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EXECUTIVE SUMMARY

This report presents the results of the 2016
CD5 Habitat Monitoring Study, a long-term
monitoring study designed to monitor and assess
potential changes in habitat related to the CDS5
Development Project on a portion of the Colville
River Delta (CRD) in northern Alaska. The CD5
Habitat Monitoring Study is one component of a
broader long-term Monitoring Plan with an
adaptive management strategy that is being
implemented by ConocoPhillips Alaska, Inc.
(CPAI) as a condition on their CD5 development
permit, USACE Permit POA-2005-1576. The
specific objectives of the 2016 CDS5 Habitat
Monitoring Study were to: 1) conduct the first year
of post-construction data collection and monitoring
of climate and habitat in the CD5 Habitat
Monitoring Study Area; 2) analyze and summarize
2016 field data with respect to the 2013 baseline
data; 3) update the Integrated Terrain Unit (ITU)
mapping in the CD5 Habitat Monitoring Study
Area, based on 2015 high-resolution aerial imagery
and 2016 field data; and 4) prepare a summary
report and present findings at an agency and
stakeholder meeting in February 2017.

The 2016 CD5 Habitat Monitoring Study
includes two components: local climate monitoring
and habitat monitoring. For each of these
components, ABR collected and assessed the first
year of post-construction data and compared these
data with the baseline data collected in 2013 to
assess potential ecosystem changes associated with
the CD5 Project. For climate monitoring, the
Alpine weather station was installed on 10 May
2013 by Polar Alpine, Inc. Climate parameters
monitored include wind speed and direction,
incoming solar radiation, air temperature, snow
depth, precipitation, and barometric pressure. ABR
summarized the climate data collected from May
through September, 2013-2016, as these are the
months during which the habitat monitoring field
work occurred. Snowfall and snow depth data was
also summarized for the winter months preceding
field work.

For the habitat monitoring component, ABR
completed several tasks. Habitat-monitoring field
surveys were conducted 16 July—7 August 2016
during which habitat-monitoring locations were
accessed via helicopter, inflatable boat, and by

il

foot. ABR located the permanent Integrated
Monitoring plots, originally established in 2013,
and 1) sampled the vegetation at each plot using
the point-intercept method, and 2) measured soil
and environmental parameters. Elevation and thaw
depth surveys were conducted during the second
and third weeks of July 2016 to assess potential
changes in thaw depth and ground surface
elevation through time, as per the Monitoring Plan.

The baseline map Integrated Terrain Unit
(ITU) mapping was updated using high-resolution
imagery acquired 3-5 July 2015. The updated
mapping was then used to perform a landscape
change analysis as indicated in the Monitoring
Plan. This first ecosystem map update and
associated landscape change analysis showed that,
apart from the expected landscape changes related
to the direct placement of the CD5 development
infrastructure, the changes documented were
localized and consistent with the natural changes
known to occur in deltaic environments elsewhere
on the CRD.

ABR performed a wildlife habitat analysis, as
per the Monitoring Plan, that generated mean,
75%, and 95% confidence intervals for percent
cover of wildlife habitat structure classes in the
CD5 Study Area. The cover data were generated
for 2013 and 2016 in both Test and Reference
Areas, and a repeated measures analysis was
performed to test for interaction effects of year and
Area on cover percentage. The habitat assessment
showed a decrease in percent cover of standing
water and an increase in mineral soil and mosses in
2016 when compared to 2013 in both Reference
and Test Areas. The observed differences in
standing water and water table depth between
2013 and 2016 are attributed to the warmer
temperatures, a shallower snowpack, earlier snow
melt, higher evapotranspiration, and lower July
precipitation in 2016 when compared to 2013. In
addition, the break-up flooding in spring 2016 was
relatively benign, resulting in the majority of the
CD5 Study Area not flooding.

The vegetation plot assessment data analysis
methods follow directly from the Monitoring Plan.
Specifically, vegetation data from both Test and
References Areas in 2016 were ordinated with the
2013 data to determine if a shift in species
composition had occurred in the intervening time
period. The vegetation assessment found that 96%
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of Vegetation Plots (171 plots) had not changed in
species composition between 2013 and 2016, with
the remaining 4% of the Vegetation Plots (8 plots
total) showing a change between years. Of the 8
plots that showed changes in species composition,
the change at the 2 plots located in the Reference
Areas was attributed to natural changes in species
composition. The changes at 3 plots in the Test
Area were attributable to increases in the cover of
sedges in 2016, an indicator of increased
productivity. The changes at the remaining 3 plots
were related to either increases or decreases in
willow (Salix sp.) and sedge (Carex sp. and
Eriophorum sp.) and increases and decreases in the
number species detected at the plots. In summary,
the total number of Vegetation Plots identified as
having changed in species composition between
2013 and 2016 is very small (<5% of the total
plots), the plots were located in both the Test and
Reference Areas, and the plots were not specific to
any single plot ecotype.

Changes in species richness between
ecotypes, years, and Areas were relatively small
and within the range of variability, based on the
standard deviation. Changes in vegetation structure
classes were also generally consistent between
ecotypes, Areas, and years. In general, total live
cover increased between 2013 and 2016, a change
driven largely by an increase in the cover of
mosses and sedges in several ecotypes.

To assess sedimentation and erosion rates
along Monitoring Transects, we calculated the
average and 95% confidence intervals (CI) for
surface organic thickness in the Test and Reference
Areas by year for the most common surface terrain
units and used these data to compare changes in
surface organic thickness through time, as per the
Monitoring Plan. Average surface organic
thickness was greatest in Delta Abandoned
Overbank Deposits, moderately thick in Delta
Inactive Overbank Deposits, and thinnest in Delta
Active Overbank Deposits. This pattern held true
for Reference and Test Areas in both study years.
For surface terrain units Delta Abandoned
Overbank Deposit and Delta Active Overbank
Deposit in the Test Area, average surface organic
thickness overlapped the 95% confidence intervals
of the corresponding surface terrain unit in the
Reference Area in both years.
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The results of the 2016 Habitat Monitoring
effort showed very little ecosystem change
between 2013 and 2016. Broad-scale changes that
were significant between years, including the
decrease of standing water cover and increase in
mineral soil cover, were observed in both
Reference and Test Areas and hence not
attributable to the CD5 Road. Rather, differences in
broad-scale climatic factors and break-up flooding
between 2013 and 2016 are the primary causal
factors leading to the differences observed.
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1.0 INTRODUCTION

1.1 BACKGROUND

As a condition of the permit to develop
CD5 in the Northeast National Petroleum
Reserve-Alaska (NE NPRA) and associated
infrastructure on the Colville River Delta, the
U.S. Army Corp of Engineers (USACE) stipulated
that ConocoPhillips Alaska, Inc. (CPAI) implement
a monitoring plan with an adaptive management
strategy (POA-2005-1576). The monitoring plan
with an adaptive management strategy (Monitoring
Plan) was developed to monitor changes in site
conditions and the efficacy of the proposed
mitigation measures (ABR and Baker 2013). The
Monitoring Plan commits CPAI to 1) develop a
monitoring program prior to construction; 2)
prepare monitoring reports on a variety of
monitoring components (see below) for review by
key stakeholders; and 3) meet with federal
agencies annually to review the monitoring reports
and the effectiveness of current mitigation
measures.

1.2 MONITORING PROGRAM GOALS AND
OBJECTIVES

As a result of 4 decades of development
activities in North Slope wetlands, rivers, and
streams, and more than 10 years of oil and gas
extraction in the Colville River Delta, impacts
resulting from gravel placement on tundra and in
the Colville River Delta and bridges across rivers
and streams are well understood. Those impacts
have prompted CPAI operations to implement
mitigation measures for the CDS5 Project in
consultation with federal agencies.

The goals and objectives presented here
follow the Monitoring Plan with an Adaptive
Management Strategy for the CD5 Development
Project, dated March 2013 (ABR and Baker 2013).
The CDS5 Monitoring Plan’s goal is to monitor for
changes in site conditions and selected resources
and to modify, if appropriate, operational practices
to minimize impacts on the hydrologic function of
the Colville River Delta as a result of road, bridge,
and pad construction. As discussed with federal
agencies in meetings during 2011, an outline of the
Monitoring Plan and a table summarizing the
Plan’s monitoring components were provided to
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the USACE in a letter dated 23 November 2011.
Subsequent discussions and correspondence
through 30 August 2012 resulted in the following
list of studies to be included in the Monitoring
Plan:

» Habitat Monitoring (climate, vegetation,
geomorphology, sedimentation, and per-
mafrost)

*  Hydrology Monitoring
*  Erosion-Control Monitoring
*  Culvert Monitoring

*  Bridge Monitoring (Nigliq and Nigliagvik
Bridges)

This report presents the results of the habitat
monitoring component (herein, CD5 Habitat
Monitoring Study) of the overall CD5 Monitoring
Plan. As described in the CD5 Monitoring Plan
(ABR and Baker 2013), the overall goals of the
CD5 Habitat Monitoring Study include 1)
determine if placement of gravel results in
alteration to wildlife habitat upstream and/or
downstream of the CDS5 road; 2) quantify
vegetation communities and habitat in permanent
plots established upstream and downstream of the
road to identify changes through time based on
comparison to baseline data; 3) monitor permanent
plots beginning the year before and immediately
following construction and every 5 years thereafter
to evaluate and identify changes in vegetation,
wildlife habitat, geomorphology (soils, permafrost,
thaw depth), and sedimentation/ erosion over time;
and 4) through periodic monitoring of vegetation
and hydrology, identify intermediate trends of
change that corroborate sedimentation and erosion
predictions, to the extent possible.

The 2016 effort was focused on collecting the
first year of post-construction data, and comparing
these data with the baseline data collected in 2013
to assess potential ecosystem changes associated
with the CD5 Project. The specific objectives of
the 2016 CD5 Habitat Monitoring Study were to:

1. Conduct the first year of post-construction
data collection and monitoring of climate
and habitat in the CD5 Habitat Monitoring
Study Area;
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2. Analyze and summarize 2016 field data
with respect to the 2013 baseline data,
update the Integrated Terrain Unit (ITU)
mapping in the CD5 Habitat Monitoring
Study Area, based on 2015 high-resolution
aerial imagery and 2016 field data; and
prepare summary reports and maps; and

3. Present findings at an agency and stake-
holder meeting in February 2017.

1.3 CD5 HABITAT MONITORING STUDY
AREA

1.3.1 DESCRIPTION

This study focuses on the CDS5 Habitat
Monitoring Study Area, which is located along the
Nigliq Channel in the southwestern portion of the
Colville River Delta (CRD) on the North Slope of
Alaska (Figures 1.1 and 1.2). The Alpine Oil
Facilities are located directly east of the CDS5
Habitat Monitoring Study Area, and the village of
Nuigsut, established in 1971, is located several

CD5 Habitat Monitoring, 2016

kilometers to the south of the CDS5 Habitat
Monitoring Study Area. For a detailed description
of the climate and environment of the CRD, see
Wells et al. (2014).

The CDS5 Habitat Monitoring Study Area
has been partitioned into 4 subareas, including
Test and Reference Areas (Figure 1.2). The
“Test” Areas include the general area directly
upstream along the Nigliq Channel (Test Area
South) and downstream along the Nigliq
Channel (Test Area North) with the CD5 road as
the dividing line (within approximately 1.9 km).
ABR and Baker (2011) predicted this area could
be affected by moderate and high changes in
sedimentation and erosion regime during a
200-year flood. The “Reference” Areas were
located approximately 3-5 km  upstream
(Reference Area South) and downstream along
the Nigliq Channel (Reference Area North) from
the proposed CDS5 road and were predicted by
ABR and Baker (2011) to be unaffected by the
proposed development.
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Figure 1.1.

Overview map showing the location of the CD5 Habitat Monitoring Study area on the

Colville River Delta, northern Alaska, 2013 and 2016.
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2.0 CLIMATE MONITORING

2.1 RATIONALE

Weather and climate are strongly linked to
several components of the CD5 monitoring effort,
including the timing and magnitude of spring
breakup flooding, groundwater and surface water
levels, annual vegetation cover, permafrost
active-layer thickness, and soil temperature. Also,
given the long-term timeframe of the Habitat
Monitoring study, naturally occurring climate
variability may play a role in the outcome of
monitoring efforts.

2.2 METHODS

2.2.1 DATA ANALYSIS

Climate data from the Alpine Weather Station
(Wells et al. 2014) were summarized for May
through September, 2013-2016, as these are the
months during which the Habitat Monitoring field
work occurred. Snowfall and snow depth data was
also summarized for the winter months preceding
field work. Hourly data were tabulated and
summarized using R, an open-source language and
environment for statistical computing (R Core
Team 2016). Before producing daily summaries,
hourly data were checked to confirm that each day
had 24 valid observations for the parameters of
interest and that there were the correct number of
days when aggregating to the month. The station
was not installed until 10 May 2013, so the May
data are incomplete for the first year of the study.

Hourly temperature observations were aggre-
gated to daily minimum, maximum and average
temperatures. Hourly wind measurements were
categorized as calm (wind speed <l meter per
second [mps]), low (1-5 mps), moderate (5-10
mps), or high (>10 mps), and placed into 22.5
degree directional bins for analysis. Hourly
precipitation was aggregated to daily precipitation
by calculating daily sums. The first snow-free date
in spring was estimated by finding the first day of
the year where the recorded snow depth was zero
or negative. Because of the relatively low quality
of the snow depth data, these values were
compared with snow depth data at nearby stations
(see below). Finally, daily data were broken down
into monthly periods for analysis.

2.0 Climate Monitoring

Winter snowpack was estimated by finding
the 95th percentile of snow depth data during the
winter months prior to the 2016 field season and
compared with similarly aggregated snow depth
and cumulative snowfall data from nearby stations.
The 95th percentile for snow depth was chosen in
order to get a maximum winter-season value that
compensates for the rapid settling of fresh snow
after a storm.

We also examined daily temperature, preci-
pitation, snowfall, and snow depth data for nearby
weather stations from the Global Historical
Climatology Network (NCEI 2016), including the
Alpine Airport (7 km northeast of the CD5 Study
Area), Nuigsut Airport (10 km south), and the
station at Colville Village (28 km northeast). To
help place the observed conditions in context, we
compared these data with 1981-2010 climate
normals (Arguez et al. 2010) calculated for
Colville Village (NCEI 2010).

Moisture conditions during the growing
season are influenced both by precipitation and
evaporative demand. Therefore, Reference Evapo-
transpiration was estimated using the Penman—
Monteith equation (Allen et al. 1998). Daily
minimum and maximum temperature, wind speed,
and solar radiation data from the Alpine Weather
Station were used in the calculation. Actual vapor
pressure was estimated for each day using the
minimum daily temperature because relative
humidity and dewpoint data are not collected at
the site.

2.3 RESULTS AND DISCUSSION

2.3.1 TEMPERATURE AND PRECIPITATION

Daily temperature and precipitation for the
2013 and 2016 summer are presented in Figure 2.1.
The 2016 thaw-season started in early May with a
week of above average, and above freezing
temperatures that resulted in an early melt-off of
the snowpack. The Alpine Weather Station was
snow-free by 11 May 2016, more than two weeks
earlier than in 2013 (Table 2.1). This was also the
earliest snow-free date ever recorded at the
Colville Village station, which has snow-depth
records going back to 1997. Despite the early
warming, late May and early June temperatures in
2016 were close to normal; the average May
temperature was comparable to 2013 as well as the
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Table 2.1.  Spring snow free date at the Alpine Weather Station and two other long term stations, CD5
Habitat Monitoring Study Area, northern Alaska, 2013-2016.
Year Alpine Weather Station Alpine Colville Village
2013 2013-05-28 2013-06-08 2013-06-05
2014 2014-06-10 2014-06-06 2014-06-01
2015 2015-05-24 2015-05-26 2015-05-22
2016 2016-05-11 2016-05-10 2016-05-14

four-year average (Figure 2.2). Daily maximum
temperatures were above 20° C for 9 days in 2016
(12 days in 2013), and reached 28.9° C on 13 July,
three degrees higher than the next highest
maximum at the site (data collected 2013-2016).
This was also the warmest date on record at the
three nearest stations with longer records: 28.9° C
at Alpine Airport (2011-2016), 28.9° C at Nuiqsut
Airport (1998-2016), and 28.3° C at Colville
Village (1996-2016). August temperatures were
close to normal in 2016 and September was
slightly warmer than normal. Freeze-up in 2016
was 28 days later than in 2013, when there was a
sharp drop in temperature on 15 September.
Average temperatures in 2016 remained above
freezing into October.

Total summer rainfall in 2016 was 150.6 mm,
significantly higher than the 107.9 mm that fell
in 2013 and exceeding the four-year average of
112.4 mm (Table 2.2). July was the driest of the
summer months in 2016; most of the precipitation
came in August and September. In contrast, the
monthly pattern in 2013 was almost the opposite of
2016; almost half the summer precipitation fell in
July. The 1981-2010 climate normal summer
precipitation total for the Colville Village station is
84.1 mm; totals observed at this station in 2013 and
2016 were 125.5 mm and 147.1 mm, respectively.

2.3.2 WIND

Winds in the CDS5 Study Area are predo-
minantly east-north-easterly for all of the summer,
except in September when winds also come from
the west-southwest (Figure 2.3). Winds in 2016
mostly followed this pattern except in June, when
the wind was often north-westerly, and in
September when the prevailing winds were from

the southwest and west-southwest. Wind speeds in
2016 were usually in the low category, with well
over half of all observations between 1-5 mps
(Table 2.3). In May, however, the frequency of
medium wind speeds was slightly higher than
normal.

2.3.3 WINTER SNOWPACK

The 2015-2016 winter snowpack depth in the
CD5 Study Area was lower than in any other year
of the study (2013-2016) (Table 2.4); snowpack
depth and cumulative snowfall during the winter
season at the Colville Village station were also
significantly lower. The 1981-2010 climate
normal cumulative winter snowfall at Colville
Village is 1,453 mm, and 967 mm was observed
during the 2015-2016 winter. In contrast,
2012-2013 cumulative winter snowfall was above
normal at 1,878 mm.

2.3.4 WATER BALANCE

Evapotranspiration rates in 2016 were near
average for all summer months except July, when
the Reference Evapotranspiration rate was 2.81 mm
per day compared with a four-year average rate
of 2.41 mm per day (Table 2.5). Overall evapo-
transpiration rates for May—August were slightly
lower in 2016 (2.03 mm per day) than in 2013
(2.17 mm per day).

The combination of a shallow snowpack,
early snowmelt, lower than normal precipitation
through July, extreme high temperatures in mid-
July, and relatively higher July evapotranspiration
rates likely contributed to drier soil moisture
conditions in 2016 compared with 2013. These
instrumental measurements were corroborated by
field observations made during the habitat moni-
toring field effort in July and August 2016.
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Figure 2.3. Charts summarizing monthly wind speed and direction for the months May through September, 2013, 2016, and all years, Alpine Weather Station, CD5 Habitat Monitoring Study Area, northern Alaska.
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Table 2.2. Monthly summer precipitation totals in mm for 2013 and 2016 and average monthly totals
(2013-2016), Alpine Weather Station, CD5 Habitat Monitoring Study Area, northern Alaska.

Period 2013 2016 2013-2016
May 4.3 2.5 52
June 15.0 30.4 20.0
July 52.5 17.7 25.1
August 15.9 51.4 36.7
September 20.2 48.6 25.4
TOTAL 107.9 150.6 112.4

Table 2.3.  Categorized wind speed frequency (%) by month for 2013, 2016, and average for 2013-2016,
Alpine Weather Station, CD5 Habitat Monitoring Study Area, northern Alaska.

Calm Low Medium High
Period (<1 mps) (1-5 mps) (5-10 mps) (>10 mps)
May 2013 3.1 71.1 24.1 1.7
May 2016 1.9 66.9 30.4 0.8
May 2013-2016 4.7 67.5 25.5 2.3
June 2013 4.2 69.2 26.7 0.0
June 2016 1.9 70.3 27.6 0.1
June 2013-2016 3.3 67.7 28.9 0.1
July 2013 2.8 58.7 38.2 0.3
July 2016 3.8 66.8 29.0 0.4
July 2013-2016 33 66.1 30.2 0.4
August 2013 6.6 76.9 16.5 0.0
August 2016 3.8 67.7 28.1 0.4
August 2013-2016 4.0 66.9 28.2 1.0
September 2013 4.4 67.9 27.2 0.4
September 2016 4.4 68.5 253 1.8
September 2013-2016 5.0 64.5 28.7 1.8
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Table 2.4. Maximum snow depth (95th percentile, mm) at the Alpine Weather station and the Colville
Village station, cumulative winter snowfall (mm) and 1981-2010 climate normal cumulative
winter snowfall at Colville Village, CD5 Habitat Monitoring Study Area, northern Alaska,

2013-2016.
Alpine Weather
Station Colville Village Station
Cumulative Climate Normal
Snowpack Snowpack Snowfall Cumulative Snowfall
Winter Year (mm) (mm) (mm) (mm)
2012-2013 305 1878 1453
2013-2014 415 305 1362 1453
2014-2015 352 279 1765 1453
2015-2016 156 203 967 1453

Table 2.5.  Average daily reference evapotranspiration (mm per day) by month for 2013, 2016, and
average for 2013-2016, Alpine Weather Station, CD5 Habitat Monitoring Study Area,

northern Alaska.
Period 2013 2016 2013-2016
May 1.51 1.26 1.37
June 2.73 2.60 2.58
July 2.54 2.81 241
August 1.89 1.46 1.48
Average 2.17 2.03 1.96
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3.0 HABITAT MONITORING

3.1 RATIONALE

Habitat can be described as the ecological
space occupied or potentially occupied by animals
that includes both physical and biological features.
ABR uses the term wildlife habitat to refer to the
classification system that summarizes vegetation,
surface forms, and geomorphology into useful
categories when applied to birds and mammals
(Jorgenson et al. 1997). The CRD features a com-
plex environment with many interacting biotic and
abiotic landscape elements (Wells et al. 2014),
which makes long-term habitat monitoring in this
environment particularly challenging. Consequently,
ABR has incorporated a broad array of biotic and
abiotic features into the habitat-monitoring pro-
gram, including vegetation, soils, geomorphol-
ogy, permafrost, and climate. Further confounding
the challenges to implementing a monitoring pro-
gram in this environment, is that deltaic landscapes
are highly dynamic and undergo natural landscape
change through time. This makes it difficult to
differentiate potential changes in sedimentation
and erosion associated with the CD5 Project from
natural change. Reference Areas with similar
environmental conditions to those areas directly
upstream and downstream of the CD5 Project road
have been selected for monitoring in an attempt to
account for natural landscape change through time.

3.2 HABITAT MONITORING
COMPONENTS

Habitat ~ Monitoring  includes  several
components as detailed in the Monitoring Plan.
Detailed descriptions of each component and
associated subcomponents are provided in the
following sections. The outline below provides a
guide to each of the Habitat Monitoring
components and associated subcomponents.

*  Spring Breakup Surveys

*  Monitoring Transects

o Integrated Habitat Monitoring Plots
Vegetation Plots

—Vegetation Plot Photograph

15
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Vegetation Lines
—Vegetation Plot Sample Points
General environment data
Soils
° Habitat Plots
Habitat Plot Line
—Habitat Plot Line Photographs
—Habitat Plot Points
Map Verification Plots
* Real Time Kinematic Surveys
o Integrated Habitat Monitoring Plots
o Thaw Depth/Elevation Points

*  Broad-scale Monitoring of Geomorphol-
ogy
o Marker Horizons
° Drift Lines

o Geomorphology Monitoring
Photography Points

3.3 METHODS

3.3.1 OVERALL STUDY DESIGN

The overall study design fits generally into
the category of environmental impact analysis
called BACI or before-after-control-impact
(Stewart-Oaten et al. 1986). Sites in Reference
Areas and impact areas (here referred to as “Test”
Areas) are sampled before an impact occurs and
resampled after the impact to compare conditions.
The study design also incorporates elements of a
gradient-oriented design (Ellis and Schneider
1997) in which data are collected across a range of
potential impact levels, close to the development
and far enough from the development that impacts
are not anticipated.

3.3.1.A Permanent Habitat Monitoring
Transects

Permanent Habitat Monitoring Transects
(referred to herein as ‘Monitoring Transects’) were
established in 2013 in both upstream and
downstream Test and Reference Areas (Figure
1.2). Monitoring Transects in the Test Areas were
oriented parallel with the proposed CDS5 road

CD5 Habitat Monitoring, 2016
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(east-west) primarily between the Nigliagvik and
Nigliq channels. The Monitoring Transects serve
as the sampling framework for habitat monitoring.
Monitoring Transect orientation and placement
were a function of stratification along two
gradients, including distance from the CD5 road,
and distance (both vertical and horizontal) from
active river channels. Monitoring Transects in the
Test Areas were located 100 m from the proposed
CD5 road alignment to evaluate potential direct
and indirect road effects (dust, gravel spray,
thermokarst, impoundments, disturbance) on soils,
vegetation, and habitat. Subsequent Monitoring
Transects were spaced 250 m apart. In the Test
Areas, Monitoring Transect length ranged between
180 m and 2,401 m. In the Reference Areas,
Monitoring Transects were placed perpendicular to
the Nigliq channel, were spaced at least 250 m
apart, and ranged in length from 400 m to 2,600 m.

To link this report with the project database
and other analytical products for the CD5 moni-
toring effort, the text uses the actual table and
field names from the database. Database table
names are written in bold and italics (e.g.,
veg cover) and database table field names are
written in italics (e.g., plot _id). Dot notation is
used to specify a field name in a specific table, e.g.,
veg_cover.plot_id, refers to the plot _id field in the
veg_cover table. Values contained in text fields are
enclosed in double quotes (e.g., the plot id was
“t1sa-0200-veg”).

Naming conventions to identify transects
(transect_id) were the same as those used in 2013:

€699

1. Test or Reference using a “t” or “r”.

2. Sequential numbering starting with 1 for
the first transect north or south of the road,
and then 2, 3, 4, etc. for transects farther
north and south, respectively.

(1% e 9

3. North or South using an “n” or “s”.

4. Alpha-character labels for different seg-
ments along the same transect, starting
with “a” for the westernmost transect seg-
ment, and then “b”, “c”, etc. from west to
east.

CD5 Habitat Monitoring, 2016

For example, Monitoring Transect “tIna” would be
the westernmost segment of the first transect north
of the road in Test Area North. The transect
segment east of the Nigliq channel in the furthest
south Monitoring Transect in the southern
Reference Area would be “r6sb” (Figure 1.2).

Permanent Integrated Habitat Monitoring
Plots (herein ‘Integrated Plots’) were re-established
at approximately 200-m increments along each
transect for the first set of transects north and south
of the road (i.e., tlna, tlnb, tlnc, tlsa, tlsb, and
tlsb), and at approximately 400-m increments
along all other transects (Figure 3.1). Integrated
plots consisted of a co-located Vegetation Plot and
Habitat Plot (Figure 3.2). A Soil Pit was associated
with each Vegetation Plot and a Mapping
Verification Plot was associated with Habitat Plots
that included more than one geomorphic surface,
surface form, and/or vegetation type (Figure 3.2).
The Integrated Plots were designed to monitor for
changes in habitat at two spatial scales, including
1) the vegetation community scale using data from
the Vegetation Plots, and 2) the landscape scale
using data from the Habitat Plots in combination
with a habitat map.

The following naming conventions were used
to identify Integrated Plots (herein, superplot id):

» The associated transect _id; i.e., “tlna”.

» Distance of the Vegetation Plot from the
start of the transect in meters, zero-padded
to 4 digits to ensure proper sorting; e.g.,
distance 0 became 0000, 200 became
0200, 2000 remained 2000.

* For plots nested in the Integrated Plot, a
plot-type code was tagged onto the end of
the site_id resulting in a plot_id:

* “-veg” was appended to site id for Vegeta-
tion Plots and the associated Soil Pit.

+ “-hab” was appended to site_id for Habitat
Plots.

*  “-v” was appended to site_id for Mapping
Verification Plots.

For example, the superplot id for the
Integrated Plot at distance 0 along transect “tlna”
would be “tIna-0000” and the Vegetation Plot
plot_id would be “t1na-0000-veg”.
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Figure 3.1.

Locations of Integrated

Habitat Monitoring Plots,

CDS5 Habitat Monitoring Study Area,
Northern Alaska, 2013 and 2016.
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3.3.2 FIELD SURVEYS

3.3.2.A Spring Breakup

ABR joined Michael Baker International
field crews during their annual spring-breakup
surveys on the Colville River Delta 13-22 May
2016. ABR staff participated in aerial and gage
surveys and assisted with preparations for dis-
charge measurements. During the daily aerial
surveys, ABR field staff recorded observations and
photo documented breakup activities. Photographs
were taken using a 12.1 megapixel Ricoh G700SE
GPS Camera System with 5-25 focal length, and
1:3.5-5.5 lens ratio, and 5x optical zoom. Field
notes were digitized and archived with spring
breakup photos.

3.3.2.B Habitat Monitoring

Habitat-monitoring  field surveys were
conducted 16 July—7 August 2016. Three crews of
3 people, each crew consisting of 2 botanists and 1
soil scientist, completed the habitat-monitoring
fieldwork based out of the Alpine Oil Facilities on
the Colville River Delta. Habitat-monitoring
locations were accessed via helicopter, inflatable
boat, and by foot.

Habitat-monitoring  field crews (herein
“Habitat Crews”) worked with LCMF Engineering
(LCMF) to precisely locate the Integrated Plots
established in 2013 (Figure 3.1). To facilitate
locating the Habitat Plots, ABR supplied LCMF
with the GPS locations for all Vegetation Plot Start
Points, Habitat Plot Centers, and Habitat Plot Line
End Points before surveying began. Habitat crews
met with LCMF before they began field surveys to
review the layout of the Integrated Plots (Figure
3.2) and to discuss how best to avoid trampling
vegetation in the plots. Working ahead of the
habitat-monitoring field crews, LCMF walked the
Monitoring Transects using Real Time Kinematic
(RTK) satellite navigation to locate the Vegetation
Plot Start Point, Vegetation Plot End Point, Habitat
Plot Center, and Habitat Plot Line End Points at
each Integrated Habitat Monitoring plot. Pin flags
placed at each of the above locations served as
temporary markers for the Habitat Crews.

3.2.2.B.1. Vegetation Plots

Field-crew leaders used handheld Global
Positioning System (GPS) units to navigate to the
Vegetation Plot Start Points. As Habitat Crews

3.0 Habitat Monitoring

approached the Vegetation Plots, they slowed their
pace of travel and looked for the temporary pin flag
marking the Vegetation Plot Start point. Once the
pin flag was located, backpacks and other sampling
gear were placed well away from the plot to avoid
trampling in the plot area.

Monumentation

In 2013, Vegetation Plot Start Points were
permanently monumented by burying a Surv-Kap®
magnetic marker 20 cm below the soil surface at
the Vegetation Plot Start Point by removing a
small (10 x 10 x 20 cm) soil plug, which was sub-
sequently replaced. In addition, a survey nail with
bright pink survey whiskers and an aluminum tag
labeled with the plot id (e.g., “t1na-0000-veg”)
was inserted into the soil plug above the magnet
placed at the Vegetation Plot Start Point. In 2016,
Habitat Crews relocated the survey pin marking the
Vegetation Plot Start Point and used this as the
starting point for setting up the vegetation plot. In
most cases, LCMF had placed the temporary pin
flags at the survey pin. At a few plots, the survey
pin was not found, having been buried by sediment
or otherwise removed (e.g., ice gouging). In these
cases, a new survey pin with bright pink whiskers
and an aluminum tag with plot id label was
prepared and placed at the location of the
temporary pin flag. A wooden lath with florescent
orange-painted tip was temporarily inserted into
the ground directly next to the survey nail for use
in photograph documentation of the Vegetation
Plot. A 30 m tape (herein, “meter tape”) was used
to temporarily establish the Vegetation Plot Central
Axis as a reference for plot layout and for repeat
photographs. The meter tape was extended 11 m
from the Vegetation Plot Start Point to the
Vegetation Plot End Point (marked with another
temporary pin flag) while avoiding trampling of
the plot area. A second wooden lath with florescent
orange-painted tip or survey nail was used to hold
the meter tape temporarily in place for the
Vegetation Plot Start Point Photo. After the
Vegetation Plot Start Point Photo was taken (see
below) a survey nail with bright blue whiskers and
an aluminum tab with plot id + “END” (e.g.,
“tIna-0000-veg END”) was placed at the
Vegetation Plot End Point. The addition of this nail
will aid in relocating the Vegetation Plot End Point
in future monitoring years.
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Vegetation Plot Photographs

Photographs were taken of the Vegetation Plot
for use in future repeat photograph monitoring
(Figure 3.3, upper left). The photographs were
taken using a 23 megapixel SONY Xperia Z5,
Model E6603, phone camera with 2-24 mm focal
length. All photographs were taken without zoom
and photograph file-size was standardized to
23MB. All equipment, packs, and humans were
moved from the Vegetation Plot Start Point Photo
frame before the photograph was taken. Vegetation
Plot Start Point Photos were photographed in
landscape position and centered on the meter tape
that was laid out and oriented along the Vegetation
Plot Central Axis during monumentation. The
wooden lath placed at the Vegetation Plot Start
Point was used to orient the photograph vertically,
i.e., the photograph was framed with the bottom of
the wooden lath at the bottom center (Figure 3.3,
upper left). We used an internally developed
Android application running on the cameras that
allowed the photographer to record plot
information about each photo, including Plot ID,
location code, GPS location, timestamp, and notes
(Figure 3.3, middle right). These attributes were
stored in a local database on the device along with
the photo, and synchronized to our server database
at the end of each field day. The application also
renamed each photo to include the information
necessary to identify where it was taken, when, and
the subject matter of the photo.

