

2018 COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

PREPARED BY:

MICHAEL BAKER INTERNATIONAL 3900 C STREET, SUITE 900 ANCHORAGE, AK 99503

EXECUTIVE SUMMARY

This report presents the observations and results from the 2018 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment conducted by Michael Baker International for ConocoPhillips Alaska. In the Colville River Delta, the breakup and downstream movement of river ice typically occurs during a three-week period in May and June. The spring breakup event historically produces flooding resulting from the rapid rise and fall of stage often attributed to ice jam formations and releases. Annual study and reporting of spring breakup is required by U.S. Army Corps of Engineers Permits 2-960874 Special Condition #6, POA-2004-253 Special Condition #17, and POA-2005-1576 Special Conditions #1 and #17 and Alaska Department of Fish and Game Permits FH04-III-0238, FG97-III-0260, FG99-III-0051, and FG97-III-0190. The analyses provide data to support design, permitting, and operation of oilfield development.

The 2018 monitoring and hydrological assessment is the 27th consecutive year of spring breakup investigations and the 32nd year of historical breakup monitoring in the Colville River Delta. Water surface elevations were monitored throughout the delta at locations of hydrologic importance, including near infrastructure. Discharge was measured, and peak discharge was calculated at key locations. The entire breakup event was documented with visual observations and photography from a helicopter and from roadways. Following breakup, roads, pads, and drainage structures were assessed for erosion and damage.

This year's spring breakup flood was characterized as a protracted, low magnitude event. Initial floodwater arrived in the delta on May 19 and reached the coast by May 21. Cool air temperatures with heavy cloud cover persisted in the delta for the next few weeks and delayed the progression of breakup. On May 23, an ice jam was observed approximately 14 river miles upstream of MON1. This ice jam remained stationary until June 1, when it released and progressed downstream through the MON1 reach and into the east channel. The ice jam and intact channel ice were flushed from the east channel by June 5. Overall, ice jamming effects in the CRD were minimal, as was associated backwater.

Peak conditions throughout the delta occurred between June 1 and June 3. Peak stage at MON1C occurred on June 2 and was 15.90 feet British Petroleum Mean Sea Level having an estimated recurrence interval of less than 2.0years. Peak discharge at MON1C occurred on June 1 and was estimated at 331,000 cubic feet per second having an estimated 3.4-year recurrence interval.

During peak conditions, floodwater in the delta was generally confined within channels, lakes, and swales and did not reach most infrastructure (roads/pads) in the delta. Measured pier scour was minimal. Post-breakup visual inspections of all roads and pads found no evidence of erosion or damage.

TABLE OF CONTENTS

	ive Summary	i
	ms & Abbreviations	vii
	ntroduction	1
	Monitoring Objectives	
	Monitoring Locations	
	ethods	7
	Observations	
	Stage	
	Discharge	
	Post-Breakup Conditions Assessment	
	CD5 Pier Scour, Bank Erosion, & Bathymetry	
2.6	Ice Road Crossings Breakup	
	Real-Time Flood Monitoring Network	
	Flood & Stage Frequency Analyses	
-	bservations	16
	General Climatic Summary	
	General Breakup Summary	
	tage & Discharge	24
	Colville River	
	Colville River East Channel	
	Nigliq Channel	
	Alpine Facilities	
	Peak Discharge Distribution	
	ost-Breakup Conditions Assessment	52
6.	D5 Pier Scour, Bank Erosion, & Bathymetry	53
	Pier Scour	
	Bank Erosion	
	Bathymetry	
	e Road Crossings Breakup	60
	istorical Breakup Timing & Magnitude	61
	Colville River – Head of the Delta	
	CD2 Road Bridges	
	CD5 Road Bridges	
	Alpine Drinking Water Lakes Recharge	
9.	ood & Stage Frequency Analyses	71
	Flood Frequency	
9.2	Stage Frequency	
	eferences	83
Apper		A.1
Apper		B.1
Apper		C.1
Apper		D.1
Apper	lix E CD5 Pier Scour, Bank Erosion, & Bathymetry	E.1

11.29.18 • PAGE ii

FIGURES

Figure 1.1: Colville River Drainage Basin	2
Figure 1.2: CRD Monitoring Locations	
Figure 1.3: Alpine Facilities Monitoring Locations	
Figure 2.1: RTFM Network Schematic	
Figure 3.1: Spring Breakup Hydrologic Timeline	
Figure 4.1: Peak Discharge Distribution	

TABLES

Table 1.1: Monitoring & Gage Station Locations 6 Table 2.1: Peak Discharge Quality Ratings 11 Table 2.2: RTFM Network Stations 12 Table 4.1: Peak Stage, Measured Discharge, and Peak Discharge Summary 24 Table 4.2: CD2 Road Culverts (Gages G3 & G4) Measured Discharge 36 Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge 38 Table 6.1: Niglig Bridge Comparison of Design and Observed Pier Scour Elevations 55 Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations 56 Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion 56 Table 6.4: Niglig Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 55 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 56 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 66 Table 8.2: CD2 Road Bridges Measured Discharge and Discharge Historical Summary 66 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Summary 67 Table 8.4: CD5 Road Bridges Peak Stage and Discharge Summary 70 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9	Table 1.1: Monitoring & Gage Station Locations	6
Table 2.2: RTFM Network Stations11Table 4.1: Peak Stage, Measured Discharge, and Peak Discharge Summary24Table 4.2: CD2 Road Culverts (Gages G3 & G4) Measured Discharge38Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge38Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge38Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations52Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations52Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion56Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition55Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition55Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary66Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary66Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary67Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary70Table 9.1: Colville River Flood Frequency Analysis Results71Table 9.2: Colville River Flood Frequency Analysis Comparison72Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018)74Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis76Table 9.5: Peak Annual Stage for Selected Locations (1992-2018)76	Table 2.1: Peak Discharge Quality Ratings	11
Table 4.2: CD2 Road Culverts (Gages G3 & G4) Measured Discharge 38 Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge 38 Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations 53 Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations 56 Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion 56 Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 59 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 66 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 67 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018)	Table 2.2: RTFM Network Stations	13
Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge 38 Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations 53 Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations 56 Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion 56 Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 59 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 66 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 66 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Stage and Peak Stage Historical Summary 67 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018)	Table 4.1: Peak Stage, Measured Discharge, and Peak Discharge Summary	24
Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations 53 Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations 56 Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion 58 Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 59 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 62 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 62 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 66 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 66 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Comparison 71 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 4.2: CD2 Road Culverts (Gages G3 & G4) Measured Discharge	38
Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations 53 Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations 56 Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion 58 Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 59 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 62 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 62 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 66 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 66 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Comparison 71 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge	38
Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion 58 Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 59 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 62 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 66 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76		
Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition 59 Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 62 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 66 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations	56
Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition 59 Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 62 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 62 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 66 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion	58
Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary 62 Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 66 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition	59
Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary 66 Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 67 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition	59
Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary 67 Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 68 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary	62
Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary 68 Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary	66
Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary 70 Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018). 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis	Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary	67
Table 9.1: Colville River Flood Frequency Analysis Results 71 Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018) 72 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 76	Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary	68
Table 9.2: Colville River Flood Frequency Analysis Comparison 72 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for 72 the Period of Continuous Record (1992-2018) 74 Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 78	Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary	70
 Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for the Period of Continuous Record (1992-2018)		
the Period of Continuous Record (1992-2018)	Table 9.2: Colville River Flood Frequency Analysis Comparison	72
Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis 76 Table 9.5: Peak Annual Stage for Selected Locations (1992-2018) 78	Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Results for	
Table 9.5: Peak Annual Stage for Selected Locations (1992-2018)	the Period of Continuous Record (1992-2018)	74
•	Table 9.4: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis	76
Table 9.6: Peak Stage Frequency Relative to Stage Frequency Analysis	Table 9.5: Peak Annual Stage for Selected Locations (1992-2018)	78
	Table 9.6: Peak Stage Frequency Relative to Stage Frequency Analysis	78

GRAPHS

Graph 3.1: NPR-A N. Tundra Monitoring Station, CFDD, Winters 2002-2018 (ICE 2018)	
Graph 3.2: Anaktuvuk Pass Daily High and Low Ambient Air Temperatures.	
Graph 3.3: Umiat Daily High and Low Ambient Air Temperatures	
Graph 3.4: Nuiqsut Daily High and Low Ambient Air Temperatures and MON1 Leading Edge	
Graph 4.1: Colville River at Umiat Stage (USGS 2018a)	25
Graph 4.2: Colville River at Umiat Discharge (USGS 2018a)	
Graph 4.3: Colville River at the Head of the Delta Stage & Discharge	
Graph 4.4: Colville River East Channel Stage & Discharge	
Graph 4.5: Nigliq Channel Stage	
Graph 4.6: CD1 Pad (Gage G1) Stage	
Graph 4.7: Lakes L9312 (Gage G9) and L9313 (Gage G10) Stage	35
Graph 4.8: CD2 Road Bridges and Culverts (Gages G3 & G4) Stage & Discharge	
Graph 4.9: CD3 Pipelines Stage	
Graph 4.10: CD4 Road Culverts (Gages G15 & G16) Stage	42
Graph 4.11: CD4 Road Culverts (Gages G17 & G18) Stage & Discharge	42
Graph 4.12: CD4 Pad (Gages G19 & G20) Stage	43
Graph 4.13: Lake L9323 Bridge (Gages G24 & G25) Stage	44

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

Graph 4.14: Nigliq Bridge (Gages G26, G27, G28, & G29) Stage & Discharge	46
Graph 4.15: Lake L9341 Bridge (Gages G32 & G33) Stage	47
Graph 4.16: Nigliagvik Bridge (Gages G38 & G39) Stage	
Graph 4.17: CD5 Road Culverts (Gages G34 & G35) Stage	
Graph 4.18: CD5 Road Culverts (Gages S1 & S1D) Stage and Discharge	
Graph 6.1: Nigliq Bridge Pier 2 (Pile E) Real-Time Scour Elevations	
Graph 6.2: Nigliq Bridge Pier 3 (Pile E) Real-Time Scour Elevations	
Graph 6.3: Nigliq Bridge Pier 4 (Pile E) Real-Time Scour Elevations	
Graph 6.4: Niglig Bridge Pier 5 (Pile É) Real-Time Scour Elevations	
Graph 8.1: Colville River at the Head of the Delta Historical Peak Stage and Peak Discharge	
Graph 8.2: Colville River at the Head of the Delta Historical Timing of Peak Stage	
Graph 8.3: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Measured Discharge	
	64
Graph 8.4: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Peak Discharge	65
Graph 9.1: CRD Flood Frequency Analysis Distribution	
Graph 9.2: 2D Model Stage and Peak Stage Recurrence Intervals	
Graph 9.3: Stage Frequency and Peak Stage Recurrence Intervals	
Graph 9.4: MON1 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data	
Graph 9.5: MON22 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data	
Graph 9.6: Gage 1 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data	
Graph 9.7: Gage 3 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data	
Graph 9.8: Gage 18 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data	

PHOTOS

Photo 2.1: Field crew recording observations at gage G27-C; May 31, 2018	7
Photo 2.2: Indirect-read gages at Mon9; May 29, 2018	
Photo 2.3: Chalked gage at MON20; May 30, 2018	
Photo 2.4: PT on direct-read gage G4; May 20, 2018	
Photo 2.5: Measuring discharge at the Nigliq Bridge; June 4, 2018	
Photo 2.6: Pre-deployment ADCP testing on the Colville River at MON1; June 3, 2018	
Photo 2.7: Remote camera setup at MON1C; May 9, 2018	
Photo 3.1: Leading edge of water in Colville River, approximately 60 RM upstream of MON1, looking southwest; May 15, 2018	19
Photo 3.2: Colville River leading edge of water approximately 5 RM upstream of MON1, looking south; May 18, 2018	19
Photo 3.3: Intact channel ice in the East Channel of the Colville River, looking north (downstream); May 22, 2018.	20
Photo 3.4: Channel Ice on the Nigliq Channel, looking north; May 22, 2018	20
Photo 3.5: Ice jam on the Colville River approximately 14 RM upstream of MON1, looking east (downstream); May 23, 2018.	
Photo 3.6: Ice jam near the horseshoe bends on the Colville River, looking northeast; June 1, 2018	20
Photo 3.7: Open water conditions upstream of the horseshoe bends on the Colville River, looking southwest (upstream); June 1, 2018	
Photo 3.8: Flow under the Long Swale Bridge, looking northeast; June 1, 2018	
Photo 3.9: Ice jam on the East Channel downstream of MON9, near the Tamayayak tributary, looking north; June 2, 2018	
Photo 3.10: Ice jam on the Nigliq Channel near MON20, looking south; June 2, 2018	
Photo 3.11: Grounded ice at MON9D following stage recession, looking south; June 4, 2018	
Photo 3.12: Open channel conditions in the Nigliq Channel downstream of MON23, looking south (upstream); June 6, 2018	22
Photo 4.1: Intact channel ice downstream of the MON1 reach the day prior to peak stage, looking northeast (downstream); June 1, 2018.	

