L	5.3	0.24	-	-	-
		Naphthalene	ND	ug/L	11	0.66	-	-	-
		Phenanthrene	ND	ug/L	5.3	0.46	-	-	-
		Pyrene	ND	ug/L	5.3	0.42	-	-	-
		2-Fluorobiphenyl	95	ug/L	5.3	0.3	89.3	43	116
		D14-Terphenyl	63	ug/L	5.3	0.13	58.8	33	141
		D5-Nitrobenzene	92	ug/L	5.3	0.22	86.3	35	114
		Arsenic	ND	mg/L	0.10	0.015	-	-	-
		Barium	0.054	mg/L	0.01	0.00016	-	-	-
		Cadmium	ND	mg/L	0.006	0.00051	-	-	-
A0707191-02D	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.01	0.0018	-	-	-
		Lead	ND	mg/L	0.05	0.011	-	-	-
		Selenium	ND	mg/L	0.10	0.026	-	-	-
		Silver	ND	mg/L	0.015	0.00066	-	-	-
A0707191-02D	SW7470A - Mercury in Liquid Waste by CVAA - Total Hg	Mercury	ND	mg/L	0.0002	0.00005	-	-	-
A0707191-02B	1664 Hexane Extractable Materials - TPH w/SGT	Hexane-Extractable Material	ND	mg/L	5.1	1.5	-	-	-
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.22	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.17	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.21	-	-	-
	602 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
A0707191-02C	GC/PID - BTEX &	Chlorobenzene	ND	ug/L	1.0	0.19	-	-	-
	Chlorobenzene	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.20	-	-	-
		p-Bromofluorobenzene	26	ug/L	0.5	0.12	97.9	80	120
A0707191-02C	ADEC AK101-GRO	Gasoline Range Organics	ND	ug/L	100	21	-	-	-
		p-Bromofluorobenzene	26	ug/L	1.5	0.5	95.2	50	150
		Benzene	ND	ug/L	1.0	0.074	-	-	-
T . DI I	Aromatic VOCs by GC/PID	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
Trip Blank	via method 8021B-BTEX	Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.200	-	-	-
		p-Bromofluorobenzene	26	ug/L	0.5	0.120	94.9	80	120
(2) MDL: Method (3) SS Recovery: S	Quantification Limit Detection Limit Spiked Sample Recovery (% of onfidence Limit	original)							

(4) LCL: Lower Confidence Limit(5) UCL: Upper Confidence Limit(6) *Surrogates* are italicized