Vegetation Plot Setup

The Vegetation Plot was set up using a “box
plot” design (Figures 3.2 and 3.3, middle left).
Care was taken during plot setup to avoid
vegetation trampling within the plot boundaries.
The first plot corner was established by placing
a wooden stake (30 x 5 x 2.5 c¢cm) in the ground
2.5 m from the Vegetation Plot Start Point towards
the zero (western) end of the Monitoring Transect
and securing the start of the meter tape on the stake
(Figure 3.2 inset, corner “a”). Second, the first plot
edge was established by extending the meter tape
perpendicular across the Vegetation Plot Central
Axis (over the Vegetation Plot Start Point and
along the Monitoring Transect) to the 5 m mark on
the meter tape. The second plot corner was
established at this mark by placing a second
wooden stake (Figure 3.2 inset, corner “b”). The
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second wooden stake was used to secure the meter
tape, which was then extended parallel to the
Vegetation Plot Central Axis, to the 15-m mark on
the meter tape. The third plot comer was
established at this mark by placing a third wooden
stake around which the meter tape was secured
(Figure 3.2 inset, corner “c”). The tape was then
extended perpendicular across the Vegetation Plot
Central Axis to 20 m and the fourth plot corner was
established similar to above with the “tape box”
meter tape at the 15-m mark (Figure 3.2 inset,
corner “d”). These corners were adjusted to ensure
that the “tape box” meter tape crossed the 10 m
mark on the Vegetation Plot Central Axis at exactly
17.5 m. Lastly, the tape was extended to the 30-m
mark back towards the first plot corner (“a”). The
fourth plot corner (“d”) was adjusted as needed
such that it fell on the 20-m mark when the 30-m
mark on the meter tape was at the first plot corner
(“a”).

Vegetation Plot Lines

Once photographs and plot “tape box™ setup
were complete, the meter tape demarcating the
Vegetation Plot Central Axis and wooden lath were
removed in preparation for sampling-line setup.
Four Vegetation Plot Lines were sampled at each
Vegetation Plot using the point-intercept method
(NARSC 1999). In the point-intercept method
vegetation sampling occurs by systematically
sampling at discrete points in space, typically
along a sampling line. At each point a very thin
(2—3 mm) metal rod or, in this study, a laser beam
are held stationary above the vegetation. All
instances in which the rod or laser beam intersected
with a live or dead plant part or ground cover class
(e.g., bare soil) are recorded. The process of
conducting vegetation sampling using the point-
intercept method is referred to as “point-intercept
sampling” and the associated data is referred to as
“point-intercept data.” For reference, a schematic
layout of the Vegetation Plot Lines is provided in
the inset on Figure 3.2, and example photographs
are shown in Figure 3.3, upper right, lower left, and
lower right.

A meter tape was used to establish the
Vegetation Plot Lines at 2-m increments along the
long axis of the Vegetation Plots, starting at 2 m
and ending at 8 m (Figure 3.2). The Vegetation Plot
Lines were set up perpendicular to the Central Axis
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Vegetation Plot photograph with tape marking Vegetation Plot Line layout.
Vegetation Plot Central Axis.

Vegetation Plot “box plot” layout. Data was collected on handheld tablet computers.

Typical team configuration, included botanist Botanist using a laser pointer mounted on a frost probe to
(foreground) and data entry technician (background). conduct point counts along a vegetation sampling line.

Figure 3.3. Examples of data collection using the point intercept method in a vegetation Plot, CD5
Habitat Monitoring Study Area, northern Alaska, 2013 and 2016. Photographs are from
sample year 2013.
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of the Vegetation Plot using meter marks on the
“tape box,” and were used as the framework for
point-intercept sampling. Point-intercept sampling
was conducted along sampling lines using a laser
pointer (GreenBeam 50) mounted on a frost probe
(a 1.3-m tile probe) that was self-supporting after
being pushed into the ground vertically. To ensure
repeatability in the future, laser specifications are
as follows: Class III A, 532 nm wavelength,
lithium batteries, and 2-3-mm wide beam when
held at 1 m above soil surface. Point-intercept
sampling occurred along each sampling line at
0.25-m increments, beginning at 0.25 m and
ending at 4.75 m, for a total of 19 points per
sampling line, and 76 points per plot (Figure 3.2
inset, Vegetation Plot Line and Vegetation Plot
Sample Points).
Point-intercept Sampling

All field data were recorded digitally in the
field (Figure 3.3, middle right) using a stan-
dardized data entry form on an Android tablet
computer designed to upload data to a relational
database (PostgreSQL). Point-intercept protocols
for Vegetation Plots were as follows:

At each sampling point:

e The laser point was oriented towards the
Vegetation Plot End Point.

* Canopy Hits

o All hits were recorded beginning at the
highest hit and proceeding downward to
the ground cover (last hit).

o In plots with vegetation >1.0 m in height,
point-intercept sampling began with the
laser pointing up, starting with highest hit
and working downward to the laser. The
laser was then pointed down and hits were
recorded downward to ground cover.

o Multiple hits of a single species were
allowed.

o If'a dead portion of attached current
annual growth was hit, it was recorded as a
live hit. This was most often encountered
with dead graminoid leaf tips or senescing
shrub leaves.

o Hits are counted if any portion (i.e.,
partial hits) of the laser beam intercepts a
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plant part (either live or dead). For the last
hit at a point, priority is given to partial
hits of live non-vasculars over partial hits
of non-vegetated classes (e.g., mineral
soil).

Standing Dead

o Standing dead included dead vascular
plants attached at the base.

o Hits of standing dead vascular plants
were recorded using the “dead” modifier
up to a maximum of 3 dead hits for a given
standing-dead lifeform.

o Standing-dead hits of graminoids were
recorded as lifeform only (“graminoid”).

o Standing-dead hits of forbs and shrubs
were recorded to species or genus when
obvious; otherwise these were recorded as
lifeform (forb, dwarf shrub, low shrub,
etc.).

Mineral vs. Organic Soil

o Mineral soil hits include hits of silt and
sand

o Organic soil hits included most
commonly “limnic materials” which are
defined as reddish, iron-rich organic
materials originally deposited in water and
typically found exposed in wet sedge
meadows and low-center polygons.

Litter

o Litter included any detached dead
organic material.

° Dead non-vascular plants were recorded
as “litter” with no modifier.

o Dead plants that were attached but
compressed and appressed to the soil
surface were also considered litter.

° Only live non-vascular hits of vegetation
were recorded below litter.

Heights

o ABR recorded heights following the
Bureau of Land Management Assessment,
Inventory & Monitoring (BLM AIM)



protocol (Toevs et al. 2011), with
modifications from NPRA (BLM 2013).

o Height measurements were collected at
every fifth sample point (starting with the
first point on each line).

o The tallest attached herbaceous and
woody plant element that intersected a
cylinder of 15-cm diameter placed around
the laser point was recorded.

° The height was measured from where the
laser intersected the ground.

—Heights were recorded in cm, to the
nearest integer.

—The species were also recorded for
the tallest woody and herbaceous
vegetation at each point.

—Plant-height minimum (when a plant
was present) was set at 1 cm.

—When water was present at the point,
the plant heights were measured from
the soil surface beneath the water.

Water Depths

o Water depth was recorded from the point
on water surface intersected by the laser, to
the ground surface directly beneath.

o When water was measurable or visible
beneath the last (non-soil) hit, a water hit
was recorded as the final hit, unless live
material was found below.

° “Measurable” water was defined as water
depth that could be measured using the
measuring tape with a slight downward
pressure to compress loose materials.

o Water depth was measured with gentle
pressure on the substratum or floc until
slightly firm resistance was encountered.

o Only live hits of vegetation (including
moss, when visible) were recorded below
water.

o Depths were recorded in cm, to the
nearest integer.

o Minimum water depth (when water was
present) was recorded as 1 cm.

23

3.0 Habitat Monitoring

* In Vegetation Plots, non-vascular plants
were recorded to the species level for com-
mon species that were readily and consis-
tently identifiable (e.g., Hylocomium
splendens, Dactylina arctica). For all other
non-vasculars, hits were recorded in broad
categories (e.g., fruticose lichen, foliose
lichen, Sphagnum, other mosses, etc.).

» In Habitat Plots (see below, “Habitat
Plots™), hits of non-vasculars were
recorded using broad categories (e.g., fruti-
cose lichen, foliose lichen, Sphagnum,
other mosses, etc.) and voucher specimens
were not collected.

Vegetation Plot Trace Search

A trace search was conducted in vegetation
plots upon completion of the sampling lines. All
vascular species that were not hit along the
sampling lines were recorded as occurring in the
plot as a “trace” with a cover value of 0.1%. For
non-vasculars, 3—5 of the most common mosses
and lichens in each plot were collected as vouchers
and recorded as “trace”. All voucher specimens
were collected from outside the plot area.The trace
search was considered complete once 10-15
minutes had past since a new species was
encountered.

General Environment Data

Soil scientists on each crew were responsible
for collecting general site data at each Vegetation
Plot. Geomorphic, topographic, and vegetation
variables recorded included physiography (e.g.,
Riverine), surface geomorphology separated into
terrestrial (Table 3.1) and aquatic (Table 3.2) units,
slope, aspect, surface form (Table 3.3), vegetation
structure (e.g., Low Shrub), Viereck et al. (1992)
Level IV vegetation class (Table 3.4), and recent
disturbance (Table 3.5).

Soils

Soil scientists described soils and hydrology
from a Vegetation Plot Soil Pit at each Vegetation
Plot. The Vegetation Plot Soil Pit consisted of a
shallow soil plug or soil pit at least 40 cm deep
(Figure 3.4), located outside the Vegetation Plot
and within 3 m of the Vegetation Plot Start Point
(Figure 3.3, middle left). Efforts were made to
locate and excavate the 2013 soil plugs for
documenting sedimentation or erosion for the
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Table 3.1.  Standard classification system developed for classifying and mapping terrestrial geomorphic
units in the CD5 Habitat Monitoring Study Area, northern Alaska, 2016. Classes modified
from Jorgenson et al. (1997, 2003), Roth et al. (2007), Carter and Galloway (1985), and Kreig

and Reger (1982).

Code

Geomorphic unit

Cs
Esa
Esda
Esdi
Esi
Fdoa
Fdob
Fdoi
Fdra
Fdri
Fto
Ftr
Hfg
Ltdi
Ltdn
Ltic
Ltim
Ltiu

Solifluction Deposit

Eolian Active Sand Deposit

Eolian Active Sand Dune

Eolian Inactive Sand Dune

Eolian Inactive Sand Deposit

Delta Active Overbank Deposit
Delta Abandoned Overbank Deposit
Delta Inactive Overbank Deposit
Delta Active Channel Deposit

Delta Inactive Channel Deposit

Old Alluvial Terrace

Recent Alluvial Terrace

Gravel Fill

Delta Thaw Basin, Ice-rich

Delta Thaw Basin, Ice-poor

Ice-rich Thaw Basin Center

Ice-rich Thaw Basin Margin
Undifferentiated Ice-rich Thaw Basin

Table 3.2.  Standard classification system developed for classifying and mapping aquatic geomorphic
units in the CD5 Habitat Monitoring Study Area, northern Alaska, 2016. Classes modified
from Jorgenson et al. (1997, 2003), Roth et al. (2007), Carter and Galloway (1985), and Kreig
and Reger (1982). Geomorphic units that were identified in the field but not mapped are

identified with an asterisk.

Code

Geomorphic unit

Weldc
Wert
Wildcrh
Wildir

Widit
Wilscr*

Wlsir
Wisit

Brackish Deep Tapped Lake, Connected

Tidal River

Deep Tapped Riverine Lake, High-water Connection

Deep Isolated Riverine Lake

Deep Isolated Thaw Lake
Shallow Connected Riverine Lake

Shallow Isolated Riverine Lake
Shallow Isolated Thaw Lake
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Table 3.3.
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Standard classification system developed for classifying and mapping surface forms in the
CDS5 Habitat Monitoring Study Area, northern Alaska, 2016. Classes modified from
Jorgenson et al. (1997, 2003) and Roth et al. (2007). Surface form types that were identified
in the field but not mapped are identified with an asterisk.

Code

Surface form

Dr*
Dt
Ek
Es
Hm
N
Pc*
Pd
Phh
Phl
Plhh
Plhl
Pllh
Pl
Pm
Pr*
Sb
Tm
Tt*

Ripples

Water Tracks

Streaked Dune

Small Dune

Human Modified

Nonpatterned

Polygon Center

Disjunct Polygon Rims

High-centered, High-relief Polygons
High-centered, Low-relief Polygons
Low-centered, High-relief, High-density Polygons
Low-centered, High-relief, Low-density Polygons
Low-centered, Low-relief, High-density Polygons
Low-centered, Low-relief, Low-density Polygons
Mixed High and Low-centered Polygons

Polygon Rims

Bluffs or Banks

Mixed Thermokarst Pits and Polygons

Troughs (Degraded ice-wedges)

Water

Lake with Islands
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Table 3.4. Standard classification system developed for classifying and mapping vegetation in the CD5
Habitat Monitoring Study Area, northern Alaska, 2016. Classes adapted from Viereck et al.
(1992). Vegetation classes that were identified in the field but not mapped are identified with
an asterisk.

Code Vegetation

Bbg Barrens

Bpv Partially Vegetated
Hfds Seral Herbs

Hfmm*  Mixed Herbs

Hgdl Elymus

Hgmss Moist Sedge-Shrub Tundra
Hgmswt* Moist Sedge-Willow Tundra
Hgmt Tussock Tundra

Hgwfg Fresh Grass Marsh

Hgwfs Fresh Sedge Marsh

Hgwst Wet Sedge Meadow Tundra
Hgwswt  Wet Sedge—Willow Tundra

Sddf* Dryas—Forb Dwarf Shrub Tundra
Sdds* Dryas—Sedge Dwarf Shrub Tundra
Sddt Dryas Dwarf Shrub Tundra

Sdec Cassiope Dwarf Shrub Tundra
Sdwgh Halophytic Willow—Graminoid Dwarf Shrub Tundra
Sdwh* Halophytic Willow Dwarf Shrub
Sdwt* Willow Dwarf Shrub Tundra

Slew Closed Low Willow

Slott* Open Mixed Low Shrub-Sedge Tussock Tundra
Slow Open Low Willow

Slows Open Low Willow-Sedge Shrub Tundra

Stow Open Tall Willow

Wb Brackish Water

Wf Fresh Water

Xp Deep Polygon Complex
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Table 3.5.  Standard classification system
developed for classifying and
mapping disturbances in the CD5
Habitat Monitoring Study area,
northern Alaska, 2016. Class
descriptions modified from Jorgenson
etal. (1997, 2003) and Roth et al.
(2007). Disturbance classes that were
identified in the field but not mapped
are identified with an asterisk.

Code Disturbance

A Absent, none (mature vegetation)
Hfgp Gravel Pad

Hfgr Gravel Road

Hseb Bridge

Hsep Elevated Pipeline

Hti Snow/Ice pads and roads

Nge Eolian (Wind)

Ngf* Fluvial

Ngfd Fluvial Deposition

Ngfe Fluvial Erosion/channel migration

Ngt Thermokarst

Nsk* Salt killed vegetation

broad-scale monitoring of geomorphology. The
5-gauge nails that had been placed in the soil
profile to serve as marker horizons for monitoring
sedimentation and erosion in 2013 were not
reliably found. Instead, the 2013 Vegetation Plot
Soil Pit plug or pit material was temporarily
extracted and a new plug or pit face adjacent to the
plug described (Figure 3.4). This method ensured
sedimentation and surface organic thickness would
be described from an undisturbed, soil profile plug
or pit in 2016. Soil plugs and excavated soil
material were placed on tarps to protect the ground
surface during sampling. A measuring tape was
placed next to the soil plug or, in the case of soil
pits, oriented vertically along the pit face. The soil
plug or pit was then photographed using the same
camera as described for the Vegetation Plot
photographs.

The following data were collected at the
Vegetation Plot Soil Pit in the upper 40 cm of the
soil plug or pit:

3.0 Habitat Monitoring

*  Detailed soil descriptions including hori-
zons, soil texture, boundary topography
and distinctness,

* Soil taxonomic classification to the sub-
group level (Soil Survey Staff 2014),

*  Type and percentage of, and depth to
>15 % coarse fragments,

*  Minimum depth to coarse fragments
(>15% by volume),

* pH and electrical conductivity (EC),

*  Dominant soil texture in the upper 40 cm,
e Soil moisture,

*  Depth to saturated soil,

*  Depth to water table above or below
ground surface,

*  Thickness of surface organic matter,

*  Depth to and type of restrictive layer (e.g.,
permafrost and thaw depth),

*  Maximum observation depth, and

* Alaska Vegetation Classification (Viereck
et al. 1992) Level IV vegetation class.

Electrical conductivity and pH were measured
in groundwater within the pit using Oakton® EC
and pH meters. When water was not present in the
soil pit, EC and pH were measured in a saturated
soil paste using distilled water mixed with several
grams of soil. A small amount of soil from a depth
of 10 cm was used to measure EC and pH at each
soil pit. Soil texture was assessed by estimating the
percent of sand, silt, and clay using the hand-
texturing method. A single simplified texture (e.g.,
organic-rich) was assigned to characterize the
dominant texture in the top 40 cm at each plot.
Once soil descriptions were complete, the site was
restored by placing the soil plug back into the
ground or backfilling the pit with excavated soil. A
survey nail, with blue survey whiskers, was
prepared with an aluminum tag labeled with the
plot _id-soil (e.g., t1na-000-veg-soil) and placed on
the surface of the rehabilitated 2016 Vegetation
Plot Soil Pit. The cardinal direction of the 2016
Vegetation Plot Soil Pit in relation to the 2013
Vegetation Plot Soil pit was recorded in the notes
when the exact location of the 2013 Vegetation Plot
Soil Pit could be determined.
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Figure 3.4. Example of a soil pit demonstrating the temporary removal of the 2013 soil plug, and the
shovel slice for the 2016 soil plug, used to describe soil at vegetation plots, CD5 Habitat
Monitoring Study Area, northern Alaska, 2013 and 2016.

3.2.2.B.1i. Habitat Plots

Field-crew leaders used hand-held GPS units
to navigate to pre-established Habitat Plot Center
Points. As Habitat Crews approached the Plots,
they slowed their pace of travel and looked for the
temporary pin flags marking the Habitat Plot
Center and Habitat Plot Line End Points (Figure
3.2). Once the pin flags were located, backpacks
and other sampling gear were placed in the
Trample Zone (see below “Habitat Plot Setup”) to
avoid trampling in the Habitat Plot Lines. Whereas
the location of the Vegetation Plots was adjusted to
fit the entire plot into a discrete vegetation
community and ecotype, the Habitat Plot Center
Points were not adjusted in the field unless they fell
in a river channel or lake (in which case the
location was moved to the nearest adjacent shore).
The circular Habitat Plots (30-m radius) were
based on the BLM AIM sample plot layout for
NPRA (Figure 3.2; Toevs et al. 2011 and BLM
2013).

Monumentation

In 2013, Habitat Plot Center Points were
permanently monumented by burying a Surv-Kap®
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magnetic marker 8 in (20 cm) below the soil
surface at the Habitat Plot Center Point (Figure
3.2) by removing a small (10 x 10 x 20 c¢m) soil
plug (subsequently replaced). Bright pink survey
whiskers and an aluminum tag labeled with the
plot id (e.g., “t1na-0000-hab”) were then attached
to a survey nail. In 2016, Habitat Crews relocated
the survey pin marking the Habitat Plot Center and
used this as the starting point for setting up the
Habitat Plot Lines. In most cases, LCMF had
placed the temporary pin flags at the survey pin. At
a few plots the survey pin was not found, having
been buried by sediment or otherwise removed
(e.g., ice gouging). In these cases a new survey pin
with bright pink whiskers and an aluminum tag
with plot_id label was placed at the location of the
temporary pin flag. After the Habitat Plot Lines
were laid out and the Habitat Plot Line Photos were
taken (see below), a survey nail with bright blue
whiskers and an aluminum tab with plot_id + “E”
(e.g., “tIna-0000-hab E”) was placed at each of the
three Habitat Plot Line End Points. The addition of
these nails will aid in relocating the Habitat Plot
Line End Points in future monitoring years.



Habitat Plot Setup

A 5-m radius trample zone surrounding the
Habitat Plot Center Point was established using a
meter tape and wooden lath (Figure 3.2). The
trample zone provided space for field staff and gear
while preventing the trampling of vegetation along
the Habitat Plot Lines. Three Habitat Plot Lines
were sampled in each Habitat Plot using the
point-intercept method. The first Habitat Plot Line
was established using a compass (declination set to
0 degrees) to strike the predetermined azimuth and
extending a meter tape out to 30 m from the
Habitat Plot Center Point to the temporary pin flag
marking the Habitat Plot Line End Point. The tape
was then adjusted such that the zero end was
moved to the Habitat Plot Line Start Point at the
edge of the trample zone (i.e., 5 m from the Habitat
Plot Center Point) and the end of the tape was at
25.5 m (offset 0.5 m from the actual Habitat Plot
Line End Point to avoid trampling). A wooden lath
labeled with the line number (Figure 3.5) was
placed at the Habitat Plot Line Start Point, to which
the meter tape was secured. The tape was then
pulled tight thus aligning it between the Habitat
Line Start and End Points. Once the alignment of
the tape was satisfactory (i.e., straight and taut) the
tape was secured at 25.5 m) using a second wooden
lath labeled with the line number and the letter “E”
(i.e., End; Figure 3.5). The second and third habitat
lines were set up as above.

3.0 Habitat Monitoring

Habitat Plot Line Photographs

Upon completing the layout of each Habitat
Plot Line and before point-intercept sampling,
photographs were taken of each Habitat Plot Line
from the Habitat Plot Line Start Point (i.e., center
photograph) and Habitat Plot Line End Point (i.e.
line end photograph) for use in future repeat
photograph monitoring (Figure 3.5). Photographs
were taken using the same 23 megapixel SONY
Xperia Z5, Model E6603, phone camera used for
Vegetation Plot photographs (see above for
detailed specifications). The built-in form recorded
the plot_id, Habitat Plot Line number and photo
element (center photograph vs. line end photo-
graph). All photographs were taken without zoom
and photograph file-size was standardized to
23MP. For center photographs, all equipment,
packs, and humans were moved from the
photograph frame, while equipment, packs, and
humans may be present in line end photographs.
Photographs were oriented for a landscape view.
The meter tape oriented along the Habitat Plot
Line during monumentation was used to center
the photograph horizontally. The wooden laths
placed at the Habitat Line Start and End Points
were used to orient the Habitat Plot Line
photographs vertically, i.e., the photograph was
framed with the bottom of the wooden lath at the
bottom center.

Figure 3.5. Examples of Habitat Plot Line Start Point and Habitat Plot Line End Point photographs, CD5
Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Habitat Plot Lines

Point-intercept sampling was conducted along
Habitat Plot Lines using a laser pointer (see
“Vegetation Plot Lines” above for specifications)
mounted on a frost probe. Point-intercept sampling
occurred along each sampling line at 1-m
increments, beginning at 1 m and ending at 25 m
for a total of 25 points per Habitat Plot Line, and
75 points per Habitat Plot. Point-intercept
sampling followed the same protocols as the
Vegetation Plots with few exceptions (see above,
“Point-Intercept Sampling”). While traversing each
Habitat Plot Line the botanist and data entry
technician stood on the left of the meter tape (i.c.,
when looking out from the Habitat Plot Center
Point) and the laser was oriented toward the right
side of the meter tape.

Three Habitat Plots were selected as
“calibration plots” for assessing the sampling error
associated with point-intercept sampling. The
plot_id for Habitat Plots selected as calibration plot
were  ré6na-0400-hab,  r6na-1000-hab, and
t2nc-0400-hab. At these 3 plots all 6 botanists took
turns conducting the point-intercept sampling
along each of the 3 Habitat Plot Lines. At each
point along the lines each botanist placed the thaw
probe with the laser mount in the same hole that
was created by the first botanist to sample the line.
Once the thaw probe was placed the laser was
oriented at 90 degrees to the habitat line. Each
unique line x user combination was considered the
sampling unit for assessing sampling error.

Map Verification Plots

Map Verification Plots collected basic
landscape variables and photographs to inform
photo-interpretation of Integrated Terrain Units
(ITUs). Map Verification Plots were sampled
within the Habitat-Plot boundary when the
environment or vegetation differed from the
Vegetation Plot in all or part of the Habitat Plot
(Figure 3.2). Data collected at Map Verification
Plots include only those variables pertinent to the
ITU mapping, including geomorphic unit, surface
form, Viereck Level IV vegetation class, and
disturbance. If a Habitat Plot encompassed more
than one wildlife habitat (geomorphic units,
surface forms, and vegetation types), only one Map
Verification Plot was sampled in the dominant
wildlife habitat class in the Habitat Plot. Two
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landscape and two ground-cover photographs were
taken from the Map Verification Plot Center. The
photographs were taken of representative views of
the habitat.

3.2.2.B.iii. Real Time Kinematic (RTK) Surveys
Survey Preparation

LCMF used RTK satellite navigation for
conducting thaw-depth and elevation surveys while
walking the Monitoring Transect to relocate the
Vegetation and Habitat Plots as described in
section “3.3.2.B Habitat Monitoring”, above. RTK
satellite navigation is a technique used to enhance
the precision and accuracy of position (location)
data without post-processing using a satellite-based
GPS. Accuracy of the RTK surveys is in the range
of 3-5 cm horizontally (i.e., x/y coordinate plane)
and 7-8 cm vertically (z coordinate) (pers. comm.
T. Bass).

Prior to conducting surveys, LCMF used a
combination of conventional leveling and static
GPS techniques to establish a broad control
network that encompassed the entire CD5 Habitat
Monitoring Study Area. The static survey was then
processed using GPS software and the OPUS
network to derive the NADS3 (2011) coordinates.
Leveled elevations from local benchmarks were
used to bring the vertical datum to the standard
British Petroleum mean sea level (BPMSL). The
strategically placed control points allowed LCMF
to use GPS RTK surveying techniques and
maintain the stringent horizontal and vertical
tolerances required for the project. The careful
planning put forth in preparing the 2016 survey
will allow LCMF to duplicate similar results over
the life of the project.

Elevation and Thaw Depth Survey

To assess potential changes in thaw depth and
ground surface elevation through time, as per the
Monitoring Plan (ABR and Baker 2013), LCMF
conducted the surveys during the second and third
weeks of July 2016 (note that the RTK surveys
were conducted in the first and second weeks of
August in 2013). While traversing each monitoring
transect, LCMF stopped at each Integrated Plot
(see section “3.3.2.B Habitat Monitoring,” above)
and Thaw Depth/Elevation Points, spaced at 100-m
intervals between each Vegetation Plot Start
Point. Three-dimensional GPS locations (latitude,



longitude, elevation) and thaw depths were
collected at each Vegetation Plot Start Point and
Thaw Depth/ Elevation Point. Thaw depth (i.e., the
depth from the ground surface to frozen ground)
was measured by plunging a 6.4-mm diameter steel
rod into the ground until it hit frozen ground. A
survey nail with florescent pink whiskers was
placed at each Thaw Depth/Elevation Point to
permanently monument the location. LCMF also
collected GPS points at Monitoring Transect
Transition Points, including the edge of large
waterbodies (e.g., riverine lakes, Nigliq channel)
that occurred along transects (monitoring
locations.point type “Water Edge”), grade
breaks (monitoring locations.point type = “Grade
Break”, and the top of the cut bank along the
Nigliq channel (monitoring_locations.point type
= “Cut Bank”). Results from 2016 were compared
with baseline conditions established in 2013.

3.2.2 B.iv. Broad-scale Monitoring of
Geomorphology

Geomorphology monitoring in 2016 consisted
of three tasks. First, ABR staff described an
undisturbed soil plug or profile adjacent to the
2013 Vegetation Plot Soil Pit. Detailed soil
descriptions, including surface organic horizon
thickness, were recorded for sedimentation and
erosion monitoring. As described in section
3.2.2.B.i. Vegetation Plots/Soils, the study design
was modified to measure changes in horizon
profile thickness using a marker horizon, due to the
unreliable nature of finding the 5-gauge nail in the
field. Second, as ABR staff traversed monitoring
transects, the location of drift lines was recorded as
photo observations opportunistically in the
Integrated Monitoring Plots. Third, geomor-
phology monitoring repeat photography points
(herein, Geomorphology Monitoring Photo Points)
were photographed near the proposed CDS5 road
alignment (Figures 3.6-3.7). ABR staff monu-
mented each photograph-point location by placing
a survey nail with florescent pink whiskers and an
aluminum tag labeled with the photograph-point
name in the ground and recorded GPS locations.
For each geomorphology photograph, ABR staff
recorded the compass direction (degrees) in which
the photograph was taken relative to the survey
nail. Photographs were taken while standing on the
head of the survey nail. In 2013, two
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Geomorphology Monitoring Photo Points were
established (Figure 3.1) on the west side of the
Nigliq channel in Test Area South. In 2016 it was
found that the more northerly of these two points,
which was placed near a cut-bank, was at risk of
erosion in the near future. In the event that this
Geomorphology Monitoring Photo Point erodes
away we established a new Geomorphology
Monitoring Photo Point located on the Nigliq
Channel Bridge looking south (Figure 3.1).

3.3.3 OFFICE METHODS

3.3.3.A Data Management

Habitat Monitoring data were collected in the
field using internally developed forms and mobile
applications deployed on a fleet of ruggedized
Android tablet computers. Data collected on each
form were inserted into a local database on each
tablet that mirrors the project database structure on
ABR’s servers in Fairbanks and Anchorage. To
ensure data quality and consistency throughout the
long-term monitoring effort, entries to each field
were validated against a data dictionary that was
customized for the CD5 Habitat Monitoring Study.
For example, when entering data for a categorical
variable (e.g., geomorphic unit), field observers
selected from “pick lists” that were populated with
values relevant to the variable. Similarly, apps
were designed to accept only numeric entries for
quantitative variables (e.g., soil pH). These
validation rules enforced attribute domains and
database integrity, both of which are essential to
long-term monitoring. Field teams carried paper
forms in case any issues arose with the tablets
during fieldwork. Backups of the data in the
database were copied to removable media after
completion of each plot in order to ensure the data
are retrievable even if a tablet were to fail.

At the end of each field day, teams backed up
all data from tablets to hard drives and conducted
an initial data review by inspecting raw data tables
and running data-proofing queries. After review,
field data were uploaded to ABR’s servers using
the Wi-Fi connection at Alpine Camp.

Field data were stored in a project-specific
PostgreSQL database created using a common
template database shared by all ELS and Wetlands
projects. This template database includes all the
necessary reference tables for the categorical fields
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2013 2016

2013 Photo Point 1 at 110° 2016 Photo Point 1 at 110°

70 g

2013 Photo Point 2 at 154° 2016 Photo Point 2 at 154°

Figure 3.6. Photographs from the Geomorphology Monitoring Photo Points 1 and 2, CD5 Habitat
Monitoring Study Area, northern Alaska, 2013 and 2016. Photographs include Photo Point 1
at 110°in 1.a) 2013, and 1.b) 2016; Photo Point 1 at 190° in 2.a) 2013, and 2.b) 2016; Photo
Point 2 at 154° degrees in 3.a) 2013, and 3.b) 2016.
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Figure 3.7. Photographs from Geomorphology Monitoring Photo Point 3, CD5 Habitat Monitoring Study
Area, northern Alaska, 2013 and 2016. This point was added in 2016 to monitor for landscape
change from the Nigliq channel bridge (left) NNW at 329° and (right) SSE at 149°.

in our field forms, an existing data table structure,
and views designed to streamline data review,
analysis, and reporting tasks. The template is
partitioned into several “schemas” that are used for
database organization and each can independently
contain tables, views, functions, and other database
objects.