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

Photo 4.2: Intact channel ice through the MON1 reach the day prior to peak stage at MON1C, looking southwest (upstream); June 1, 2018	27
Photo 4.3: Ice jam release through the MON1 reach, the day of peak stage, looking east; June 2, 2018 Photo 4.4: Open channel conditions downstream of MON1 on the day of the discharge measurement,	
looking north (downstream); June 3, 2018 Photo 4.5: Performing discharge measurements at MON1; June 3, 2018	
Photo 4.6: Intact channel ice in the East channel, looking south (upstream); June 1, 2018	29
Photo 4.7: Conditions the day prior to peak stage and discharge at MON9, looking southwest (upstream); June 1, 2018	29
Photo 4.8: Conditions the day of peak stage and discharge at MON9D, looking northwest (downstream); June 2, 2018	29
Photo 4.9: Ice jam releasing through the MON9 reach, looking east (upstream); June 2, 2018	29
Photo 4.10: MON22 three days before peak stage looking southwest (upstream); May 30, 2018 Photo 4.11: Channel ice in the Nigliq Channel between MON23 and MON28, looking north (downstream);	
June 1, 2018	31
Photo 4.12: Channel ice and conditions prior to peak state at MON23, looking north; June 2, 2018	31
	31
Photo 4.14: Open water conditions the day after to peak stage at MON20, looking southwest (upstream); June 4, 2018	32
Photo 4.15: Channel ice and conditions the day after peak stage between MON23 and MON28, looking north (downstream); June 4, 2018	
Photo 4.16: Lake L9312 and Lake L9313 hydraulically isolated the day after peak stage, looking south; June 4, 2018	
Photo 4.17: Hydraulic connection between Lake M9525 and Lake L9313 looking northwest; July 10, 2018	
Photo 4.18: Outflow from Lake L9313 looking northeast; July 10, 2018	
Photo 4.19: Outflow from Lake L9313 looking north; July 18, 2018	34
Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2,	
Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June	36
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 	36
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 	36 36 37 39
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 	36 36 37 39 39
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 	36 36 37 39 39 39
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 	36 37 39 39 39 39 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 	36 37 39 39 39 39 41 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southwest; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 	36 37 39 39 39 39 41 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southwest; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 	36 37 39 39 39 41 41 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 	36 37 39 39 39 41 41 41 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 	36 37 39 39 39 41 41 41 41 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeest; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018 Photo 4.29: CD4 pad at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018 Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 	36 37 39 39 39 41 41 41 41 41 41 41 41
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 2, 2018 Photo 4.29: CD4 pad at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018 Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to 	36 37 39 39 41 41 41 41 41 45 45 45
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southwest; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking north; June 2, 2018 Photo 4.29: CD4 pad at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018 Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking south (upstream): June 4, 2018 	36 37 39 39 39 41 41 41 41 41 41 45 45 45 45
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking south; June 2, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 2, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking south (upstream): June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.36: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 	36 37 39 39 39 41 41 41 41 41 41 41 41 41 41 45 45 45 45 46 48
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southwest; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 2, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018. Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.36: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.36: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 	36 37 39 39 39 41 41 41 41 41 41 41 41 45 45 45 45 45 48
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 2, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018. Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking southwest (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel two days prior to peak stage, looking southwest; June 1, 2018 Photo 4.37: Culvert CD5-32S and CD5-33S along the CD5 road, looking southeast; June 1, 2018 <	36 37 39 39 39 39 41 41 41 41 41 41 41 41 45 45 45 45 46 48 48 48
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at TAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 2, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018. Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.36: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking southwest (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel two days prior to peak stage, looking southwest (upstream); June 2, 2018 Photo 4.36: Nigliagvik Channel two days prior to peak stage, looking southwest (upstream); June 1, 2018 Photo 4.36: Nigliagvik Channel two days prior to peak stage, looking southwest; Jun	36 37 39 39 39 41 41 41 41 41 41 41 45 45 45 45 46 48 48 49 49
 Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018 Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018 Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018 Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018 Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018 Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018 Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018 Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 2, 2018 Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018 Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018 Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018 Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018 Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018. Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018 Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking southwest (upstream); June 2, 2018 Photo 4.35: Nigliagvik Channel two days prior to peak stage, looking southwest; June 1, 2018 Photo 4.37: Culvert CD5-32S and CD5-33S along the CD5 road, looking southeast; June 1, 2018 <	36 37 39 39 39 41 41 41 41 41 41 41 45 45 45 45 45 46 48 48 49 49 52

Photo 5.3: South side of CD2 road, looking northwest; June 6, 2018	52
Photo 5.4: North side of CD5 at the Nigliagvik Channel looking south; June 5, 2018	52
Photo 6.1: West bank of the Niglig Channel under the Niglig Bridge, looking north; September 11, 2018	57
Photo 6.2: East bank of the Niglig Channel near the Niglig Bridge, looking north; September 11, 2018	57
Photo 6.3: West bank of the Nigliagvik Channel at the Nigliagvik Bridge, looking north; September 11,	
2018	57
Photo 6.4: East bank of the Nigliagvik Channel at the Nigliagvik Bridge abutment, looking north;	
September 11, 2018	57

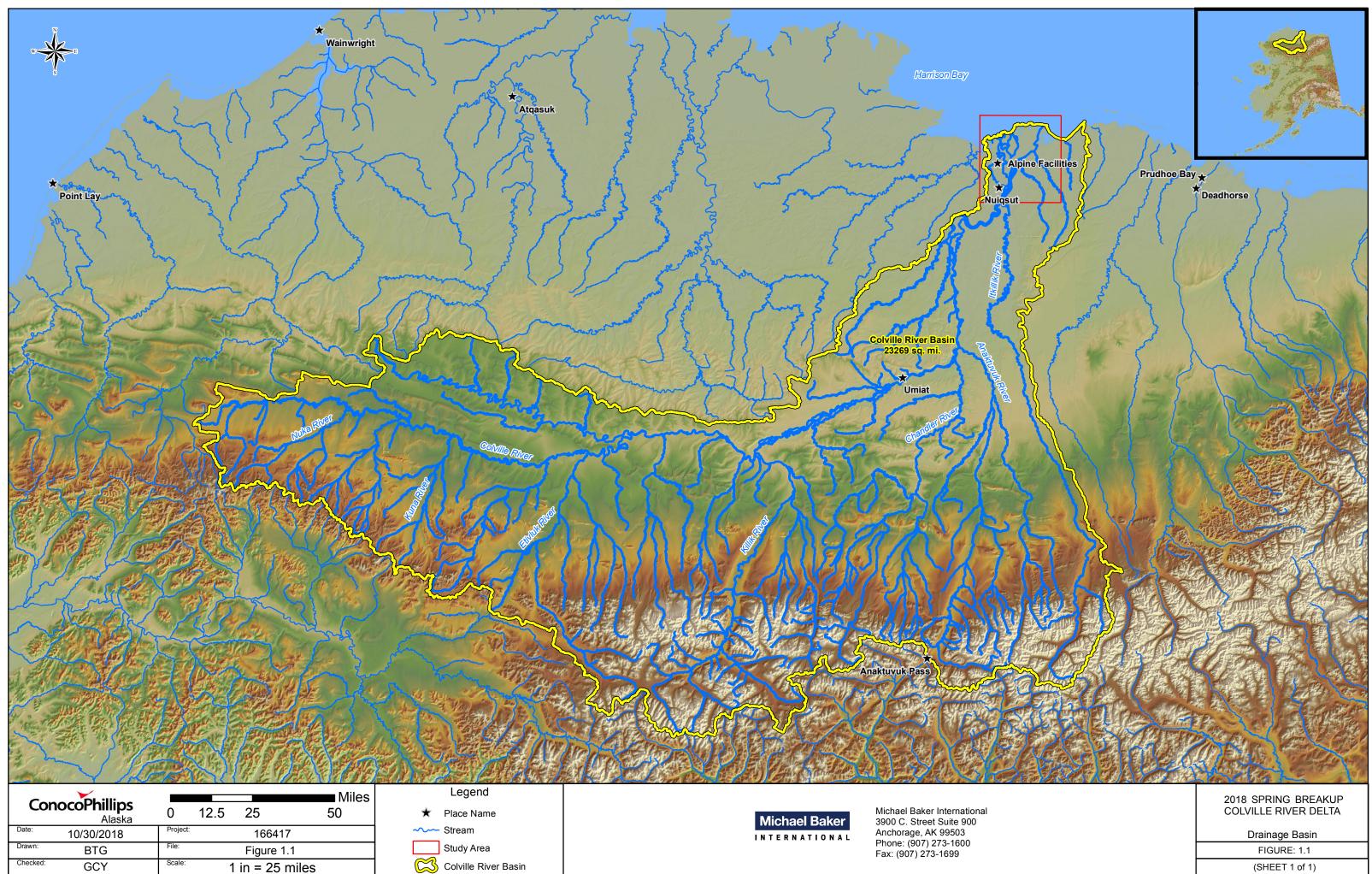
APPENDIX D PHOTOS

Photo D.1: CD2 road at the Long Swale Bridge post breakup, looking west; June 18, 2018	. D.1
Photo D.2: CD4 road near the CD4 Pad, looking west; June 8, 2018	. D.1
Photo D.3: CD5 road between Lake L9341 and the Nigliagvik Channel, looking southwest; June 17, 2018	
Photo D.4: Culverts along the CD5 road, looking south; June 5, 2018	. D.1
Photo D.5: Culverts along the CD5 road, looking south; June 5, 2018	. D.2
Photo D.6: Colville River East Channel at HDD pre-breakup, looking east; May 20, 2018	. D.2
Photo D.7: Colville River East Channel at HDD during breakup, looking north; May 30, 2018	. D.2
Photo D.8: Colville River East Channel at HDD post-breakup, looking south, June 4, 2018	. D.3
Photo D.9: Kachemach River during breakup, looking north; June 9, 2018	. D.3
Photo D.10: Silas Slough during breakup, looking east; June 4, 2018	. D.3
Photo D.11: Silas Slough during breakup, looking south; June 8, 2018	. D.3
Photo D.12: Toolbox Creek ice road crossing pre-breakup, looking south; May 29, 2018	. D.3
Photo D.13: Toolbox Creek post-breakup, looking east; June 8, 2018	. D.3
Photo D.14: Slemp Slough pre-breakup, looking northwest; June 1, 2018	. D.4
Photo D.15: Slemp Slough post-breakup, looking southwest; June 8, 2018	. D.4
Photo D.16: Tamayayak Channel during breakup, looking west, June 1, 2018	. D.4
Photo D.17: Tamayayak Channel during breakup, looking northwest; June 8, 2018	. D.4
Photo D.18: No Name Creek pre-breakup, looking east; June 4, 2018	. D.4
Photo D.19: No Name Creek post-breakup, looking northwest; June 15, 2018	. D.4
Photo D.20: Pineapple Gulch pre-breakup, looking east; June 1, 2018	. D.5
Photo D.21: Pineapple Gulch during breakup, looking northwest; June 8, 2018	. D.5

ACRONYMS & ABBREVIATIONS

2D	Two-dimensional
ABR	Alaska Biological Research
ADF&G	Alaska Department of Fish and Game
Baro PT	barometric pressure sensors
BPMSL	British Petroleum Mean Sea Level
CD	Colville Delta
CFDD	cumulative freezing degree days
cfs	cubic feet per second
CPAI	ConocoPhillips Alaska, Inc.
CRD	Colville River Delta
FEMA	Federal Emergency Management Agency
fps	feet per second
ft	feet
gage	hydrologic staff gage
GPS	Global positioning system
HDD	Horizontal directional drill
HWM	High water mark
Michael Baker	Michael Baker International
MON	Monument
MP-AMS	Monitoring Plan with an Adaptive Management Strategy
NOAA	National Atmospheric and Oceanic Administration
NRCS	Natural Resources Conservation Service
NPR-A	National Petroleum Reserve of Alaska
PT	pressure transducer
RM	river mile
RTFM	Real-Time Flood Monitoring
SAK	Sakoonang
TAM	Tamayayak
ULAM	Ulamnigiaq
UMIAQ	Umiaq, LLC (UMIAQ)
USACE	U.S. Army Corps of Engineers
USGS	U.S. Geological Survey
VSM	Vertical support member
WSE	Water surface elevation

1. INTRODUCTION


The Colville River is the largest river on the North Slope, initiating in the DeLong Mountains on the north side of the Brooks Range, running north and east through the Arctic Coastal Plain, and forms the Colville River Delta (CRD) where the river empties into the Beaufort Sea. The Colville River drainage basin is approximately 23,269 square miles and includes a large portion of the western and central areas north of the Brooks Range (Figure 1.1). Spring breakup commences with the arrival of meltwater in the delta and progresses with a rapid rise in stage which facilitates the breakup and downstream movement of river ice. CRD spring breakup is generally considered to be the largest annual flooding event in the region and typically occurs during a three-week period in May and June. Spring breakup monitoring is integral to understanding regional hydrology and ice effects, establishing appropriate design criteria for proposed facilities, and maintaining the continued safety of the environment, oilfield personnel, and existing facilities during the flooding event.

The CRD Spring Breakup Monitoring and Hydrological Assessment supports the ConocoPhillips Alaska, Inc. (CPAI) Alpine Development Project and the Alpine Satellite Development Plan. The Alpine facilities are operated by CPAI and owned by CPAI and Anadarko Petroleum Company. Alpine facilities include the Colville Delta (CD) 1 processing facility (Alpine) and the CD2, CD3, CD4, CD5, and Greater Moose's Tooth 1 (GMT1) pads, access roads, and pipelines.