Lab Sample Number	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery (%)	LCL	UCL
		Residual Range Organics	ND	mg/L	0.52	0.21	-		-
A0708454-01F	ADEC AK103-RRO	Squalane	0.043	mg/L	0.0052	0.0021	83.2	50	150
A0708454-01E	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.1	0.0062	-	-	-
A0/08434-01E	ADEC AK102-DRO	o-Terphenyl	0.02	mg/L	0.00069	0.0038	38.6	50	120
		Acenaphthene	ND	ug/L	4.8	0.43	-	-	-
		Acenaphthylene	ND	ug/L	4.8	0.49	-	-	-
		Anthracene	ND	ug/L	4.8	0.41	-	-	-
		Benzo(a)anthracene	ND	ug/L	4.8	0.32	-	-	-
		Benzo(a)pyrene	ND	ug/L	4.8	0.25	-	-	-
		Benzo(b)fluoranthene	ND	ug/L	4.8	0.27	-	-	-
		Benzo(g,h,i)perylene	ND	ug/L	4.8	0.37	-	-	-
		Benzo(k)fluoranthene	ND	ug/L	4.8	0.36	-	-	-
	625-Base-Neutrals and Acids	Chrysene	ND	ug/L	4.8	0.19	-	-	-
A0708454-01A	by GC/MS - PAH	Dibenzo(a,h)anthracene	ND	ug/L	4.8	0.32	-	-	-
		Fluoranthene	ND	ug/L	4.8	0.48	-	-	-
		Fluorene	ND	ug/L	4.8	0.45	-	-	-
		Indeno(1,2,3-cd)pyrene	ND	ug/L	4.8	0.21	-	-	-
		Naphthalene	ND	ug/L	9.5	0.59	-	-	-
		Phenanthrene	ND	ug/L	4.8	0.41	-	-	-
		Pyrene	ND	ug/L	4.8	0.38	-	-	-
		2-Fluorobiphenyl	55	ug/L	4.8	0.27	57.5	43	116
		D14-Terphenyl	42	ug/L	4.8	0.11	43.7	33	141
		D5-Nitrobenzene	68	ug/L	4.8	0.20	71.9	35	114
		Arsenic	ND	mg/L	0.100	0.01500	-	-	-
		Barium	0.25	mg/L	0.010	0.00016	-	-	-
10700454.015		Cadmium	ND	mg/L	0.006	0.00051	-	-	-
A0708454-01D	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.010	0.00180	-	-	-
		Lead	ND	mg/L	0.050	0.01100	-	-	-
		Selenium	ND	mg/L	0.100	0.02600	-	-	-
	SW7470A Manageria	Silver	ND	mg/L	0.015	0.00066	-	-	-
A0708454-01D	SW7470A - Mercury in Liquid Waste by CVAA - Total Hg	Mercury	ND	mg/L	0.0002	0.00005	-	-	-
A0708454-01B	1664 Hexane Extractable Materials - TPH w/SGT	Hexane-Extractable Material	ND	mg/L	4.8	1.4	-	-	-
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.22	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.17	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.21	-	-	-
	602 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
A0708454-01C	GC/PID - BTEX &	Chlorobenzene	ND	ug/L	1.0	0.19	-	-	-
	Chlorobenzene	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.20	-	-	-
		p-Bromofluorobenzene	26	ug/L	0.50	0.12	95.1	80	120
A0708454-01C	ADEC AK101-GRO	Gasoline Range Organics	ND	ug/L	100	21	-	-	-
		p-Bromofluorobenzene	25	ug/L	1.5	0.5	93.6	50	150
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.220	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.170	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.210	-	-	-
Tain D11-	602 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
Trip Blank	GC/PID - BTEX	Chlorobenzene	ND	ug/L	1.0	0.190	-	-	-
		Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene Valance Tatal	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.200	-	-	-
Nataa		p-Bromofluorobenzene	ND	ug/L	0.5	0.120	91.7	80	120
Notes:	On the second second second								
(1) PQL: Practical	Quantification Limit								

Lake M9313 August 8, 2007 Laboratory Analysis Results

PQL: Practical Quantification Limit
 MDL: Method Detection Limit
 SS Recovery: Spiked Sample Recovery (% of original)
 LCL: Lower Confidence Limit
 UCL: Upper Confidence Limit
 Surrogates are italicized