All databases are backed up to disk (nightly)
and also to tape (approximately weekly), and these
backups are rotated such that we maintain older
copies of the databases for up to several months.

3.3.3.A.i Data Quality Assurance and Control

After the field effort, we performed a
sequence of quality assurance and quality control
(QAQC) routines on the Habitat Monitoring data.
The QAQC procedures were designed to ensure
that only the highest quality data were used for
analysis. Vegetation point-intercept, environmental,
and GPS Survey data and photographs were
reviewed to ensure that data were collected in
accordance with the overall study design, and
consistently across the 3 field teams.

The first stage of QAQC occurred after the
field data were uploaded from the Android tablets
directly to the “field” schema of the project
database on ABR servers. After reviewing the
primary identifiers in all tables to ensure referen-
tial integrity between the data collected with
different mobile applications at the same loca-

tions, the data were copied to the “public” schema
where subsequent data review would take
place. The original field data, with only primary
key adjustments, were preserved in the field
schema.

Once the data were copied to the “public”
schema, SQL queries and a series of pre-written
database views were used to perform logical
checks on the data. For instance, water_depth _cm
was checked against the water above below
surf code field to ensure that water depths were
recorded with the correct sign depending on if the
water table was above (positive) or below
(negative) the soil surface. When errors were
encountered, updates were made using web-based
review forms. The review forms communicated
with the server database, integrating the data from
each field form, photograph, and field into a single
interface that allowed users to review and correct
the data simultaneously. All updates were logged
in the database and read/write access to the form
was restricted by login.

Next, the data were checked for consistency
with relevant classification systems using database
views that aggregated and ordered the data to
facilitate such review. For instance, the point-
intercept data were aggregated to percent-cover
values for each Vegetation Plot and these
quantitative values were then used to confirm that
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an appropriate AVC vegetation class (Viereck et al.
1992) was assigned to each plot in the field.

Plot photographs were reviewed using a form
that organized all photos by plot id and sample
year. The form facilitated review by allowing
reviewers to 1) confirm that the photographs were
correctly assigned to the correct plot id and
photo_plot_element _code (e.g., Vegetation Plot
Start Point, Habitat Plot Line, Soil Pit); 2) select
the best photographs among the duplicates in each
category; and 3) identify any missing photographs.
Photographs were also reviewed spatially using
the GPS coordinates embedded in the Exif
(exchangeable image file format) metadata to
display the photos in a GIS. The photo locations
were then compared to the location of each
Integrated Habitat Plot to ensure that each photo
was assigned to the correct plot.

Plant voucher specimens were sent for
verification to Carolyn Parker at the University of
Alaska Anchorage Herbarium (vascular plants)
and Brian Heitz at the University of Alaska
Anchorage (non-vasculars). A subset of non-
vascular specimens were sent to Dr. Lars Hedenis
at the Swedish Museum of Natural History in
Stockholm. The species determinations were
used in the PostgreSQL database to update the
preliminary species codes assigned to voucher
specimens in the field.

3.3.3.A.ii Plant Taxonomy Revisions

The scientific names of plants are con-
tinuously being revised to reflect new information
concerning phylogenetic relationships within and
among different groups of plants. For example,
genetic and morphological studies often indicate
that what was previously considered one species
is actually two or more closely related species.
In other cases, new information leads to the
regrouping and renaming of existing taxa. Because
the taxonomy of plants is under constant revision,
it can be challenging for botanists to keep track of
the current plant nomenclature, and many times
well known older names remain in use. Therefore,
taxonomic changes can complicate long-term
monitoring efforts such as those reported on here
for the CD5 Study Area.

To address this issue, plant observations
recorded at field plots in 2013 were reviewed and
names were updated as needed to match more
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current, published taxonomic nomenclature. We
updated species names according to Viereck and
Little (2007) for shrubs and Skinner et al. (2014)
for grasses; the taxonomy used for all other
vascular plants followed Hultén (1968) and thus
remained unchanged from 2013. For non-vascular
plants (i.e., mosses, liverworts, and lichens), we
attempted to use the taxonomy preferred by the
U.S. Department of Agriculture (USDA). The
USDA maintains an online database—USDA
PLANTS—which provides up-to-date taxonomic
information for most non-vascular plants in Alaska
(USDA 2017). If the nonvascular species name
used in 2013 was not found in USDA PLANTS,
the name provided in the Flora of North America
was used instead (Flora of North America Editorial
Committee 2007, 2014). In addition to revision of
species names prompted by taxonomic changes,
we also revised records of one common moss
species—Calliergon giganteum—after an expert
review of voucher specimens revealed that all
observations instead pertained to the closely
related Calliergon richardsonii.

3.3.3.B Integrated Terrain Unit (ITU) Mapping

ABR performed baseline ecological mapping
for the CD5 Study Area in 2013. This mapping
applied an existing ecological classification system
that was developed for the Central Beaufort
Coastal Plain (CBCP; see below) and described
landscape conditions photo-interpreted using high-
resolution imagery from 25 July 2012. However,
the deltaic ecosystems of the CRD are shaped by
numerous natural disturbance and successional
processes that change ecosystem conditions over
time. For example, river channel migration results
in predictable patterns of erosion along cutbanks,
and deposition of new sediment on point bars that
are gradually colonized by vegetation. As a result,
the baseline maps for the CD5 Study Area
represent a “snapshot” of ecosystem conditions
that existed when the imagery used for mapping
was acquired in 2012. Since then, the construction
of CD5 infrastructure and ice roads have caused
local-scale changes to ecosystem conditions, and
the exceptional spring breakup floods of 2013 and
2015 resulted in extensive flooding, ice scour, and
sedimentation along the Nigliqg Channel and other
distributaries of the CRD. Thus, as per the



Monitoring Plan the mapping was updated by
overlaying the Dbaseline map units onto
high-resolution imagery acquired 3-5 July 2015.
The updated mapping was then used to perform a
landscape change analysis as indicated in the
Monitoring Plan (ABR and Baker 2013).

As part of the landscape change assessment,
the Monitoring Plan specified the following
criteria:

For each of the ITU components or wild-
life habitat, if the average percent change
in spatial area in the Test Area is greater
than or less than the 95% confidence inter-
val of the corresponding aggregated ITU
components or wildlife habitat classes in
the Reference Area, this will trigger a
review of the hydrology model and result-
ing design criteria.

However, confidence intervals are used in
statistics to describe the amount of uncertainty
associated with a sample estimate of a population
parameter. After reviewing the Monitoring Plan
guidelines for the landscape change analysis, it was
unclear what confidence intervals of the average
percent change in spatial area would represent
with respect to uncertainty in the ITU mapping.
Uncertainty in mapping is more commonly
expressed by a formal accuracy assessment using
an independent field verification dataset, rather
than confidence intervals. An accuracy assessment
of the ITU mapping was not conducted as part of
the CD5 Monitoring Study because an independent
verification dataset was not available. Due to the
unclear nature of applying confidence intervals to
the ITU mapping we developed a new objective
criteria for assessing landscape changes in the Test
Areas with respect to the Reference Areas. The
criteria are as follows:

A review of the hydrology model will be
triggered if any one or more ITU compo-
nent classes or habitat classes in the Test
Areas changes in area between 2012 and
future years mapping (in this case the 2015
mapping). The change in area must be
greater than or equal to 5% of the total area
of that component across the entire CD5
Study Area AND the difference in percent
of area changed for said component class
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or habitat between Test and Reference
Areas is >5%.

The above criteria is highly applicable, and
readily applied to the ITU mapping. The above
criteria was applied to the landscape change
analysis performed in this report.

For wildlife management purposes, ITU map
updates can be used to quantify changes in the
areal extent and landscape arrangement of habitat
types for species of interest over time, and to
determine if changes are extensive enough to
necessitate adaptive management in the CDS5
Study Area. In addition, habitat monitoring
provides a tool to evaluate landscape alterations
resulting from factors beyond the direct control
of CPAI, such as climate change and landscape-
scale disturbances such as river channel
migration.

All mapping efforts used an Ecological
Land Survey (ELS) ITU mapping approach in
which 4 ecosystem parameters were assigned to
each landscape “patch” (hereafter, map unit)
delineated in the map: geomorphic unit, surface
form, vegetation, and disturbance class. These
parameters describe ecosystem properties that are
relevant to land management applications,
including wildlife habitat assessment and
monitoring, landscape trafficability assessment,
and contingency planning. Each unique combi-
nation of parameters constitutes an Integrated
Terrain Unit (ITU; e.g., Delta Active Overbank
Deposit/High-center Low-relief Polygons/Open
Low Willow Shrub/Fluvial Sedimentation). The
mapping classification was applied using a
standard coding system (Tables 3.1-3.5) and all
map units in the baseline map were delineated at a
scale of 1:1,500, for a final map scale of 1:3,000
(i.e., the scale at which the mapping is valid for
landscape analysis). For baseline mapping, the
minimum map unit size was 0.1 hectare (ha) for
waterbodies, 1.0 ha for complexes, and 0.3 ha for
all other classes. For the map update effort, we
adjusted map units as needed to reflect changes in
landscape conditions evident in 2015 imagery,
even if the portion of map units affected by change
did not meet the minimum map unit criteria used in
construction of the baseline map.

CD5 Habitat Monitoring, 2016
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The high-resolution imagery acquired 3-5
July 2015 was compared with 2012 imagery using
the “swipe” tool in ArcMap GIS software, and the
baseline map units were edited to reflect changes
evident in the recent imagery. These edits included
spatial adjustment of map unit boundaries, change
to one or more ecosystem parameters assigned to a
map unit, or both. Our image review first focused
on landscape positions that are known to be highly
dynamic, such as shorelines of the Nigliq Channel
and tapped lakes such as Nanuk Lake. Tapped
lakes are waterbodies that have been partially
drained through erosion of banks by adjacent river
channels; they are connected to rivers by distinct,
permanently flooded channels. We also reviewed
all map units for which a disturbance class had
been assigned during baseline mapping to assess
whether the disturbed area had changed in size, or
if vegetation had recovered from the historical
disturbance. We used existing “as-builts” in the

Table 3.6.

form of GIS shapefiles to delineate the boundaries
of the newly constructed CD5 road, bridges, and
pipelines. We ultimately developed a simple
classification of natural and anthropogenic
mechanisms potentially responsible for landscape
change in the CD5 Study Area, and assigned a
mechanism class to each updated map unit (Table
3.6). The landscape change mechanisms identify
the suspected cause of landscape changes that
occurred between 2012 and 2015.

Throughout this report, the term map update
refers to ITU map changes that pertain to actual
changes in the ecological conditions of a map unit
that occurred since the baseline mapping effort.
The emphasis of the map updates was on changes
that could be interpreted unequivocally from
high-resolution imagery and involved a transition
from one ITU to another. In addition to map
updates, we performed a small number of map
revisions to the 2012 baseline mapping where 2016

Standard classification system developed for classifying and mapping landscape change

mechanisms in the CD5 Habitat Monitoring Study Area, northern Alaska, 2012-2015.

Disturbance regime

Description

Absent
Anthropogenic—bridge
Anthropogenic—gravel

road

Anthropogenic—ice road
or pad

Anthropogenic—pipeline

Fluvial Erosion

Fluvial Sedimentation

Succession

Thermokarst (Ngt)

No detectable change in ecosystem conditions during the 2012—-2015 monitoring
interval.

Bridge construction over distributaries of the Colville River Delta associated with the
CDS5 Road in 2013.

Emplacement of gravel fill for roads and pads in 2013.

Disturbance and/or mortality of vegetation due to ice roads and pads on tundra during
2012-2015.

Construction of elevated pipelines in 2013.

Former terrestrial areas that were disturbed or destroyed by channel migration and
cutbank erosion from 2012-2015.

Former stream channels that were filled with sediment, or vegetated areas that
experienced partial or complete plant mortality due to sediment deposition during
20122015, usually associated with flood events.

Increases in vegetation density and/or changes in vegetation structure associated with
ecological succession after historical disturbance.

The processes associated with the thawing permafrost that leads to local or widespread
collapse, subsidence, erosion and instability of the ground surface.

CD5 Habitat Monitoring, 2016
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field observations indicated that the original ITU
assigned to a map unit was inaccurate. Map
revisions of inaccurancies are depicted in the
updated mapping, but they were not included in
assessments of ecosystem change in the Test and
Reference Areas (see Landscape Change Analysis
section, below).

Updated maps were produced for each of the
4 ecosystem parameters used to create the ITUs:
geomorphic unit, surface form, vegetation, and
disturbance. Geomorphic units were separated into
terrestrial and aquatic maps to better display
waterbodies. The 4 ITU component codes were
concatenated for each map unit, and the resultant
ITU code combinations (herein, ITU codes; e.g.,
Fdoi/Phl/Slow/Ngfd) were aggregated into map
ecotypes (e.g., Riverine Moist Low Willow Shrub)
and wildlife habitats (e.g., Moist Low Shrub) based
on the CBCP classification.

Ecotype and Wildlife Habitat Classification

The Central Beaufort Coastal Plain (CBCP)
classification and mapping represents nearly 20
years of ELS classification and mapping efforts in
northern Alaska, including the Colville River Delta
(Jorgenson et al. 1997) and northeastern NPRA
(Jorgenson 2003; Jorgenson et al. 2002). The
CBCP classification includes map ecotypes and
wildlife habitats that were developed, and have
been continually refined, from field data collected
as part of these studies and others performed in
the greater western Kuparuk oilfield. The CBCP
classification also provides a framework for
cross-referencing between ITUs identified in new
or updated mapping and the map ecotype and
wildlife habitat classifications (Appendix A).

Map ecotypes represent local-scale eco-
systems that are classified by aggregating ITUs
with  similar  geomorphology, surface form,
vegetation, and disturbance regime. The over-
arching goal of the aggregation is to identify strong
relationships that are useful for land management
and mapping, while avoiding the creation of
extraneous classes that would lead to confusion
and decreased map accuracy. In developing the
CBCP ecotype classification, we attempted to use
ecological characteristics that could be interpreted
from high-resolution imagery. A nomenclature for
ecotypes was also developed that translated
fundamental ecological characteristics, including

3.0 Habitat Monitoring

physiography, soil moisture, vegetation structure,
and dominant species into intuitive and easily
understood classes (e.g., Riverine Moist Low
Willow Shrub). The number of potential ecotype
classes was reduced by aggregating the field data
for individual ecological characteristics (e.g., soil
stratigraphy and vegetation composition) using a
hierarchical approach. For geomorphology,
near-surface soil classes, textures, and layers were
aggregated into geomorphic units using the
approaches of Miall (1985) and Brown et al.
(1997). Geomorphic units were assigned to
physiographic settings based on their primary
erosional or depositional processes. Surface forms
were aggregated into a reduced set of classes
(primarily driven by degree of ground-ice
development, e.g., ice-wedge polygons). For
vegetation, the structural levels of the AVC
(Viereck et al. 1992) were used because they
are readily identifiable in high-resolution
imagery. Some classes were grouped (e.g., open
and closed shrub) because species composition
was similar.

We updated the baseline map ecotype and
wildlife habitat maps by recoding the updated ITU
map, using a cross-reference table between ITU
code, map ecotype, and wildlife habitat. During the
2016 CD5 ITU map update, a few new [TUs were
encountered that were not present in the existing
CBCP; in these cases, map-ecotype and wildlife-
habitat classes were assigned based on the
classification of the most similar existing ITU(s)
(Appendix A).

The CBCP wildlife habitat classification was
based on landscape properties considered most
important to wildlife: shelter, security (or escape),
and food. These factors may be directly related to
the quantity and quality of vegetation, plant species
composition, surface form, soils, hydrology, and
microclimate. Wildlife habitats are not equivalent
to vegetation types; for example, dissimilar
vegetation types may be combined into the same
wildlife habitat because selected wildlife species
use them similarly. Conversely, wildlife may
distinguish  between habitats with similar
vegetation on the basis of relief, soil
characteristics, prey availability, or other factors
not reflected in plant-species composition. Habitat
classifications for the same region may also differ,
depending on the wildlife species or species groups

CD5 Habitat Monitoring, 2016
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being considered. For the CBCP classification, the
focus of the habitat classification was on (1)
breeding waterbirds that use waterbodies and wet
and moist tundra types, and (2) mammals and
upland birds that use shrublands and drier tundra
types. Wildlife-habitat classes were assigned to the
ITUs according to the CBCP classification scheme
that was developed following bird-habitat studies
conducted in the Prudhoe Bay, Kuparuk, and
Alpine oilfields and in northeastern NPRA
(Anderson et al. 2001; Burgess et al. 2003; Johnson
et al. 1990, 1997; Jorgenson et al. 1989; Murphy
and Anderson 1993; Murphy et al. 1989).

3.3.3.C Data Analysis
3.3.3.C.1 Vegetation Plot Analysis

Point-intercept Data Summaries

Raw point-intercept data does not correspond
directly to percent cover of plant species or ground
cover classes. Therefore, for each Vegetation Plot,
point-intercept data were summarized to produce
estimates of plant cover and to characterize woody
and herbaceous vegetation height. The data for
all the points sampled at each plot were aggregated
to calculate the cover metrics by species and by
vegetation-structure class for each plot. Vegetation-
structure class was assigned based on lifeform for
herbaceous and non-vascular vegetation (sedge,
grass, forb, lichen, and moss). For woody vege-
tation, structure class was based on the Viereck and
Little (1992) shrub species size class descriptions
(e.g., low shrub). For analysis, low and tall shrubs
were combined as “low and tall shrubs,” and dwarf
and prostrate shrubs were grouped as “dwarf
shrubs.”

Water, bare soil, and litter (including standing
dead vegetation) were each summarized as
separate classes in this analysis. Cover data were
then summarized in four ways: 1) hit density
(hit_density)—all hits by species and structure
class at each point, 2) cover (cover)—first hit of
each species and structure class at each point, 3)
top cover (top cover), and 4) bottom cover
(bottom_cover)—Iast hit at each point.

Following the BLM AIM protocol (Toevs et
al. 2011, BLM 2013), we used shrub- and
herbaceous-height data collected at every fifth
point along each line to calculate average woody
and herbaceous vegetation height (the mean height

CD5 Habitat Monitoring, 2016

for all sampled points at which shrubs or
herbaceous vegetation were present) and frequency
(the percentage of sampled points where woody or
herbaceous vegetation was present).

Vegetation Plot Assessment

The vegetation plot assessment data analysis
methods follow directly from the Monitoring Plan
(ABR and Baker 2013), which specified the
following:

Vegetation data from both Test and Refer-
ences Areas from post-construction moni-
toring years will be ordinated with the
pre-construction data to determine if a shift
in species composition has occurred over
time. Generalized regressions will be fit to
the ordination axes scores for each contin-
uous environmental variable. The direction
along each axis to which plots may have
shifted will be compared to the results of
the generalized regressions to draw infer-
ences regarding changes in environment
associated with the shift in species compo-
sition.

Several data transformations were performed
following the aggregation of the Vegetation Plot
point-intercept data to cover values. First, vascular
and non-vascular subspecies and varieties were
aggregated to the species level. In addition,
vascular species that were easily confused in
the field were aggregated to genus level for
the analysis. These two transformations were
completed using a cross-reference table (ref ssp_
var_xwalk) stored in the project schema of the
project data (Table 3.7). Both transformations
were required to harmonize the 2013 and 2016
datasets and reduce differences between the
years related to misidentification or taxonomic
resolution. Second, unknown species codes,
ground cover classes, non-vascular taxa, and
vascular taxa identified to genus level only (with
the exception of those discussed above) were
excluded from the analysis. Third, plots where the
floristic analysis ynna code field in the veg table
is equal to “no” (n) were withheld from the
analysis. This field was used to exclude water plots
(i.e., plots representing waterbodies) and barrens
(<5% live cover). Fourth, all trace species (i.e.,
cover of 0.1%) were withheld from the analysis.
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Finally, any plots that had less than 3 species, after
the exclusion of the species described above, were
withheld from the analysis. Additionally, all
species that occurred in only one plot were
withheld from the analysis. Plots that were
withheld from the analysis were assessed by
comparing the Viereck et al. (1992) Level IV
vegetation class assigned to the plot in 2013 and
2016. Plots with the same vegetation class between
years were considered to not have changed. Plots
that differed in vegetation class were considered to
have changed between 2013 and 2016. Lastly, the
percent cover data were natural log transformed.
The natural log transformation down-weights
dominant species, which can skew the results of
clustering and ordination analyses. The final
floristic analysis dataset had both raw and natural
log transformed cover values.

The combined 2013 and 2016 transformed
Vegetation Plot datasets were then ingested in R
statistical software. We partitioned the dataset into
4 sub-datasets:

1. 2013 plots classified as wet plot ecotypes
(referred to herein as the “2013 wet plot
ecotype sub-dataset”),

2. 2013 plots classified as moist plot ecotypes
(referred to herein as the “2013 moist plot
ecotype sub-dataset”),

3. 2013 and 2016 plots classified as wet plot
ecotypes (referred to herein as the
“2013/2016 wet plot ecotype sub-dataset™),
and

4. 2013 and 2016 moist plot ecotypes (referred
to herein as the “2013/2016 moist plot
ecotype sub-dataset”).

The partitioning based on wet and moist
ecotypes follows from the vegetation classification
and assessment methods used in the 2013 CDS5
Habitat Monitoring Study (Wells et al. 2014); the
2013 data were partitioned into these two groups
for analysis. The first group includes ecotypes
characterized by wet sedge and wet sedge-willow
tundra vegetation; the second group comprises all
other ecotypes characterized as moist. See Wells et
al. 2014 for detailed descriptions of the plot

ecotypes.

CD5 Habitat Monitoring, 2016

Following the dataset partitioning, we used
the natural log transformed cover data to calculate
Bray/Curtis dissimilarity (Bray and Curtis 1957)
matrices for the 2013/2016 wet plot ecotype and
2013/2016 moist plot ecotype sub-datasets. Based
on exploratory analysis, a log transformation of the
species-cover data was determined to be most
suitable for the ordination analyses. The log
transformation reduced the statistical weight of
dominant species with high cover relative to
species with lower cover and resulted in a more
balanced representation of species composition
within Vegetation Plots. We applied non-metric
multidimensional scaling (NMDS) (Shepard
1962a&b, Kruskal 1964a&b) to the dissimilarity
matrix to chart the plots in species space. For the
analysis, we used the ordination plotting functions
provided in the vegan (Oksanen et al. 2016) and rgl
(Adler et al. 2016) R libraries to plot the NMDS
ordinations for 2013/2016 wet plot ecotype (herein
“2013/2016 wet NMDS”) and 2013/2016 moist
plot ecotype (herein “2013/2016 moist NMDS”)
sub-datasets as 3-dimensional, dynamic plots. The
rgl function rotates the plots graphically and
allows them to be viewed from multiple per-
spectives. The plot ecotypes were symbolized in
the dynamic plots and the point dispersion of each
plot ecotype grouping was reviewed visually for
consistency within and between groups.

We used the natural log transformed cover
data to calculate Bray/Curtis dissimilarity matrices
for the 2013 moist plot ecotype and 2013 wet plot
ecotype sub-datasets to place the two sub-datasets
into clusters of plots with similar vegetation
composition. We independently clustered the two
sub-datasets using the fixed clustering algorithm
Partitioning Around Medoids (PAM) (Kaufman
and Rousseeuw 1990). Medoids are plots that are
centrally located within a cluster and represent the
“typical” plot for that cluster based in this case on
plant species composition. This resulted in two
clusterings, one for the 2013 moist plot ecotypes
(herein “2013 moist clusters”) and one for the 2013
wet plot ecotypes (herein “2013 wet clusters™). We
applied NMDS to the dissimilarity matrices to
chart the plots in 3-dimensional species space
resulting in a NMDS diagram for the 2013 moist
plot ecotypes (herein “2013 moist NMDS”) and for
the 2013 wet plot ecotypes (herein “2013 wet
NMDS”). We then symbolized the respective PAM



clustering and medoid in each NMDS diagram.
Next, we used the xyz-coordinates of each plot in
each NMDS to calculated the ordination distance
of each plot from the medoid of each respective
cluster. The plot-to-medoid distance was then
averaged across all plots in each cluster (avg.
cluster medoid distance) and the standard deviation
(stdev cluster medoid distance), 2x standard
deviation (2x stdev medoid distance), and 3x
standard deviation (3x stdev medoid distance) were
calculated. The results of this analysis served as the
baseline data for comparing with the 2016 plots
(see below).

We plotted the “2013/2016 moist NMDS” and
“2013/2016 wet NMDS” and symbolized the 2013
moist clusters and 2013 wet clusters. Within each
NMDS and cluster, for each plot we used the
NMDS xyz-coordinates to calculate the distance
between the 2013 (e.g., plot id tlna-0200-veg
sampled in 2013) and 2016 (e.g., plot id
tlna-0200-veg sampled in 2016) plots in the
2013/2016 moist NMDS and 2013/2016 wet
NMDS, respectively. The ordination distance
between the 2013 and 2016 plots was then
compared to the 2x stdev medoid distances and 3x
stdev medoid distances calculated above for each
cluster. We grouped plots into 3 categories based
on the stdev medoid distance between the 2013 and
2016 plot.

* Not changed: plots with a NMDS distance
between the 2013 and 2016 plot of <2x
stdev medoid distance for their respective
2013 cluster were considered to have not
changed in species composition.

*  Potentially changed: plots with a NMDS
distance between the 2013 and 2016 plot
of 2x stdev >3x stdev medoid distance for
their respective 2013 cluster were consid-
ered to have shifted in species composition
between 2013 and 2016 but the shift was
minor and the shift may be related to natu-
ral variability between years and/or sam-
pling error.

*  Changed: plots with a NMDS distance
between the 2013 and 2016 plot greater
than the 3x stdev medoid distance for their
respective 2013 cluster were flagged as
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having changed in species composition
between 2013 and 2016.

Plots flagged as having changed were then
plotted in the NMDS diagrams with arrows
pointing from the 2013 plot to the 2016 plot to
illustrate the direction and distance of change in
ordination space. This approach follows the
general methods underpinning the reference
condition approach to monitoring ecological
communities as per Reynoldson et al. (2001).

Non-metric Multidimensional Scaling (NMDS):
Ecological Gradients and Vegetation Plot Assess-
ment

The R function ordisurf() from the vegan
package was used to fit a subset of environmental
variables to the 2013/2016 moist and 2013/2016
wet NMDS axis scores using Generalized Additive
Models (GAMs). This analysis is a type of indirect
gradient analysis in which the ordination axis
scores are treated as independent variables that are
used to predict the dependent environmental
variables. The end purpose of this analysis is to
elucidate complex relationships between species
composition and environmental gradients in the
CDS5 Habitat Monitoring Study Area. The results of
ordisurf() is 1) a contour surface plotted over the
ordination that represents the direction of the
relationship between the species composition (as
represented by the ordination axes) and the
environment variable as predicted by the GAM; 2)
a model fit value, deviance-squared (D:2), that
indicates the strength of the relationship between
the ordination axes and each environmental
variable; and 3) a p-value that indicates the
statistical significance of the model fit for each
environmental variable. The higher the fit value,
the better the model fits the actual distribution of
the environment along the ordination axes, and
(indirectly) the greater the importance of the
variable in influencing the structure and
composition of the vegetation. We ran ordisurf for
all combinations of NMDS axes (i.e.,
[1,2],[1,3],[2,3]) and the  following 9
environmental variables:

* Latitude (monitoring_loca-
tions.lat dd§3),

CD5 Habitat Monitoring, 2016
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¢ Longitude (monitoring_loca-
tions.long dd§3),

* Elevation BPMSL (monitoring_loca-
tions.elev_cm),

* Distance from CD5 Road (monitoring_lo-
cations.distance to _edge cd5 road m),

e Thaw depth (monitoring_loca-
tions.thaw_depth_cm),

»  Soil surface organic thickness (els.soil -
surface organic_thick _cm),

*  Water depth (els.water depth cm),
» Site pH (els.site_ph_calc),

» Site Electrical conductivity
(els.site_ec us calc)

The ordisurf() results were reviewed and the
variables with the strongest fits were used to plot
fitted surface contours overlaid on the NMDS
diagrams. We used the ordtest() function from
the labdsv package (Roberts 2016) to test for
the degree of deviation from randomness of
categorical variables along each set of ordination
axes. Significant deviation from randomness
suggested that the categories of the variable were
more highly aggregated along the set of ordina-
tion axes than would be expected if the categories
were randomly distributed across the ordination
space. Categorical variables tested included the
following:

*  Sample year (els.sample year)

* Area (plot.area_id aggregated to “Refer-
ence” and “Test”)

»  Plot ecotype code (els.plot_ecotype code)

The ordtest() results were reviewed and the
significant (p < 0.05) variables were symbolized on
the NMDS diagrams.

Species Richness by Study Area, Plot Ecotype, and
Sample Year

Species richness was calculated for each plot
ecotype by Area and sample year by summing the
total number of unique species occurrences in
each class. For the species richness calculation the
trace species were merged with the transformed
vegetation dataset that was first applied to the
NMDS analysis (see section Vegetation Plot
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Assessment, above). The trace species were
transformed similarly, i.e., subspecies and varieties
were aggregated to the species level and vascular
species that were easily confused in the field were
aggregated to genus level for the analysis.
Unknown species codes, ground cover classes, and
vascular taxa identified to genus level only (with
the exception of those discussed above) were
excluded from the species richness calculations.
Plots where the floristic_analysis_ynna_code field
in the veg table were equal to “no” (n), plots that
had less than 3 species, after the exclusion of the
species described above, and species that occurred
in only 1 plot were included in the species richness
calculation. The species richness data were
summarized using stacked bar charts to compare
vascular and non-vascular species richness for
ecotype with a sample size of 2 or more by Area
and sample year.

Detailed Ground Cover Class Assessment

We summarized percent cover of ground
cover hits using the last hit at each point
(bottom_cover). The percent cover of each ground
cover class was calculated for each plot and then
aggregated to average, min, and max cover values,
and sample size for each ground cover class by
grouping the plots in two ways: 1) by sample year
and Area, and 2) by plot ecotype, sample year,
and Area. The results of the aggregation were used
to prepare ring charts of the proportion of average
total ground cover by sample year and study Area,
and ecotype, sample year, and Area. Proportion of
average total ground cover was calculated as
follows:

Proportion of average total ground
cover = Average cover(%)/ sum(Average
cover(%))

The transformation from percent cover to
proportion of average total ground cover was
performed to transform the average total cover by
grouping, which in some cases summed to more
than 100%, to a proportion that summed to 100%
and which could be presented in a circular ring
chart.

Environmental Data Assessment

We summarized 9 environmental variables by
plot ecotype, Area, and year by calculating the



average, standard deviation, min, max, and sample
size of each. The environment variables summar-
ized include Elevation BPMSL, Thaw depth, Soil
surface organic thickness, Water depth, Site pH,
and Site Electrical conductivity.

Vegetation Structure

The cover and height data for each vegetation
structure class from the Vegetation Plots were
summarized for each plot ecotype by Area and
sample year. The mean cover value for each
structure class in each plot ecotype by Area and
sample year was calculated by averaging the cover
values from all plots assigned to that plot ecotype.
The mean height and frequency of woody and
herbaceous vegetation for each plot ecotype were
calculated in the same manner. The mean cover
and height data were used to create stacked bar
charts and summary tables for presentation. The
mean cover data for each vegetation-structure
class were combined with the mean top cover
of the 3 non-vegetated classes (water, soil, litter)
for each plot ecotype. The top cover, or first hit,
identifies points where the non-vegetated class
occurred without any overtopping vegetation.
These are represented as water alone, soil alone,
and litter alone in the stacked bar charts and
summary tables.

3.3.3.C.ii Calibration Plot Analysis

Three of the Habitat Plots in the CD5 Study
Area were sampled by six different field observers
to assess the inter-observer variability in point-
intercept data associated with the method itself.
The point-intercept data from these plots were
summarized using methods comparable to those
used at Vegetation Plots (see Point-intercept Data
Summaries under section 3.3.3.C.i., above), except
that the data were summarized for each line at
each plot.