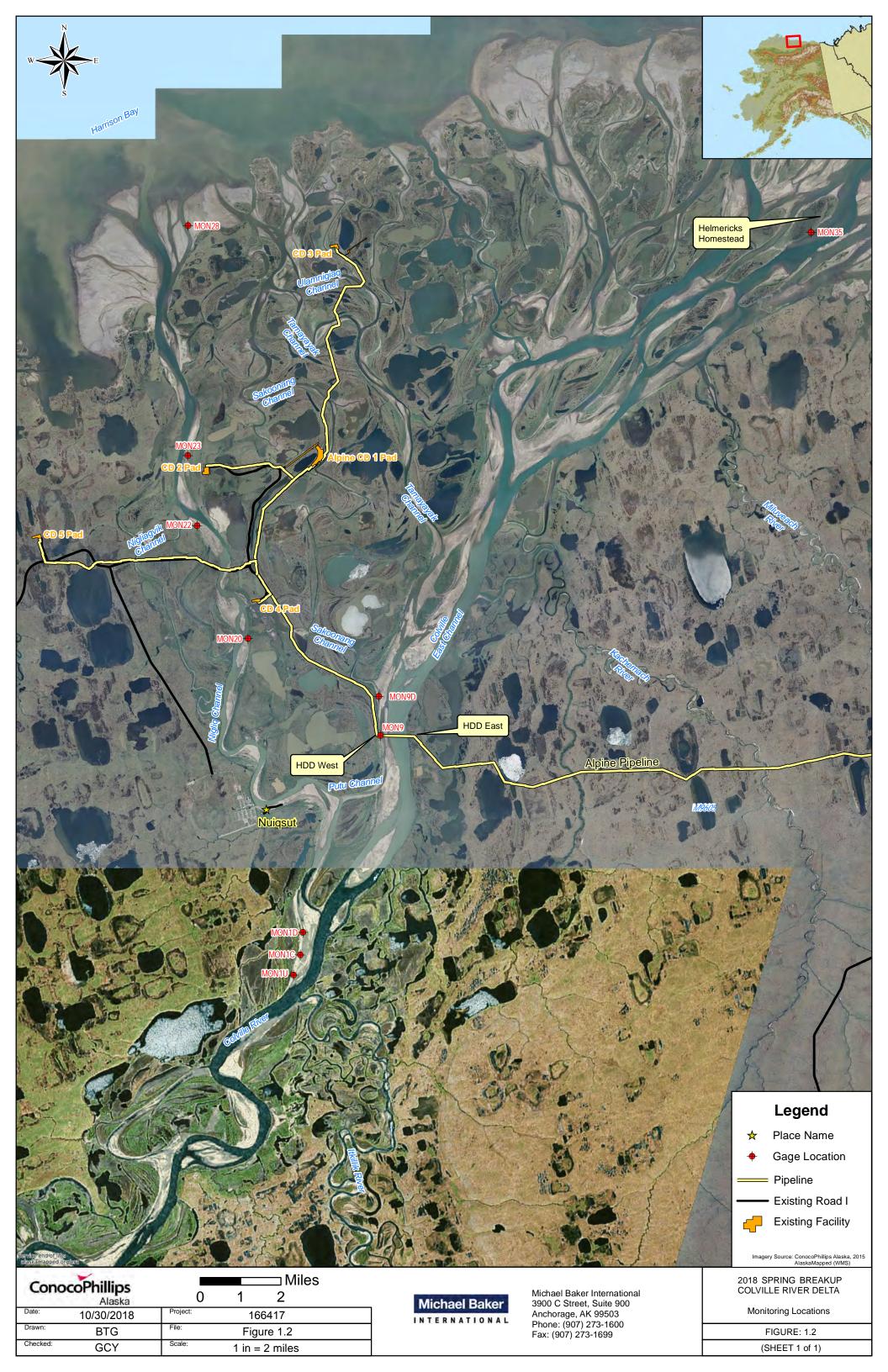
Colville River breakup monitoring has been ongoing since 1962. The timing and magnitude of breakup flooding has been determined consistently since 1992 by measuring stage and discharge at established locations throughout the delta. The program was expanded to include additional Alpine facilities in 2004 and the CD5 development area in 2009. The 2018 monitoring and hydrological assessment is the 27th consecutive year of CRD spring breakup investigations.

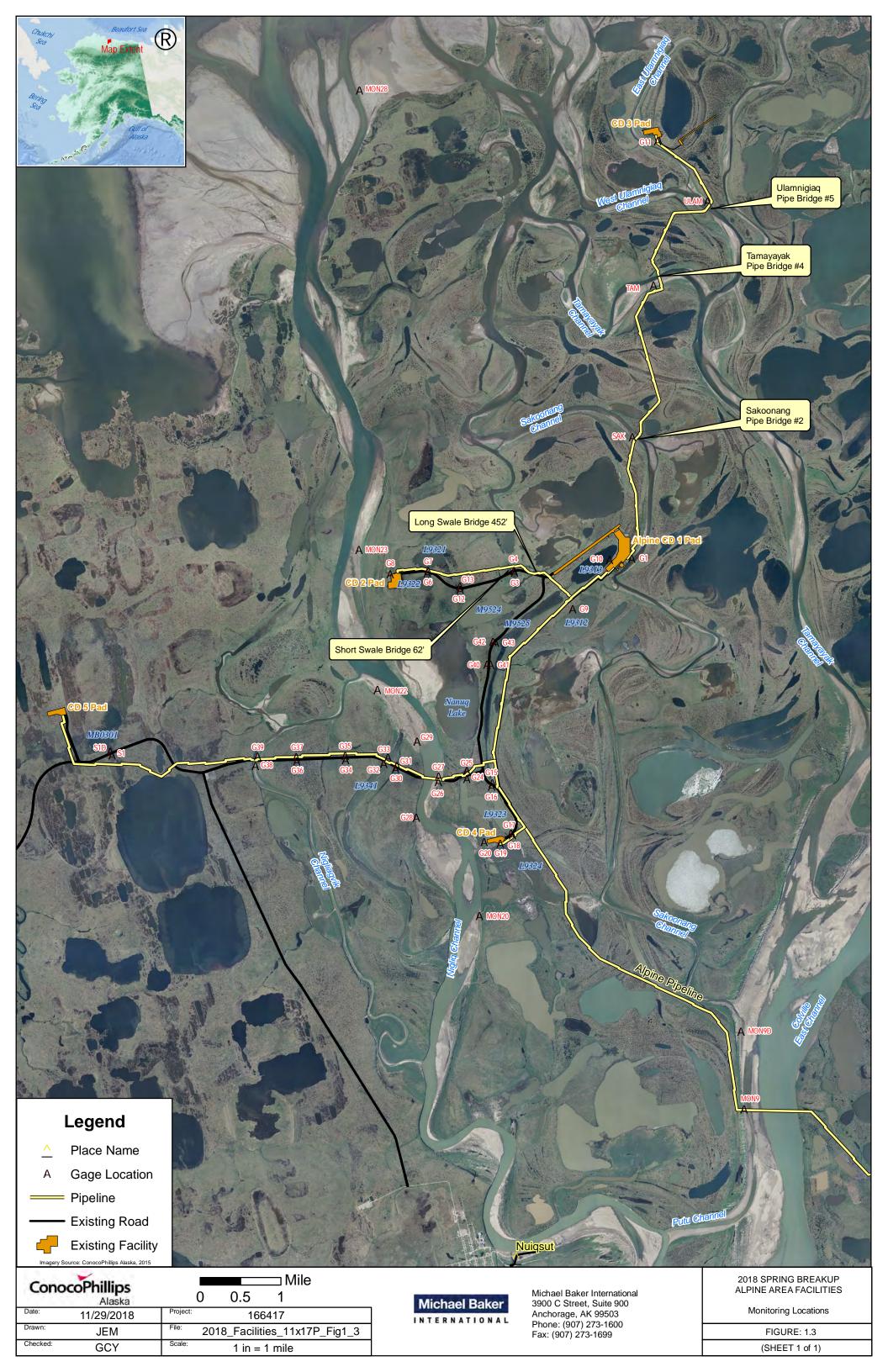
The 2018 field program took place from April 23 to June 19. Spring breakup setup began on April 23 and concluded on May 14. Spring breakup monitoring began on May 15 and concluded on June 19. Primary field tasks included documenting the distribution of floodwater and measuring water levels and discharge at select locations. Observations of lake recharge, ice jams, ice road crossing degradation, and floodwater effects on infrastructure were also recorded. Hydrologic observations were documented at all Alpine facilities, roads, and drainage structures, and relevant waterbodies within the CRD.

Umiaq, LLC (UMIAQ), CPAI Alpine Field Environmental Coordinators, Alpine Helicopter Coordinators, and Soloy Helicopters, LLC provided support during the field program and contributed to a safe and productive field season.

(SHEET 1 of 1)

1.1 MONITORING OBJECTIVES


The primary objective of CRD spring breakup monitoring and hydrological assessment is to monitor and estimate the magnitude of breakup flooding within the CRD in relation to Alpine facilities. Water surface elevations (WSE, or stage, used interchangeably in this report), discharge, and observations are used to validate design parameters of existing infrastructure, for planning and design of proposed infrastructure, and to satisfy permit requirements. Data collection supports refinement of the CRD flood frequency, two-dimensional (2D) surface water model, and stage frequency analyses.


CRD spring breakup monitoring satisfies permit stipulations by the U.S. Army Corps of Engineers (USACE) and the Alaska Department of Fish and Game (ADF&G).

Permit stipulations for USACE Permits 2-960874 Special Condition #6, POA-2004-253-2 Special Condition #17, ADF&G Fish Habitat Permit FH04-III-0238, and USACE Permit POA-2005-1576 Special Conditions #1 and #17 require monitoring Alpine facilities during spring breakup. Permit stipulations include documentation of annual hydrologic conditions, direct measurements and indirect calculations of discharge through drainage structures, and documentation of pad and road erosion caused by spring breakup flooding. USACE Permit POA-2005-1576 Special Condition #1 requires the *Monitoring Plan with an Adaptive Management Strategy* (MP-AMS) (Michael Baker and Alaska Biological Research [ABR] 2013) which includes monitoring channel sedimentation and erosion specific to the CD5 development. Observations of functionality and flooding effects to the CD2 road bridges are recorded to satisfy ADF&G permit FG97-III-0260-Amendment #3. ADF&G permits FG99-III-0051-Amendment #8 and FG97-III-0190-Amendment #1 require monitoring of recharge to lakes L9312 and L9313, respectively. Alpine facilities rely on water withdrawal from these lakes for daily operations; the volume of which is dictated in part by annual spring recharge. The information presented in this report encompasses the data required by the permits.

1.2 MONITORING LOCATIONS

The 2018 monitoring locations and gage stations are similar to those studied in 2017 (Michael Baker 2017). Most gage stations are adjacent to major hydrologic features and were selected based on topography, importance to the historical record, and proximity and hydraulic significance to existing or proposed facilities or temporary infrastructure. Figure 1.2 shows the CRD monitoring locations and gage stations denoted with a MON prefix. Monitoring locations and gage station specific to Alpine facilities are shown in Figure 1.3. The location descriptions for each gage station are listed in Table 1.1. Gage and culvert geographic coordinates and associated vertical control are provided in Appendix A.