Lab Sample Number	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery (%)	LCL	UCL
A0708454-02F		Residual Range Organics	ND	mg/L	0.52	0.21	-	-	-
A0/08454-02F	ADEC AK103-RRO	Squalane	0.043	mg/L	0.0052	0.0021	81.8	50	150
A0708454-02E	ADEC AK102-DRO	Diesel Range Organics	ND	mg/L	0.10	0.0062	-	-	-
A0708434-02E	ADEC ARIOZ-DRO	o-Terphenyl	0.027	mg/L	0.00069	0.0038	52.1	50	120
		Acenaphthene	ND	ug/L	4.8	0.43	-	-	-
		Acenaphthylene	ND	ug/L	4.8	0.49	-	-	-
		Anthracene	ND	ug/L	4.8	0.42	-	-	-
		Benzo(a)anthracene	ND	ug/L	4.8	0.32	-	-	-
		Benzo(a)pyrene	ND	ug/L	4.8	0.25	-	-	-
		Benzo(b)fluoranthene	ND	ug/L	4.8	0.28	-	-	-
		Benzo(g,h,i)perylene	ND	ug/L	4.8	0.37	-	-	-
		Benzo(k)fluoranthene	ND	ug/L	4.8	0.37	-	-	-
	625-Base-Neutrals and Acids	Chrysene	ND	ug/L	4.8	0.19	-	-	-
A0708454-02A	by GC/MS - PAH	Dibenzo(a,h)anthracene	ND	ug/L	4.8	0.32	-	-	-
		Fluoranthene	ND	ug/L	4.8	0.49	-	-	-
		Fluorene	ND	ug/L	4.8 4.8	0.46 0.22	-	-	-
		Indeno(1,2,3-cd)pyrene	ND ND	ug/L	4.8 9.7	0.22	-	-	-
		Naphthalene Phenanthrene	ND	ug/L	9.7 4.8	0.60	-	-	-
		Pyrene	ND	ug/L ug/L	4.8	0.42	-	-	-
		2-Fluorobiphenyl	49	ug/L ug/L	4.8	0.33	50.8	43	116
		D14-Terphenyl	31	ug/L ug/L	4.8	0.11	32.6	33	141
		D5-Nitrobenzene	63	ug/L ug/L	4.8	0.20	65.6	35	114
		Arsenic	ND	mg/L	0.10	0.015	-	-	-
		Barium	0.053	mg/L	0.01	0.00016	-	-	-
		Cadmium	ND	mg/L	0.006	0.00051	-	-	-
A0708454-02D	SW6010B-ICP-RCRA	Chromium	ND	mg/L	0.01	0.0018	-	-	-
		Lead	ND	mg/L	0.05	0.011	-	-	-
		Selenium	ND	mg/L	0.10	0.026	-	-	-
		Silver	ND	mg/L	0.015	0.00066	-	-	-
A0708454-02D	SW7470A - Mercury in Liquid Waste by CVAA - Total Hg	Mercury	ND	mg/L	0.0002	0.00005	-	-	-
	1664 Hexane Extractable Materials - TPH w/SGT	Hexane-Extractable Material	ND	mg/L	4.9	1.4	-	-	-
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.22	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.17	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.21	-	-	-
	602 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
A0708454-02C	GC/PID - BTEX &	Chlorobenzene	ND	ug/L	1.0	0.19	-	-	-
	Chlorobenzene	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.20	-	-	-
		p-Bromofluorobenzene	27	ug/L	0.5	0.12	98.9	80	120
A0708454-02C	ADEC AK101-GRO	Gasoline Range Organics	ND	ug/L	100	21	-	-	-
		<i>p-Bromofluorobenzene</i>	25	ug/L	1.5	0.5	93.8	50	150
		1,2-Dichlorobenzene	ND ND	ug/L	1.0	0.220	-	-	-
		1,3-Dichlorobenzene	ND ND	ug/L	1.0	0.170	-	-	-
		1,4-Dichlorobenzene	ND ND	ug/L	1.0	0.210 0.074	-	-	-
Trip Blank	602 - Purgeable Aromatics by	Benzene Chlorobenzene	ND ND	ug/L	1.0 1.0	0.074	-	-	-
пр Банк	GC/PID - BTEX	Ethylbenzene	ND ND	ug/L	1.0	0.190	-	-	
		Toluene	ND ND	ug/L ug/L	1.0	0.088	-	-	-
		Xylenes, Total	ND ND	ug/L ug/L	2.0	0.078	-	-	-
		p-Bromofluorobenzene	ND	ug/L ug/L	0.5	0.200	- 91.7	80	120
Notes:		p-bromojnorobenzene	ΠD	ug/L	0.5	0.120	21.7	00	120

Lake L9323 August 8	, 2007 Laborator	y Analysis Results
---------------------	------------------	--------------------

Notes:

(1) PQL: Practical Quantification Limit

(2) MDL: Method Detection Limit

(3) SS Recovery: Spiked Sample Recovery (% of original)
(4) LCL: Lower Confidence Limit
(5) UCL: Upper Confidence Limit
(6) Surrogates are italicized