The mean cover and 95% confidence intervals
were calculated for each line and vegetation
structure class (e.g., low shrub, dwarf shrub, sedge,
moss). The confidence intervals were then scaled
by the mean cover value, so that inter-observer
variation was calculated as a percentage of the
mean and averaged by vegetation structure class.
These metrics were only calculated for vegetation
structure classes with more than 5% cover in
each line.
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3.3.3.C.iii Habitat Analysis

The habitat analysis methods follow directly
from the Monitoring Plan (ABR and Baker 2013)
which specifies the following:

For habitat sampling lines, mean and 95%
confidence intervals for percent cover of
vegetation structure classes (e.g., low
shrub, dwarf shrub, graminoid, tussock)
will be calculated for each habitat follow-
ing year-1 data collection. Repeated mea-
sures analysis will be used to test for
differences in vegetation structure within
habitat types between Areas and sampling
periods. Additionally, to aid in identifica-
tion of trends in vegetation structure
through time, the 95% and 75% confi-
dence intervals for percent cover of vege-
tation structure classes will be calculated.

The Habitat Plot point-intercept data were
summarized to cover metrics following methods
similar to those used at Vegetation Plots (see
Point-intercept Data Summaries under section
3.3.3.C.i., above). However, because the Habitat
Plot locations were distributed systematically
across the CD5 Study Area and the Habitat Plot
Lines often covered multiple wildlife-habitat types,
the Habitat Plot point-intercept data were
summarized by wildlife-habitat class from the ITU
mapping rather than by plot. The precise locations
for each of the 25 Habitat Plot Points on each
Habitat Plot Line were calculated in GIS from the
survey-quality Habitat Plot Center Point and the
Habitat Plot Line End Points.

The points were overlaid on the wildlife
habitat map layer produced from the 2012 CD5
ITU Mapping, and each Habitat Line Point was
assigned to the wildlife habitat class map polygon.
The cover, top cover, and hit density of each
vegetation structure class were then calculated for
each wildlife habitat class with a sufficient sam-
ple size (75 points or more, equivalent to a full
Habitat Plot).

The mean cover of each vegetation structure
class and the mean height and frequency of woody
and herbaceous vegetation were calculated for
wildlife habitat classes with a sufficient sample
size. The mean cover and height data were then
used to create stacked bar charts and table
summaries. Additionally, the mean cover data for
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each vegetation structure class were combined
with the mean cover of the non-vegetated classes
(water, soil, litter) for each wildlife habitat; the
non-vegetated classes are represented as water
alone, soil alone, and litter alone in stacked bar
charts and summary tables.

Mean, 75%, and 95% confidence intervals for
percent cover of these structure classes by wildlife
habitat were calculated for each monitoring year
(2013 and 2016) for both Test and Reference
Areas, and a repeated measures analysis was
performed using the Linear and Nonlinear Mixed
Effects Models package, nlme (Pinheiro et al.
2016) in R to test for interaction effects of year and
Area on cover percentage. For each wildlife
habitat, we ran analyses attempting to predict the
total live cover of vascular plants based on the
interaction of year and Area, as well as additional
models testing for an effect on each of the structure
class variables with more than 10% cover in the
habitat type.

3.3.3.C.iv. Landscape Change Analysis

To comply with the “Landscape Change
Analysis” section of the Monitoring Plan
developed for the CD5 Study Area (ABR and
Baker 2013), we updated the baseline map to
reflect natural and anthropogenic changes to
ecosystem conditions that occurred since the
baseline imagery was collected in summer 2012.

After completing map updates, we used
geospatial tools to prepare areal summaries of
the extent of geomorphic units, surface forms,
vegetation classes, disturbance classes, map eco-
types, and wildlife habitats as of July 2015. From
these summaries, we calculated the percent change
in area (+/-) of each class that occurred in the Test
and Reference Areas; we excluded changes in area
that pertained to map revisions (i.e., where 2016
field observations indicated that the original ITU
assigned in the baseline map was inaccurate) or the
footprint of the CDS5 road. Within each of the six
map themes, we flagged classes for which the areal
extent changed across the full CD5 Study Area by
a magnitude of >5%. For these classes, we
assessed whether the percent change in the Test
area exceeded the percent change in the Reference
area by >5% and then flagged that class for further
evaluation as to the likelihood that CDS5
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infrastructure played a role in the landscape
change.

3.3.3.C.v. Ground Surface Elevation and Thaw

Depth

The ground surface elevation and thaw depth
data were analyzed by spatially connecting
Vegetation Plot Start Points and Thaw Depth/
Elevation Points (creating transects). For each
location along the transect, distance (west to east),
thaw depth and ground surface elevation were
generated. The full transect lines were then
spatially joined to the 2016 ITU Map polygons and
the transitions between zones for geomorphology,
surface form, and vegetation type were reported
along with the distance along the transects. A total
of 39 segments comprised 13 transects in the
Reference Area (North = 7 segments; South = 9
segments. Within the Test Area, a total of 39
segments comprised 9 transects (North = 12
segments; South = 11 segments). The Thaw Depth/
Elevation Point data were summarized in a topo-
sequence diagram and thaw depth and elevation
cross section diagrams. For the toposequence
diagram, a portion of one monitoring transect from
each subarea was selected to prepare toposequence
diagrams, which display a two-dimensional cross-
sectional view of the landscape. The diagram was
annotated using the ITU mapping data from the
spatial join and the Integrated Habitat Monitoring
Plot data along the transect sections (e.g., Figure
3.22, from Wells et al. 2014). Thaw depth and
elevation point data from the Vegetation Plot Start
Points, Thaw Depth/Elevation Points, Grade
Breaks, Cut Banks, and Water Edge Points for each
monitoring transect were co-plotted to create
two-dimensional cross sectional views. Ground
surface elevation points were connected by a line
to approximate the ground surface in 2013 and
2016, with visible differences representing physical
change (e.g., erosion, deposition). Thaw depth in
2013 and 2016 also was plotted at each location to
allow for a visual comparison of the active layer
between years across each transect.

3.3.3.C.vi. Broad-scale Monitoring of
Geomorphology

To assess sedimentation and erosion rates
along Monitoring Transect we calculated the
average and 95% confidence intervals (CI) for




surface organic thickness in the Test and Reference
Areas by year for the most common surface terrain
units and used this to compare changes in surface
organic thickness through time as per the
Monitoring Plan (ABR and Baker 2013). We used
surface organic thickness instead of sediment
thickness because the nails placed in 2013 at
marker horizons were not readily found in 2016.
Surface organic thickness can be readily and
consistently measured and serves as a proxy for
sedimentation; effectively a thinning of surface
organics through time indicates more frequent
sedimentation, while a thickening of the surface
organics indicates less frequent or an absence of
sedimentation. The results this analysis were
prepared in tabular form and plotted as bar charts
with 95% CI overlaid.

3.4 RESULTS AND DISCUSSION

3.4.1 SPRING BREAKUP

The 2016 spring breakup flood progression
for the Colville River was reported by Baker
(2016). ABR field staff observed water levels
rising at MON1 on 15 May 2016. The observation
of the leading edge for floodwaters at the MON1
gage station was 7 days earlier than the 2002-2016
average leading edge at MONIC (Baker 2016).
ABR field staff observed water levels around
Alpine rising on 16 May 2016. ABR observed a
large ice jam approximately 22 miles upriver of
MONI1 growing in size by about 13 river miles on
17 May 2016. Cooling air temperatures in the
Brooks Range foothills slowed breakup activities
between 18-20 May 2016, until rising air
temperatures returned on 21 May (Baker, 2016).
ABR field staff were not present for peak discharge
on 22 May due to the unpredictable nature of
breakup on the Colville River.

3.4.2 HABITAT MONITORING
3.4.2.A. Vegetation Plot Analysis

3.4.2.A.i. Vegetation Assessment

The PAM clustering of the 2013 moist plot
ecotype and 2013 wet plot ecotype sub-datasets
resulted in 8 and 3 clusters for the moist and wet
plots, respectively (Figures 3.8 and 3.9). The
average cluster medoid distances are presented in
Table 3.8. For the 2013 moist plot ecotype
sub-dataset, cluster 2 has the lowest average
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distance from the medoid (0.14 ordination
distance) and the third lowest standard deviation
(0.07), indicating that plots in this cluster are very
similar and uniform in species composition.
Cluster 5 has the highest average distance from the
medoid (0.39 ordination distance) and the highest
standard deviation (0.37), indicating that plots in
this cluster are relatively diverse in species com-
position when compared to the other 7 clusters. For
the 2013 wet plot ecotypes sub-dataset, the average
distance from the medoid and standard deviation
was very similar among all 3 clusters, with the
average ranging between an ordination distance of
0.22 and 0.25 and standard deviation ranging
between 0.10 and 0.12. This indicates that the 2013
wet plot ecotypes are similarly variable in species
composition.

Of the total 179 vegetation plots, 162 plots
were included in the vegetation analysis and 17
plots were withheld, based on the criteria described
in section 3.3.3.C.i Vegetation Plot Analysis,
above. The 17 plots withheld from the analysis
were all classified as the same Viereck et al. (1992)
Level IV vegetation class in 2013 and 2016 and
hence, did not change between years. Of the 162
vegetation plots included in the vegetation
analysis, 132 plots plots did not change in species
composition between 2013 and 2016, based on the
vegetation assessment analysis. In combination, a
total of 149 vegetation plots (132+17) or 83% did
not change in species composition between 2013
and 2016. The NMDS ordination distances
between the 2013 and 2016 plots greater than 2
times the standard deviation of the 2013 cluster
medoid distance are presented in Table 3.9. A total
of 6 plots from the 2013/2016 moist plot ecotype
sub-dataset and 16 plots from the 2013/2016 wet
plot ecotype sub-dataset had an ordination
distances between the 2013 and 2016 plots of 2x
stdev > 3x stdev the medoid distance of the 2013
clusters. These 22 plots represent 12% of the total
179 Vegetation Plots and have been flagged in the
database as having potentially changed in species
composition between 2013 and 2016. Of these 22
plots, 16 occurred in the Test Areas (plot id
starting with “t”), and 6 in Reference Areas
(plot_id starting with “r”). Of those in the Test
Areas, 10 plots were located on the first transect
north or south of the road (plot id starting with
“t1”), and 3 plots were located on the second

CD5 Habitat Monitoring, 2016
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Table 3.8.  Average NMDS distance from medoid, standard deviation, two-times standard deviation, and
three-times standard deviation for 2013 moist and wet ecotype clusters, CD5 Habitat
Monitoring Study Area, northern Alaska.

Average NMDS

Distance from
Ecotype Group Cluster Medoid St.Dev. 2x St.Dev. 3x St.Dev.
Moist Ecotypes 1 0.24 0.09 0.18 0.27
Moist Ecotypes 2 0.14 0.07 0.14 0.22
Moist Ecotypes 3 0.18 0.08 0.15 0.23
Moist Ecotypes 4 0.35 0.13 0.25 0.38
Moist Ecotypes 5 0.39 0.37 0.74 1.11
Moist Ecotypes 6 0.38 0.19 0.39 0.58
Moist Ecotypes 7 0.26 0.03 0.06 0.09
Moist Ecotypes 8 0.22 0.05 0.1 0.14
Wet Ecotypes 1 0.23 0.12 0.24 0.36
Wet Ecotypes 2 0.25 0.1 0.21 0.31
Wet Ecotypes 3 0.22 0.11 0.21 0.32

transect north or south of the road (plot_id starting
with “t2”). The effects on vegetation on nearby
gravel roads in arctic Alaska are well known
(Walker et al. 1987, Myers-Smith et al. 2006).
Thus, the close proximity of the first transects
north and south (approximately 100 m) of the CD5
road may in part explain the potential changes
identified for those 10 plots nearest the road.
However, of plots located on the first and second
transects north and south of the road, approx-
imately two-thirds of these showed no potential
change in species composition based on the
methods employed here. Additionally, not all plots
flagged for potential change were in the Test Areas
(6 were in the Reference Areas) indicating that
some of the potential change identified in this
analysis may be related to natural changes. These
22 plots will be reassessed in 2019 to determine if
they have become less similar to the 2013 plot (i.e.,
move further away from the 2013 plot), or if they
become more similar in species composition (i.e.,
move back toward the 2013 plot).

A total of 2 plots from the 2013/2016 moist
plot ecotype sub-dataset and 6 plots from the
2013/2016 moist plot ecotype sub-dataset had an
ordination distance between the 2013 and 2016
plots of > 3x stdev of the medoid distance of the

CD5 Habitat Monitoring, 2016

2013 clusters. These 8 plots represent 4% of the
total 179 Vegetation Plots and are considered to
have changed in species composition between
2013 and 2016. These plots have been flagged in
the database and will be reassessed in 2019 to
determine if they have continued to change, i.c.,
moving further away from the 2013 plot, or if they
become more similar in species composition, i.e.,
moving back toward the 2013 plot.

Plots with an ordination distance of >3x stdev
medoid distance are considered to have changed in
species composition between 2013 and 2016
(Figures 3.10 and 3.11). The 2 moist plots that
changed between years, 15sb-0211-veg and
r6sb-0250-veg, are both from Reference Area
South. These 2 plots are both located in highly
dynamic environments on river bars where changes
in vegetation composition due to natural fluvial
processes are common. The results of the indirect
gradient analysis for the 2013/2016 moist NMDS
ordination found the strongest fits for the
continuous variables Soil Thaw Depth, Soil
Surface Organic Thickness, and Site pH (Figures
3.12 and 3.13; Table 3.10). Plot Ecotype was the
only significant (p < 0.001) categorical variable
in the 2013/2016 moist NMDS ordination. Com-
paring the direction of movement of the two plots
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Table 3.9.  Ordination distances between 2013 and 2016 plots for plots with distances between years
greater than two-times the standard deviation of mean of the 2013 clusters, CD5 Habitat
Monitoring Study Area, northern Alaska, 2013 and 2016.
2x 3x 2013/2016
dist_class Plot ID Ecotype Group  Cluster  St.Dev. St.Dev. = NMDS Distan
Greater than 2x St.Dev. rlna-1400-veg  Moist Ecotypes 2 0.14 0.22 0.15
r2na-2400-veg  Moist Ecotypes 3 0.15 0.23 0.17
tlna-1800-veg  Moist Ecotypes 8 0.1 0.14 0.12
tlnb-0149-veg  Moist Ecotypes 2 0.14 0.22 0.16
tlsa-2400-veg  Moist Ecotypes 8 0.1 0.14 0.12
t2sc-0000-veg  Moist Ecotypes 7 0.06 0.09 0.09
rlsa-1426-veg  Wet Ecotypes 3 0.21 0.32 0.28
r4sa-0396-veg ~ Wet Ecotypes 3 0.21 0.32 0.22
r5sa-0832-veg  Wet Ecotypes 2 0.21 0.31 0.25
r6sb-0600-veg ~ Wet Ecotypes 3 0.21 0.32 0.22
tlna-1219-veg  Wet Ecotypes 3 0.21 0.32 0.24
tlnb-0621-veg  Wet Ecotypes 3 0.21 0.32 0.26
tlnc-0400-veg  Wet Ecotypes 2 0.21 0.31 0.25
tlsa-0410-veg  Wet Ecotypes 1 0.24 0.36 0.29
tlsa-1824-veg ~ Wet Ecotypes 2 0.21 0.31 0.28
tlsa-2200-veg ~ Wet Ecotypes 2 0.21 0.31 0.27
t1sb-0200-veg  Wet Ecotypes 3 0.21 0.32 0.25
t2na-0633-veg  Wet Ecotypes 3 0.21 0.32 0.26
t2sa-1800-veg ~ Wet Ecotypes 3 0.21 0.32 0.29
t3na-0000-veg  Wet Ecotypes 2 0.21 0.31 0.25
t3sb-0950-veg  Wet Ecotypes 2 0.21 0.31 0.28
t4sa-1200-veg ~ Wet Ecotypes 2 0.21 0.31 0.21
Greater than 3x St.Dev. r5sb-0211-veg  Moist Ecotypes 7 0.06 0.09 0.17
r6sb-0250-veg  Moist Ecotypes 7 0.06 0.09 0.22
r4sa-0809-veg  Wet Ecotypes 2 0.21 0.31 0.42
tlna-0200-veg  Wet Ecotypes 1 0.24 0.36 0.41
tlna-2000-veg ~ Wet Ecotypes 1 0.24 0.36 0.43
t1sb-0600-veg ~ Wet Ecotypes 2 0.21 0.31 0.32
tlsc-0695-veg  Wet Ecotypes 1 0.24 0.36 0.42
t2sb-0800-veg ~ Wet Ecotypes 2 0.21 0.31 0.32
51 CD5 Habitat Monitoring, 2016
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Figure 3.12. Plots of dimensions 1 and 2 for the Non-metric Multidimensional Scaling (NMDS) of the
combined 2013/2016 Vegetation Plots classified as moist plot ecotypes with (from top to
bottom, left to right) Soil Thaw Depth (cm), Soil Surface Organic Thickness (cm), and Site
pH Generalized Additive Model (GAM) contour surfaces overlaid; and Plot Ecotype Classes
symbolized, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Figure 3.13. Plots of dimensions 1 and 3 for the Non-metric Multidimensional Scaling (NMDS) of the
combined 2013/2016 Vegetation Plots classified as moist plot ecotypes with (from top to
bottom, left to right) Soil Thaw Depth (cm), Soil Surface Organic Thickness (cm), and Site
pH Generalized Additive Model (GAM) contour surfaces overlaid; and Plot Ecotype Classes
symbolized, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Table 3.10. Results of the NMDS indirect gradient analysis for environment variables with a p-value
<0.05 and a deviance-squared fit value of >0.10, CD5 Habitat Monitoring Study Area,
northern Alaska, 2013 and 2016.

NMDS X- NMDS Y- Deviance-
Ecotype Group Environment Variable dimension dimension P-Value squared
Moist Ecotypes lat dd83 1 2 <0.001 0.17
long_dd83 1 2 <0.001 0.25
distance cd5 rd m | 2 0.009 0.12
thaw_depth _cm 1 2 <0.001 0.72
soil_surforg cm 1 2 <0.001 0.46
water_depth_cm 1 2 <0.001 0.38
site_ph_calc 1 2 <0.001 0.53
lat_dd83 1 3 <0.001 0.2
long_dd83 1 3 <0.001 0.26
elev_cm 1 3 <0.001 0.25
thaw_depth_cm 1 3 <0.001 0.67
soil_surforg cm 1 3 <0.001 0.33
water_depth_cm 1 3 <0.001 0.35
site_ph_calc 1 3 <0.001 0.43
site_ec_us_calc 1 3 <0.001 0.26
elev_cm 2 3 <0.001 0.22
thaw_depth _cm 2 3 <0.001 0.39
soil_surforg cm 2 3 <0.001 0.3
water depth cm 2 3 0.019 0.17
site_ph_calc 2 3 <0.001 0.29
site_ec_us_calc 2 3 <0.001 0.28
plot_ecotype code 123 123 0.001 -999
Wet Ecotypes lat_dd83 1 2 <0.001 0.1
long_dd83 1 2 <0.001 0.18
elev_cm 1 2 <0.001 0.24
soil_surforg_cm 1 2 <0.001 0.18
water_depth_cm 1 2 <0.001 0.11
site_ph_calc 1 2 <0.001 0.11
long dd83 1 3 <0.001 0.18
elev_cm 1 3 <0.001 0.13
distance cd5 rd m 1 3 <0.001 0.14
soil_surforg cm 1 3 <0.001 0.25
water _depth_cm 1 3 <0.001 0.15
lat_dd83 2 3 <0.001 0.13
long_dd83 2 3 <0.001 0.24
elev_cm 2 3 <0.001 0.2
study area 123 123 0.013 -999
plot_ecotype code 123 123 0.001 -999
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(Figure 3.10) with the fitted contour surfaces from
the GAMs (Figures 3.12 and 3.13) shows that
movement of the 2 plots down on axis 1
corresponds to deeper thaw depths, higher pH, and
thinner soil surface organics. These factors are all
related to riverine processes of flooding (i.c.,
flushing away of organic matter and adding river
waters high in cations); sedimentation (burying
organic surface horizon); and deeper thaw depths
related to the latent heat of river water that creates
thaw bulbs around rivers in permafrost environ-
ments. In essence, the vegetation at these two plots
is expressing a higher degree of riverine activity in
2016 than 2013.

Five of the 6 wet plots that changed between
years were from Test Areas: tlna-0200-veg,
t1na-2000-veg, t1sb-0600-veg, t1sc-0695-veg, and
t2sb-0800-veg. Of the 5 Test Area plots, 4 are
located on the first transects north or south of the
road, while the 5th is located on the second transect
south of the road. Three of the six plots,
t1na-2000-veg, t1na-0200-veg, and t1sb-0600-veg,
were classified as Wet Sedge Meadow Tundra,
while the other 3, r4sa-0809-veg, t1sc-0695- veg,
and t2sb-0800-veg, were classified as Wet
Sedge-Willow Tundra. The primary difference
between these 2 vegetation classes being the
presence of willows at 5-18% cover in Wet
Sedge-Willow Tundra, whereas willows are either
absent or present at <5% cover in Wet Sedge
Meadow Tundra. The strongest fits for continu-
ous variables were for Elevation, Longitude, Soil
Surface Organic Thickness, Water Depth, and
Distance from CD5 Road (Figures 3.14 and 3.15).
Plot Ecotype (p < 0.001) and Study Area (p <
0.013) were the significant categorical variables.
Comparing the direction of movement of the 3 Wet
Sedge Meadow Tundra plots (Figure 3.11) with the
fitted contour surfaces from the GAMs (Figures
3.14 and 3.15) shows that these 3 plots all moved
down on NMDS axis 2. The GAM for axis 2
represents an elevation gradient, with higher
elevations predicted at the top of axis 2 and lower
elevations predicted at the bottom. Thus, the
vegetation at these three plots in 2016 is more
representative of lower elevation sites. In deltaic
environments, lower elevation sites are flooded
more frequently than higher elevation sites. This
was reflected in all three plots having a decreased

3.0 Habitat Monitoring

surface organic thickness in 2016, indicating
sedimentation at these plots since 2013. The
primary vegetative change at all three plots
between 2013 and 2016 was an increase in cover of
Carex aquatilis and Eriophorum angustifolium, an
indication that these sites were more productive in
2016 than 2013.

Comparing the downward movement on
NMDS axis 1 (Figure 3.11) with the fitted contour
surfaces from the GAMs (Figures 3.14 and 3.15)
predicted that Wet Sedge-Willow Tundra plots
t2sb-0800-veg and r4sa-0809-veg have shallower
water tables (i.e., wetter soil conditions) than the
third plot (t1sc-0695-veg). The third plot moved
very little in dimensions 1 and 2. In dimensions
1 and 3, however, this plot (tlsc-0695-veg) and
plot r4sa-0809-veg moved up along axis 3,
which corresponds with plots having shallower
water tables (i.e., wetter soil conditions). Plot
t2sb-0800-veg moved down on both axis 1 and 3,
which reflects plots in the Lowland Organic-rich
Circumneutral Wet Sedge Meadow and Riverine
Organic-rich Circumneutral Wet Sedge Meadow.
The results of the analysis show that vegetation
composition of the 3 Wet Sedge-Willow Tundra
plots in 2016 is more representative of wetter
plots. In addition, plot t2sb-0800-veg in 2016 was
more similar in vegetation composition to plots
with lower willow cover (i.e., the Wet Sedge
Meadow Tundra Plots); willow cover in this
plot went from 7.9% in 2013 to 1.3% in 2016.
In addition, the number of species in Plot
t2sb-0800-veg was higher in 2016 (9) than 2013
(7), and the cover of sedges increased slightly
between 2013 and 2016 (21.1% vs. 22.4%,
respectively). Plot r4sa-0809-veg had a lower
number of species in 2016 (5) compared to 2013
(9); a lower sedge cover in 2016 (7.9%) compared
to 2013 (11.8%); and a slight increase in low
willow cover in 2016 (9.2%) compared to 2013
(6.6%). Plots t2sb-0800-veg and r4sa-0809-veg
had an ice road over them in one or more winters
between 2013 and 2016. Both of these plots were
classified as Wet Sedge-Willow Tundra in 2013
and 2016. A total of 13 plots had ice roads or
pads over them in one or more winters between
2013 and 2016 (Table 3.11), and 2 of the plots
(t2sb-0800-veg and r4sa-0809-veg) were deter-
mined to have changed in species composition.
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Figure 3.14. Plots of dimensions 1 and 2 for the Non-metric Multidimensional Scaling (NMDS) of the

combined 2013/2016 Vegetation Plots classified as wet plot ecotypes with (from top to
bottom, left to right) Elevation (cm) and Soil Surface Organic Thickness (cm) Generalized
Additive Model (GAM) contour surfaces overlaid; and Study Area and Plot Ecotype Classes
symbolized, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Figure 3.15. Plots of dimensions 1 and 3 for the Non-metric Multidimensional Scaling (NMDS) of the
combined 2013/2016 Vegetation Plots classified as wet plot ecotypes with (from top to
bottom, left to right) Water Depth (cm), Soil Surface Organic Thickness (cm); and Distance
from CD5 Road (m) Generalized Additive Model (GAM) contour surfaces overlaid; and Plot
Ecotype Classes symbolized, CD5 Habitat Monitoring Study Area, northern Alaska, 2013
and 2016.
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Table 3.11. Vegetation Plots with ice roads or pads over them for one or more winters between
monitoring years, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.

Winter 2014-2015 Winter 2015-2016

Plot ID Winter 2013-2014
r4sa-0809-veg None
r4sa-1153-veg None
r4sb-0800-veg None
r5sa-0395-veg Ice Road
tlna-1424-veg None
tlna-1600-veg None
t1na-1800-veg None
t1sa-0200-veg Ice Pad
t1sa-0410-veg Ice Pad
t1sb-0420-veg Ice Pad
t1sc-0875-veg Ice Pad
t2sb-0800-veg Ice Road
t4sb-1000-veg Ice Road

Ice Pad Ice Road
Ice Road Ice Pad
Ice Road Ice Road

None None
Ice Road None
Ice Road None
Ice Road None

None None

None None

None None

None None

None None

None None

3.4.2.A.1i. Species Richness Assessment

Species richness by Area and year is
summarized in Figure 3.16 for 14 ecotypes with a
sample size of 2 or more. Across all ecotypes and
Areas, changes in species richness between years
were relatively small and within the range of
variability, based on the standard deviation
(Appendix B). The most notable change in
vascular species richness between years was in the
ecotype Coastal Loamy Brackish Moist Willow
Dwarf Shrub, which had a reduction in vascular
species richness from 16 in 2013 to 10 in 2016.
This ecotype is in the Test Areas and occurs in a
naturally dynamic environment on river bars
subject to regular natural disturbances, including
sedimentation, erosion, ice gouging, and salt-water
intrusion. These processes can bury or physically
remove plants or raise soil salinity levels above the
tolerance of many plants. However, the single
sample point for this ecotype in this Test Areas
makes it difficult to generalize this pattern too
broadly across all the Test Areas.

The ecotypes Riverine Loamy-Organic
Circumneutral Moist Sedge-Shrub Meadow and
Upland Loamy-Organic Circumneutral Moist
Tussock Meadow had the highest overall species
richness in both Reference and Test Areas in 2013

CD5 Habitat Monitoring, 2016
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and 2016 (Figure 3.16, Appendix B). Vascular and
non-vascular species richness in the Riverine
Loamy-Organic Circumneutral Moist Sedge-Shrub
Meadow ecotype did not change between years in
the Test Area, but non-vascular richness went
down in 2016 (15 vs.11) in the Reference Area.
Vascular species richness showed little change in
the Reference Areas (24 vs. 25). The drop in
non-vascular species richness in this ecotype
represents the second largest change in
non-vascular species richness between years in the
Reference Area (Figure 3.16, Appendix B). In the
ecotype Upland Loamy-Organic Circumneutral
Moist Tussock Meadow, non-vascular species
richness in the Test Area dropped from 10 (+ 1) to
5 (£ 6), while vascular richness was virtually
unchanged. The drop in non-vascular species
richness in this ecotype represents the second
largest change in non-vascular species richness
between years in the Test Area (Figure 3.16,
Appendix B). In Reference Areas, non-vascular
richness increased dramatically for this ecotype,
while vascular richness increased slightly. We
suspect the substantial increase in non-vascular
species richness in this ecotype in the Reference
Area, which represents the largest increase in
species richness between years, is related to a more
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Figure 3.16. Mean vascular and non-vascular species richness for common plot ecotype classes in the CD5 Habitat Monitoring Study Area, northern Alaska, Test and Reference Areas, 2013 and 2016.






thorough trace species search in 2016 compared to
2013. In future monitoring years, trace searches
will be timed, thus allowing us to determine the
degree to which species richness is a function of
time spent searching. The largest increase in
vascular species richness between years (from 26
to 30) occurred in the ecotype Riverine Loamy
Alkaline Moist Tall Willow Shrub (Figure 3.16,
Appendix B). This ecotype occurs in the highly
dynamic river bar environment, which floods
regularly. As discussed above, riverine flooding
can be destructive, but floodwaters also carry plant
propagules that can add to the species richness at a
site. Ecotypes with the lowest species richness in
both Reference and Test Areas and between sample
years included Coastal Loamy Brackish Moist
Willow Dwarf Shrub, Coastal Sandy Moist
Brackish Barrens, and Lowland Lake. The low
species richness in these three ecotypes is typical
of extreme environments likes lakes and tidally-
influenced areas. This is because the suite of plant
species that can tolerate aquatic or saline
conditions is more limited than in non-tidal,
terrestrial environments.

3.4.2.A.ii1. Detailed Ground Cover Class and
Environment Assessment

Coastal Loamy Brackish Moist Willow Dwarf
Shrub had mineral soil as the predominant
ground cover in all Areas and years (Appendix
C-1). Both Reference and Test Areas had higher
average cover percentages of mineral soil in 2013
(78 and 93%, respectively, Appendix D) than in
2016 (70 and 64%, respectively). Mosses were also
present as a ground cover in all Areas and years,
but had higher average covers in the Reference
Area (22% in 2013 and 8% in 2016) than the Test
Area (3% in 2013 and 5% in 2016). Cover of water
was observed only in the Reference Area in 2016,
with an average cover of 3%.

As a result of frequently flooded, active and
inactive channel deposits of the Colville River
Delta, a surface organic horizon for Coastal Loamy
Brackish Willow Dwarf Shrub was absent in both
Reference and Test Areas in both years (Appendix
E). Surface organic thickness is the thickness of
continuous organic soil material from the soil
surface to the first mineral-textured layer that is
>0.5 cm. Average EC was slightly higher in 2016
than 2013 in the Reference (+400 puS/cm) and Test

63
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(+10 uS/cm) Areas. The Reference Area EC
remained higher than the Test Area EC in both
years. This is likely due to a greater inter-tidal
influence in Reference Area North, which occurs
in the northern portion of the CD5 Study Area.
Average thaw and water table depths in the
Reference and Test Areas did not change
substantially between 2013 and 2016 (Appendix
E), but note that the water table is highly dynamic
in this environment, which could influence future
measurements.

Coastal Sandy Moist Brackish Barrens ground
covers were generally consistent between 2013
and 2016, but varied between Reference and Test
Areas (Appendix C-2). Mineral soil was the pre-
dominant ground cover in all Areas and years, but
average cover was consistently higher in the Test
Area (99% each year, Appendix D) than in the
Reference Area (87% in 2013 and 88% in 2016).
Water was present in the Reference Area in both
years (average cover 28-30%), but absent from the
Test Area. The Coastal Sandy Moist Brackish
Barrens plot ecotype is restricted to frequently
flooded, active channel deposits of the Colville
River Delta. Consequently, a surface organic
horizon was absent in both Reference and Test
Areas in both years (Appendix E). The average
thaw depth decreased in both Test (103 cm in
2013 and 92 cm in 2016) and Reference (102 cm
in 2013 and 85 cm in 2016) Areas between 2013
to 2016. The average water table depth in the
Reference Area (-12 cm) was shallower than in
the Test Area (-37 cm) in 2016, while in 2013 the
opposite was true; water table depth in the
Reference Area (-46 cm) was deeper than the Test
Area (-30 cm). Variability in water table depth is
to be expected, due to the fluctuating water level
of the Colville River.

Lowland Lake was only located in the Test
Area. Water was the only ground cover in both
2013 and 2016 (Appendices C-3 and D). Average
EC and pH rose in the Test Area from 2013 to 2016
(+0.5 pH and +185 uS/cm, respectively), which
was likely the result of freshwater inputs from
overland flooding by the Colville River during the
2015 breakup (Appendix E)(Baker 2015).