Table 1.1: Monitoring & Gage Station Locations

Monitoring Location	Monitoring Location	Gage Station	Gage Station Description
	Description		CRD Monitoring Locations
		MON1U	
Colville River	Head of the CRD	MON1C	West bank, farthest downstream confined reach of the Colville River, conveying approximately 22,500 square miles of runoff in a single channel
River		MON1D	a single channel
Colville		MON9	West bank, adjacent to horizontal directional drill (HDD) West, downstream of Nigliq Channel bifurcation
River East	East Channel Bifurcation	MON9D	West bank, downstream (north) of HDD West, upstream of Sakoonang Channel bifurcation
Channel	bildication	MON35	East side of Helmericks Homestead, Kupigruak Channel just upstream of the coast line, farthest downstream gage station
		MON20	East bank, upstream (south) of CD4 pad, upstream of Toolbox Creek
Nigliq	Nigliq Channel	MON22	West bank, upstream of Nigliagvik Channel tributary
Channel	Bifurcations	MON23	East bank, downstream of Nigliagvik Channel tributary, downstream (north) of CD2 pad
		MON28	Eastern tributary channel at Harrison Bay, farthest downstream gage station
		-	Alpine Facilities Monitoring Locations
CD1 Pad &	Lake L9312	G9	Northwest side of lake, south of CD1 pad
Drinking Water	Lake L9313	G10	East side of lake, adjacent to CD1 pad
Lakes	CD1 Pad	G1	West bank of Sakoonang Channel, east side of CD1 pad
	Long Swale Bridge	G3	South side of road, downstream of Lake M9524
		G4	North side of road, downstream of Lake M9524
	Short Swale Bridge	G3	South side of road, downstream of Lake M9524
		G4	North side of road, downstream of Lake M9524
CD2 Pad &		G3	South side of road, downstream of Lake M9524
CD2 Pad & Road		G4	North side of road, downstream of Lake M9524
	Culverts	G6	South side of road, between Lake L9322 and Lake L9321
		G7	North side of road, between Lake L9322 and Lake L9321
		G12	South side of road, downstream of Nanuq Lake
		G13	North side of road, downstream of Nanuq Lake
	CD2 Pad	G8	Northwest side of CD2 pad, adjacent to Nigliq Channel
		SAK	South side of Sakoonang Channel, downstream of pipeline bridge #2
CD3 Pad &	Pipeline Crossings	TAM	South side of Tamayayak Channel, downstream of pipeline bridge #4, downstream of Ulamnigiaq Channel bifurcation
Pipeline		ULAM	North side of Ulamnigiaq Channel, downstream of pipeline bridge #5, upstream of East and West Ulamnigiaq Channel bifurcation
	CD3 Pad	G11	South side of CD3 pad, adjacent to north side of East Ulamnigiaq Channel
		G15	East side of road, between Lake L9323 and Lake M9525
		G16	West side of road, between Lake L9323 and Lake M9525
		G17	North side of road, between Sakoonang Channel and Lake L9323
	Culverts	G18	South side of road, between Sakoonang Channel and Lake L9323
CD4 Pad &	Cuiverts	G40	West side of road, between Lake M9525 and Nanuq Lake
Road		G41	East side of road, between Lake M9525 and Nanuq Lake
		G42	West side of road, between Lake M9525 and Nanuq Lake
		G43	East side of road, between Lake M9525 and Nanuq Lake
	CD4 Pad	G19	South side of CD4 pad, north side of Lake L9324
		G20	West side of CD4 pad, east side of Tapped Lake
		G30	South side of road, east of Lake L9341
		G31	North side of road, east of Lake L9341
		G34	South side of road, west of Lake L9341
	Culverts	G35	North side of road, west of Lake L9341
	cuiverts	G36	South side of road, east of Nigliagvik Channel
		G37	North side of road, east of Nigliagvik Channel
		\$1	South side of road, between Oil Lake and Lake MB0301, outside of the CRD
		S1D	North side of road, between Oil Lake and Lake MB0301, outside of the CRD
CD5 Road	Lake L9323 Bridge	G24	Northeast side of Lake L9323, 200 feet upstream of bridge centerline
		G25	Northeast side of Lake L9323, 310 feet downstream of bridge centerline
	Nigliq Bridge	G28	West side of Niglig Channel, 2,600 feet upstream of bridge centerline
		G26	East side of Nigliq Channel, 200 feet upstream of bridge centerline
		G27 G29	East side of Nigliq Channel, 160 feet downstream of bridge centerline West side of Nigliq Channel, 2,300 feet downstream of bridge centerline
		G29 G32	West side of Niglid Channel, 2,300 feet downstream of bridge centerline West side of Lake L9341, 180 feet upstream of bridge centerline
	Lake L9341 Bridge	G32 G33	West side of Lake L9341, 180 feet upstream of bridge centerline West side of Lake L9341, 300 feet downstream of bridge centerline
		G33 G38	East side of Nigliagvik Channel, 350 feet upstream of bridge centerline
	Nigliagvik Bridge	G38 G39	East side of Nigliagvik Channel, 300 feet downstream of bridge centerline
		665	במשנ שוני ואוצוומצאוג כוומווויבו, שוט וכבו עטאושו במוו טו שוועצי נצוונצווווצ

2. METHODS

2.1 OBSERVATIONS

The U.S. Geological Survey (USGS) operates a hydrologic gage station on the Colville River at Umiat, approximately 90 river miles (RM) upstream of the CRD. Real-time stage data and photos from this site were used during spring breakup monitoring to help forecast the arrival of floodwater and timing of peak conditions in the CRD study area. Helicopter reconnaissance flights were also conducted to Ocean Point, the Anaktuvuk River, and the Chandler River to track the progression of the floodwaters.

Field data collection and observations of breakup progression, discharge distribution, bank erosion, ice events, scour, lake recharge, and interactions between floodwaters and infrastructure were recorded in field notebooks (Photo 2.1). Photographic documentation of breakup conditions was collected using digital cameras with integrated global positioning systems (GPS). Each photo was geotagged with the latitude and longitude, date, and time. The photo location is referenced to the World Geodetic System of 1984 horizontal datum.

UMIAQ provided Hägglund track vehicle support to access gage stations during setup and before a helicopter was onsite at Alpine. Soloy Helicopters, LLC provided helicopter support to access CRD gage stations, and Alpine Environmental Coordinators provided a pickup truck to access Alpine facilities monitoring locations during spring breakup monitoring.

Photo 2.1: Field crew recording observations at gage G27-C; May 31, 2018

2.2 STAGE

HYDROLOGIC STAFF GAGES

Stage data was collected using hydrologic staff gages (gages) and pressure transducers (PTs). Site visits were performed as needed and as conditions allowed. The field methodologies used to collect hydrologic data on the North Slope of Alaska during spring breakup are proven safe, efficient, and accurate for the conditions encountered.

Gages were installed or rehabilitated as needed in the previous fall and re-surveyed prior to spring breakup using standard differential leveling techniques.

Two types of gages were used:

- Direct-read gages directly correspond to a British Petroleum Mean Sea Level (BPMSL) elevation and were surveyed by UMIAQ. The survey is used to determine if correction factors must be applied to adjust elevations during flooding conditions. Adjustments are made annually by UMIAQ during ice-free conditions to correct for jacking or settlement induced by the freeze-thaw cycle. The gages consist of metal gage faceplates attached to drill stems permanently driven into the ground or attached to pipeline vertical support members (VSMs).
- 2) **Indirect-read gages** do not directly correspond to a BPMSL elevation. The gage elevations were surveyed relative to a known benchmark elevation to determine a correction. The correction is applied to the gage reading to obtain the elevation in feet (ft) BPMSL.

Indirect-read gage stations consist of one or more gage assemblies positioned perpendicular to the waterbody or road. Each indirect-read gage assembly includes a standard USGS metal faceplate mounted on a wooden two-by-four. The two-by-four is attached with U-bolts to a 1.5-inch-wide angle iron post driven into the ground. The faceplate is graduated and indicates water levels every 100th of a foot between 0.00 to 3.33 feet (Photo 2.2).

Photo 2.2: Indirect-read gages at Mon9; May 29, 2018

Alpine facilities gage stations were established at pads and along roads adjacent to infrastructure and at drinking water source Lakes L9313 and L9312. Paired gages along the access roads captured water levels on the upstream and downstream side of drainage structures to determine stage differential.

CRD gage stations were established throughout the delta at locations of hydrologic importance. The number of gage assemblies per station is dependent upon site specific conditions: primarily slope of the channel bank and overbank. In locations where terrain elevation varied by more than three feet, multiple gages were installed linearly from the edge of the low water channel up to the overbank. The gages were installed at elevations overlapping by approximately one foot. Individual gage assemblies were identified with alphabetical designations beginning with 'A' representing the location nearest to the stream. High water marks (HWMs) were measured by applying chalk on the angle iron gage supports or VSMs and measuring the wash line (Photo 2.3).

Photo 2.3: Chalked gage at MON20; May 30, 2018

PRESSURE TRANSDUCERS

PTs were used at select gage stations to supplement gage measurements and provide a continuous record of WSEs (Photo 2.4). PTs are designed to collect and store pressure and temperature data at discrete pre-set intervals. PTs were programmed to collect data at 15-minute intervals from May 1 to August 30. Each PT was housed in a small perforated galvanized steel pipe and secured to the base of the gage assembly nearest to the channel. By sensing the absolute pressure of the atmosphere and water column above the PT, the depth of water above the sensor was calculated. Atmospheric pressure was accounted for using barometric pressure sensors (Baro PT) at two locations in the CRD. During data processing, the PT measurements were adjusted to WSEs recorded at the gages.

Secondary PTs were installed to validate and backup the primary PT data at locations where discharge is calculated. PT setup and testing methods are detailed in Appendix B.

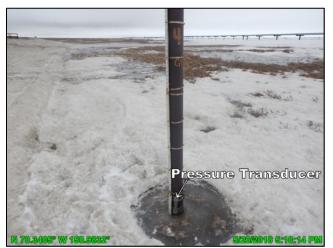


Photo 2.4: PT on direct-read gage G4; May 20, 2018

2.3 DISCHARGE

MEASURED DISCHARGE

Discharge was measured as close to observed peak stage as possible at MON1 and the following drainage structures:

- Nigliq Bridge
- Short Swale Bridge
- Long Swale Bridge
- CD2, CD4, and CD5 road culverts observed conveying flow

Drainage structures not listed above were either dry or did not have discernable flow. Bridge flow depth and velocity were measured at the Nigliq Bridge, and Long Swale and Short Swale bridges using a Price AA current meter suspended by cable with a sounding weight and the USGS midsection technique (USGS 1982) (Photo 2.5). Culvert flow depth and velocity were measured using a flow meter attached to a wading rod and the USGS velocity/area technique (USGS 1968). Discharge at MON1 was measured using a boat mounted Acoustic Doppler Current Profiler (ADCP, Photo 2.6). Measured discharge methods are further detailed in Appendix C.

Photo 2.5: Measuring discharge at the Nigliq Bridge; June 4, 2018

Photo 2.6: Pre-deployment ADCP testing on the Colville River at MON1; June 3, 2018

PEAK DISCHARGE

Peak discharge was calculated indirectly using the normal depth method and, when possible, calibrated with the respective direct discharge measurement and observed WSEs. Under open channel conditions, peak discharge typically occurs at the same time as peak stage; however, in the delta, discharge is often affected by ice and snow, which can temporarily increase stage and reduce velocity. This in turn yields a lower discharge than an equivalent stage under open water conditions.

Peak discharge was calculated at the following locations:

- Colville River (MON1)
- Colville River East Channel (MON9)
- Nigliq Bridge
- Long Swale Bridge

- Short Swale Bridge
- CD2 road culverts associated with gages G3/G4

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

Drainage structures not listed above were either dry or did not have discernable flow. Peak discharge results are estimates based on conditions at the time of data collection. These conditions often include ice and snow effects, which are highly dynamic and challenging to quantify. Ice and snow conditions can affect channel geometry, roughness, energy gradient, and stage, all of which are used to calculate discharge indirectly. In consideration of these conditions, calculations of peak discharge are presented with quality ratings, as described in Table 2.1. Detailed peak discharge methods are presented in Appendix C.

Table 2.1: Peak Discharge Quality Ratings

Quality Rating	Description
Good	Open channel/drainage structure free of ice and snow, no backwater effects from downstream ice jamming, uniform channel/drainage structure through reach
Fair	Some ice floes and/or snow in the channel/drainage structure, some backwater effects, fairly uniform conditions through reach
Poor	Significant quantities of ice and snow in the channel/drainage structure, significant backwater effects from downstream ice jamming, non-uniform conditions through channel/drainage structure reach

2.4 POST-BREAKUP CONDITIONS ASSESSMENT

Alpine facilities roads, pads, and drainage structures were assessed immediately following breakup flooding. A systematic inventory was completed to document the effects of flooding on infrastructure with a focus on erosion. Both sides of the roads were photographed from the ground and the condition of the fill material was described.

2.5 CD5 PIER SCOUR, BANK EROSION, & BATHYMETRY

Monitoring described in this section supports additional requirements specific to the CD5 development per USACE Permit POA-2005-1576 Special Condition #1 which requires the MP-AMS (Michael Baker and ABR 2013).

PIER SCOUR

The objective of measuring pier scour was to determine maximum pier scour depths during flood conditions and to determine post-breakup pier scour depths. Pier scour measurements satisfy the requirement for annual pier scour measurements during spring breakup and other large flood events at the Nigliq Bridge and Nigliagvik Bridge (Michael Baker and ABR 2013). Maximum scour occurring under the influence of peak velocities is often greater than the final scour measured after flood recession due to sediment deposition in the scour hole associated with lower flow velocities. For this reason, real-time soundings are collected during peak flood conditions.

The Nigliq Bridge is supported by two bridge abutments, abutments 1 and 9, and seven bridge piers, piers 2 through 8. Each bridge pier contains five piles labeled A through E, with pile A being the most upstream pile. Piles A and B support the ice breaker, while piles C, D, and E support the bridge. Bridge piers 2 through 5 are located within the main portion of the Nigliq Channel. The Nigliagvik Bridge is supported by two bridge abutments, abutments 1 and 5, and three bridge piers, piers 2 through 4. Each bridge pier contains two piles labeled A and B, with pile A being the upstream pile. Bridge piers 3 and 4 are located within the main portion of the Nigliagvik Channel. Appendix E presents a plan view of each bridge (UMIAQ 2018a).

A real-time pier scour monitoring system was installed on bridge piers that are the most susceptible to scour. These include piers 2 through 5 of the Nigliq Bridge, installed in the spring of 2016, and pier 3 of the Nigliagvik Bridge, installed in the spring of 2015. Scour depths were measured using a single beam sonar installed inside a steel pipe casing welded to the downstream side of pile E on the Nigliq Bridge and pile B on the Nigliagvik Bridge. Sonar measurements were recorded with an on-site datalogger. The sonar system was programmed to measure depths

and record data at 30-minute intervals. A telemetry system, using cellular communication, provided remote access to the sonar measurements. A post-breakup survey of the scour holes at the base of all piles at bridge piers within the main channel of the Nigliq Bridge and Nigliagvik Bridge were also completed and contour plots around the piers are provided in Appendix E.

BANK EROSION

The objective of the bank erosion study is to monitor bank migration upstream and downstream of the Nigliq Bridge and Nigliagvik Bridge. This work supports the requirements for visual inspection and documentation of tundra as well as bank erosion monitoring. A detailed edge-of-bank delineation was surveyed in 2013 to establish preconstruction baseline data. Post-construction bank surveys were performed in 2016, 2017 and again this year (UMIAQ 2016, 2017c, 2018). Maximum and average rates of erosion between 2013 and 2018 were determined for each bank.