Lab Sample Number	Test Method	Analysis	Concentration	Units	PQL	MDL	SS Recovery (%)	LCL	UCL
A0708454-03F	ADEC AK103-RRO	Residual Range Organics Squalane	ND 0.041	mg/L mg/L	0.52 0.0052	0.21 0.0021	- 79.2	- 50	- 150
A0708454-03E		Diesel Range Organics	0.11	mg/L	0.11	0.0064	-	-	-
A0/08454-05E	ADEC AK102-DRO	o-Terphenyl	0.029	mg/L	0.00072	0.0039	53.9	50	120
		Acenaphthene	ND	ug/L	5.0	0.45	-	- 50 -	-
		Acenaphthylene	ND	ug/L	5.0	0.51	-	-	-
		Anthracene	ND	ug/L	5.0	0.44	-	-	-
		Benzo(a)anthracene	ND	ug/L	5.0	0.33	-	-	-
		Benzo(a)pyrene	ND	ug/L	5.0	0.26	-		-
		Benzo(b)fluoranthene	ND	ug/L	5.0	0.29	-		-
		Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND	ug/L	5.0 5.0	0.39 0.38	-		-
		Chrysene	ND ND	ug/L ug/L	5.0	0.38	-		-
A0708454-03A	625-Base-Neutrals and Acids	Dibenzo(a,h)anthracene	ND	ug/L ug/L	5.0	0.20	-		-
10700454-0511	by GC/MS - PAH	Fluoranthene	ND	ug/L ug/L	5.0	0.54			
		Fluorene	ND	ug/L ug/L	5.0	0.48	_		_
		Indeno(1,2,3-cd)pyrene	ND	ug/L	5.0	0.22	-	-	-
		Naphthalene	ND	ug/L	10.0	0.62	-	-	-
		Phenanthrene	ND	ug/L	5.0	0.43	-	-	-
		Pyrene	ND	ug/L	5.0	0.40	-	-	-
		2-Fluorobiphenyl	56	ug/L	5.0	0.28	56.2	43	116
		D14-Terphenyl	33	ug/L	5.0	0.12	33.2	33	141
		D5-Nitrobenzene	70	ug/L	5.0	0.21	70.2	35	114
		Arsenic	ND	mg/L	0.10	0.015	-	-	-
		Barium	0.058	mg/L	0.01	0.00016	-	-	-
		Cadmium	ND	mg/L	0.006	0.00051	-	-	-
A0708454-03D	SW6010B-ICP-RCRA	Chromium	0.013	mg/L	0.01	0.0018	-	-	-
		Lead	ND	mg/L	0.05	0.011	-		-
		Selenium	ND	mg/L	0.10	0.026	-		-
	SW7470A Manageria	Silver	ND	mg/L	0.015	0.00066	-	-	-
A0708454-03D	SW7470A - Mercury in Liquid Waste by CVAA - Total Hg	Mercury	ND	mg/L	0.0002	0.00005	-	-	-
A0708454-03B	1664 Hexane Extractable Materials - TPH w/SGT	Hexane-Extractable Material	ND	mg/L	4.8	1.4	-	-	-
		1,2-Dichlorobenzene	ND	ug/L	1.0	0.22	-	-	-
		1,3-Dichlorobenzene	ND	ug/L	1.0	0.17	-	-	-
		1,4-Dichlorobenzene	ND	ug/L	1.0	0.21	-	-	-
	602 - Purgeable Aromatics by	Benzene	ND	ug/L	1.0	0.074	-	-	-
A0708454-03C	GC/PID - BTEX &	Chlorobenzene	ND	ug/L	1.0	0.19	-	-	-
	Chlorobenzene	Ethylbenzene	ND	ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.20	-		-
		p-Bromofluorobenzene	27	ug/L	0.5	0.12	99		120
A0708454-03C	ADEC AK101-GRO	Gasoline Range Organics	ND	ug/L	100	21	-		-
		<i>p-Bromofluorobenzene</i>	25 ND	ug/L	1.5	0.5 0.220	93.1		150
		1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	ug/L ug/L	1.0 1.0	0.220	-		
		1,4-Dichlorobenzene	ND	ug/L ug/L	1.0	0.170	_		
		Benzene	ND	ug/L ug/L	1.0	0.074	-	_	_
Trip Blank	602 - Purgeable Aromatics by	Chlorobenzene	ND	ug/L ug/L	1.0	0.190	-	_	-
r	GC/PID - BTEX	Ethylbenzene	ND	ug/L ug/L	1.0	0.088	-	-	-
		Toluene	ND	ug/L	1.0	0.078	-	-	-
		Xylenes, Total	ND	ug/L	2.0	0.200	-	-	-
		p-Bromofluorobenzene	ND	ug/L	0.5	0.120	91.7	80	120

PQL: Practical Quantification Limit
 MDL: Method Detection Limit
 SS Recovery: Spiked Sample Recovery (% of original)
 LCL: Lower Confidence Limit
 UCL: Upper Confidence Limit
 Surrogates are italicized