Lowland Organic-rich Circumneutral Moist
Sedge-Shrub Meadow was only located in the Test

CD5 Habitat Monitoring, 2016
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Area. Herbaceous litter and moss accounted for
the most cover in both 2013 and 2016 (Appendix
C-4), with lower values in 2013 (43% and 36%,
respectively; Appendix D) than in 2016 (61% and
32%, respectively). The drop in water table depth
from -16 c¢cm in 2013 to -35 cm in 2016 parallels
the observed changes in standing water cover
(Appendix E).

Lowland Organic-rich Circumneutral Sedge
Marsh was only located in the Test Area. Water
was the predominant ground cover in both 2013
and 2016 (Appendix C-5), with a higher cover in
2013 (93%, Appendix D) than in 2016 (88%).
Algae and vascular base were the only other
ground covers observed in 2013, while algae,
herbaceous litter, mosses, and organic soil were
observed in 2016. Between 2013 to 2016, EC
increased (+250 uS/cm), water depth decreased
from 15 cm to 8 cm above the soil surface, and
thaw depth decreased from 15 cm in 2013 to 8 cm
in 2016 (Appendix E).

Lowland Organic-rich Circumneutral Wet
Sedge Meadow ground covers varied by both Area
and year (Appendix C-6). Water was observed in
both Reference and Test Areas, with higher
average cover values in 2013 (57% and 45%,
respectively; Appendix D) than in 2016 (12% and
24%, respectively). Mineral soil was observed in
both Reference and Test Areas, but only in 2016.
Mosses were observed in both Reference and Test
Areas, with higher average cover values in the
Reference Area than in the Test Area, and higher
average cover values in 2016 than in 2013. From
2013 to 2016, the average EC rose in both the
Reference (+122 uS/cm) and Test (+201 pS/cm)
Areas (Appendix E). Average EC varied between
the Areas and years. The average EC in the
Reference Area in 2013 (442 pS/cm) was higher
than the average EC in the Test Area in 2013
(357 uS/cm). This pattern reversed in 2016, with
average EC slightly lower in the Reference Area
(544 pS/cm) than the Test Area (558 pS/cm).
Average water table depth decreased from 2013 to
2016 for both Reference (-9 cm) and Test Areas
(-8 cm) paralleling the observed changes in
standing water cover. The average thaw depth for
both the Reference and Test Areas was 46 cm in
2013 and 38 cm in 2016.

Lowland Organic-rich Circumneutral Wet
Sedge-Willow Meadow had moss as the pre-

CD5 Habitat Monitoring, 2016

dominant ground cover class for all Areas and
years (Appendix C-7). Average moss cover was
higher in the Reference Areas (68% in 2013 and
83% in 2016, Appendix D) than Test Areas (64%
in 2013 and 71% in 2016). Average moss cover
was higher in all Areas, however, in 2016 versus
2013. Water was observed in both Reference and
Test Areas in 2013 (average covers of 21% and
15%, respectively). In 2016, water was only
observed in the Test Area (average 7% cover), with
an average mineral soil cover of 1% in the
Reference Area. The average pH in the Test Area
(6.5 in 2013 and 6.3 in 2016) remained lower than
the pH in the Reference Area (6.9 in 2013 and 6.5
in 2016)(Appendix E). The water table depth was
shallower in the Reference Area than the Test Area
in both 2013 and 2016, but both Reference and Test
Areas experienced a deepening of the water table
between 2013 and 2016 (-6 cm and -9 cm,
respectively). Thaw depth was shallower in both
the Reference and Test Areas in 2016 (37 cm and
40 cm, respectively) compared to 2013 (41 cm and
45 cm, respectively).

Riverine Loamy Alkaline Moist Mixed Herb
had mineral soil as the predominant ground cover
class in both Areas and years (Appendix C-8).
Herbaceous litter cover was observed in the Test
Area in both years (14%—-16%) and in the
Reference Area in 2016 (29%). Moss cover was
present in the Test, but not Reference Area in both
years (Appendix D). The Riverine Loamy Alkaline
Moist Mixed Herb plot ecotype is limited to
frequently flooded, inactive channel deposits of the
Colville River Delta. A soil surface organic
horizon was absent in both the Reference and Test
Areas in 2013 and 2016 (Appendix E). Average EC
was higher in the Reference Area in 2016 than
2013 (730 puS/cm and 580 pS/cm, respectively),
but was lower in the Test Area in 2016 compared to
2013 (380 uS/cm versus 490 pS/cm, respectively).
A water table was absent within 40 cm of the soil
surface in all Areas and years. Fluctuations in both
the water table and soil chemistry are not unusual
on these lower floodplain geomorphic positions.
The thaw depth in the Reference Area in both 2013
and 2016 (105 cm and 92 cm, respectively) was
consistently deeper than in the Test Area (86 cm
and 84 cm, respectively). Additionally, both
Reference and Test Areas had a shallower active
layer in 2016 than 2013 in this ecotype.



Riverine Loamy Alkaline Moist Low Willow
Shrub ground cover was generally similar between
Areas and years, with the exceptions of water
cover in the Reference Area in 2013 and liverwort
in the Reference Area in both years (Appendix
C-9). Moss (average 39-44%, Appendix D) and
herbaceous litter (average 24-43%) were the
predominant ground cover classes in both Areas
and years. Mineral soil was also a common ground
cover (average 17-29%). The Riverine Loamy
Alkaline Moist Low Willow Shrub plot ecotype is
common on active and inactive overbank deposits
of the Colville River Delta. The soil surface
organic thickness in this ecotype is variable due to
the dynamic hydrology in the floodplain zone (e.g.,
ice jam flooding and scour). In general, the surface
organic thickness in the Test Area was slightly
thicker than in the Reference Area in both 2013
and 2016 (Appendix E). However, the average
surface organic thickness decreased slightly from
2013 to 2016 in both the Reference (2.1 cm in
2013, and 1.9 cm in 2016) and Test Areas (3.8 cm
in 2013 and 2.9 cm in 2016), a likely result of
sedimentation during the 2015 breakup flooding
(Baker 2015). Average water table depth, EC, and
pH are variable in this plot ecotype due to
fluctuating river levels that are influenced by both
non-saline surface water run-off and occasional,
brackish tidal intrusions.

Riverine Loamy Alkaline Moist Tall Willow
Shrub was only located in the Test Area. Cover of
mineral soil comprised the vast majority of ground
cover observed in 2013 (average 83%, Appendix
C-10, Appendix D), but in 2016 was notably lower
(average 26%) than both herbaceous litter (average
37%) and moss (average 34%). The Riverine
Loamy Alkaline Moist Tall Willow Shrub plot
ecotype is limited to frequently flooded, inactive
channel deposits of the Colville River Delta. The
average thaw depth decreased from 2013 (118 cm)
to 2016 (93 cm) (Appendix E). A surface organic
horizon was absent and the water table was not
encountered in the upper 40 cm in both 2013
and 2016.

Riverine Organic-rich Circumneutral Wet
Sedge Meadow ground cover was dominated by
herbaceous litter, moss, and water (Appendix
C-11). Average cover of herbaceous litter was
lower in 2013 than 2016 for both the Reference (11
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and 32%, respectively, Appendix D) and Test (19
and 29%, respectively) Areas. The average moss
cover was also lower in 2013 than 2016 for both
the Reference (52 and 56%, respectively) and Test
(44 and 53%, respectively) Areas. Conversely, the
average cover of water was higher in 2013 than in
2016 for both the Reference (52 and 24%,
respectively) and Test (39 and 21%, respectively)
Areas. In both years, the average cover of water
was higher in the Reference than Test Area. The
Riverine Organic-rich Circumneutral Wet Sedge
Meadow plot ecotype is common on inactive
overbank deposits of the Colville River Delta. The
average soil surface organic thickness was lower in
both the Reference and the Test Areas in 2016
compared to 2013 (Appendix E). The average
surface organic thickness in the Reference Area
decreased from 14.9 cm in 2013 to 12.8 cm in
2016. The average surface organic thickness in the
Test Area decreased from 21.8 cm in 2013 to 21.2
cm in 2016. The average surface organic thickness
was thicker in the Test Area than in the Reference
Area in both years. The average thaw depth was
shallower in 2016 compared to 2013 in both the
Reference (37 cm and 45 cm, respectively) and
Test Areas (40 cm and 48 cm, respectively). The
water table was shallower in 2013 than in 2016 for
both the Reference (-5 cm and -15 cm,
respectively) and the Test Area (-3 cm and -13 cm,
respectively).

Riverine Organic-rich Circumneutral Wet
Sedge-Willow Meadow ground cover was
generally similar between Areas and years
(Appendix C-12). Mosses were the predominant
ground cover (average 63-70%) (Appendix D),
followed by herbaceous litter (average 19-25%).
Average cover of water was higher in 2013 than
2016 in both the Reference (10% and 7%,
respectively) and Test (11% and 5%, respectively)
Areas. The Riverine Organic-rich Circumneutral
Wet Sedge-Willow Meadow plot ecotype is
common on inactive overbank deposits of the
Colville River Delta. The average thaw depth was
shallower in 2016 compared to 2013 in both the
Reference (38 cm and 47 cm, respectively) and
Test Areas (37 cm and 47 cm, respectively),
(Appendix E). The water table was shallower in
2013 than in 2016 for both the Reference (-6 cm
and -18 cm, respectively) and (-7 cm and -20 cm,
respectively) Areas.
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Riverine  Loamy-Organic  Circumneutral
Moist Low Willow-Sedge Meadow ground cover
was generally similar between Areas and years
(Appendix C-13) with the exception of water,
which was present in both the Reference and Test
Areas in 2013 (average covers of 6 and 7%,
respectively, Appendix D) but absent in 2016.
Mosses (average 50-65%) and herbaceous litter
(average 30-42%) cover were the predominant
ground cover classes in both Areas and years. This
plot ecotype occurs predominantly on inactive
overbank deposits. The water table was shallower
in 2013 than in 2016 for both Reference (-12 cm
and -28 cm, respectively) and Test Areas (-10 cm
and -24 cm, respectively)(Appendix E).

Riverine  Loamy-Organic  Circumneutral
Moist Sedge-Shrub Meadow ground cover was
predominantly mosses and herbaceous litter
(Appendix C-14). Average moss cover was higher
in the Reference Area (68% in 2013, 67% in 2016)
than in the Test Area (57% in 2013, 53% in
2016)(Appendix D). Conversely, average herba-
ceous litter cover was lower in the Reference
Area (25% in 2013, 31% in 2016) than in the Test
Area (35% in 2013, 38% in 2016). Water was
only observed in the Test Area in 2013. The plot
ecotype occurs on inactive overbank deposits of
the Colville River Delta. The average EC dropped
in the Reference Area from 2013 to 2016
(600 uS/cm to 380 uS/cm, respectively, Appendix
E). The water table was shallower in 2013 than
in 2016 for both the Reference (-29 cm and
-35 cm, respectively) and the Test Area (-27 cm
and -36 cm, respectively).

Upland Loamy-Organic Circumneutral Moist
Tussock Meadow ground cover was predominantly
herbaceous litter and mosses (Appendix C-15).
Average cover of herbaceous litter was higher in
the Reference Area (67% in 2013, 61% in 2016,
than the Test Area (40% in 2013, 49% in 2016)
(Appendix D). Conversely, average cover of moss
was lower in the Reference Area (13% in 2013,
20% in 2016) than in the Test Area (46% in 2013,
39% in 2016). Average cover of lichen was lower
in 2013 than in 2016 for both the Reference Area
(9 and 12%, respectively) and Test Area (9 and 13
9%, respectively). This plot ecotype has limited
spatial extent in both Areas, occurring on
abandoned overbank and terrace deposits of the
Colville River Delta. The increase in surface
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organic thickness from 2013 (15 cm) to 2016 (22
cm) at a single plot in the Reference Area appears
to be the result of the high microtopographic
variability in this plot ecotype (Appendix E). The
EC in the Reference Area remained higher in both
2013 and 2016 (590 uS/cm and 510 pS/cm,
respectively) than in the Test Area in both years
(170 pS/cm and 140 pS/cm, respectively). The
water table was shallower in 2013 than in 2016
for both the Reference (-11 cm and -36 cm,
respectively) and the Test Areas. The average
water table depth in the Test Area was -26 cm in
2013 and was absent within 40 c¢cm (recorded as
-999) in 2016.

Upland Sandy Alkaline Dry Barrens was
sampled in the Test Area only. Mineral soil was the
predominant ground cover in both 2013 and 2016
(Appendix C-16) and the average percent cover
of mineral soil was higher in 2013 (96%) than in
2016 (74%) Appendix D). Herbaceous litter had
the second greatest average percent cover in both
years, yet was substantially lower in 2013 (3%)
than in 2016 (24%). This plot ecotype had little to
no cover of Mosses in both years. This plot ecotype
is uncommon, occurring on active sand dune
deposits. Sand dunes are dynamic geomorphic
landforms, that are regularly re-shaped by wind
events. Active, sandy, dune deposits can be
difficult for vegetation to establish, resulting in the
absence of a surface organic horizon in both years
(Appendix E).

Upland Sandy Alkaline Moist Low Willow
Shrub ground cover in the Reference and Test
Areas in both 2013 and 2016 was predominantly
herbaceous litter (Appendix C-17). However, the
average cover of herbaceous litter in the Test Area
(46-50%) was substantially lower than that found
in the Reference Area (83-97%)(Appendix D).
Other common ground cover classes in the Test
Area included mineral soil (average 31-35%) and
mosses (average 17-18%). Mineral soil was
observed only in the Reference Area in 2016
(average 8% cover). Moss cover (average 1-9%) in
the Reference Area in both years was substantially
lower than that found in the Test Area. This plot
ecotype is uncommon and although it occurs on
active and inactive sand dune deposits, it is less
vulnerable to wind disturbance then the Upland
Sandy Alkaline Dry Barrens due to recruitment and
establishment of vegetation. Average surface



organic thickness was low in both the Reference
and Test Areas in both 2013 and 2013 (0.5 cm and
0 cm in Reference, and 0.3 cm and 0.3 cm in Test,
respectively)(Appendix E). The one plot in this
ecotype experienced both a decrease in EC (450
uS/cm to 100 puS/cm) and pH (8.2 to 7.1) from
2013 to 2016. The thaw depth was shallower in
2016 compared to 2013 in both the Reference (120
cm and 101 cm, respectively) and Test Areas (105
cm and 92 cm, respectively).

The detailed assessment of ground cover and
environment characteristics by plot ecotype
revealed several common patterns of change in
ground cover and environment characteristics
between 2013 and 2016 across plot ecotypes and
Areas. The cover of standing water decreased and
depth to water table increased in 2016 in both Test
and Reference Areas. Warmer temperatures, a
shallower snowpack, earlier snow melt, higher
evapotranspiration, and lower July precipitation
occurred in 2016 compared to 2013 (see Climate
Monitoring, above). This explains the lower cover
of water and deeper water table depths across the
entire CD5 Study Area. In addition to these
climatic conditions, break-up flooding in 2013 was
extensive, inundating a large portion of the CD5
Study Area. In contrast, break-up in 2016 was
more subdued with much of the CD5 Study Area
not flooding (Baker 2016). In general, mineral and
organic soil and mosses and liverworts cover
increased in 2016 in both Reference and Test
Areas. This can be explained by the reduction in
standing water, caused by the 2016 climatic
conditions listed above, resulting in soil surfaces
being exposed in 2016. Sedimentation caused by
2015 breakup flooding (Baker 2015), which
covered most of the CD5 Study Area with flood
water, is also a likely cause of increase mineral soil
cover in 2016 in both Reference and Test Areas.
The drier soil conditions and exposed soil surfaces
provided a greater surface area for non-vasculars to
establish and expand, resulting in a higher cover of
mosses and liverworts. Thaw depth decreased (i.e.,
thinner active layer) in 2016 across both Reference
and Test Areas. This is related to the timing of the
RTK Surveys in 2013 as compared to 2016. In
2013 the RTK surveys were conducted in the first
and second weeks of August, while in 2016 the
RTK surveys were conducted approximately 3
weeks earlier, during the second and third weeks of
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July. Additionally, the record low snowpack from
the winter of 2015/2016 compared to the long-term
record (i.e., diminished insulating properties) may
also be a contributing factor in the shallower active
layer depths observed in 2016 (see Climate
Monitoring, above).

3.4.2.A.iv. Vegetation Structure Class Qualitative
Assessment

The Vegetation Plot cover and height data
summaries for each vegetation structure class by
plot ecotype, Area, and sample year are presented
in Figures 3.17 and 3.18. In general, total live
cover stayed approximately the same or increased
between 2013 and 2016 in both Reference and Test
Areas and across ecotypes. Increases in total live
cover were most commonly related to increases in
mosses and sedge cover. In 2013, total live cover
was greatest in Riverine Loamy Alkaline Moist
Low Willow Shrub and Riverine Loamy-Organic
Circumneutral Moist Low Willow-Sedge Meadow
in Test and Reference Areas, respectively. In 2016,
Riverine Loamy Alkaline Moist Low Willow
Shrub again had the highest total live cover in the
Test Area; we attribute the higher value to an
increase in forbs and low and tall shrubs. In the
Reference  Area, Riverine Loamy-Organic
Circumneutral Moist Low Willow-Sedge Meadow
was tied for highest total live cover in 2016 with
Lowland Organic-Rich Circumneutral Wet Sedge-
Willow Meadow, which saw an increase between
years in mosses, forb, and sedge cover. Total live
cover decreased appreciably in Coastal Loamy
Brackish Moist Willow Dwarf Shrub in Reference
Areas, despite a slight increase in dwarf shrub
cover. The decrease in total live cover in this
ecotype was attributed primarily to a drop in moss
and grass cover. The drop in moss cover is likely
related to the increase in soil alone cover in 2016,
indicating mosses were buried by sediment. In the
Test Area, total live cover decreased appreciably in
Upland Sandy Alkaline Moist Low Willow Shrub
in 2016, a result predominantly associated with a
drop in forb cover.

The top cover of the non-vegetated classes
water alone, soil alone, litter alone, as well as
moss are included in Figure 3.17 and mirror the
results of the detailed ground cover class
assessment (Appendices C and D). The results
were generally consistent between Areas and
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years (section 3.4.2.A.iii, above). For instance,
for the wet plot ecotypes Lowland Organic-
rich Circumneutral Wet Sedge Meadow, Lowland
Organic-Rich Circumneutral Wet Sedge-Willow
Meadow, Riverine Organic-Rich Circumneutral
Wet Sedge Meadow, and Riverine Organic-Rich
Circumneutral Wet Sedge-Willow Meadow, the
general trend was a reduction in water cover,
deeper water tables, and an increase in soil,
litter, and non-vascular cover between 2013 and
2016. This trend is related to the overall warmer
conditions in 2016 vs. 2013; higher evapo-
transpiration and earlier melt-off of snow in 2016;
and the predominance of summer precipitation
falling in July 2013 vs. August and September of
2016. In addition, the higher water cover in 2013 is
also likely related in part to the more extensive
break-up flooding in 2013 when most of the CD5
Study Area was flooded for up to several days
(Baker 2016). In contrast, spring break-up was
more subdued in 2016 and the CD5 Study Area
was flooded less extensively (Baker 2016). Lower
cover of standing water in 2016 resulted in a higher
amount of exposed litter and mineral soil, which is
expressed in the higher percentages of these
ground cover classes in 2016. The increased cover
of non-vasculars, which are highly sensitive to soil
moisture gradients (Turetsky et al. 2012), may in
part be related to the non-vascular lifeforms
mosses and liverworts capitalizing on the slightly
drier conditions in 2016. The ecotypes Coastal
Loamy Brackish Moist Willow Dwarf Shrub,
Coastal Sandy Moist Brackish Barrens, Riverine
Loamy Alkaline Moist Mixed Herb, Riverine
Loamy Alkaline Moist Low Willow Shrub, and
Riverine Loamy Alkaline Moist Tall Willow Shrub
are characterized by highly dynamic environments
(e.g., river bars and lower floodplain surfaces). The
variability in non-vegetated classes and mosses
between Areas and years is due in large part to the
dynamic nature of the environments characteristic
of these ecotypes. For example, the lower mineral
soil cover and higher litter cover in 2016 in several
of these ecotypes is likely attributable to a com-
bination of the more subdued breakup flooding in
2016 as compared to 2013, and the point-intercept
methods for recording last hit (as explained in
Section 3.2.2.B.i. Vegetation Plots—Point-
intercept Sampling). Less intense flooding would
result in less scour, thus, leaving litter overlying
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mineral soil in place as opposed to flushing it
away. The point-intercept sampling methods
call for no hits of abiotic ground cover classes
below litter; hence mineral soil below litter is
not counted.

The Vegetation Plot height data summaries for
herbaceous (“herb”) and woody species by plot
ecotype, Area, and sample year are presented in
Figure 3.18. In general, herb and woody heights
stayed approximately the same between 2013 and
2016 in both Reference and Test Areas and across
ecotypes with few exceptions. Herbs were shorter
in 2016 in the Coastal Loamy Brackish Moist
Willow Dwarf Shrub, while woody height
remained approximately the same. In the ecotype
Coastal Sandy Moist Brackish Barrens, herbs were
taller and woody species were shorter in Reference
Areas in 2016, while in Test Areas herbs were
appreciably shorter and similar to 2013; woody
species were absent. The ecotype Riverine Loamy
Alkaline Moist Mixed Herb in the Test Area (not
sampled in the Reference Area) saw an increase in
both herb and woody heights in 2016 compared to
2013, and an increase from 44% to 50% in the
frequency of points where woody heights were
measured in 2016. Lastly, in the Test Area (not
sampled in the Reference Area), herb height
increased slightly in the ecotype Upland Loamy-
Organic Circumneutral Moist Tussock Meadow
between 2013 and 2016, while woody height and
the frequency of points where woody heights were
measured decreased from 100% in 2013 to 81%
in 2016.

3.4.2.B Habitat Assessment
Calibration Plot Analysis

The calibration plot analysis, in which 6
botanists took turns sampling the same Habitat
Plot Lines at 3 Habitat Plots was designed to
provide an estimate of the inter-observer error
associated with the point-intercept sampling
method. The calibration plots also provided an
opportunity for field teams to work together and
discuss the point-intercept sampling methods to
ensure that the methods were being applied
consistently between botanists. The plot sampling
occured on three different days, one plot ten days
into field work and one on each of the last two
days, The results of the calibration plot analysis,
including 95% confidence intervals of cover
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estimates by vegetation structure class, are
summarized in Table 3.12. Five of the vegetation
structure classes were not present in high enough
amounts for analysis, hence these 5 classes were
not evaluated. Of those with higher than 5% cover,
Mosses and Liverworts had the greatest
methodological variation; the 95% confidence
interval is 20.3% of the mean cover for this class.
The non-vegetated classes Bare Ground and Litter
had the lowest variation, 5.1% and 2.9%
respectively. The high methodological variation in
the Mosses and Liverworts category may in part be
attributed to the complexity of the point-intercept
rules associated with sampling this structure class
category. For instance, live hits of mosses and
liverworts are recorded below litter, whereas all
other live hits below litter are not counted. In
addition, it was noted after the completion of the
first calibration plot that 1) some botanists were
only recording moss and liverwort hits if the
majority of the laser beam covered the moss or
liverwort, while others were recording moss and
liverwort hits if any portion of the laser beam
covered the moss or liverwort, and 2) some
botanists were recording live cover of mosses and
liverworts below litter while others were not. The
methodological variation seen for this class at the
calibration plots is largely due to the differences in
application of the above rules for mosses and

Table 3.12. Ninety-five percent confidence
interval range as a percentage of mean
cover for calibration plots by structure
class, CD5 Habitat Monitoring Study
Area, northern Alaska, 2013 and
2016.

Confidence Interval Range

Structure Class (% of mean)

Mosses and Liverworts 20.3
Forbs 14.9
Dwarf Shrubs 13.6
Low Shrubs 10.8
Total Live Vascular 9.3
Salix 9.1
Sedges and Rushes 7.0
Bare Ground 5.1
Litter 2.9
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liverworts. Once these differences in methods were
realized the botanists discussed ways to improve
consistency and clarified the rules for future
point-intercept sampling for mosses and liver-
worts. The calibration plots served to improve
consistency in point-intercept sampling between
botanists in addition to providing an estimate of the
inter-observer error inherent to the point-intercept
method itself.

Qualitative Assessment

Summaries of vegetation structure cover,
non-vegetated cover, and herb and woody
vegetation heights by wildlife habitat class are
provided below. These summaries provide 1)
quantitative cover and height values of general
vegetation structural classes and ground cover
types for wildlife habitat map classes for use in
describing the mapping classes; and 2) quantitative
baseline data for long-term habitat monitoring.

Habitat Plot data were summarized by
wildlife habitat class for all wildlife habitats with at
least 75 points. Of the 24 wildlife habitats in the
CD5 Habitat Monitoring Study Area, 12 had
sufficient data. The sampling design avoided
placing Habitat Plot Center Points in waterbodies
and as a result, waterbody habitats were not
frequently sampled. Thus, of the 7 waterbody
habitats in the Study Area, only the “River or
Stream” class met the 75 point criteria. The 6
terrestrial wildlife habitat classes with insufficient
data from the Habitat Plots were all rare. The 11
terrestrial wildlife habitat classes with sufficient
data cover 97.7% of the non-water portion of the
CD5 Study Area (see 3.4.2.C ITU Mapping,
below).

Summaries of mean vegetation structure class
cover, non-vegetated cover, and herbaceous and
woody height by wildlife habitat class and grouped
by year and Area are presented in Figure 3.19,
Appendix F. Wildlife habitats with the highest
cover of water alone include River or Stream and
Deep Polygon Complex. Soil alone had the highest
cover in Barrens, Dry Halophytic Meadow, and
Moist Herb Meadow. Moist Low Shrub and Moist
Halophytic Dwarf Shrub also had appreciable soil
alone cover. Litter alone was highest in Patterned
Wet Meadow, Nonpatterned Wet Meadow, Moist
Sedge-Shrub Meadow, and Dry Dwarf Shrub.
Cover of mosses was highest in Moist Sedge-Shrub
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Meadow, Patterned Wet Meadow, and Nonpat-
terned Wet Meadow. Lichen cover was generally
absent to low across all wildlife habitats, but was
highest in Dwarf Low Shrub and Moist Tussock
Tundra. Forbs were most abundant in Moist Herb
Meadow and Moist Low Shrub, while grasses had
the highest cover in Moist Herb Meadow and Dry
Halophytic Meadow. Wildlife habitats with the
highest cover of sedges included Moist Tussock
Tundra, Patterned Wet Meadow, and Nonpatterned
Wet Meadow. Dwarf shrubs were most common in
Moist Halophytic Dwarf Shrub, Dry Dwarf Shrub,
and Moist Sedge-Shrub Meadow. Lastly, low and
tall shrub cover was highest in Moist Low Shrub,
Tussock Tundra, and Dry Dwarf Shrub. These
broad patterns are consistent in both years of the
study (2013 and 2016) and over both the Test and
Reference Areas, although some habitat types are
not present in both Areas.

Summaries of herbaceous and woody
vegetation heights by wildlife habitat class at
Habitat Plot Points and grouped by year and Area
are presented in Figure 3.20 and Appendix F.
Woody vegetation frequency was highest in Moist
Sedge-Shrub Meadow, Moist Halophytic Dwarf
Shrub, Dry Dwarf Shrub, and Moist Low Shrub.
Moist Low Shrub and Moist Herb Meadow were
associated with some of the highest woody
vegetation heights. Barrens also had high average
woody vegetation heights, although frequency of
woody vegetation was low. Note that Tall Shrub
habitat classes were relatively rare and were
excluded from these results due to insufficient
sample points. Herb frequency was greater than
93% in all but 2 habitats, Barrens and River or
Stream. Herb heights were highest in Moist
Tussock Tundra, Nonpatterned Wet Meadow,
Patterned Wet Meadow, and Deep Polygon
Complex. Similar to the cover percentages, the
broad patterns apply to both years and Areas, with
the exception of those habitat types not present in
both Areas. The significantly taller shrub
vegetation in the Test Area between 2013 and 2016
for the Dry Halophytic Meadow habitat type
represents a real increase in shrub height for this
habitat in 2016 (see section 3.4.2.G Repeat Photo
Monitoring). However, this change was observed
at only one habitat line (plot id t5Sna-0798-hab,
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line id 1), and given the small sample size of
woody height measurements within that habitat
type, the significance of this change is more an
artifact of the small sample size.

Quantitative Assessment

For the quantitative assessment of habitat
changes between years and Areas, we relied on the
repeated measures analysis, but have included
mean and 75% and 95% confidence intervals for
percent cover of vegetation structure classes by
wildlife habitat for 2013 and 2016, and Test and
Reference Areas (Figure 3.21 and Appendix G) as
required by the CD5 Monitoring Plan (ABR and
Baker 2013).

The first set of results compared total live
vascular cover between Areas and years using
habitat lines as the repeated measures subject, and
reported significance (p-value) for a between Area
effect, a between year effect, and an interaction
effect of Area and year (Table 3.13). For the
purposes of evaluating the potential effects of the
CDS5 project, the interaction effect is the important
parameter because it signifies a change between
2013 and 2016 that was different in the Test Area
than the Reference Area. For total live vascular
cover, there were no significant (p < 0.05)
interaction effects and only one significant year
effect in the Moist Herb Meadow wildlife habitat.
This suggests that total live vascular cover was
different between 2013 and 2016 in this wildlife
habitat, but that the changes occurred in both the
Test and Reference Areas.

The second set of results compared each of
the structure classes with more than 10% cover
within a habitat between Areas and years, again
using habitat lines as the repeated measures subject
(Table 3.14). Several significant Area effects,
including a difference in Sedges and Rushes in
Moist Low Shrub and Litter in Moist Sedge-Shrub
Meadow were found between Test and Reference
Areas (Figure 3.21).

Litter is significantly different between years
in several wildlife habitats, including Deep
Polygon Complex (along with water and mosses
and liverworts), Moist Herb Meadow (along with
bare ground and mineral soil), Moist Low Shrub,
and Patterned Wet Meadow (in addition to Salix
cover). Mosses and liverworts show a significant
year effect in Nonpatterned Wet Meadow.
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Figure 3.20. Herbaceous and woody plant height for common wildlife habitat classes in the CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Table 3.13. Significance (p-value) of Area, Year, and Area x Year interaction on total live vascular cover
by wildlife habitat from repeated measures analysis, CD5 Habitat Monitoring Study Area,

northern Alaska, 2013 and 2016.

Wildlife Habitat Area Area x Year Year
Barrens 0.6270 0.2669 0.8381
Deep Open Water with Islands or Polygonized Margins 0.7773 0.6667 1.0000
Deep Polygon Complex 0.3877 0.1311 0.7969
Dry Dwarf Shrub 0.2997 0.1081 0.9155
Dry Halophytic Meadow 0.1701 0.1375 0.0749
Moist Halophytic Dwarf Shrub 0.8108 0.9238 0.2163
Moist Herb Meadow 0.4359 0.6708 0.0113
Moist Low Shrub 0.0536 0.3409 0.8133
Moist Sedge-Shrub Meadow 0.9540 0.1253 0.3896
Nonpatterned Wet Meadow 0.2816 0.6188 0.7394
Patterned Wet Meadow 0.6804 0.6541 0.4241
River or Stream 0.4974 0.6221 0.3244
Five significant interaction effects were  classes to sampling error. Extrapolating a

found. Both bare ground and mineral soil in
Barrens changed significantly for the interaction of
Area and year, with percent cover dropping
between 2013 and 2016 in the Reference Area, but
rising in the Test Area. One explanation for this
pattern is that water covered almost 16% of the
habitat in the Test Area in 2013 but was absent in
the Reference Area. A lot less water was present in
the Test Area in 2016 (3.8%), resulting in an
increase in percent cover of bare ground and
mineral soil. A similar effect was seen for water in
the River or Stream wildlife habitat; percent of
water cover was unchanged between years in the
Reference Area, but dropped in the Test Area
(replaced by mineral soil and bare ground). The
Barrens habitat class occurs in highly dynamic
environments, on active river bars, where daily
fluctuations in water level related to changes in
river stage and tidal influences are common.

Cover of mosses and liverworts in Deep
Polygon Complex wildlife habitats also had a
significant interaction effect, with percent cover
increasing in the Reference Area between 2013 and
2016 (19.7% to 23.6%), but increasing only
slightly in the Test Area (from 20.5% to 21.5%)
between years. It is worth noting that the
calibration results (see Section 3.4.2.B, Calibration
Plot Analysis, above) indicated that this vegetation
structure class is the most sensitive of all the

methodological confidence interval onto the mean
cover percentages in the Reference Area for this
class results in clearly overlapping ranges.