BATHYMETRY

A. BATHYMETRY AT BRIDGES

Topographic and bathymetric baseline post-breakup surveys upstream and downstream of the Nigliq Bridge, Nigliagvik Bridge, and Lake L9341 Bridge were performed by UMIAQ in August 2013, prior to construction of the bridges. The pre-construction survey included two transects surveyed upstream and downstream of the Nigliq Bridge (Transects 8-11), the Nigliagvik Bridge (Transects 25-28), and the Lake L9341 Bridge (Transects 36-39). These transects have been surveyed annually since 2013 (Michael Baker and ABR 2013).

B. CHANNEL BATHYMETRY

Topographic and bathymetric baseline post-breakup surveys of the Nigliq Channel and Nigliagvik Channel were performed by UMIAQ in August 2013, prior to construction of the bridges. The pre-construction survey included 15 transects surveyed along the Nigliq Channel upstream and downstream of the Nigliq Bridge (Transects 1-15) and 20 transects surveyed at the Nigliagvik Channel upstream and downstream of the Nigliagvik Bridge (Transects 16-35). These transects were surveyed post-construction in 2016 and again this year and will be surveyed annually through 2019. After 2019, the transects will be surveyed every five years (Michael Baker and ABR 2013).

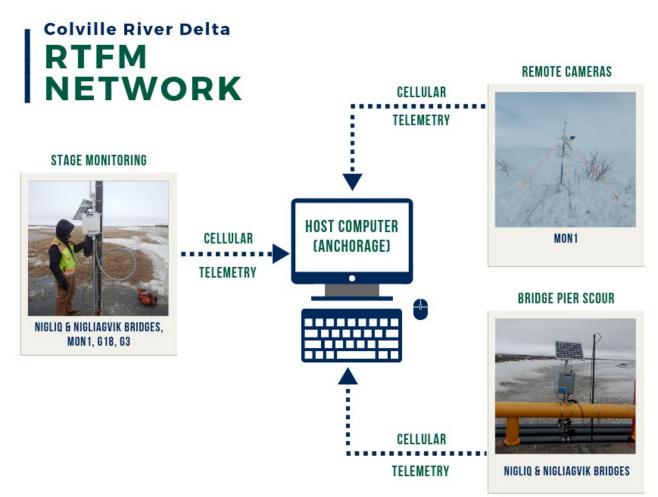
2.6 ICE ROAD CROSSINGS BREAKUP

Aerial observations of the hydraulic effects of winter ice road crossings during breakup were documented at the following ice road crossings:

- Colville River East Channel at HDD
- Kachemach River
- No Name Creek
- Pineapple Gulch

- Silas Slough
- Slemp Slough
- Tamayayak Channel 1 near coast
- Toolbox Creek

2.7 REAL-TIME FLOOD MONITORING NETWORK


The objective of the Real-Time Flood Monitoring (RTFM) Network is to remotely monitor stage and pier scour at select monitoring locations during spring breakup flooding (Table 2.2). The RTFM Network has the following components: remote cameras to monitor stage and river conditions; sensors to monitor stage, barometric pressure and real-time bridge pier scour discussed in Section 2.5 above; dataloggers and telemetry systems to collect and transmit data; and a host computer to receive the transmitted data (Figure 2.1). The ability to remotely monitor stage and scour helps reduce helicopter traffic in the CRD, allows for round-the-clock monitoring of conditions, and provides an interactive tool for the hydrologic data when helicopter travel is restricted. In addition, a network of

real-time monitoring stations at critical locations around Alpine infrastructure helps guide facilities operations preparedness, and helps hydrologists deploy resources during peak conditions when critical measurements are required.

Monitoring Location (Gage Station)	Real-Time Data				
Colville River	• Stage				
(MON1U, MON1C, MON1D)	 River conditions via remote camera images 				
CD2 Road (Gage G3)	• Stage				
CD4 Road	• Stage				
(Gage G18)	 Barometric pressure 				
CD5 Road	• Stage				
(Nigliq & Nigliagvik Bridges)	Pier scour				

Table 2.2: RTFM Network Stations

REMOTE CAMERAS

A remote camera system was installed at the MON1C monitoring location (Photo 2.7). A high resolution digital camera was programmed to take pictures at 15-minute intervals. The camera collected wide-angle photographs of the Colville River to document conditions and monitor ice jam formation and releases in the MON1 reach. Additionally, cameras were programmed to take pictures that were focused on gages to allow hydrologists to remotely collect stage measurements for validating PT data.

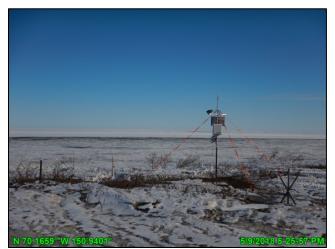


Photo 2.7: Remote camera setup at MON1C; May 9, 2018

SENSORS

PTs were programmed to read and record water levels and barometric pressure at 15-minute intervals. Real-time pier scour was measured using single beam sonars at 30-minute intervals.

DATALOGGERS & TELEMETRY

Onsite dataloggers were programmed to interface with the PTs and sonars. Data was uploaded to the datalogger via a data cable and stored internally. The dataloggers were programmed to interact with telemetry equipment to transmit data. Data was transmitted using an onsite cellular modem and TCP/IP communication where each cellular modem has a unique static IP address. To conserve power, cellular modems were programmed to power-on every 15 minutes for data transmission. Systems were powered with 12v DC batteries and charged with onsite solar panels.

HOST COMPUTER, DATA ACCESS, & NOTIFICATIONS

A host computer monitored the cellular modem IP addresses offsite and received data from the dataloggers once the connection was established. Real-time stage was processed using downloaded stage and barometric pressure data. Real-time stage was periodically compared with field-observed stage data for quality assurance. Real-time stage and pier scour were plotted on graphs and updated in tables as data was received. Alarms were set to notify Alpine operations personnel if stage or pier scour reached the 50- or 200-year predicted values at any of the monitoring locations. If alarms were triggered, notifications would automatically be sent by email and text message to the Michael Baker project manager and Alpine Operations personnel for immediate assessment.

2.8 FLOOD & STAGE FREQUENCY ANALYSES

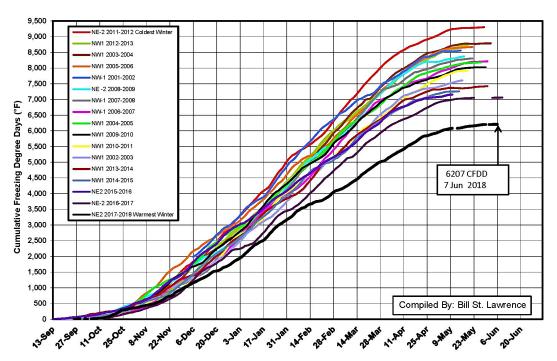
Flood and stage frequency statistical analyses were performed using historic annual peak discharge and stage data to estimate the recurrence interval in a given year. The presence of channel ice and ice jams are common during spring breakup flooding, and the influence of the ice on peak stage and discharge is highly variable. Both ice affected, and non-ice affected peak stage and discharge are grouped together in the analyses to provide results representative of the ranging conditions.

Frequency analyses are completed every three years since a single year of data is unlikely to significantly affect previous findings. When frequency analyses are not performed, peak discharge and stage values are compared to the results of the most current analysis to determine respective returns.

The results of flood and stage frequency analyses provide the design discharge and WSE magnitudes in support of Alpine facility design and operations. The current discharge basis for comparison is the 2002 design-magnitude flood frequency analysis for the Colville River at MON1 (Michael Baker and Hydroconsult 2002). Stage frequency basis of comparison references the 2D surface water model developed during the original design of Alpine Development Project in 2002. The model has been updated throughout the life of the Alpine facilities, most recently in 2012 (Michael Baker 2012b). The most recent flood and stage frequency analyses for the CRD were performed in 2015. Flood frequency findings supported maintaining existing design criteria based on the 2002 analysis; stage frequency findings supported maintaining existing design criteria based on the most current version of the CRD 2D surface water model. Flood and stage frequency analyses were completed again in 2018 and results are presented in this report.

FLOOD FREQUENCY

Flood frequency was analyzed at MON1 using methods outlined in the U.S. Water Resources Council *Guidelines for Determining Flood Flow Frequency,* otherwise known as "Bulletin 17C" (USGS 2018b). A Weibull distribution was applied to determine recurrences of data within the continuous record, and the Hydrologic Engineering Center Statistical Software Package, based on Bulletin 17C was used to statistically fit and extrapolate discharge data for design-magnitude recurrence intervals (USACE 2010).

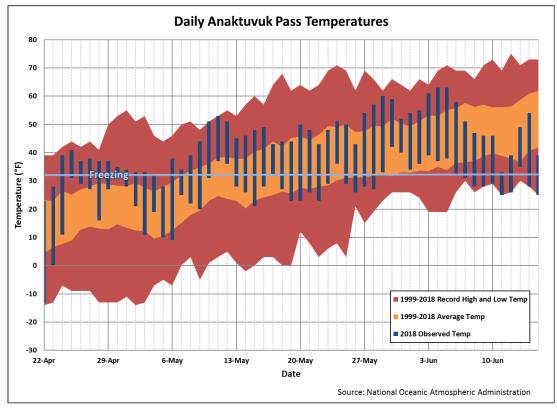

STAGE FREQUENCY

Stage frequency was analyzed at select locations throughout the CRD based on completeness of the historical record and the proximity to Alpine facilities. Using Federal Emergency Management Agency (FEMA) and USACE guidelines (FEMA 2003; USACE 1991, 2002), a Weibull distribution was applied to determine recurrences of data within the continuous record and a Log-Pearson Type III station skew distribution was used to statistically fit and extrapolate stage data for design-magnitude recurrence intervals.

3. OBSERVATIONS

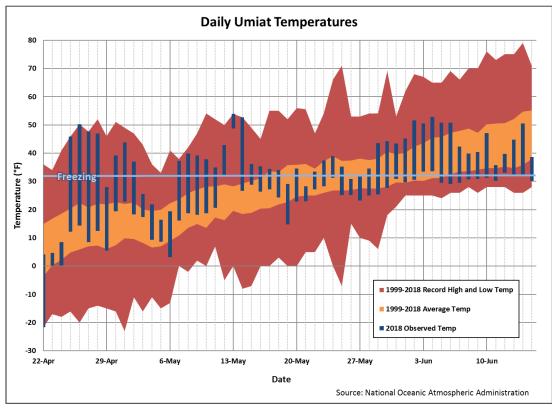
3.1 GENERAL CLIMATIC SUMMARY

According to cumulative freezing degree-days (CFDD) measured at the National Petroleum Reserve Alaska (NPR-A) tundra monitoring station, the 2017-2018 (September – May) winter was the warmest on record for the past 17 years (Graph 3.1, ICE 2018).

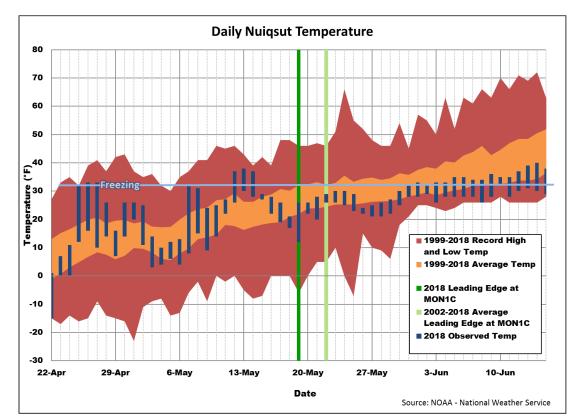

Graph 3.1: NPR-A N. Tundra Monitoring Station, CFDD, Winters 2002-2018 (ICE 2018)

As of April 30, 2018, snowpack in the Brooks Range south of the Colville River basin was reported as approximately 150% of the 1981-2010 median (National Resource Conservation Service [NRCS] 2018). There is no NRCS North Slope snowpack data available for 2018, though general observations indicate snowpack was at or above normal levels.

Despite the relatively warm winter and early short-term warm periods in late April and early May, spring in the Colville River watershed was characterized as a delayed and gradual warming trend beginning in late May. This was accompanied by consistent cloud cover over the lower Colville River watershed. A warming period with daily high temperatures above freezing in the upper Colville River watershed (the Brooks Range foothills, as recorded at Umiat) occurred April 25 through April 30 (USGS 2018). Temperatures then cooled to below freezing until May 7. Daily high temperatures at Umiat did not begin consistently recording above freezing until May 27. Daily low temperatures at Umiat began consistently recording above freezing on June 17. Aside from periods in late April and mid-May, daily high air temperatures in the lower Colville River watershed (as recorded at Alpine) did not record above freezing until June 1, after which they were consistently above freezing (National Oceanic and Atmospheric Administration [NOAA] 2018). Daily low temperatures at Alpine began consistently recording above freezing istently recording above freezing until June 1, after which they were consistently above freezing (National Oceanic and Atmospheric Administration [NOAA] 2018). Daily low temperatures at Alpine began consistently recording above freezing on June 26. At Anaktuvuk Pass, a general warming trend with daily high temperatures consistently exceeding freezing started around May 6 (NOAA 2018). Temperatures routinely reached 45 degrees or more during this warming trend.


Graph 3.2 and Graph 3.3 illustrate daily high and low ambient air temperatures recorded in Anaktuvuk Pass and Umiat, respectively, superimposed on the average and record daily highs and lows during the breakup monitoring period (NOAA 2018).

Temperatures for the Alpine area are available from the Nuiqsut weather station, located approximately 9 air miles south (upstream) of Alpine facilities. Daily low ambient air temperatures in the CRD remained at or below freezing throughout breakup. Graph 3.4 illustrates daily high and low ambient air temperatures recorded in Nuiqsut superimposed on the average and record daily highs and lows during the breakup monitoring period (NOAA 2018). The arrival of the leading edge at MON1 was three days before the average arrival.



Graph 3.2: Anaktuvuk Pass Daily High and Low Ambient Air Temperatures

Graph 3.3: Umiat Daily High and Low Ambient Air Temperatures

Graph 3.4: Nuiqsut Daily High and Low Ambient Air Temperatures and MON1 Leading Edge

3.2 GENERAL BREAKUP SUMMARY

Crew members began regular reconnaissance flights towards the headwaters of the Colville River drainage on May 15. On May 15, spring runoff was observed flowing down the Anaktuvuk River and into the Colville River. The leading edge of flowing water was observed roughly 10 RM north (downstream) of the confluence of the two rivers (Photo 3.1). Early runoff contributions from the Anaktuvuk River were likely the result of the warm period from May 10 through May 12 when daily low temperatures, measured at Anaktuvuk Pass, were at or exceeded freezing. Daily low temperatures at Umiat during this time were consistently well below freezing, delaying upstream contributions from the Colville River. On May 18, the leading edge of floodwater was observed approximately 5 RM upstream of MON1 (Photo 3.2). The leading edge likely passed MON1 in the morning on May 19. By May 21, floodwater had reached the coast and began to flow over coastal shorefast ice. Cool air temperatures with heavy cloud cover persisted for the next few weeks.

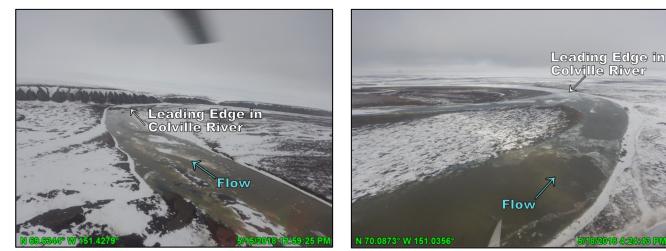


Photo 3.1: Leading edge of water in Colville River, approximately 60 RM upstream of MON1, looking southwest; May 15, 2018

Photo 3.2: Colville River leading edge of water approximately 5 RM upstream of MON1, looking south; May 18, 2018

On May 22, a notable increase in water levels was observed in the Colville River at MON1 and in the East Channel at MON9. Water levels had also increased in the Nigliq Channel but were less pronounced than in the East Channel. Channel ice remained intact throughout the CRD (Photo 3.3 and Photo 3.4). On May 23, an ice jam approximately 2.5 to 3 miles long was observed approximately 14 RM upstream of MON1 (Photo 3.5). Over the next few days, the ice jam decreased in size but remained in place until June 1, when it moved downstream and reformed in the horseshoe bends between Ocean Point and MON1 (Photo 3.6). Some backwater developed behind the jam, filling low flow channels and low-lying areas, but in general, water levels remained near bankfull stage (Photo 3.7). Near Alpine facilities, flow into Nanuq Lake had connected to Lake M9524 and was passing under the Long Swale Bridge (Photo 3.8).

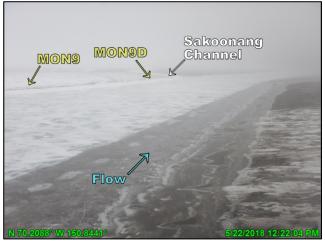


Photo 3.3: Intact channel ice in the East Channel of the Colville River, looking north (downstream); May 22, 2018

Photo 3.4: Channel Ice on the Nigliq Channel, looking north; May 22, 2018

Photo 3.5: Ice jam on the Colville River approximately 14 RM upstream of MON1, looking east (downstream); May 23, 2018

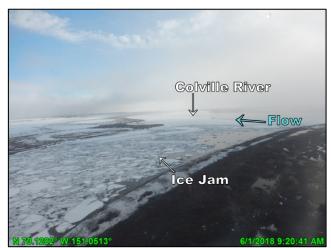


Photo 3.6: Ice jam near the horseshoe bends on the Colville River, looking northeast; June 1, 2018

Photo 3.7: Open water conditions upstream of the horseshoe bends on the Colville River, looking southwest (upstream); June 1, 2018

Photo 3.8: Flow under the Long Swale Bridge, looking northeast; June 1, 2018

By June 2, breakup of the Colville River channel ice had progressed through the MON1 reach and an ice jam reformed in the East Channel downstream of MON9D near the Tamayayak River bifurcation (Photo 3.9). A small ice jam was also observed in the Nigliq Channel near MON20 where it formed upstream of intact channel ice (Photo 3.10). Water levels at gages in the Colville River (MON1) and East Channel (MON9) crested in the morning and were decreasing throughout the day. Nigliq Channel water levels at the CD5 bridge also crested in the morning and remained high throughout the day. Flow throughout the CRD remained generally confined within channel banks. Near Alpine facilities, flow through the Large Swale Bridge continued. No flow was observed through the Small Swale Bridge; snow was packed underneath the bridge.

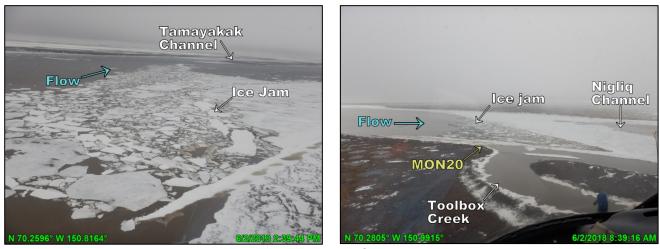


Photo 3.9: Ice jam on the East Channel downstream of MON9, near the Tamayayak tributary, looking north; June 2, 2018

Photo 3.10: Ice jam on the Nigliq Channel near MON20, looking south; June 2, 2018

On June 3, the East Channel ice jam reformed further downstream near the Kachemach River confluence. Stage continued to drop in the Colville River, East Channel, Nigliq Channel, and around Alpine facilities. The Long Swale Bridge continued to convey flow and a small flow path had cut through the snow underneath the Short Swale Bridge. Grounded ice was observed on June 4, indicating stage had receded from peak conditions (Photo 3.11). As

ConocoPhillips Alaska INTERNATIONAL

of June 6, stage in the Nigliq Channel and East Channel was continuing to drop. Remaining channel ice broke up into floes which progressed with minimal jamming to the outer extents of the CRD (Photo 3.12).

Peak stage was observed at the head of the delta on June 2 and peaked around Alpine facilities on June 2 and June 3. Considerable amounts of snowpack remained in the delta during flooding, impeding flow through low flow channels, swales, and interlake connections. As a result, many hydraulic connections typically observed during spring breakup were either delayed or did not develop. Floodwater did not reach either Lake L9312 or Lake L9313 during spring breakup. Overall, ice jamming effects in the CRD were minimal, as was associated backwater; overbank flooding was generally limited.

Photo 3.11: Grounded ice at MON9D following stage recession, looking south; June 4, 2018

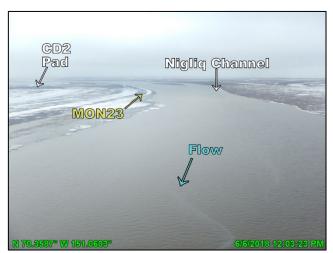
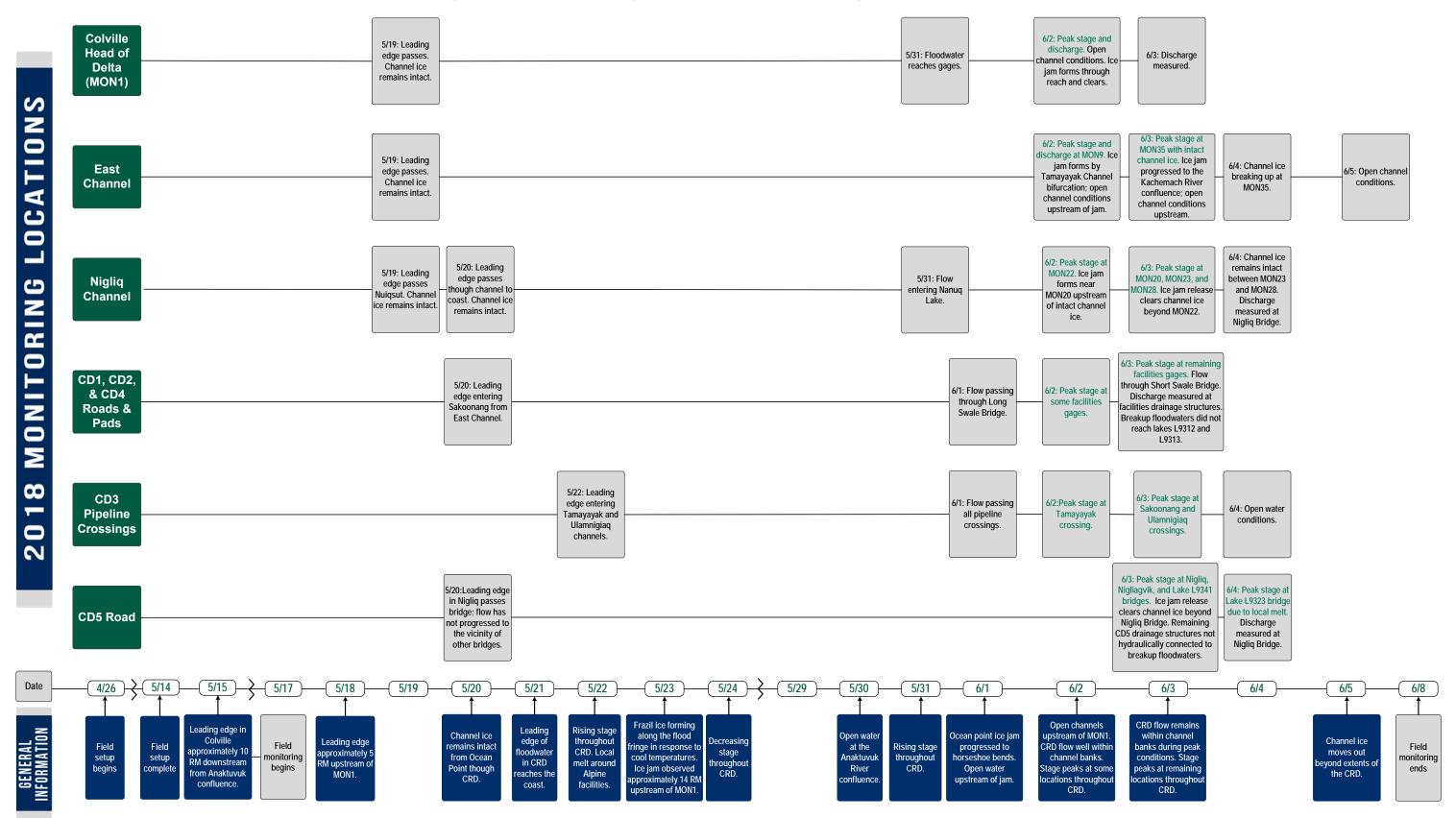



Photo 3.12: Open channel conditions in the Nigliq Channel downstream of MON23, looking south (upstream); June 6, 2018

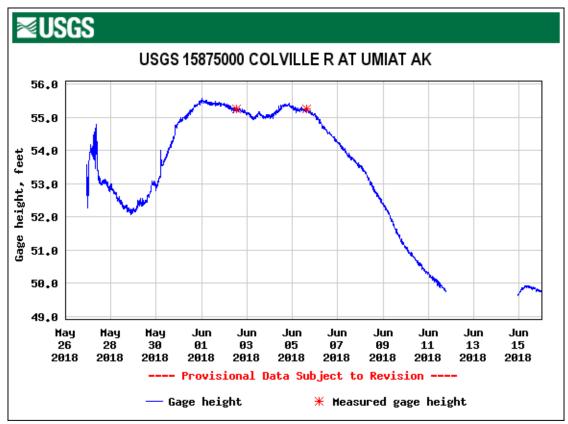
Figure 3.1: Spring Breakup Hydrologic Timeline

4. STAGE & DISCHARGE

Table 4.1 contains a summary of peak stage, measured discharge (in cubic feet per second [cfs]), and peak discharge at each gage station.