The final significant interaction effect is seen
for the Salix structure class in Patterned Wet
Meadow habitats. Salix cover increased in the
Reference Areas (10.7% to 14.4%) but declined
slightly in the Test Areas (11.6% to 10.7%)
between 2013 and 2016. The cause of the increase
in Salix cover in the Reference Areas, and slight
decrease in Salix cover in Test Areas, is unknown.
The slight decrease of <1% could be sampling
error (i.e., this difference is within the range of
variation between observers). We will assess the
Salix cover in all Areas as part of the 2019 CD5
Monitoring effort to determine whether the
patterns of observed change remains.

3.4.2.C ITU Mapping

The original ITU map developed from 2012
imagery provided a quantifiable baseline for
assessing landscape change over time for the CD5
Habitat Monitoring Study Area. We updated the
ITU mapping using newer imagery acquired in
July 2015. Although shifts in map unit boundaries
and ITU parameters were locally common along
the Nigliq Channel and along the CD5 road, most
map units remained unchanged. We did not
observe any new ITU classes that were not present

CD5 Habitat Monitoring, 2016
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3.0 Habitat Monitoring

in the baseline map, with the exception of
disturbance classes and human-modified ecotypes
related to CD5 infrastructure.

Geomorphic Units

Eighteen terrestrial geomorphic units are
represented in the updated map and account for
79% of the CDS5 Habitat Monitoring Study Area
(Figure 3.22, Table 3.15). Delta Inactive Overbank
Deposit remains the dominant geomorphic unit,
covering over 44% of the CD5 Study Area. Delta
Active Channel Deposit, Delta Active Overbank
Deposit, and Delta Abandoned Overbank Deposit
are also common, with areal cover values ranging
from 7.4 to 9.9%. All other terrestrial geomorphic
units cover <3% of the CD5 Study Area.

Seven aquatic geomorphic units collectively
account for the remaining 21.0% of the CD5 Study
Area (Figure 3.23, Table 3.16). As in the 2012
baseline map, Tidal River is the most extensive
aquatic geomorphic unit (9.9% areal cover). In
addition, Deep Isolated Riverine Lakes make up a
substantial portion of the landscape (6.6%). The
remaining aquatic geomorphic units account for
<2.1%.

Surface Forms

Seventeen surface forms occur in the updated
mapping (Figure 3.24, Table 3.17). As in the
2012 map, the dominant surface forms were
Disjunct Polygon Rims; Low-centered, Low-
relief, Low-density Polygons; and Nonpatterned,
each of which cover approximately 20% of the
CD5 Study Area. Surface forms related to
low-centered polygons are very common; these
features are associated with ice-rich permafrost
and collectively cover nearly one-third of the
CDS5 Study Area. Water accounts for 13.6% of
the total area, and Lakes with Islands 7.4%. All
other surface forms are relatively rare, with an
areal cover <2% each. Examples of common
ice-wedge polygon surface forms are provided in
Figure 3.25.

Vegetation

Twenty vegetation classes (Level IV, AVC)
are represented in the updated mapping (Figure
3.26, Table 3.18). Wet Sedge Meadow Tundra, Wet
Sedge-Willow Tundra, and Brackish Water remain
the dominant vegetation classes, with areal cover
values of 22.6%, 17.6%, and 11.1%, respectively.

CD5 Habitat Monitoring, 2016

Other common vegetation classes include Fresh
Water (9.5%), Open Low Willow (7.9%), Deep
Polygon Complex (6.4%), Barrens (6.1%), and
Open Low Willow-Sedge Shrub Tundra (5.7%).
All other vegetation classes account for less than
4% of the CDS5 Study Area.

Disturbance

The updated mapping identified 11 distur-
bance classes within the CD5 Study Area (Figure
3.27); the disturbance classification includes one
new anthropogenic category—Bridge—that was
not present in the original CBCP disturbance
classification (Table 3.19). The vast majority of the
CD5 Study Area has not undergone natural or
anthropogenic disturbance since 2012; the areal
extent of undisturbed ground is 98.5% (Table
3.20). The anthropogenic disturbance class Snow/
Ice Pads and Roads is the most extensive dis-
turbance class (0.5% areal cover). Thermokarst,
which refers to the subsidence of ice-rich ground
after thawing, is the most common natural
disturbance type (0.4%). In addition, Fluvial
Deposition and Fluvial Erosion/Channel Migration
are locally common disturbance classes adjacent to
the Nigliq Channel.

Map Ecotypes

Map ecotypes are mapping classes that
represent local-scale ecosystems classified by
aggregating ITU map units with similar ecological
components, including geomorphology, surface
form, vegetation, and disturbance. Thirty-eight
ecotypes are represented in the updated mapping
for the CD5 Study Area; this total includes three
disturbed classes—Human-modified Marsh, Human-
modified Moist Meadow, and Human-modified
Waterbody—that occur adjacent to CDS5 infra-
structure and were not present in the baseline map
(Figure 3.28). Riverine Wet Sedge Meadow and
Riverine Wet Sedge-Willow Meadow remain the
dominant ecotypes, with 19.4% and 17.2% areal
cover, respectively (Table 3.21). Other common
map ecotypes include Tidal River (9.9% areal
cover), Coastal Barrens (9.1%), Riverine Moist
Low Willow Shrub (7.9%), Riverine Lake (7.3%),
and Riverine Moist Low Willow-Sedge Meadow
(5.7%). All other map ecotypes account for less
than 5% of the CD5 Study Area.
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Geomorphic units are ecologically important because
they represent areas with differing erosional and
depositional characteristics and, as a result, have
different types of naturally occurring disturbances,

topography, and vegetation. Consequently, their use by

wildlife differs. For example, Eolian Inactive Sand
Dunes form low, linear hills with moist—dry, sandy soils

and a relatively thick active layer. The well-drained soils

associated with these features provide ideal denning
and burrowing sites for foxes and ground squirrels.
Grizzly bears and foxes are attracted to these sites
where they excavate ground squirrel burrows in search
of food. Ice-rich and ice-poor thaw basins form broad

depressions on the landscape and have poorly drained,

wet soils making these features less appealing or
impossible to use as denning sites for mammals.

Approximate scale (printed ARCH E) = 1:10,000
Approximate scale (printed tabloid) = 1:33,000

0 500 1,000 1,500 2,000

! ! Meters
0 2,000 4,000 6,000

! | Feet

Figure 3.22.
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Figure 3.24.
Map of Surface Forms in the CD5 Habitat
Monitoring Study Area, Northern Alaska, 2015.
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Surface forms are important to our mapping because \) v
they are related to the freezing and thawing of surficial
materials and thus are good indicators of the extent of
subsurface ice. For instance, Jorgenson et al. (1997),
working on the Colville River Delta, observed that the
volume of ice contributed by wedge ice increases from
0% in Nonpatterned areas to 20% in Low-centered,
High-density Polygons. Surface forms also greatly
influence drainage patterns and soil moisture.
Nonpatterned areas commonly are dominated by
vigorously growing sedge meadows and appear to be
more productive than polygonized meadows, presumably
because subsurface movement of water and nutrients is
not impeded by the frozen soils underneath the polygon
rims. Surface form is also important for wildlife habitat.
For instance, large snowbanks often form on the leeward
side of Bluffs and Banks and provide important polar
bear denning sites, and the polygon rims associated with REFERENCE
Low-centered, Low-relief, Low-density Polygons are 3 AREA SOUTH
important nesting sites for White-fronted Geese. W

S
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on orthophotos acquired 3-5 July 2015, and compared with
0 500 1,000 1,500 2,000 orthophotos acquired 25 July 2012 to interpret changes to
Meters ecosystem conditions. Background hydrography from
L J ConocoPhillips Alaska, Inc. (CPAI), 2016, and ABR, Inc. ITU

mapping, 2001-2003. Existing infrastructure from CPAL,
February—March 2016. Map projection: Alaska State Plane
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Disjunct Polygon Rims (Pd) High-centered, Low-relief Polygons (Phl)
Low-centered, High-relief, High-density Polygons Low-centered, High-relief, Low-density Polygons
(Plhh) (PIhl)

Low-centered, Low-relief, High-density Polygons Low-centered, Low-relief, Low-density Polygons
(Plih) (P

Figure 3.25. Examples of common ice-wedge polygon surface forms in the CD5 Habitat Monitoring Study
Area, northern Alaska, 2013 and 2016. Red bounding box highlights each respective type and
provides scale; bounding box represents approximate 328x328 ft (100x100 m) on the ground.
Background imagery is a color orthophoto mosaic by Quantum Spatial, Inc. Digital imagery
acquired 25 July 2012; 1.0 foot pixel resolution.
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Figure 3.26.
Map of Vegetation Classes in the CD5 Habitat
Monitoring Study Area, Northern Alaska, 2015.
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Vegetation provides food and cover for wildlife, both of
which are essential for wildlife habitat. In arctic Alaska,
vegetation patterns are driven by both broad scale
climatic factors and local-scale soil moisture and
nutrient gradients. At the local scale, physiography
and microtopography play a significant role in the
types and distribution of vegetation on arctic tundra.
The Viereck Level IV vegetation classes presented in
the vegetation map represent broad groupings of
similar vegetation based on structure (e.g., Open Low
Willow) and genera (e.g., Willow) or lifeform (e.g.,
sedges). This allows for a consistent classification
across the CD5 Habitat Monitoring Study Area, and
aggregation of vegetation communities into

N
functionally similar types for use in vegetation mapping REFERENCE
and wildlife habitat classification and assessments. > B AREA SOUTH
\I
S
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Disturbance refers to 1) naturally occurring
processes (e.g., riverine flooding) that “reset”
natural systems to an earlier stage in landscape

development, and 2) anthropogenic changes to th
landscape. When mapping disturbance we focus
on prominent anthropogenic changes in the tundra
surface such as gravel fill, areas in the immediate
vicinity of pads and roads, and well-defined trails;
and recent, naturally occurring disturbances, such
as erosion related to riverine flooding. Disturbance

is important to our mapping primarily because it

provides for a baseline which allows us to quantify

landscape change through time.

Approximate scale (printed ARCH E) = 1:10,000

Approximate scale (printed tabloid) = 1:33,000
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Figure 3.27.
e CD5 Habitat
Alaska, 2015.
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Photo-interpretation based on color orthophoto mosaics with
1.0 foot pixel resolution acquired 2012-2015 by Quantum
Spatial, Inc. Photo-interpretation of curren
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ecosystem conditions. Background hydrography fr
ConocoPhillips Alaska, Inc. (CPAI), 2016, and ABR,
mapping, 2001-2003. Existing infrastructure from CPAI,
February-March 2016. Map projection: Alaska State Plani
Zone 4, NAD 1983, U.S. feet. ABR file: Fig_3_27_
CD5_ITU_Disturbance_16-138.mxd, 30 January 2017
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Table 3.19. Classification and description of disturbance regime categories in the CD5 Habitat
Monitoring Study Area, northern Alaska, 2016. Class descriptions modified from Jorgenson
et al. (1997, 2003) and Roth et al. (2007). Disturbance regime classes that were identified in
the field but not mapped are identified with an asterisk.

Disturbance regime

Description

Absent (A)
Bridge (Hseb)

Elevated Pipeline (Hsep)

Eolian Wind (Nge)*

Fluvial (Ngf)*

Fluvial Deposition
(Ngfd)*

Fluvial Erosion/Channel
Migration (Ngfe)

Gravel Pad (Hfgp)

Gravel Road (Hfgr)

Salt Killed Vegetation
(Nsk)

Snow/Ice pads and Roads
(Hti)

Thermokarst (Ngt)

No disturbance within approximately a 5-year period.
Bridges over distributaries of the Colville River Delta associated with the CD5 Road.

Pipelines which are all elevated to a minimum height of 5 ft (1.5 m) above ground level
and supported by Vertical Support Members (VSMs).

Common along the western, downwind side of the Colville River, this category refers
to the evolution of active dunes, or the remobilization of vegetated dunes due to eolian
processes.

Undifferentiated fluvial disturbance processes along active river channels and
overbanks. Disturbances can be annual (e.g., flooding of active channels during peak
flow in spring), but episodic events (e.g., large floods with low return periods) can
affect much larger areas.

Fluvial disturbance associated with sediment deposition during and after flood events.

Fluvial disturbance associated with the evolution of distributary channels on the
Colville River delta, such as cutbank erosion.

Gravel and sandy gravel that has been placed as fill for pads. The gravel is obtained
from deep riverbed deposits or gravelly coastal plain deposits.

Similar to above but the gravel here is placed as fill for roads.

Coastal areas where saltwater intrusions from storm surges have killed much of the
original terrestrial vegetation and where salt-tolerant plants are actively colonizing.

Disturbed vegetation due to previous placement of snow (from plowed gravel pads) or
ice roads and pads on tundra.

The processes associated with the thawing permafrost that leads to local or widespread
collapse, subsidence, erosion and instability of the ground surface.
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Figure 3.28.
Map Ecotype Classes in the CD5 Habitat
Monitoring Study Area, Northern Alaska, 2015.
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Ecotypes are local-scale ecosystems that
represent a hierarchical organization of physical
and biological variables. The advantage of this
hierarchical methodology is that the combination of
physiography (strongly associated with geomorphic
units), moisture (related to surface form and thaw
depth), and vegetation structure yields classes that
effectively differentiate both soil characteristics and
vegetation composition. This approach reflects
characteristics that the interpreter can readily
distinguish during mapping, such as physiography
(e.g., floodplains versus terraces), surface form
(e.g., low-centered versus high-centered polygons),
and vegetation structure (e.g., low shrubs versus
graminoids). Ecotypes are based on recoding of
integrated terrain unit (ITU) map using the Beaufort
Coastal Plain Classification. ¥
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3.0 Habitat Monitoring

Wildlife Habitat

Twenty-four wildlife-habitat classes are
represented in the updated mapping for the CD5
Study Area (Figure 3.29, Table 3.22); for detailed
descriptions of the wildlife habitats, see Wells et al.
(2014). As in the baseline mapping, the most
extensive habitat type is Patterned Wet Meadow,
with an areal cover of 25.9%. Other widespread
terrestrial habitat classes remain unchanged from
2012, including Moist Low Shrub (16.3% areal
cover), Nonpatterned Wet Meadow (13.9%),
Barrens (9.2%), and Deep Polygon Complex
(6.3%). The aquatic habitat classes River or Stream
(9.9% areal cover) and Deep Open Water with
Islands or Polygonized Margins (6.8%) are also
common. All other wildlife habitat classes had less
than 2% areal cover.

3.4.2.D Landscape Change Assessment

We evaluated natural and anthropogenic
landscape change across the CD5 Study Area
between 2012 and 2015 by updating the baseline
ITU mapping using imagery acquired in July 2015.
The map update effort revealed little change across
most of the CD5 Study Area; however, landscape
disturbances were locally common along the banks
of the Niglig Channel and in association with
newly constructed CDS5 infrastructure (Figure
3.30). Overall, only 0.8% (35.6 ha) of the CD5
Study Area was affected by landscape-change
processes that required updates to map unit
boundaries, or to ITU codes assigned to map units
(Table 3.23).

Natural  fluvial erosion and fluvial
sedimentation along the Nigliq Channel accounted
for most of the observed changes (Figure 3.31).
Erosion was most apparent along sections of the
Nigliq Channel, where cutbank erosion claimed
several meters of riverbank between 2012 and
2015. Sedimentation and resulting mortality of
vegetation were locally common on river
overbanks near the Nigliq Channel, and in the
basin of Nanuk Lake. We also observed recent
thermokarst along the shorelines of thaw lakes in
the southwest and outermost northeast portions of
the CD5 Study Area. One landscape change
mechanism—succession—was evident in areas
where vegetation had colonized recent Delta
Active Channel Deposits.

CD5 Habitat Monitoring, 2016

Human activities, including construction of
CDS5 infrastructure and winter ice roads, created
linear changes primarily in the central Test Area.
Changes were most pronounced within the
footprint of the CD5 road, which is now gravel fill.
Vegetation changes outside the road footprint
(based on aerial photo signatures) included partial
mortality and/or delayed green-up associated with
corridors regularly used for ice road construction in
Test Area South and Reference Area South.
Construction of elevated structures (i.e., CDS5
pipeline and bridges) generally left underlying
vegetation and waterbodies intact.

Geomorphic Units

Changes to terrestrial and aquatic geomorphic
units were rare in the CD5 Study Area between
2012 and 2015, and no class changed in extent by
more than 5% within the Test and Reference Areas.
On a percent basis, the largest change in terrestrial
geomorphic units across the CD5 Study Area was a
1.8% increase in the extent of Gravel Fill (from 7.9
to 8.0 ha) (Table 3.24). All of this change occurred
within the Test Area and is associated with the
CDS5 road; Gravel Fill associated with the CD5
road is being assessed separately for monitoring
purposes (see below). Within the Test Area, the
most substantial change to terrestrial geomorphic
units on a percent basis was a 3.1% decline in the
extent of Delta Inactive Channel Deposits (from
32.0 to 31.0 ha). All of this change occurred along
the Nigliq Channel in the South Test Area, where
cutbank erosion affected an approximately 1 km
long section of the shoreline west of CD4. No
terrestrial geomorphic units changed in area by
more than 1% within the Reference Area. Among
aquatic geomorphic units, the most extensive
change observed across the CD5 Study Area was a
1.1% increase in the extent of Tidal River (Table
3.16). Most of this increase occurred due to
cutbank erosion along sections of the Nigliq
Channel in the central and northern parts of the
CDS Study Area.

Surface Form

Similar to geomorphic unit, changes to
surface forms were rare between 2012 and 2015
and no class changed in extent by more than 5%
across the CD5 Study Area (Table 3.17). However,
compensatory increases and decreases in the extent
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Table 3.23. Areal extent (ha) of landscape change mechanisms that affected Reference and Test Areas
between 2012 and 2015, CD5 Habitat Monitoring Study Area, northern Alaska.

Reference Test* Total*
Mechanism Area (ha) % of total Area (ha) % of total Area (ha) % of total
Absent 2572.4 99.6 1650.2 98.5 4222.6 99.2
Anthropogenic - gravel
road - - <0.1 <0.1 <0.1 <0.1
Anthropogenic - ice road
or pad 3.8 0.1 8.3 0.5 12.1 0.3
Anthropogenic - pipeline - - 3.0 0.2 3.0 0.1
Fluvial erosion 1.4 0.1 5.0 0.3 6.5 0.2
Fluvial sedimentation 23 0.1 9.3 0.6 11.6 0.3
Succession 1.4 0.1 0.2 <0.1 1.7 <0.1
Thermokarst 0.8 <0.1 - - 0.8 <0.1
Grand Total 2582.2 100.0 1676.0 100.0 4258.2 100.0

*The footprint of the CD5 road is not included

Change Mechanism
Fluvial erosion
.5 Fluvial sedimentation

Nanuk

\ Lake

aining the lake basin

Figure 3.31. Example of landscape change resulting from fluvial processes along Nigliq Channel near
Nanuk Lake, CD5 Habitat Monitoring Study Area, northern Alaska, 2012 and 2015.
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Table 3.24. Areal extent (ha) of anthropogenic disturbance classes in 2012 and 2015 including the CD5
road for Reference and Test Areas, CD5 Habitat Monitoring Study Area, northern Alaska.

Reference Test Total
Disturbance class 2012 2015 2012 2015 2012 2015
Elevated Pipeline - - 1.2 4.1 1.2 4.1
Gravel Fill - - <0.1 0.0 <0.1
Gravel Pad - - 39 4.1 39 4.1
Gravel Road - - 4.0 13.0 4.0 13.0
Snow/Ice pads and roads 9.2 13.0 0.6 8.5 9.8 21.5
Grand Total 9.2 13.0 9.7 20.6 18.9 33.6

of one surface form—Bluffs or Banks—occurred
within the Reference and Test Areas, respectively.
The extent of Bluffs or Banks decreased by 6.9% in
the Test Area (from 14.6 to 13.6 ha), but increased
5.9% in the Reference Area (from 13.0 to 13.8 ha).
All of these changes were associated with cutbank
erosion along the Niglig Channel. Along some
sections, river erosion has created very steep banks
that lack a mappable fringe of Bluffs and Banks,
while in others, bank collapse has widened the
fringe of Bluffs and Banks. These contrasting
effects of river channel migration and erosion
within the Test and Reference Areas do not appear
to be related to infrastructure and are consistent
with riverine processes seen along stream reaches
elsewhere on the CRD. The only other changes
resulting in a >1% magnitude change in surface
form was a 3.6% decrease in the extent of Streaked
Dune in the Test Area, again due to cutbank
erosion; and a 1.9% increase in Water in the Test
Area, resulting from river channel migration and
thermokarst along lakeshores.

Vegetation

Changes in vegetation class were more
prevalent than changes in geomorphic unit and
surface form in the CD5 Study Area (Table 3.18).
Across the CD5 Study Area, we observed changes
in excess of +/-5% for one vegetation class—
Elymus (+9.4%). This vegetation class is among
the least extensive classes on the CRD, where it
occurs on early successional sites such as young
fluvial and eolian deposits. All of the observed
change occurred in one landscape patch in the

Reference Area, where the density of vegetation
has increased since 2012; Elymus map units
remained unchanged in the Test Area. Within the
Test Area, we observed changes in excess of 5%
for two vegetation classes: Halophytic Willow-
Graminoid Dwarf Shrub Tundra (-11.1%, from
22.0 to 19.5 ha) and Partially Vegetated (+9.7%,
from 10.7 to 11.7 ha). Halophytic Willow-
Graminoid Dwarf Shrub Tundra is a rare vegeta-
tion class in the CD5 Study Area (1.1% areal
cover) and the changes documented pertain to a
single landscape patch near the Nigliq Channel
bridge that underwent heavy sedimentation. This
area is now mapped as Partially Vegetated, and
thus accounts for most of the increase in Partially
Vegetated observed in the Test Area.

Disturbance

Only about 1.5% of the CD5 Study Area was
assigned to a disturbance class in the updated
mapping, indicating that most of the CD5 Study
Area has not experienced recent natural or
anthropogenic disturbance. Disturbance is defined
as any natural or anthropogenic process or activity
that results in a change in site characteristics and/or
vegetation composition. Although the extent of
several disturbance classes increased markedly on
a percent basis, these increases involved small
magnitude changes to classes with low areal
extents. Across the CD5 Study Area, the area of
Elevated Pipeline increased 236% (from 1.2 to 4.1
ha) and Snow/Ice Pads and Roads increased 119%
(from 9.8 to 21.5 ha) (Table 3.20). The increase in
Elevated Pipeline was entirely within the Test Area
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due to the construction of the CDS5 pipeline.
Increases in the extent of the Snow/Ice Pads and
Roads disturbance class were most pronounced in
the Test Areas, adjacent to CDS5 infrastructure
(+1,278%; from 0.6 to 8.5 ha); however, there were
also some increases in ice road disturbance in the
Reference Areas (+41.5%; from 9.2 to 13.0 ha).
Both of the anthropogenic disturbance classes
summarized above generally resulted in partial
mortality and/or delayed green-up of vegetation,
rather than transitions from one vegetation class
to another. Changes in the extent of natural
disturbance classes included a 53.1% decrease in
the rare class, Salt-killed Vegetation (from 0.5 to
0.2 ha); this occurred entirely in a single landscape
patch in the Test Area, where there has been
notable recovery of vegetation. Fluvial erosion/
Channel migration is the most extensive natural
disturbance class overall (5.7 ha in the updated
map); its overall extent declined 5% across the
CDS5 Study Area. Most of the decline occurred in
the Test Area (-40.6%; from 2.6 to 1.6 ha) but this
was partially offset by an increase in extent in the
Reference Area (+22.8%; from 3.4 to 4.2 ha).

Map Ecotype

Of the 38 ecotypes mapped across the CD5
Study Area, 5 underwent changes in extent that
exceeded +/-5%: Coastal Dry Elymus Meadow
(+9.4%), Human Modified Barrens (+8.2%),
Human Modified Dwarf Scrub (+329%), Human
Modified Low Shrub (+77.1%), and Human
Modified Wet Meadow (+106%) (Table 3.21). An
additional 3 human-modified classes occur in the
updated map that were not present in the 2012
baseline map, as described in Section 3.4.2.C.
Increases in Coastal Dry Elymus Meadow occurred
entirely due to successional processes in the
Reference Area, as described for the Elymus
vegetation class, above. The increase in Human
Modified Barrens occurred entirely in the Test
Area and was related to road improvements along
the CD4 road (from 7.9 ha in 2012 to 8.5 ha in
2015). Human Modified Dwarf Scrub, Human
Modified Low Shrub, and Human Modified Wet
Meadow are rare classes (2015 areas = 0.9 ha, 4.2
ha, and 17.2 ha respectively) and the large percent
increases in the areal extent of these ecotypes
pertain to localized changes associated with bridge
and pipeline construction in previously undisturbed
ecotypes.

CD5 Habitat Monitoring, 2016

Wildlife Habitat

Of the 24 wildlife habitats mapped in the CD5
Study Area, only 2 experienced changes in extent
that exceeded +/-5%. Dry Halophytic Meadow
increased 9.4% (9.4 to 10.3 ha) and Human
Modified increased 77.7% (18.9 to 33.6 ha) (Table
3.22). All of the increase in Dry Halophytic
Meadow was observed in the Reference Area,
where it was associated with successional
processes on young fluvial deposits. Most of the
increase in Human Modified was observed in the
Test Area (112% increase in areal cover) and was
associated with ice roads and pads and linear
sections of tundra that lie beneath the CD5 pipeline
and bridges. Human Modified also increased
however, by 41.5% in the Reference Area. Within
the Test Area, Moist Halophytic Dwarf Scrub
decreased in extent by 11.1% (22.0 to 19.5 ha) due
to fluvial sedimentation in one landscape patch
near the Nigliq Channel bridge (see Vegetation
section, above). Moist Tussock Tundra also
decreased in extent by 6.0% in the Test Area (37.6
to 354 ha) due to construction of CDS5
infrastructure; vegetation remains intact in most of
these areas, but is now mapped as Human
Modified.

CD5 Infrastructure

The CD5 infrastructure was not present when
the ITU mapping was completed for the 2013 CD5
Habitat Monitoring Report (Wells et al. 2014).
Hence we report on it here to acknowledge that this
permitted development occurred and is now part of
the ITU mapping. For purposes of long-term
monitoring, the direct footprint of the CD5 road
(9.1 ha) was excluded from calculations of the
percent change in area of ITU, map ecotype, and
wildlife habitat classes within the Reference and
Test Areas. Human activities were mainly evident
in the Test Area, but disturbances were also evident
in the Reference Area in association with ice roads
and ice pads. The total extent of anthropogenic
disturbance classes, including the CD5 road, is
presented in Table 3.24.

Assessment of CDS5 Infrastructure Indirect Effects

This report summarizes results from the first
monitoring effort following baseline studies
conducted in 2013 to support the CD5 Habitat
Monitoring Study and the construction of CDS5
infrastructure. While many ecosystems of the CRD




are unlikely to undergo significant natural changes
since 2012, some landscape positions are highly
dynamic (e.g., active dunes) and other areas have
been altered by the construction of CDS5
infrastructure. Objective criteria have been
established by which to identify potential impacts
of the infrastructure by tracking the areal extent of
ITU classes, map ecotypes, and wildlife habitats
within Test and Reference Areas. During each
3-year monitoring interval, any map class that
changes in area by more than +/- 5% is flagged for
review of differential changes between the Test and
Reference Areas. Any such class for which the
percent change in area between Areas differs by a
magnitude of more than 5% is then subject to
review to determine whether the difference might
be due to direct or indirect effects of CDS5
infrastructure. These criteria are conservative, in
that a 5% change in the extent of rare map classes
can involve relatively small magnitude changes
that could be expected due to natural processes and
spatial variability, particularly in deltaic landscapes
which are subject to a wide range of processes
affecting landscape evolution.

Comparison of the baseline and updated
ecosystem map products indicate that changes to
geomorphic units and surface forms were limited,
and no changes in the extent of these map classes
exceeded the 5% threshold across the CD5 Study
Area. This is not surprising, because geomorphic
units and surface forms are mainly related to
subsurface properties (e.g., fluvial sediments and
ground-ice) that generally require intense physical
disturbance to initiate a change from one class to
another. Such physical disturbance is frequent in
certain landscape positions, particularly along
riverbanks; the exceptional spring floods of 2013
and 2015 likely promoted more riverbank erosion
than would be expected in a typical 3-year
monitoring period. The level of disturbance
required to affect vegetation is generally lower, and
we observed areal changes in excess of 5% for one
vegetation class, Elymus. This class is linked to
highly dynamic, poorly stabilized landforms such
as young fluvial deposits and active dunes. All of
the observed changes occurred in one landscape
patch in the Reference Area that transitioned from
Partially Vegetated to Elymus; the lack of change in
the Test Area is probably the result of natural
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variation and is not readily explained by the
presence of CD5 infrastructure.

Several disturbance classes changed in extent
by >5% across the CD5 Study Area, most of which
were related to anthropogenic changes along the
CD5 road. Two natural disturbance classes changed
in extent by >5%: Salt-killed Vegetation and
Fluvial Erosion/Channel Migration. Salt-killed
Vegetation is limited to one landscape patch in the
Reference Area North, where we observed
substantial recovery of vegetation. There was no
Salt-killed Vegetation mapped in the Test Area in
2012 or 2015 and the observed changes appear to
represent natural successional processes rather
than infrastructure effects. Fluvial Erosion/Channel
Migration changed in extent by 5%, and there were
large differences in the magnitude of change
between Test and Reference Areas. However, such
variation is to be expected in dynamic fluvial
environments as described above and the changes
observed in proximity to CD5 infrastructure (e.g.,
cutbank erosion of several meters of riverbank) are
comparable to changes seen elsewhere. There were
also changes to five map ecotypes and two wildlife
habitats; however, all of these changes were linked
to the same landscape patches and dynamic
processes described above for human-modified
vegetation classes and the Elymus vegetation class.

In summary, the first ecosystem map update
effort revealed localized landscape changes across
the CD5 Study Area, but the observed changes are
consistent with natural changes that are known to
occur in deltaic environments elsewhere on the
CRD are not readily explained by the presence of
CDS5 infrastructure.

3.4.2.E Elevation and Thaw Depth

Summary statistics of ground surface
elevation and thaw depth in 2013 and 2016 are
presented in Appendix H-1 and Appendix H-2,
respectively. Cross sections of ground surface
elevation and thaw depth along the monitoring
transects in the Test and Reference Areas are
presented in Appendix I and J, respectively.
Differences between years within the Reference
Area reflect natural variation but can be used to
better understand changes that occur in the Test
Area.

Ground surface elevation was measured in the
Reference Area in 2013 and 2016 at 266 and 332

CD5 Habitat Monitoring, 2016
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locations, respectively, and at 298 and 378
locations in the Test Area, respectively. In 2016,
the minimum ground surface elevation in the
Reference Area (-0.18 m) and Test Area (0.03 m)
occurred at the edge of a waterbody in Riverine
Moist Low Willow Shrub and Coastal Barrens,
respectively. Maximum ground surface elevation
for both Areas (5.01-5.25 m) occurred in Upland
Moist Low Willow Shrub.

Thaw depth was measured in the Reference
Area in 2013 and 2016 at 240 and 228 locations
respectively, and at 261 and 256 locations within
the Test Area, respectively. In 2016, the minimum
thaw depth was 22 c¢m in both the Reference and
Test Areas, occurring in Lowland Moist Sedge-
Shrub Meadow and Riverine Moist Sedge-Shrub
Meadow, respectively. In 2016, the maximum thaw
depth measured in the Reference Area (114 cm)
occurred in Coastal Dry Elymus Meadow. The
maximum thaw depth measured in the Test Area in
2016 (118 cm) occurred in Upland Moist Low
Willow Shrub.

Thaw Depth/Elevation Point Data were
summarized by map ecotype class for each of the
map ecotype with at least 2 Thaw Depth/Elevation
Points, which included 18 terrestrial ecotype map
classes for ground surface elevation (Table 3.25)
and 17 classes for thaw depth (Table 3.26). Map
ecotypes were generally organized along an
elevation gradient from coastal ecotypes at the
lowest elevations, riverine ecotypes at moderate
elevations, and lowland and upland ecotypes at the
highest elevations. In both 2013 and 2016, the
ecotype in the Test Area with the highest average
elevation above sea level was Upland Moist Low
Willow Shrub (Figure 3.32). In the Reference
Area, the average elevation of Upland Moist
Willow Shrub was exceeded only by Upland Dry
Dryas Dwarf Shrub (Figure 3.33). These ecotypes
are typical of active and inactive sand dunes and
feature some the highest elevations in the CD5
Habitat Monitoring Study Area. Map ecotypes with
the lowest average elevation included Coastal
Barrens and Coastal Moist Willow Dwarf Shrub.
These ecotypes occur on active channel deposits
along river channels and are regularly subjected to
coastal and fluvial processes, including saltwater
intrusion, channelized flooding, sedimentation, and
erosion.