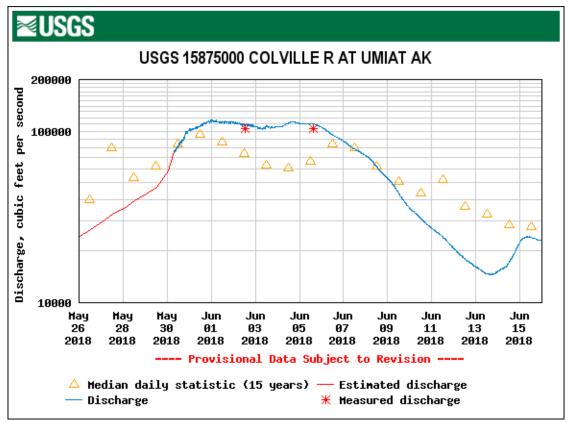
			Peak Stage		Measured Discharge			Peak Discharge			
Monitoring Location	Monitoring Location	Gage	Stage		Discharge Stage ¹		Date &	Discharge	Stage		
	Description	Station	ft BPMSL	Date & Time	cfs	ft BPMSL	Time	cfs	ft BPMSL	Date & Tim	
	Upstream of		BPMSL			BPMSL					
Colville	Anaktuvuk &										
River	Chandler River	Umiat ³	55.5	6/1, 12:45am	103,000	55.24	6/2, 1:10pm	117,000	55.5	6/1, 12:45ar	
	Confluences										
				CRD Monito	ring Locatio	ns					
o 1 11		MON1U	15.53	6/2, 4:30am		12.35			15.79		
Colville	Head of the CRD	MON1C	15.90	6/2, 4:15am	168,000	12.176	6/3, 3:00PM	331,000	15.19	6/1, 9:00pm	
River		MON1D	16.03	6/2, 4:00am					14.84		
Colville		MON9	12.97	6/2, 12:00pm	Not measured			236,000	12.59	6/2, 9:45am	
River	East Channel	MON9D	12.91	6/2, 12:00pm				230,000	12.15		
East	Distributary	MON35	4.21	6/3, 10:30am							
Channel											
	Nielie Chevrol	MON20	8.57	6/3, 2:45am	-						
Nigliq Channel	Nigliq Channel Distributary	MON22 MON23	7.89	6/2, 3:30am	-						
Channel	Distributary	MON23 MON28	6.73 3.31	6/3, 4:00am 6/3, 7:45am	-						
		MON28		Ipine Facilities M	Aonitoring La	cations					
CD1 Pad &	Lake L9312	G9	8.10	6/9, 3:45pm							
Drinking	Lake L9312	G10	6.29	7/9, 6:30pm							
Water Lakes	CD1 Pad	G10 G1	5.50	6/3, 10:30am							
		G3	7.30	6/2, 5:30am		6.65	C/D 4 15	40	6.63	<i>c</i> /2 +	
	Short Swale Bridge	G4	7.30	6/2, 5:00am	5.4	6.56	6/3, 4:15pm	12	6.55	6/3, 4:15pm	
		G3	7.30	6/2, 5:30am	2 1 4 0	7.05	6/3,	2.240	6.96	C/2 10-20-	
	Long Swale Bridge	G4	7.30	6/2, 5:00am	3,140	6.89	10:20am	3,240	6.82	6/3, 10:20ar	
CD2 Pad &		G3	7.30	6/2, 5:30am	9	6.53	6/3, 5:00pm		Not calculat	od	
Road		G4	7.30	6/2, 5:00am	9	6.47	0/3, 5.00pm			eu	
Noau	Culverts	G6	Dry			lo flow obser	ved		Not calculat	ed	
	Cuiveits	G7	Dry		NO NOW ODSERVED						
		G12 ⁴	7.37	6/1, 5:30pm	No flow observed			Not calculated			
		G134	7.47	6/1, 5:30pm							
	CD2 Pad	G84	9.10	6/2, 9:00am							
CD3 Pad & Pipeline		SAK	5.78	6/8, 11:15am							
	Pipeline Crossings		7.84	6/2, 1:00pm							
	CD3 Pad	ULAM G11	6.88 Dry	6/2, 2:00pm							
	CD3 Pau	G15 ⁴	7.77	 6/19, 1:45am							
	Culverts	G15 ⁴	6.84	6/2, 12:15am	No flow observed			Not calculated			
		G17	Dry								
CD4 Pad & Road		G184	10.82	6/14, 10:00am	No flow observed			Not calculated			
		G40	Dry								
		G41	Dry		No flow observed			Not calculated			
		G42	Dry		No flow obcomed			Not colouisted			
		G43	Dry		No flow observed			Not calculated			
	CD4 Pad	G19	Dry								
		G20 ²	9.07	6/2, 9:30am							
	Culverts	G30 ^{2,4}	5.97	6/5, 9:45am	N	lo flow obser	ved		Not calculat	ed	
		G31 ²	Dry				-				
		G34 ⁴	9.15	6/5, 9:30am	4	9.15	6/5,		Not calculat	ed	
		G35	Dry	 6/E 0.1E			9:30am				
		G36 ⁴	10.89	6/5, 9:15am	No flow observed			Not calculated			
		G37 S1 ²	Dry 21.19	 6/14, 10:00am							
		S1 ²	20.70	6/14, 10:00am 6/14, 11:00am	No flow observed			Not calculated			
		G24 ⁴	9.67	6/14, 10:00am				+			
CD5 Road	Lake L9323 Bridge	G25	10.44	6/4, 10:15pm		lo flow obser	ved		Not calculat	ed	
		G28	8.54	6/3, 12:45am					8.24		
		G26	8.43	6/3, 12:45am	1 34 666	6.01		42.222	8.26		
	Nigliq Bridge	G27	8.43	6/3, 12:45am	31,800	5.97	6/4, 2:00pm	42,200	8.25	6/3, 6:00an	
		G29	8.01	6/2, 3:15am]		7.87	1	
	Jako 1.0241 Bridge	G32	8.77	6/2, 8:15pm	No flow charmed						
	Lake L9341 Bridge	G33	10.06	6/3, 7:45am	No flow observed Not measured			Not calculated			
	Nigliagvik Bridge	G38	7.43	6/3, 4:00am				10,400	3.10	5/20, 5:30ar	
	Nighagvik bridge	G39	7.36	6/3, 4:00am				10,700	2.08	J 20, J.J0al	
^{2.} Peak stage da	discharge measurement ate estimated I from USGS Umiat gage s	tation 15875	5000 and re	ferenced to NAVD8	38 vertical dat	Jm					

 Table 4.1: Peak Stage, Measured Discharge, and Peak Discharge Summary


4.1 COLVILLE RIVER

UMIAT

USGS Umiat gage station 15875000 is located approximately 90 RM upstream of the CRD and is monitored throughout breakup to help predict the timing of floodwater and flood crests in the CRD. Umiat is upstream of the Chandler and Anaktuvuk River confluences and Umiat gage data does not account for the contribution from these two major tributaries. Because of local ice effects, distance, and streamflow additions between Umiat and the CRD, the magnitude of flooding at Umiat and in the CRD do not necessarily correlate.


The Umiat gage was offline this year until May 27 and experienced equipment malfunctions between June 11 and June 14. It is unknown when the leading edge of floodwater reached Umiat. USGS stage (Graph 4.1) and discharge (Graph 4.2) data is provisional and subject to revision.

Colville River at Umiat stage peaked on June 1 at 55.5 ft NAVD88, 3.5 feet below National Weather Service established flood stage of 59.0 ft NAVD88. A slightly lower crest of 55.4 ft NAVD88 was recorded on June 4. Peak discharge of 117,000 cfs occurred on June 1. Discharge was measured on June 4 as 113,000 cfs (USGS 2018a).

Graph 4.1: Colville River at Umiat Stage (USGS 2018a)

Graph 4.2: Colville River at Umiat Discharge (USGS 2018a)

HEAD OF THE DELTA

Stage and discharge have been monitored at MON1 annually since 1992 and periodically since 1962. It is considered the primary spring breakup monitoring location for the Colville River Delta because of its location at the head of the CRD where all flow is confined to a single channel and long historical record.

Channel ice remained intact through the MON1 reach until peak discharge and peak stage occurred on June 1 and June 2, respectively (Photo 4.1 and Photo 4.2). Peak conditions at MON1 occurred as the small ice jam and associated backwater released from the upstream horseshoe bends and progressed through the MON1 reach (Photo 4.3). During peak conditions, floodwater was contained within the banks. The estimated peak discharge was assigned a fair quality rating (Table 2.1) because of the ice influences.

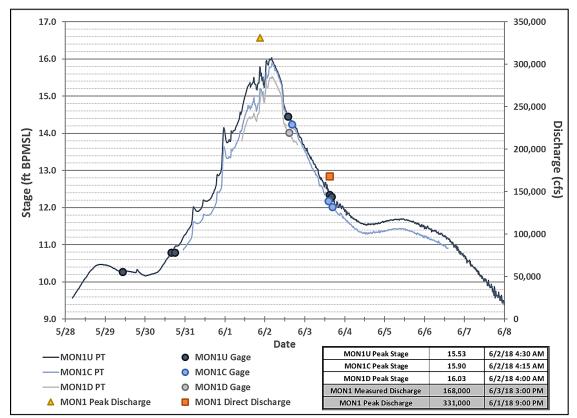
Discharge was measured in the Colville River on June 3 with minimal ice and snow interference (Photo 4.4 and Photo 4.5). Stage and discharge results at MON1 are presented in Graph 4.3. Site specific discharge data and plan and profile drawings are provided in Appendix C.

Photo 4.1: Intact channel ice downstream of the MON1 reach the day prior to peak stage, looking northeast (downstream); June 1, 2018

Photo 4.2: Intact channel ice through the MON1 reach the day prior to peak stage at MON1C, looking southwest (upstream); June 1, 2018

Photo 4.3: Ice jam release through the MON1 reach, the day of peak stage, looking east; June 2, 2018

Photo 4.4: Open channel conditions downstream of MON1 on the day of the discharge measurement, looking north (downstream); June 3, 2018



SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

Photo 4.5: Performing discharge measurements at MON1; June 3, 2018

Graph 4.3: Colville River at the Head of the Delta Stage & Discharge

4.2 COLVILLE RIVER EAST CHANNEL

MON9 has been monitored annually since 2005 and the data contributes to estimating the distribution of discharge between the East Channel and Nigliq Channel and assessing water levels at the HDD pipeline crossing. MON35 has been monitored since 1999 and provides WSEs at the outer extents of the CRD.

Channel ice remained intact in the East Channel through June 1 (Photo 4.6, and Photo 4.6). Peak discharge and peak stage at MON9 and MON9D were the result of an upstream ice jam and associated backwater releasing on June 2 and progressing through the MON9 reach (Photo 4.8). During peak discharge, large ice floes were observed

flowing through the reach via remote field camera images (Photo 4.9). The estimated discharge was assigned a fair quality rating (Table 2.1) due to these influences. Site specific discharge data and plan and profile drawings are provided in Appendix C.

All stage observations at MON35 were manually recorded by Jim Helmericks, on average, three times per day. Peak stage at MON35 occurred on June 3 at which time channel ice was still intact. The majority of the channel ice was flushed from the East channel on June 4 and had cleared the MON35 reach on June 5.

Stage and discharge at MON9 and MON9D and stage at MON35 are presented in Graph 4.4.

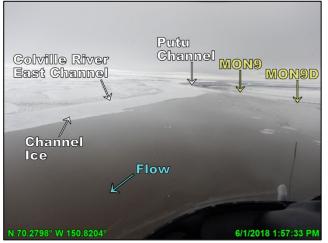


Photo 4.6: Intact channel ice in the East channel, looking south (upstream); June 1, 2018

Photo 4.7: Conditions the day prior to peak stage and discharge at MON9, looking southwest (upstream); June 1, 2018

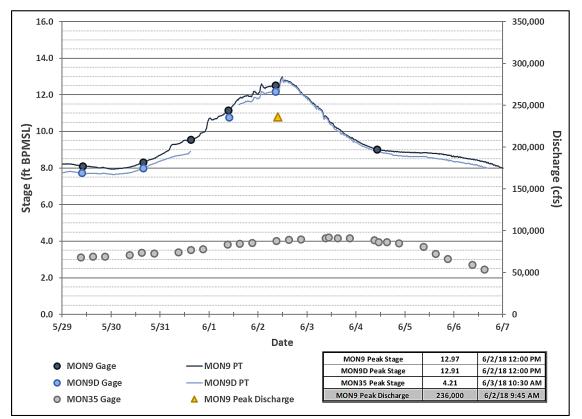


Photo 4.8: Conditions the day of peak stage and discharge at MON9D, looking northwest (downstream); June 2, 2018

Photo 4.9: Ice jam releasing through the MON9 reach, looking east (upstream); June 2, 2018

Graph 4.4: Colville River East Channel Stage & Discharge

4.3 NIGLIQ CHANNEL

MON20, MON22, and MON23 have been monitored intermittently since 1998 and MON28 has been monitored since 1999. Four additional gage stations, G29, G28, G27, and G26, provide site specific data upstream and downstream of the Nigliq Bridge and are discussed in Section 4.4, Nigliq Bridge. Discharge in the Nigliq Channel is measured and calculated at the bridge.

On May 19, leading edge in the Nigliq Channel was observed passing by Nuiqsut and hinge cracks were observed along intact channel ice indicating a rise in stage. By May 20, visible floodwater was observed at most monitoring locations in the Nigliq Channel. Stage remained low in the Nigliq Channel before slowly increasing around May 30 (Photo 4.10).

Intact channel ice was observed in the Nigliq channel on June 1 (Photo 4.11). Stage initially crested at MON20 and MON23 and peaked at MON22 on June 2 (Photo 4.12). A small ice jam with minimal backwater was observed upstream of MON20, behind channel ice that remained intact through the Nigliq Channel (Photo 4.13). The ice jam released on the morning of June 3, flushing the downstream channel ice through the CD5 bridge. The ice jam release and accompanying backwater produced peak stage at MON20, MON23, and MON28. Open channel conditions were observed throughout the MON20 to MON22 reach by June 4 (Photo 4.14). Channel ice was still observed between MON23 and MON28 on June 4 (Photo 4.15).

Stage at MON20, MON22, MON23, and MON28 is presented in Graph 4.5.