CD5 Habitat Monitoring, 2016

Map ecotypes in the Test Area with shallow
thaw depths in 2016 included Upland Moist
Tussock Meadow, Lowland Deep-polygon
Complex, and Human Modified Wet Meadow
(Figure 3.34). Map ecotypes in the Reference Area
with shallow thaw depths included Riverine and
Lowland Wet Sedge Meadow (Figure 3.35).

The deepest thaw depths occurred in ecotypes
with sandy, well-drained soils, or in ecotypes
located near river channels where seasonal melt is
amplified due to the close proximity of flowing
water during the summer months. In the Test Area
in 2016, ecotypes with the deepest thaw depths
included Upland Moist Low Willow Shrub and
Coastal Barrens. In the Reference Area in 2016,
ecotypes with the deepest thaw depths included
Riverine Moist Herb Meadow and Coastal Barrens.

The summary of Thaw Depth/Elevation Point
data by map ecotype class provides a quantitative
assessment of elevation and thaw depth, as per the
Monitoring Plan (ABR and Baker 2013). In
general, elevations remained approximately the
same between 2013 and 2016 across all ecotypes in
both Reference and Test Areas. Thaw depth
generally decreased (i.e., thinner active layer) in
2016 across all ecotypes in both Reference and
Test Areas. This is related to the timing of the RTK
Surveys in 2013 as compared to 2016. In 2013, the
RTK surveys were conducted in the first and
second weeks of August, while in 2016 the RTK
surveys were conducted approximately 3 weeks
earlier, during the second and third weeks of July.
Additionally, the overall thinner snowpack in
2016 compared to 2013 (i.e., diminished insulating
properties) may also be a contributing factor in the
shallower active layer depths observed in 2016 (see
Climate Monitoring, above).

3.4.2.F Broad-scale Monitoring of
Geomorphology

Surface organic thickness is the thickness of
continuous organic soil material from the soil
surface to the first mineral-textured layer that is
>0.5 cm. In deltaic environments, surface organics
tend to be thicker on floodplain surfaces that are
less frequently flooded, and thinner on more
fluvially active surfaces because sedimentation
related to overbank flooding bury existing surface
organics. Surface organic thickness provides a
metric by which to assess changes in sedimentation
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Ecotypes in
Test Area 2013 m 2016

Human Modified Wet Meadow

Coastal Barrens

Riverine Grass Marsh

Coastal Moist Willow Dwarf Shrub

Riverine Moist Herb Meadow

Riverine Moist Low Willow Shrub

Riverine Moist Low Willow-Sedge Meadow
Riverine Wet Sedge-Willow Meadow

Riverine Deep-polygon Complex

Upland Moist Tussock Meadow
Riverine Wet Sedge Meadow
Lowland Deep-polygon Complex
Riverine Moist Sedge-Shrub Meadow
Lowland Wet Sedge Meadow
Lowland Wet Sedge-Willow Meadow

Upland Moist Low Willow Shrub

m 0 1 2 3 4 5
ft 0 3 6 9 12 15 18

Ground Surface Elevation (B.P.M.S.L)

Figure 3.32. Barchart illustrating average elevation above British Petroleum mean sea level, and standard
error, sorted from smallest to largest in 2013 compared to 2016 for map ecotype classes in the
CD5 Habitat Monitoring Test Area, northern Alaska.
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Ecotype -
Reference Area

Coastal Dry Elymus Meadow

Coastal Barrens

Coastal Moist Willow Dwarf Shrub

Riverine Deep-polygon Complex

Riverine Moist Low Willow-Sedge Meadow

Riverine Moist Herb Meadow

Lowland Deep-polygon Complex

Riverine Moist Low Willow Shrub

Riverine Wet Sedge Meadow

Riverine Wet Sedge-Willow Meadow

Lowland Wet Sedge Meadow

Human Modified Wet Meadow

Upland Moist Low Willow Shrub

Upland Dry Dryas Dwarf Shrub
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Figure 3.33. Barchart illustrating average elevation above British Petroleum mean sea level, and standard
error, sorted from smallest to largest in 2013 compared to 2016 for map ecotype classes in the
CDS5 Habitat Monitoring Reference Area, northern Alaska.
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2013 m 2016

Coastal Barrens

Upland Moist Low Willow Shrub

Coastal Moist Willow Dwarf Shrub

Riverine Moist Herb Meadow

Riverine Moist Low Willow Shrub

Riverine Moist Low Willow-Sedge Meadow

Riverine Wet Sedge-Willow Meadow

Riverine Wet Sedge Meadow

Riverine Deep-polygon Complex

Lowland Deep-polygon Complex

Lowland Wet Sedge Meadow

Upland Moist Tussock Meadow

Riverine Moist Sedge-Shrub Meadow

Lowland Wet Sedge-Willow Meadow

- Human Modified Wet Meadow
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Figure 3.34. Barchart illustrating average thaw depth and standard error for map ecotype, sorted from deep
to shallow in 2013 and 2016 in the CD5 Habitat Monitoring Test Area, northern Alaska.
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Ecotypes in
Reference Area 2013 m2016

Riverine Moist Herb Meadow
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Upland Dry Dryas Dwarf Shrub

Upland Moist Low Willow Shrub

Riverine Moist Low Willow Shrub
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Figure 3.35. Barchart illustrating average thaw depth and standard error for map ecotype, sorted from deep
to shallow in 2013 and 2016 in the CD5 Habitat Monitoring Reference Area, northern Alaska.
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across the CD5 Study Area. Average and 95%
confidence intervals (CI) of surface organic
thickness by geomorphic unit, Area, and year are
presented in Figure 3.36 and Table 3.27. Average
surface organic thickness was greatest in Delta
Abandoned Overbank Deposits, moderately thick
in Delta Inactive Overbank Deposits, and thinnest
in Delta Active Overbank Deposits. This pattern
held true for Reference and Test Areas in both
years. For surface terrain units Delta Abandoned
Overbank Deposit and Delta Active Overbank
Deposit in the Test Area, average surface organic
thickness overlapped the 95% confidence intervals
of the corresponding surface terrain unit in the
Reference Area in both years. This indicates that
the observed differences in surface organic
thickness for these surface geomorphic units are
not significant between years and areas. Average
surface organic thickness in Delta Inactive
Overbank Deposits in the Test Area were greater
than the upper 95% confidence interval of surface
organics in the same surface terrain unit in the
Reference Area in both years. This indicates that
average surface organic thickness is significantly
greater in the Test Area. This pattern was the same
for both 2013 and 2016 and the lower 95% CI of
the Test Area overlaps with the upper 95% CI in
the Reference Area. Thus, the observed differences
are related to natural differences in the surface
organic thickness on Delta Inactive Overbank
Deposits in the Reference and Test Areas, rather
than a difference related to changes in sedimen-
tation related to the CD5 Road.

An assessment of ground cover classes in
Reference and Test Areas by year (Figure 3.37)
showed that mosses and mineral soil were the
predominant ground cover classes in all years and
Areas. While the average mineral soil cover was
slightly higher in 2013 (36% in the Reference Area
and 44% in the Test Area, Appendix K) than in
2016 (25% in the Reference Area and 32% in the
Test Area), the number of plots where mineral soil
hits were recorded increased in 2016 (n = 48 and
49 in the Reference and Test Areas, respectively)
relative to 2013 (n = 34 and 26 in the Reference
and Test Areas, respectively). The slight drop in
average mineral soil cover in 2016 reflects a higher
number of plots with low mineral soil cover in
2016. Mineral soils were less widespread in 2013
but at Vegetation Plots where mineral soils were

3.0 Habitat Monitoring

present, its cover was on average higher. In
contrast, mineral soils in 2016 were more
widespread but at Vegetation Plots where mineral
soils were present, its cover was on average lower.
This can be explained by the reduction in standing
water caused by the drier climatic conditions,
resulting in soil surfaces being exposed that in
2013 were covered in standing water. Sedimen-
tation caused by 2015 break up flooding (Baker
2015), which covered most of the CD5 Study Area
with flood water, is also a likely cause of increased
frequency of mineral soil hits in 2016 in both
Reference and Test Areas.

Water was observed in all Areas and years,
with consistently higher average cover in 2013
when compared to 2016 in both Test Areas and
Reference Areas (Figure 3.37). The average water
cover was greater in the Reference Area in 2013
(29%) when compared to 2016 (13%), and was
also more widespread in 2013 (n =41 and 66 in the
Reference and Test Areas, respectively) than in
2016 (n = 12 and 13 in the Reference and Test
Areas, respectively). Conditions in 2016 included
an early snowmelt, lower than normal precipitation
through July, and extreme high temperatures in
mid-July, which contributed to the lower surface
water observations in 2016 when compared to
2013.

The 2013 and 2016 Geomorphology Moni-
toring Photo Points photos for Photo Points 1 and 2
are presented Figure 3.6. Photo Point 1 at 110°
(Panels la and 1b in Figure 3.6) shows the
differences in water levels between years, thus
illustrating the diurnal fluctuations related to tidal
influence that occur in the Nigliq Channel at this
location. Photo Point 1 at 190° (Panels 2a and 2b in
Figure 3.6) shows the bank erosion that occurred at
this site between 2013 and 2016. The erosion
observed here provides an on the ground example
of fluvial erosion mapped in the ITU mapping
component of the 2016 Habitat Monitoring (Figure
3.30). Photo Point 2 (Panels 3a and 3b in Figure
3.6) shows slight bank erosion, increased scour
on the top of the bank, deposition of driftwood at
the edge of the bank, and sedimentation on the
river bar. Figure 3.7 displays the photographs
from Photo Point 3, the new Geomorphology
Monitoring Photo Point established in 2016. The
location of this Photo Point on the Niglig Channel
Bridge provides a stable location to use for repeat

CDS5 Habitat Monitoring, 2016
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photography in the future for use in monitoring
landscape change on the north- and south-side of
the Nigliq Channel Bridge.

As detailed in the Monitoring Plan, obser-
vations of drift lines were recorded opportun-
istically while traversing monitoring transects.
Observations included field notes and photographs
(Figure 3.38). Drift lines and driftwood were
observed across the CD5 Study Area in 2016. In
some cases drift lines that were observed in 2013
were no longer present in 2016 (Panels A and B in
Figure 3.38) indicating that flood waters had
moved the drift materials. In other cases, drift lines

Plot t2nb-0150-veg as observed in 2013. Note the drift
line located to the right of the tape measure.

C

I : : 0 N

Plot t1na-2000-hab with woody debris on line 1,
observed in 2016.

Plot t2nb-0150-veg as observed in 2016. Note that the
drift line observed in 2013 is no longer present.

Plot t1sc-0184-veg and woody debris observed in 2016.
Note the drift line located to the left of the tape measure.

3.0 Habitat Monitoring

and driftwood were found in 2016 at sites where
drift lines were absent in 2013 (Panel C in Figure
3.38), while in other cases drift lines were found in
both years at the same location (Panel D in Figure
3.38).

3.4.2.G Repeat Photo Monitoring

The photographs taken at the Vegetation Plot
Start Point, Vegetation Plot Soil Pit, and Habitat
Line Start and End Points are taken each
monitoring year from the same location and in the
same orientation. These repeat photographs

represent a vast dataset (over 4,500 photos taken to

b

Figure 3.38. Examples of drift lines observed in 2013 but not 2016, drift lines observed in 2016 only, and
drift lines observed in both years, CD5 Habitat Monitoring Study Area, northern Alaska, 2013

and 2016.
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date) unto themselves that can be used for
monitoring landscape change through time.
Examples of using the repeat photographs for
monitoring are provided in Figure 3.39. Panels la
and 1b in Figure 3.39 show the soil plug at plot
t2sb-0800-veg in 2013 and 2016, respectively. The
2016 photos shows the addition of several
centimeters of sediment deposited at this plot since
2013. Panels 2a and 2b illustrate the difference in
standing water cover between 2013 and 2016 at
plot tlna-1219-veg; a pattern that was common
across both Test and Reference Areas as discussed
throughout this report. The 2013 photos shows
abundant standing water, while the 2016 photo
shows little to no standing water and an abundance
of exposed reddish-brown organic soil material.
Panels 3a and 3b are the Habitat Plot Line 3 End
Point Photos in 2013 and 2016, respectively,
showing the removal of driftwood, addition of
sediment, and the robust growth of willows at this
site since 2013. The photos presented here
illustrate just a few examples of the power of the
repeat photo dataset for visualizing landscape
changes through time and providing additional
information to support the results of the habitat
monitoring data analysis.

3.4.3 SYNTHESIS OF 2016 HABITAT
MONITORING

The 2016 Habitat Monitoring effort was
focused on collecting the first year of post-
construction data, and comparing these data with
the baseline data collected in 2013 to assess
potential ecosystem changes associated with the
CDS5 Project. However, as specified in the
Monitoring Plan, management of the direct
effects of the CD5 Project are most likely to be
focused on landscape changes detected as a result
of the annual hydrological monitoring being
conducted for the Project (see HYDROLOGY
MONITORING in ABR and Baker 2013). The
habitat monitoring program is designed to provide
supplemental information and confirm whether
any potential hydrologic changes have effects on
soils, permafrost, vegetation, and wildlife habitat.
Incorporating operational changes or modifica-
tions specifically for the habitat monitoring task
was not proposed in the Monitoring Plan because
effects are secondary and indirect from any
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potential changes in hydrology, sedimentation,
and erosion.

Several common patterns were identified in
the analysis of 2016 habitat monitoring data that
have bearing on the Hydrology Monitoring task.
The habitat assessment showed a decrease in
percent cover of standing water and an increase in
cover of mineral soil and mosses in 2016 when
compared to 2013 in both the Reference and Test
Areas. The results of the assessment of detailed
ground cover classes at Vegetation Plots by plot
ecotype, Area, and year agreed with the results of
the habitat analysis; surface water cover decreased
and mineral soil increased in 2016 when compared
to 2013 in both the Reference and Test Areas.
Results of the assessment of depth to water table by
plot ecotype corroborated the finding of a
reduction in standing water cover across the CD5
Study Areas; water tables were consistently deeper
in 2016 when compared to 2013 across ecotypes
and Reference and Test Areas. These results
indicate that the observed differences in standing
water and water table depth between 2013 and
2016 are not related to the CD5 Road. Instead these
differences are related to warmer temperatures, a
shallower snowpack, earlier snow melt, higher
evapotranspiration, and lower July precipitation in
2016 when compared to 2013 (see Climate
Monitoring, above). The observed increases in
mineral soil in 2016 in both Reference and Test
Areas can be explained by the reduction in
standing water caused by the 2016 climatic
conditions listed above, resulting in soil surfaces
being exposed in 2016 that were otherwise covered
in standing water in 2013. Sedimentation caused
by 2015 breakup flooding (Baker 2015), which
covered most of the CD5 Study Area with flood
water, is also likely a contributing factor. The
increase in mineral soil cover in 2016 in both
Reference and Test Areas suggests that this
increase is not related to the CD5 Road.

Comparing the average and 95% confidence
intervals (CI) of surface organic thickness by
geomorphic unit, Area, and year showed that there
were no significant differences in surface organic
thickness between Reference and Test between
years. A difference in thickness of surface organics
in Inactive Overbank Deposits between Reference
and Test Areas was observed in both 2013 and
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Habitat Plot Line 1 End Habitat Plot Line 1 End

Figure 3.39. Examples of change over time using repeat photography at a Vegetation Plot Soil Pit,
Vegetation Plot Start Point, and Habitat Plot Line, in the CD5 Habitat Monitoring Study Area,
northern Alaska, 2013 and 2016.
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2016, indicating the difference was related to the
natural variability of the surface organic thickness
in the Reference and Test Areas rather than CD5
Road-related sedimentation changes. Drift line
observations from across the CD5 Study Area in
2016 corroborate the results of the analysis of
surface organic thickness and indicate that the
Reference and Test area were similarly affected by
sedimentation related to break-up flooding in the
years between Habitat Monitoring periods.

The vegetation assessment found that 96% of
Vegetation Plots (171 plots) had not changed in
species composition between 2013 and 2016, with
the remaining 4% of the Vegetation Plots (8 plots
total) showing a change between years. Of the 8
plots that showed changes in species composition,
the change at the plots (2) located in the Reference
Areas was attributed to natural changes in species
composition. The changes at 3 plots in the Test
Area were attributable to increases in the cover of
sedges in 2016, an indicator of increased
productivity. The changes at the remaining 3 plots
were related to either a increases or decreases in
willow (Salix sp.) and sedge (Carex sp. and
Eriophorum sp.) and increases and decreases in the
number species detected at the plots. In summary,
the total number of Vegetation Plots identified as
having changed in species composition between
2013 and 2016 is very small (<5% of the total
plots), the plots were located in both the Test and
Reference Areas, and the plots were not specific to
any single plot ecotype.

Changes in species richness between
ecotypes, years, and Areas were relatively small
and within the range of variability, based on the
standard deviation. Changes in vegetation structure
classes were also generally consistent between
ecotypes, Areas, and years. In general, total live
cover increased between 2013 and 2016, a change
driven largely by an increase in cover of mosses
and sedges in several ecotypes.

The landscape change analysis showed that,
apart from the expected landscape changes related
to the direct placement of the CD5 development
infrastructure, the first ecosystem map update
effort revealed localized landscape changes across
the CD5 Study Area. The observed changes are
consistent, however, with natural changes that are
known to occur in deltaic environments elsewhere
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on the CRD and are not readily explained by the
presence of CD5 infrastructure.

The Thaw Depth/Elevation surveys showed
that in general, elevations remained approximately
the same between 2013 and 2016 across all
ecotypes in both Reference and Test Areas. Thaw
depth generally decreased (i.e., thinner active
layer) in 2016 across all ecotypes in both
Reference and Test Areas. The differences in thaw
depth between years is predominantly related to the
timing of the RTK Surveys in 2013 (early August)
as compared to 2016 (mid-July).

In summary, the results of the 2016 Habitat
Monitoring showed very little ecosystem change
between 2013 and 2016. Broad-scale changes that
were significant between years, including the
decrease of standing water cover and increase in
mineral soil cover, were observed in both
Reference and Test Areas and hence not
attributable to the CD5 Road. Rather, differences in
broad-scale climatic factors and break-up flooding
between 2013 and 2016 are the primary causal
factors lending to the differences observed. The
CD5 Habitat Monitoring Study effort is scheduled
to be conducted again in 2019.
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Appendix A.

Cross-reference table of aggregated Integrated Terrain Unit (ITU) code combinations

with map ecotype and wildlife habitat class from the Central Beaufort Coastal Plain ITU
classification, CD5 Habitat Monitoring Study, northern Alaska, 2016.

Map ecotype Wildlife Habitat ITU Code*

Coastal Barrens Barrens Fdoa/N/Bpv/Nsk Fdra/Sb/Bpv
Fdoi/N/Bpv/Nsk Fdra/Sb/Bpv/Ngfd*
Fdra/N/Bbg Fdra/Sb/Bpv/Ngfe
Fdra/N/Bbg/Ngtd* Fdri/N/Bpv/Ngtd*
Fdra/N/Bpv Ltdn/N/Bbg
Fdra/N/Bpv/Ngtd* Ltdn/N/Bpv
Fdra/N/Bpv/Ngfe*

Coastal Dry Elymus Meadow Dry Halophytic Meadow Esda/Es/Hgdl Fdra/N/Hgdl

Coastal Lake Tapped Lake with Low-water Welde/W/Wb Welde/Wi/Wb

Connection
Coastal Moist Willow Dwarf Moist Halophytic Dwarf Shrub Fdra/N/Sdwgh Ltdn/N/Sdwgh
Shrub Fdri/N/Sdwgh

Human Modified Barrens Human Modified Fdra/N/Bbg/Hseb* Fdra/Sb/Bpv/Hsep*
Fdra/N/Bbg/Hsep* Fdri/N/Bpv/Hti*
Fdra/N/Bpv/Hseb* Hfg/Hm/Bbg/Hfgp
Fdra/N/Bpv/Hsep* Hfg/Hm/Bbg/Hfgr
Fdra/Sb/Bpv/Hseb*

Human Modified Dwarf Scrub Human Modified Esdi/Ek/Sddt/Hti* Esdi/Es/Sddt/Hti*
Esdi/Es/Sddt/Hsep* Fdoi/Phl/Sddt/Hti

Human Modified Low Shrub Human Modified Fdoa/N/Slcw/Hseb* Fdoa/Pd/Slows/Hti
Fdoa/N/Slcw/Hsep* Fdoi/Pd/Slow/Hseb*
Fdoa/N/Slew/Hti* Fdoi/Pd/Slow/Hsep*
Fdoa/N/Slow/Hseb* Fdoi/Pd/Slow/Hti
Fdoa/N/Slow/Hsep* Fdoi/Pd/Slows/Hsep*
Fdoa/N/Slow/Hti Fdoi/Pd/Slows/Hti
Fdoa/N/Slows/Hsep* Fdri/N/Slew/Hti
Fdoa/N/Slows/Hti Fdri/N/Slow/Hti

Human Modified Marsh* Human Modified Wildcerh/W/Hgwfg/Hseb* Wisir/W/Hgwfg/Hsep*
Wilderh/W/Hgwfg/Hsep*

Human Modified Moist Human Modified Fdob/Phl/Hgmss/Hsep* Fdob/Tm/Hgmt/Hti*

Meadow* Fdob/Phl/Hgmt/Hsep* Fdoi/Pd/Hgmss/Hsep*

Fdob/Phl/Hgmt/Hti* Fdoi/Pd/Hgmss/Hti*
Fdob/Tm/Hgmt/Hsep* Fto/Phl/Hgmt/Hsep*

Human Modified Waterbody* Human Modified Wert/W/Wb/Hseb* Wlderh/W/WH{/Hsep*
Wert/W/Wb/Hsep* Wisit/Wi/W{/Hsep*
Wilderh/W/W1/Hseb*

Human Modified Wet Meadow Human Modified Fdoa/Pd/Hgwswt/Hti Fdoi/Pd/Hgwswt/Hti
Fdoa/N/Hgwst/Hseb* Fdoi/Pd/Hgwst/Hti*
Fdoa/N/Hgwst/Hsep* Fdoi/Pd/Hgwswt/Hsep*
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Appendix A. Continued.
Map ecotype Wildlife Habitat ITU Code*
Human Modified Wet Meadow Human Modified Fdoa/N/Hgwswt/Hti* Fdoi/Plhh/Xp/Hsep
(continued) Fdob/Plhh/Hgwst/Hsep Fdoi/Plhh/Xp/Hseb*
Fdob/Plhh/Xp/Hti* Fdoi/Plhl/Xp/Hsep*
Fdob/Plhl/Xp/Hsep* Fdoi/Pllh/Hgwst/Hsep*
Fdob/Pllh/Hgwst/Hsep* Fdoi/Plll/Hgwst/Hsep
Fdob/Pllh/Hgwst/Hti* Fdoi/Plll/Hgwst/Hti
Fdob/Plll/Hgwst/Hsep* Fdoi/Plll/Hgwswt/Hsep*
Fdob/Plll/Hgwst/Hti* Fdoi/Plll/Hgwswt/Hti
Fdoi/N/Hgwst/Hsep* Fdri/N/Hgwst/Hsep*
Fdoi/N/Hgwst/Hti* Fdri/N/Hgwst/Hti
Fdoi/Pd/Hgwst/Hsep Ftr/Plhh/Hgwst/Hsep*
Fdoi/Pd/Hgwswt/Hseb*
Lacustrine Grass Marsh Grass Marsh WIdit/W/Hgwfg WIdit/Wi/Hgwfg
Lowland Deep-polygon Deep Polygon Complex Fdob/Plhh/Xp Fdob/PIhl/Xp
Complex Fdob/Plhh/Xp/Ngfd*
Lowland Lake Deep Open Water with Islands or WIdit/ Wi/Wt
Polygonized Margins
Deep Open Water without Islands WIdit/W/ Wt
Shallow Open Water with Islands or Wisit/ Wi/Wf
Polygonized Margins
Shallow Open Water without Islands Wisit/W/WTt
Lowland Moist Low Willow Moist Low Shrub Esi/Phl/Slow Ltdi/P1ll/Slow
Shrub
Fdob/Phl/Slow Ltic/Pd/Slow
Fto/N/Slew Ltic/Phh/Slow
Fto/N/Slow Ltic/Pllh/Slow
Fto/Pd/Slow Ltic/Pm/Slow
Fto/Phl/Slow
Lowland Moist Sedge-Shrub Moist Sedge-Shrub Meadow Cs/N/Hgmss Ltim/Pd/Hgmss
Meadow Esi/Pd/Hgmss Ltim/Phl/Hgmss
Fdob/Phl/Hgmss Ltim/Pm/Hgmss
Fto/N/Hgmss Ltiu/Pd/Hgmss
Fto/Phl/Hgmss
Lowland Sedge Marsh Sedge Marsh Ltdi/Pd/Hgwfs
Lowland Wet Sedge Meadow Nonpatterned Wet Meadow Esi/Pd/Hgwst Ltdi/Pd/Hgwst
Fto/Pd/Hgwst Ltiuv/Pd/Hgwst
Ltdi/N/Hgwst
Patterned Wet Meadow Fdob/Plhh/Hgwst Fto/Plll/Hgwst
Fdob/Pllh/Hgwst Ftr/Plhh/Hgwst
Fdob/Plll/Hgwst Ltdi/Plhh/Hgwst
Fdob/PllIl/Hgwst/Ngt Ltic/Pllh/Hgwst
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Appendix A. Continued.
Map ecotype Wildlife Habitat ITU Code*
Lowland Wet Sedge Meadow Fdob/Pm/Hgwst Ltim/Plll/Hgwst
(continued) Fto/Plhh/Hgwst
Lowland Wet Sedge-Willow Patterned Wet Meadow Fdob/Pllh/Hgwswt Fdob/Pm/Hgwswt
Meadow Fdob/PIII/Hgwswt
Riverine Deep-polygon Deep Polygon Complex Fdoi/Plhh/Xp Fdoi/P1hl/Xp
Complex
Riverine Dry Dryas Dwarf Dry Dwarf Shrub Fdoi/Phl/Sddt
Shrub
Riverine Grass Marsh Grass Marsh Wildcerh/W/Hgwfg Widir/Wi/Hgwfg
Wlderh/Wi/Hgwfg Wisir/W/Hgwfg
Widir/W/Hgwfg Wilsit/Wi/Hgwfg
Riverine Lake Deep Open Water with Islands or Widir/Wi/Wt
Polygonized Margins
Deep Open Water without Islands WIldit/W/WT
Shallow Open Water with Islands or Wisir/Wi/WT
Polygonized Margins
Shallow Open Water without Islands Wlsit/W/Wt
Tapped Lake with High-water Widerh/W/WT
Connection
Widerh/Wi/WTf
Riverine Moist Herb Meadow Moist Herb Meadow Fdri/N/Hfds
Riverine Moist Low Willow Moist Low Shrub Fdoa/N/Slew Fdoi/Pm/Slow
Shrub Fdoa/N/Slow Fdoi/Sb/Slew
Fdoa/Pd/Slow Fdoi/Sb/Slow
Fdoa/Sb/Slow Fdoi/Sb/Slow/Ngfe
Fdoi/N/Slew Fdra/N/Slow
Fdoi/N/Slow Fdri/N/Slew
Fdoi/Pd/Slew Fdri/N/Slow
Fdoi/Pd/Slow Fdri/N/Slow/Ngfd*
Fdoi/Phl/Slew Fdri/N/Slow/Ngfe
Fdoi/Phl/Slow Fdri/Sb/Slow/Ngfe
Fdoi/Pm/Slow/Ngfd* Ltdn/N/Slow
Riverine Moist Low Willow- Moist Low Shrub Fdoa/Dt/Slows Fdoi/Phl/Slows
Sedge Meadow Fdoa/N/Slows Fdoi/Plih/Slows
Fdoa/Pd/Slows Fdoi/Pllh/Slows/Ngfd*
Fdoi/N/Slows Fdoi/P11l/Slows
Fdoi/Pd/Slows Fdoi/Pm/Slows
Fdoi/Pd/Slows/Ngfd* Fdri/N/Slows
Riverine Moist Sedge-Shrub Moist Sedge-Shrub Meadow Fdoi/Pd/Hgmss Fdoi/Pm/Hgmss
Meadow Fdoi/Phl/Hgmss Ltdn/N/Hgmss
Riverine Moist Tall Willow Moist Tall Shrub Fdoa/N/Stow Fdri/N/Stow
Shrub
Riverine Sedge Marsh Sedge Marsh Fdoi/N/Hgwfs Widerh/W/Hgwfs
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Appendix A. Continued.
Map ecotype Wildlife Habitat ITU Code*
Riverine Wet Sedge Meadow Nonpatterned Wet Meadow Fdoa/N/Hgwst Fdoi/Pd/Hgwst/Ngt
Fdoa/Pd/Hgwst Fdra/N/Hgwst
Fdoi/N/Hgwst Fdri/N/Hgwst
Fdoi/N/Hgwst/Ngt Ltdn/N/Hgwst
Fdoi/Pd/Hgwst
Patterned Wet Meadow Fdoi/Plhh/Hgwst Fdoi/Plll/Hgwst/Ngt
Fdoi/Plhl/Hgwst Fdoi/Pm/Hgwst
Fdoi/Pllh/Hgwst Fdoi/Pm/Hgwst/Ngt
Fdoi/Plll/Hgwst
Riverine Wet Sedge-Willow Nonpatterned Wet Meadow Fdoa/N/Hgwswt Fdoi/Pd/Hgwswt
Meadow Fdoa/Pd/Hgwswt Fdoi/Pd/Hgwswt/Ngt
Fdoa/Pd/Hgwswt/Ngt Fdri/N/Hgwswt
Fdoi/N/Hgwswt Ltdn/N/Hgwswt
Patterned Wet Meadow Fdoi/Dt/Hgwswt Fdoi/Pllh/Hgwswt
Fdoi/Plhh/Hgwswt Fdoi/PllIl/Hgwswt
Fdoi/Plhh/Hgwswt/Ngfd*  Fdoi/Pm/Hgwswt
Fdoi/Plhl/Hgwswt
Tidal River River or Stream Wert/W/Wb
Upland Dry Barrens Barrens Esda/Ek/Bpv Esda/En/Bpv/Nge*
Upland Dry Dryas Dwarf Shrub ~ Dry Dwarf Shrub Cs/Sb/Sddt Esi/Phl/Sddt
Esdi/Ek/Sddt Fto/Phl/Sddt
Esdi/Es/Sddt Fto/Sb/Sddt
Esi/Pd/Sddt
Upland Dry Tall Willow Shrub Dry Tall Shrub Esa/N/Stow
Upland Moist Cassiope Dwarf Moist Dwarf Shrub Fto/Sb/Sdec
Shrub
Upland Moist Low Willow Moist Low Shrub Cs/N/Slow Esdi/N/Slow
Shrub Esda/Ek/Slow Esi/Es/Slow
Esda/Es/Slow Esi/N/Slew
Esda/N/Slew Esi/N/Slow
Esda/N/Slow Esi/Pd/Slow
Esdi/Ek/Slow Esi/Pm/Slow
Esdi/Es/Slew Fto/Sb/Slew
Esdi/Es/Slow Fto/Sb/Slow
Esdi/N/Slew Ltim/Sb/Slew
Upland Moist Tussock Meadow ~ Moist Tussock Tundra Fdob/Phl/Hgmt Fto/Pm/Hgmt
Fdob/Phl/Hgmt/Ngt Fto/Tm/Hgmt
Fdob/Pm/Hgmt Ftr/Tm/Hgmt
Fdob/Tm/Hgmt Ltic/Phh/Hgmt
Fto/Phh/Hgmt Ltic/Phl/Hgmt
Fto/Phl/Hgmt Ltic/Pm/Hgmt

* Asterisk indicates Map Ecotype or ITU Code that was not present in baseline map (Wells et al. 2014)
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Coastal Loamy Brackish Moist Willow Dwarf Shrub

2013 2016

n=2

(-1

ELIEIETEN

Ground Cover Class
l:‘ Herbaceous Litter

- Mineral Soil
- Mosses

. Vascular Base
- Water

- Wildlife Scat

1581

(n=1)

Appendix C1.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Coastal Loamy Brackish Moist Willow Dwarf Shrub by sample year, study area, and
ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and

2016.
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Coastal Sandy Moist Brackish Barrens
2013 2016

sousieley

Ground Cover Class
|:| Herbaceous Litter

- Mineral Soil
- Vascular Base
- Water

- Woody Litter

1501

Appendix C2.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Coastal Sandy Moist Brackish Barrens by sample year, study area, and ground cover
class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Lowland Lake
2013 2016

Ground Cover Class
.Waler

159

Appendix C3.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Lowland Lake by sample year, study area, and ground cover class, CD5 Habitat
Monitoring Study Area, northern Alaska, 2013 and 2016.

Lowland Organic-rich Circumneutral Moist Sedge-Shrub Marsh
2013 2016

Ground Cover Class

. Gravel
l:‘ Herbaceous Litter
. Lichens
. Mosses

Tussock
. Vascular Base
. Water

353

Appendix C4.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Lowland Organic-rich Circumneutral Moist Sedge-Shrub Meadow by sample year,
study area, and ground cover class, CD5 Habitat Monitoring Study Area, northern
Alaska, 2013 and 2016.
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Lowland Organic-rich Circumneutral Sedge Marsh

2013

2016

1551

Ground Cover Class
I:l Algae

D Herbaceous Litter
. Mosses.

D Organic Soil

. Vascular Base

. Water

Appendix C5.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Lowland Organic-rich Circumneutral Sedge Marsh by sample year, study area, and
ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and

2016.
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Lowland Organic-rich Circumneutral Wet Sedge Meadow

2013 2016

ERICIEIEN

Ground Cover Class

I:‘ Algae

I:‘ Herbaceous Litter
- Lichens

- Liverworts

- Mineral Soil

- Mosses

- Organic Soil

- Vascular Base
- Water

1801

Appendix C6.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Lowland Organic-rich Circumneutral Wet Sedge Meadow by sample year, study area,
and ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and

2016.

137 CD5 Habitat Monitoring, 2016



Lowland Organic-Rich Circumneutral Wet Sedge-Willow Meadow

2013 2016

sousieley

Ground Cover Class
I:‘ Herbaceous Litter
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- Mosses

- Organic Soil
I:‘ Tussock

- Vascular Base
- Water

1881

Appendix C7.

Ring charts displaying the proportion of average total ground cover for the plot ecotype
Lowland Organic-Rich Circumneutral Wet Sedge-Willow Meadow by sample year,
study area, and ground cover class, CD5 Habitat Monitoring Study Area, northern

Alaska, 2013 and 2016.

CD5 Habitat Monitoring, 2016 138



Riverine Loamy Alkaline Moist Mixed Herb

2013

2016

ERIEIETEN

Ground Cover Class
I:‘ Herbaceous Litter

. Mineral Soil

- Mosses

. Vascular Base
- Woody Litter

181

Appendix C8.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Loamy Alkaline Moist Mixed Herb by sample year, study area, and ground
cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Riverine Loamy Alkaline Moist Low Willow Shrub

2013

2016

sousleley

1801

Ground Cover Class
D Herbaceous Litter

- Lichens

- Liverworts
- Mineral Soil
- Mosses

- Vascular Base
- Water

- Wildlife Scat
- Woody Litter

Appendix C9.  Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Loamy Alkaline Moist Low Willow Shrub by sample year, study area, and
ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and

2016.
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Riverine Loamy Alkaline Moist Tall Willow Shrub
2013 2016

Ground Cover Class
D Herbaceous Litter

. Liverworts

Mineral Soil

159

Mosses
Vascular Base
Wildlife Scat

Appendix C10. Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Loamy Alkaline Moist Tall Willow Shrub by sample year, study area, and
ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and
2016.
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Riverine Organic-Rich Circumneutral Wet Sedge Meadow

2013 2016

soualeley

Ground Cover Class
l:' Herbaceous Litter
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- Mosses

- Organic Soil
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- Water

- Wildlife Scat
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Appendix C11.

Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Organic-Rich Circumneutral Wet Sedge Meadow by sample year, study area,
and ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and
2016.
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Riverine Organic-Rich Circumneutral Wet Sedge-Willow Meadow

2013 2016
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Appendix C12.

Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Organic-Rich Circumneutral Wet Sedge-Willow Meadow by sample year,
study area, and ground cover class, CD5 Habitat Monitoring Study Area, northern

Alaska, 2013 and 2016.
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Riverine Loamy-Organic Circumneutral Moist Low Willow-Sedge Meadow

2013 2016

n= 4 n=7

ERIEIETEN

Ground Cover Class
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- Mosses
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- Water
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Appendix C13. Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Loamy-Organic Circumneutral Moist Low Willow-Sedge Meadow by sample
year, study area, and ground cover class, CD5 Habitat Monitoring Study Area, northern
Alaska, 2013 and 2016.
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Riverine Loamy-Organic Circumneutral Moist Sedge-Shrub Meadow

2013

2016
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. Mosses
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Appendix C14.

Ring charts displaying the proportion of average total ground cover for the plot ecotype
Riverine Loamy-Organic Circumneutral Moist Sedge-Shrub Meadow by sample year,
study area, and ground cover class, CD5 Habitat Monitoring Study Area, northern

Alaska, 2013 and 2016.
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Upland Loamy-Organic Circumneutral Moist Tussock Meadow

2013 2016

souslBley
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Appendix C15. Ring charts displaying the proportion of average total ground cover for the plot ecotype
Upland Loamy-Organic Circumneutral Moist Tussock Meadow by sample year, study
area, and ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska,

2013 and 2016.
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Upland Sandy Alkaline Dry Barrens

Ground Cover Class

I:l Herbaceous Litter

Mineral Soil
Mosses

- Vascular Base

153l

Appendix C16. Ring charts displaying the proportion of average total ground cover for the plot ecotype
Upland Sandy Alkaline Dry Barrens by sample year, study area, and ground cover class,
CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Upland Sandy Alkaline Moist Low Willow Shrub

2013

2016

oousleley

1se1

Ground Cover Class
I:] Herbaceous Litter

B winerai o
- Mosses

- Vascular Base
- Water

- Wildlife Scat
- Woody Litter

Appendix C17. Ring charts displaying the proportion of average total ground cover for the plot ecotype
Upland Sandy Alkaline Moist Low Willow Shrub by sample year, study area, and
ground cover class, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and

2016.
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Appendix E.  Mean (+ standard deviation) elevation (above British Petroleum Mean Level Sea Level, BPMSL), thaw depth (depth below ground), water table depth, surface organic thickness (cm), pH, and electrical conductivity (uS) for all plot
ecotypes in the CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016. Values of -999 indicate no data for a given attribute.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Coastal Loamy Brackish Moist Willow Dwarf Shrub Reference 2013 Elevation (cm) 190 165 73 306 2
2016 121 67 73 168 2

Test 2013 187 187 187 1
2016 188 188 188 1

Reference 2013 Thaw Depth (cm) 64 9 57 70 2
2016 66 11 58 73 2

Test 2013 81 81 81 1
2016 76 76 76 1

Reference 2013 Surface Organic Thickness (cm) 0 0 0 0 2
2016 0 0 0 0 2

Test 2013 0 0 0 1
2016 0 0 0 1

Reference 2013 Water Table Depth (cm) -34 14 -44 -24 2
2016 -37 1 -38 -36 2

Test 2013 -68 -68 -68 1
2016 -999 -999 -999 1

Reference 2013 Electrical Conductivity (um) 1770 184 1640 1900 2
2016 2170 608 1740 2600 2

Test 2013 500 500 500 1
2016 510 510 510 1

Reference 2013 pH 7.6 0.7 7.1 8.1 2
2016 7 0.1 6.9 7.1 2

Test 2013 7.3 7.3 7.3 1
2016 7.8 7.8 7.8 1

Coastal Sandy Moist Brackish Barrens Reference 2013 Elevation (cm) 102 44 56 151 5
2016 90 57 39 156 5

Test 2013 107 55 46 193 5
2016 103 59 42 192 5

Reference 2013 Thaw Depth (cm) 102 4 96 107 5
2016 85 9 76 97 5

Test 2013 103 9 93 114 5
2016 92 17 77 112 5

Reference 2013 Surface Organic Thickness (cm) 0 0 0 0 5
2016 0 0 0 0 5

Test 2013 0 0 0 0 5
2016 0 0 0 0 5
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Appendix E. Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Coastal Sandy Moist Brackish Barrens (continued) Reference 2013 Water Table Depth (cm) -46 41 -90 -9 3
2016 -12 7 -19 -6 3

Test 2013 -30 22 -60 -8 4

2016 -37 5 -40 -33 2

Reference 2013 Electrical Conductivity (um) 2196 2677 500 6900 5

2016 3004 4946 100 11800 5

Test 2013 4644 7814 450 18600 5

2016 498 245 230 790 4

Reference 2013 pH 7.9 0.3 7.6 8.4 5

2016 7.2 0.7 6.3 8 5

Test 2013 7.3 0.4 6.6 7.6 5

2016 7.4 0.5 6.7 8 5

Lowland Lake Test 2013 Elevation (cm) 299 2 297 300 2
2016 295 3 293 297 2

2013 Thaw Depth (cm) 42 6 38 46 2

2016 33 4 30 35 2

2013 Surface Organic Thickness (cm) 0 0 0 0 2

2016 0 0 0 0 2

2013 Water Table Depth (cm) 23 3 21 25 2

2016 15 7 10 20 2

2013 Electrical Conductivity (um) 275 7 270 280 2

2016 460 14 450 470 2

2013 pH 7.9 0.2 7.7 8 2

2016 8.4 0.1 8.3 8.4 2

Lowland Organic-rich Circumneutral Moist Sedge-Shrub Meadow Test 2013 Elevation (cm) 347 347 347 1
2016 323 323 323 1

2013 Thaw Depth (cm) 40 40 40 1

2016 35 35 35 1

Test 2013 Surface Organic Thickness (cm) 26 26 26 1

2016 30 30 30 1

2013 Water Table Depth (cm) -16 -16 -16 1

2016 -35 -35 -35 1

Test 2013 Electrical Conductivity (um) 410 410 410 1

2016 380 380 380 1

2013 pH 6.2 6.2 6.2 1

2016 5.9 5.9 5.9 1

164 CD5 Habitat Monitoring, 2016



Appendix E. Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Lowland Organic-rich Circumneutral Sedge Marsh Test 2013 Elevation (cm) 297 297 297 1
2016 290 290 290 1

2013 Thaw Depth (cm) 47 47 47 1

2016 35 35 35 1

Test 2013 Surface Organic Thickness (cm) 40 40 40 1
2016 40 40 40 1

2013 Water Table Depth (cm) 15 15 15 1

2016 8 8 8 1

Test 2013 Electrical Conductivity (um) 310 310 310 1
2016 560 560 560 1

2013 pH 7 7 7 1

2016 6.6 6.6 6.6 1

Lowland Organic-rich Circumneutral Wet Sedge Meadow Reference 2013 Elevation (cm) 327 81 216 430 13
2016 319 76 218 414 13

Test 2013 292 25 252 340 13
2016 285 25 243 330 13

Reference 2013 Thaw Depth (cm) 46 3 40 51 13
2016 38 4 27 44 13

Test 2013 46 5 35 52 13
2016 38 3 33 44 13

Reference 2013 Surface Organic Thickness (cm) 34 6.4 22 40 13
2016 27.9 16.4 0 40 13

Test 2013 31.8 4.4 27 40 13
2016 31.1 5.6 25 40 13

Reference 2013 Water Table Depth (cm) 1 4 -4 11 13
2016 -8 5 -15 -1 13

Test 2013 -1 4 -9 5 13
2016 -9 4 -13 -2 13

Reference 2013 Electrical Conductivity (um) 442 121 210 680 13
2016 544 187 200 870 12

Test 2013 357 82 250 530 13
2016 558 172 310 850 13

Reference 2013 pH 6.8 0.4 6.1 7.4 13
2016 6.4 0.2 6 6.7 12

Test 2013 6.5 0.3 6 7.1 13
2016 6.3 0.2 6.1 6.8 13
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Appendix E. Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Lowland Organic-Rich Circumneutral Wet Sedge-Willow Meadow Reference 2013 Elevation (cm) 357 357 357 1
2016 350 350 350 1

Test 2013 270 15 258 287 3
2016 260 20 243 282 3

Reference 2013 Thaw Depth (cm) 41 41 41 1
2016 37 37 37 1

Test 2013 45 2 44 47 3
2016 40 1 39 41 3

Reference 2013 Surface Organic Thickness (cm) 32 32 32 1
2016 28 28 28 1

Test 2013 31 10.1 20 40 3
2016 28.7 7.5 20 33 3

Reference 2013 Water Table Depth (cm) 0 0 0 1
2016 -6 -6 -6 1

Test 2013 -4 4 -8 -1 3
2016 -13 9 -20 -3 3

Reference 2013 Electrical Conductivity (um) 400 400 400 1
2016 360 360 360 1

Test 2013 293 98 180 350 3
2016 507 23 480 520 3

Reference 2013 pH 6.9 6.9 6.9 1
2016 6.5 6.5 6.5 1

Test 2013 6.5 0.3 6.3 6.8 3
2016 6.3 0.1 6.3 6.4 3

Riverine Loamy Alkaline Moist Low Willow Shrub Reference 2013 Elevation (cm) 289 91 121 415 8
2016 284 92 111 409 8

Test 2013 260 43 204 347 7
2016 256 44 205 347 7

Reference 2013 Thaw Depth (cm) 59 18 40 92 8
2016 56 15 36 77 8

Test 2013 61 17 34 78 7
2016 56 15 35 72 7

Reference 2013 Surface Organic Thickness (cm) 2.1 4.8 0 14 8
2016 1.9 5.3 0 15 8

Test 2013 3.8 3.8 0 10 7
2016 29 3.9 0 10 7
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Appendix E. Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Riverine Loamy Alkaline Moist Low Willow Shrub (continued) Reference 2013 Water Table Depth (cm) -29 18 -65 -13 6
2016 -35 11 -42 -22 3

Test 2013 -36 17 -60 -22 4

2016 -40 -40 -40 1

Reference 2013 Electrical Conductivity (um) 544 322 260 1250 8

2016 447 150 190 670 7

Test 2013 439 244 220 860 7

2016 327 145 160 530 7

Riverine Loamy Alkaline Moist Low Willow Shrub (continued) Reference 2013 pH 7.2 0.7 6 8 8
2016 7.1 0.8 6 7.9 7

Test 2013 7.3 1 5.6 8.1 7

2016 7.3 0.8 5.5 8 7

Riverine Loamy Alkaline Moist Mixed Herb Reference 2013 Elevation (cm) 258 258 258 1
2016 247 247 247 1

Test 2013 214 55 175 253 2

2016 213 56 173 252 2

Reference 2013 Thaw Depth (cm) 105 105 105 1

2016 92 92 92 1

Test 2013 86 8 80 91 2

2016 84 11 76 92 2

Reference 2013 Surface Organic Thickness (cm) 0 0 1

2016 0 0 0 1

Test 2013 2

2016 0 0 0 2

Reference 2013 Water Table Depth (cm) -85 -85 -85 1

2016 -999 -999 -999 1

Test 2013 -999 -999 -999 2

2016 -999 -999 -999 2

Reference 2013 Electrical Conductivity (um) 580 580 580 1

2016 730 730 730 1

Test 2013 490 0 490 490 2

2016 380 42 350 410 2

Reference 2013 pH 8.1 8.1 8.1 1

2016 7.9 7.9 7.9 1

Test 2013 8.1 0.1 8 8.1 2

2016 7.6 0.3 7.4 7.8 2
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Appendix E. Continued.
Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Riverine Loamy Alkaline Moist Tall Willow Shrub Reference 2013 Elevation (cm) 252 49 217 286 2
2016 244 52 207 280 2

2013 Thaw Depth (cm) 118 21 103 133 2

2016 93 6 89 97 2

2013 Surface Organic Thickness (cm) 0 0 0 0 2

2016 0 0 0 0 2

2013 Water Table Depth (cm) -999 0 -999 -999 2

2016 -999 0 -999 -999 2

2013 Electrical Conductivity (um) 430 226 270 590 2

2016 550 170 430 670 2

Reference 2013 pH 8.2 8.2 8.2 2

2016 pH 7.9 0.1 7.8 7.9 2

Riverine Loamy-Organic Circumneutral Moist Low Willow-Sedge Meadow Reference 2013 Elevation (cm) 229 79 113 385 8
2016 222 77 107 374 8

Test 2013 296 46 239 381 8

2016 292 46 238 378 8

Reference 2013 Thaw Depth (cm) 50 19 5 67 8

2016 50 10 32 67 8

Test 2013 52 9 44 70 8

2016 46 9 33 63 8

Reference 2013 Surface Organic Thickness (cm) 6.5 7.1 19 8

2016 4.3 53 16 8

Test 2013 10.1 7.3 0 21 8

2016 134 13.9 40 8

Reference 2013 Water Table Depth (cm) -12 14 -38 -2 8

2016 -28 14 -43 -6 6

Test 2013 -10 7 -20 -3 8

2016 -24 9 -36 -16 4

Reference 2013 Electrical Conductivity (um) 916 497 390 1840 8

2016 684 377 260 1390 8

Test 2013 519 597 180 1980 8

2016 498 741 40 2300 8

Reference 2013 pH 7 0.5 6.4 7.8 8

2016 6.5 0.4 5.7 7.2 8

Test 2013 6.6 0.5 59 7.3 8

2016 6.4 0.8 5 7.5 8

168 CD5 Habitat Monitoring, 2016



Appendix E. Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Riverine Loamy-Organic Circumneutral Moist Sedge-Shrub Meadow Reference 2013 Elevation (cm) 263 48 229 297 2
2016 258 52 221 295 2

Test 2013 305 44 277 383 5
2016 298 43 266 372 5

Reference 2013 Thaw Depth (cm) 48 15 37 58 2
2016 45 14 35 55 2

Test 2013 46 8 37 56 5
2016 39 13 26 58 5

Reference 2013 Surface Organic Thickness (cm) 13 15.6 2 24 2
2016 12.5 134 3 22 2

Test 2013 11.4 59 4 18 5
2016 10.2 5.4 3 16 5

Reference 2013 Water Table Depth (cm) -29 0 -29 -29 2
2016 -35 -35 -35 1

Test 2013 -27 -33 -16 5
2016 -36 4 -39 -31 3

Reference 2013 Electrical Conductivity (um) 600 71 550 650 2
2016 380 71 330 430 2

Test 2013 360 172 179 610 5
2016 408 154 260 620 5

Reference 2013 pH 7 0.4 6.7 7.3 2
2016 6.5 0 6.5 6.5 2

Test 2013 6.6 0.6 5.7 7.2 5
2016 6.5 0.2 6.4 6.9 5

Riverine Organic-Rich Circumneutral Wet Sedge Meadow Reference 2013 Elevation (cm) 338 75 206 395 8
2016 330 76 200 390 8

Test 2013 305 33 238 383 29
2016 297 34 221 378 29

Reference 2013 Thaw Depth (cm) 45 6 38 53 8
2016 37 5 29 45 8

Test 2013 48 4 38 56 29
2016 40 5 33 52 29

Reference 2013 Surface Organic Thickness (cm) 14.9 12.7 0 40 8
2016 12.8 12.6 0 37 8

Test 2013 21.8 12.7 4 40 29
2016 21.2 12.8 0 40 29
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Appendix E. Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Riverine Organic-Rich Circumneutral Wet Sedge Meadow (continued) Reference 2013 Water Table Depth (cm) -5 9 -24 5 8
2016 -15 5 -20 -7 7

Test 2013 -3 4 -10 5 29
2016 -13 7 -26 0 28

Reference 2013 Electrical Conductivity (um) 453 233 170 770 8
2016 545 275 300 1050 8

Test 2013 474 172 230 830 29
2016 559 167 310 1030 29

Reference 2013 pH 6.7 0.3 6.2 7.2 8
2016 6.7 0.7 6 8 8

Test 2013 6.5 0.2 6.1 7.2 29
2016 6.4 0.2 6.1 6.8 29

Riverine Organic-Rich Circumneutral Wet Sedge-Willow Meadow Reference 2013 Elevation (cm) 331 70 231 425 16
2016 307 82 178 420 16

Test 2013 295 25 246 338 19
2016 287 26 237 330 19

Reference 2013 Thaw Depth (cm) 47 7 37 62 16
2016 38 6 28 48 16

Test 2013 47 5 31 55 19
2016 37 6 24 49 19

Reference 2013 Surface Organic Thickness (cm) 13.8 9.2 0 37 16
2016 12.8 11.7 0 40 16

Test 2013 12.4 11.1 0.3 36 19
2016 13.6 12.2 0 40 19

Reference 2013 Water Table Depth (cm) -6 4 -11 2 16
2016 -18 9 -39 2 16

Test 2013 -7 6 -25 8 19
2016 -20 10 -39 -5 17

Reference 2013 Electrical Conductivity (um) 517 280 190 1250 16
2016 663 317 160 1350 16

Test 2013 455 280 200 1470 19
2016 594 238 160 930 18

Reference 2013 pH 6.8 0.3 6.3 7.4 16
2016 6.4 0.3 6 6.9 16

Test 2013 6.5 0.3 6 7.3 19
2016 6.5 0.3 5.7 6.9 18
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Appendix E. Continued.

Standard

ecotype _title study area sample_year data_attribute Average Deviation Min Max n
Upland Loamy-Organic Circumneutral Moist Tussock Meadow Reference 2013 Elevation (cm) 273 273 273 1
2016 265 265 265 1

Test 2013 341 23 325 357 2
2016 336 23 320 352 2

Reference 2013 Thaw Depth (cm) 40 40 40 1
2016 32 32 32 1

Test 2013 39 13 29 48 2
2016 28 4 25 31 2

Reference 2013 Surface Organic Thickness (cm) 15 15 15 1
2016 22 22 22 1

Test 2013 12.5 7.8 7 18 2
2016 10 0 10 10 2

Reference 2013 Water Table Depth (cm) -11 -11 -11 1
2016 -36 -36 -36 1

Test 2013 -26 8 -32 -20 2
2016 -999 0 -999 -999 2

Reference 2013 Electrical Conductivity (um) 590 590 590 1
2016 510 510 510 1

Test 2013 170 71 120 220 2
2016 140 0 140 140 2

Reference 2013 pH 6.8 6.8 6.8 1
2016 6.4 6.4 6.4 1

Test 2013 6.2 0 6.2 6.2 2
2016 6.3 0.3 6.1 6.5 2

Upland Sandy Alkaline Dry Barrens Test 2013 Elevation (cm) 364 364 364 1
2016 363 363 363 1

2013 Thaw Depth (cm) 82 82 82 1

2016 117 117 117 1

2013 Surface Organic Thickness (cm) 0 0 0 1

2016 0 0 0 1

2013 Water Table Depth (cm) -999 -999 -999 1

2016 -999 -999 -999 1

2013 Electrical Conductivity (um) 30 30 30 1

2016 80 80 80 1

2013 pH 8.6 8.6 8.6 1

2016 7.8 7.8 7.8 1
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Appendix E.  Continued.

Standard

ecotype _title study area sample year data_attribute Average Deviation Min Max n
Upland Sandy Alkaline Moist Low Willow Shrub Reference 2013 Elevation (cm) 538 538 538 1
2016 525 525 525 1

Test 2013 419 86 340 510 3
2016 412 85 333 501 3

Reference 2013 Thaw Depth (cm) 120 120 120 1
2016 101 101 101 1

Test 2013 105 13 90 114 3
2016 92 11 79 100 3

Reference 2013 Surface Organic Thickness (cm) 0.5 0.5 0.5 1
2016 0 0 0 1

Test 2013 0.3 0.6 0 1 3
2016 0.3 0.6 0 1 3

Reference 2013 Water Table Depth (cm) -999 -999 -999 1
2016 -999 -999 -999 1

Test 2013 -999 0 -999 -999 3
2016 -999 0 -999 -999 3

Reference 2013 Electrical Conductivity (um) 450 450 450 1
2016 100 100 100 1

Test 2013 167 168 60 360 3
2016 117 90 60 220 3

Reference 2013 pH 8.2 8.2 8.2 1
2016 7.1 7.1 7.1 1

Test 2013 8.1 0.3 7.9 8.4 3
2016 8 0.2 7.8 8.2 3
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Appendix F.  Mean cover by vegetation structure class and herbaceous and woody plant height (mean, standard error, and frequency) for common wildlife habitat classes in the CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and

2016.
Woody Herb
Water Mosses Lichens Grasses Sedges Dwarf Low and Frequency Woody Woody SE Frequency = Herb Height Herb SE
Year Area Wildlife Habitat Alone Soil Alone  Litter Alone Cover Cover Forbs Cover Cover Cover Shrub Tall Shrub (%) Height (cm) (cm) (%) (cm) (cm)
2013 Test Barrens 17.74 70.16 2.69 0.81 0.00 3.49 0.81 1.61 0.81 2.15 40.000000 28.38 7.95 100 11.80 3.53
2013 Reference Barrens 0.00 94.37 1.66 0.00 0.00 3.31 0.33 0.00 0.00 0.33 0.000000 NA NA 100 11.13 431
2016  Test Barrens 5.07 81.41 1.13 0.56 0.00 7.61 2.54 0.00 2.25 1.41 17.857143 28.60 14.46 100 12.71 2.62
2016 Reference Barrens 1.66 86.42 8.61 0.00 0.00 2.98 0.33 0.00 0.00 0.00 0.000000 NA NA 100 12.00 4.36
2013 Test Deep Polygon Complex 22.83 0.22 40.16 41.28 2.81 5.85 0.22 20.70 6.41 6.64 55.952381 12.61 0.71 100 32.29 0.84
2013 Reference Deep Polygon Complex 23.08 0.00 3891 38.01 1.36 6.79 0.00 24.13 5.28 9.80 62.601626 15.68 0.96 100 35.80 1.14
2016  Test Deep Polygon Complex 12.04 3.24 44.56 41.09 2.55 8.10 0.35 25.35 7.29 7.41 55.757576 13.59 0.91 100 2791 0.76
2016 Reference Deep Polygon Complex 11.46 1.36 46.00 45.25 1.66 7.39 0.15 24.28 6.33 8.90 60.975610 15.01 0.89 100 29.81 0.89
2013 Test Dry Dwarf Shrub 0.00 0.00 46.67 25.33 12.00 5.33 2.67 17.33 24.00 17.33 93.333333 19.50 2.55 100 24.93 3.08
2013  Reference Dry Dwarf Shrub 0.00 1.00 35.00 41.00 2.00 18.00 6.00 13.00 33.00 14.00 100.000000 15.82 2.12 100 26.06 2.70
2016  Test Dry Dwarf Shrub 0.00 4.00 53.33 13.33 5.33 5.33 1.33 10.67 10.67 16.00 93.333333 11.14 2.46 100 21.20 1.90
2016 Reference Dry Dwarf Shrub 0.00 0.00 33.00 38.00 1.00 12.00 4.00 21.00 34.00 11.00 100.000000 12.06 1.68 100 19.65 2.15
2013 Test Dry Halophytic Meadow 0.00 50.00 32.50 0.00 0.00 7.50 9.17 0.00 0.83 0.00 4.166667 23.00 NA 100 34.54 4.71
2016  Test Dry Halophytic Meadow 0.00 66.67 18.33 0.00 0.00 11.67 3.33 0.00 0.00 2.50 8.695652 60.50 0.50 100 27.00 3.95
2013 Reference Moist Halophytic Dwarf 1.60 24.00 19.20 27.20 0.00 11.20 7.20 10.40 34.40 0.00 100.000000 5.46 1.00 100 18.58 1.72
Shrub
2016 Reference Moist Halophytic Dwarf 3.20 22.40 20.80 20.80 0.00 14.40 4.80 20.80 32.80 0.00 100.000000 6.75 1.52 100 16.00 2.25
Shrub

2013  Test Moist Herb Meadow 0.00 32.26 8.60 1.08 0.00 45.16 13.98 0.00 22.58 1.08 82.352941 6.07 1.67 100 24.29 247
2013 Reference Moist Herb Meadow 0.00 39.51 8.64 6.17 0.00 28.40 12.35 247 0.00 28.40 87.500000 51.71 14.79 100 29.25 3.24
2016  Test Moist Herb Meadow 0.00 32.26 10.75 1.08 0.00 30.11 7.53 2.15 26.88 1.08 88.235294 7.13 1.98 100 29.24 2.73
2016 Reference Moist Herb Meadow 0.00 34.57 23.46 6.17 0.00 16.05 8.64 0.00 0.00 23.45 93.750000 48.20 10.41 100 28.44 2.18
2013  Test Moist Low Shrub 0.77 9.42 28.81 40.06 1.26 20.80 2.60 12.79 11.45 25.58 94.539249 31.66 1.27 100 27.34 0.79
2013 Reference Moist Low Shrub 1.42 6.76 29.09 38.69 0.36 22.12 3.41 19.35 11.81 24.89 97.500000 28.95 1.08 100 31.60 0.85
2016  Test Moist Low Shrub 0.07 10.55 31.65 39.52 0.70 22.86 2.39 14.49 10.62 24.89 95.890411 3243 1.53 100 24.21 0.71
2016 Reference Moist Low Shrub 1.22 7.17 32.69 39.14 0.22 22.87 3.87 21.36 10.54 24.38 94.604316 28.86 1.06 100 26.14 0.69
2013  Test Moist Sedge-Shrub Meadow 0.00 1.46 43.07 54.01 0.73 6.57 1.46 21.17 24.82 7.30 100.000000 13.86 1.31 100 26.93 1.96
2016  Test Moist Sedge-Shrub Meadow 0.00 0.00 37.96 72.99 1.46 15.33 0.73 23.36 27.74 10.22 96.428571 13.30 1.50 100 23.04 1.64
2013  Test Moist Tussock Tundra 7.14 0.00 34.82 25.89 3.57 15.18 0.89 35.71 12.50 16.96 86.956522 19.60 2.79 100 39.48 2.76
2016  Test Moist Tussock Tundra 6.25 0.00 32.14 22.32 0.89 16.96 0.00 39.29 8.93 18.75 91.304348 17.76 2.64 100 32.30 2.17
2013  Test Nonpatterned Wet Meadow 451 1.30 42.33 49.45 1.50 9.43 0.70 25.08 4.11 12.94 79.487179 22.69 1.11 100 33.11 0.86
2013 Reference Nonpatterned Wet Meadow 5.98 1.24 40.14 56.91 1.01 13.66 2.48 23.06 6.99 10.41 76.717557 21.54 1.08 100 33.90 0.77
2016  Test Nonpatterned Wet Meadow 0.40 2.81 49.35 57.07 0.80 11.63 1.30 24.67 5.72 10.93 76.530612 21.56 0.88 100 29.48 0.82
2016 Reference Nonpatterned Wet Meadow 2.56 0.47 46.04 64.67 0.62 14.60 2.17 23.76 6.52 9.31 78.030303 22.65 1.42 100 29.72 0.71
2013  Test Patterned Wet Meadow 5.61 0.03 44.29 53.18 2.53 8.64 0.99 25.85 6.78 9.19 70.029240 18.01 0.47 100 30.96 0.36
2013 Reference Patterned Wet Meadow 8.14 0.16 42.83 54.48 1.47 13.19 0.65 23.53 7.57 9.12 78.278689 19.67 0.70 100 33.80 0.74
2016  Test Patterned Wet Meadow 0.52 1.31 53.10 57.57 1.48 10.09 0.49 27.42 6.60 8.37 67.888563 18.14 0.83 100 27.31 0.34
2016 Reference Patterned Wet Meadow 2.22 1.15 46.55 56.98 1.07 13.05 0.74 23.89 8.05 10.76 79.835391 19.60 0.77 100 28.83 0.58
2013 Reference River or Stream 96.59 0.00 0.00 0.00 0.00 4.55 0.00 0.00 0.00 0.00 50.000000 21.00 NA 100 5.00 3.00
2016 Reference River or Stream 97.98 1.01 1.01 0.00 0.00 1.01 0.00 0.00 0.00 0.00 100.000000 40.00 NA 100 12.00 NA
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Appendix I1.  Cross section of ground surface elevation and thaw depth along transects in the Test North Area, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Appendix [12.  Cross section of ground surface elevation and thaw depth along transects in the Test South Area, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Appendix J1. Cross section of ground surface elevation and thaw depth along transects (1-4) in the Reference North Area Transects, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Appendix J2.  Cross section of ground surface elevation and thaw depth along transects (6—8) in the Reference North Area Transects, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Appendix J3. Cross section of ground surface elevation and thaw depth along transects (1-3) in the Reference South Area Transects, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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Appendix J4.  Cross section of ground surface elevation and thaw depth along transects (4—6) in the Reference South Area Transects, CD5 Habitat Monitoring Study Area, northern Alaska, 2013 and 2016.
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