Photo 4.10: MON22 three days before peak stage looking southwest (upstream); May 30, 2018

Photo 4.11: Channel ice in the Nigliq Channel between MON23 and MON28, looking north (downstream); June 1, 2018

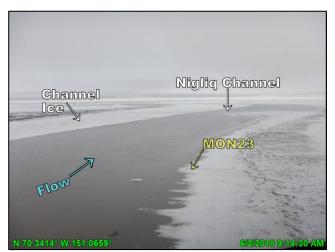


Photo 4.12: Channel ice and conditions prior to peak state at MON23, looking north; June 2, 2018

Photo 4.13: Ice jam and conditions the day prior to peak stage at MON20, looking southwest (upstream); June 2, 2018

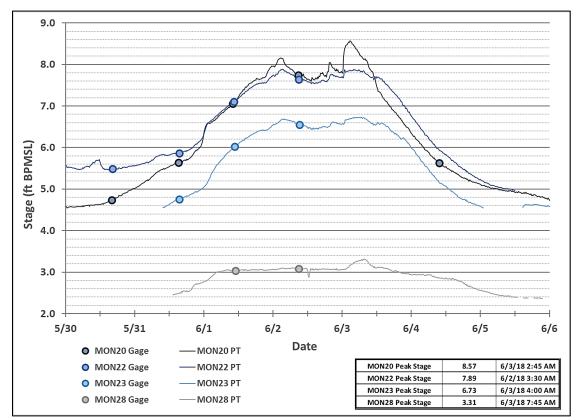


Photo 4.14: Open water conditions the day after to peak stage at MON20, looking southwest (upstream); June 4, 2018

Photo 4.15: Channel ice and conditions the day after peak stage between MON23 and MON28, looking north (downstream); June 4, 2018

Graph 4.5: Nigliq Channel Stage

4.4 ALPINE FACILITIES

Conditions in active channels surrounding Alpine facilities, including the Sakoonang, Tamayayak, and Ulamnigiaq channels to the east and the Nigliq Channel to the west, dictate the progression of the floodwater around facilities. Floodwaters in the Nigliq and Sakoonang channels typically overtop the banks and facilitate the annual recharge of many lakes and paleochannels through overbank inundation. The extent of inundation is dependent on WSEs and local ice jam activity.

Drainage structures are kept free of ice, snow accumulation, and blockages through regular maintenance by CPAI. Plywood covers are installed at the culvert inlets and outlets during the winter and removing prior to breakup. Snow is also mechanically removed from the immediate upstream and downstream areas of all culverts and CD2 swale bridges prior to breakup flooding.

Culverts were monitored to assess flow conditions and culvert performance. All culvert covers were removed prior to the arrival of floodwater. Snow and ice were cleared at all culvert inlets and no flow restrictions were observed. Culvert locations and proximity to gages are shown in Appendix A. Detailed culvert discharge measurements, calculations, and performance summary field notes are provided in Appendix C. Snow was cleared from the entrance and exit of CD2 swale bridges prior to the arrival of floodwater, though drifted snow remined immediately beneath the swale bridges.

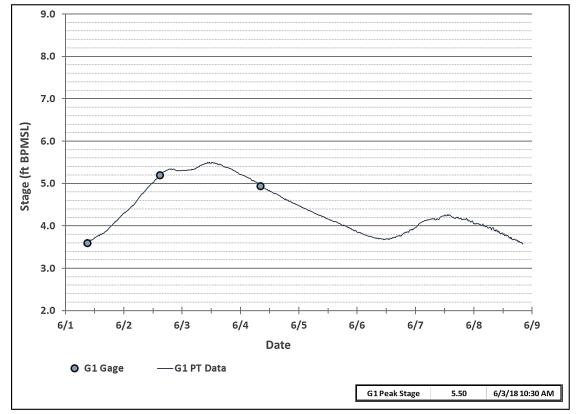
CD1 PAD & LAKES L9312 & L9313

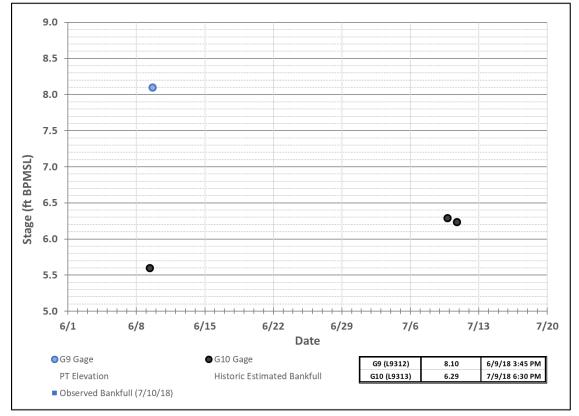
Recharge at drinking water source Lake L9312 (gage G9) and Lake L9313 (gage G10) has been monitored annually since 1998. Historical observations indicate the Sakoonang Channel floodwater is the primary recharge mechanism for both lakes (Michael Baker 2013a). Gage station G1 is situated along the east end of the CD1 pad. Stage data and observations of breakup processes have been collected at gage G1 since 2000. Stage at gage G1 is presented in Graph 4.6.

Spring breakup overbank flow did not reach Lake L9312 or Lake L9313 this year (Photo 4.16). Water levels remained below the gage G9 PT and gage G10 PT throughout the duration of breakup. Snowmelt recharge from within the L9312 lake basin reached bankfull elevation, observed on June 9. Snowmelt recharge from within the L9313 lake basin reached bankfull elevation, based on a hydraulic connection to Lake M9525 observed on July 10 and July 18 (Photo 4.17 through Photo 4.19. Stage at gage G9 (L9313) and gage G10 (L9313) is presented in Graph 4.7.

Photo 4.16: Lake L9312 and Lake L9313 hydraulically isolated the day after peak stage, looking south; June 4, 2018

Photo 4.17: Hydraulic connection between Lake M9525 and Lake L9313 looking northwest; July 10, 2018


Photo 4.18: Outflow from Lake L9313 looking northeast; July 10, 2018


Photo 4.19: Outflow from Lake L9313 looking north; July 18, 2018

2018 COLVILLE RIVER DELTA

Graph 4.6: CD1 Pad (Gage G1) Stage

Graph 4.7: Lakes L9312 (Gage G9) and L9313 (Gage G10) Stage

CD2 ROAD & PAD

Stage data and observations of breakup processes have been collected along the CD2 road and pad intermittently since 1998.

Floodwater along the CD2 road was only present around gages G3/G4. Monitoring locations G6/G7, G12/G13, and G8 were either dry or only had local melt. The Long Swale Bridge, the Short Swale Bridge, and three adjacent culverts conveyed flow from the Nigliq Channel into Lake M9524 via Nanuq Lake. Peak stage occurred at G3 and G4 on June 2 (Photo 4.20 and Photo 4.21). Discharge was measured at the Long Swale Bridge and Short Swale Bridge on June 3 approximately 28 hours after peak stage (Photo 4.22). Peak discharge through the G3/G4 culverts was estimated to have occurred approximately 17 hours after peak stage.

The measured average velocity at the Long Swale Bridge was 1.5 feet per second (fps) and the highest depthaveraged velocity within a single section was 3.0 fps. At the time of the measurement, the bridge opening had an ice pan hung up in the middle of the bridge and grounded ice upstream of the bridge producing small eddies effecting velocities at the bridge. Drifted snow was upstream of the bridge abutments, under the bridge, and downstream of the bridge. The quality of the measurement was rated poor because of these factors. Peak discharge was calculated using the measured velocity and adjusting the hydraulic depth for peak conditions. Peak discharge was estimated to have occurred during peak stage.

The measured average velocity through the Short Swale Bridge 0.22 fps and the highest velocity was 0.84 fps. At the time of the measurement, a flow path had developed through the snow drift under the bridge. This created a vortex on the upstream side of the bridge. The snow around the abutment contracted the flow under the bridge and back eddies occurred on the downstream side of the bridge as exiting flow expanded.

Stage and total discharge at CD2 bridges and culverts are provided in Graph 4.8. Measured discharge and peak discharge at culverts conveying flow is summarized in Table 4.2 and Table 4.3, respectively. Historical measured and peak discharge at the Long and Short Swale Bridges are summarized in Section 8.0, Historical Breakup Timing & Magnitude. A summary of the Long Swale Bridge discharge measurement is presented in Appendix C.

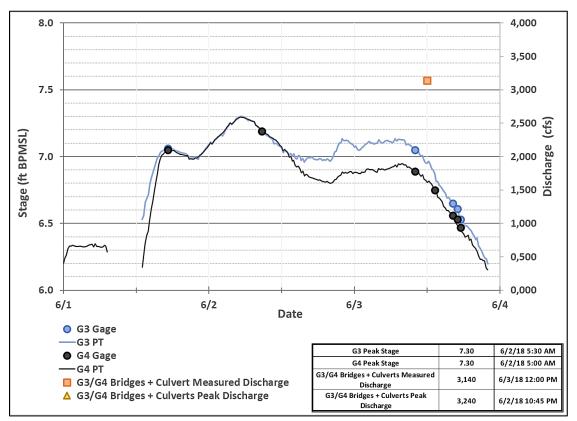

Photo 4.20: CD2 road drainage structures the day of peak stage, looking north (downstream); June 2, 2018

Photo 4.21: CD2 road Short Swale Bridge the day of peak stage, looking northeast (downstream); June 2, 2018

Photo 4.22: Long Swale Bridge the day of the discharge measurement, looking east; June 3, 2018

Graph 4.8: CD2 Road Bridges and Culverts (Gages G3 & G4) Stage & Discharge

Table 4.2: CD2 Road Culverts (Gages G3 & G4) Measured Discharge

Culvert	Measurement Date & Time	Total Depth of Flow (ft)	Measured Depth of Flow ¹ (ft)	Flow Depth ²	Measured Velocity (ft/s)	Calculated Discharge ³ (cfs)	Total Discharge (cfs)
CD2-20	6/3/18 5:27 PM	0.80	0.32	Less than Half Full	-0.37	-0.7	
CD2-21	6/3/18 5:20 PM	1.30	0.52	Less than Half Full	0.89	3.2	9
CD2-22	6/3/18 5:37 PM	1.20	0.48	Less than Half Full	2.04	6.5	
Note:							

^{1.} Measurement taken at 0.6 of total depth of flow

^{2.} Culverts are 48-in diameter

^{3.} Negative values indicate flow moving north to south through culvert.

Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge

Culvert	Calculated Date & Time	WSE Differential (ft) ¹	Total Depth of Flow (ft)	Flow Depth ²	Calculated Velocity (ft/s)	Calculated Discharge (cfs)	Total Discharge (cfs)	
CD2-20	6/2/18 10:00 PM		0.92	Less than Half Full	2.48	5		
CD2-21	6/2/18 10:00 PM	0.25	1.68	Less than Half Full	2.55	13	32	
CD2-22	6/2/18 10:00 PM		1.75	Less than Half Full	2.63	14		
Note: ^{1.} Calculated discharge was based off peak stage differential.								

^{2.} Culverts are 48" in diameter

CD3 PAD & PIPELINE

Stage data and observations of breakup processes have been collected at the CD3 pad and along the pipeline intermittently since 2000.

Gage G11 remained dry throughout breakup. Peak stage in the Sakoonang Channel, Tamayayak Channel, and Ulamnigiaq Channel occurred before channel ice broke up and moved downstream (Photo 4.23, Photo 4.24, and Photo 4.25). Open channel conditions were observed by June 4.

Stage at the SAK, TAM, and ULAM gages is presented in Graph 4.9.

Photo 4.23: Sakoonang Channel the day prior to peak stage at SAK, looking south; June 2, 2018

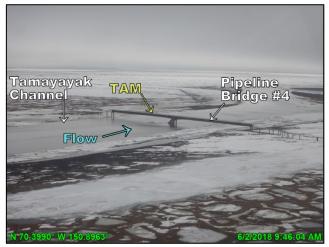


Photo 4.24: Tamayayak Channel the day of peak stage at TAM, looking southwest; June 2, 2018

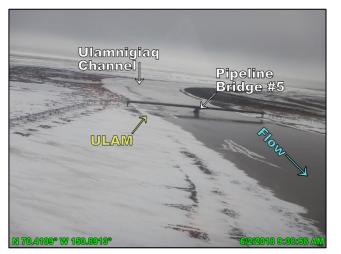
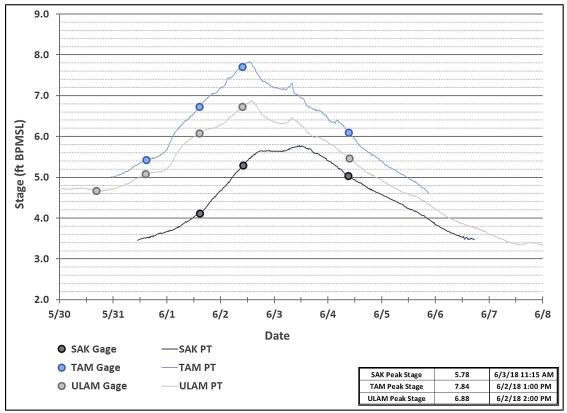



Photo 4.25: Ulamnigiaq Channel the day of peak stage at ULAM, looking southeast; June 2, 2018

2018 COLVILLE RIVER DELTA

Graph 4.9: CD3 Pipelines Stage

CD4 ROAD & PAD

Stage data and observations of breakup processes have been collected at the CD4 road and pad intermittently since 2005.

Gages G40/G41 and G42/G43 remained dry throughout monitoring. Local melt was observed at gages G15/G16 (Photo 4.26 and Photo 4.27). No discernable flow was observed at G15/G16 and discharge was not measured or calculated.

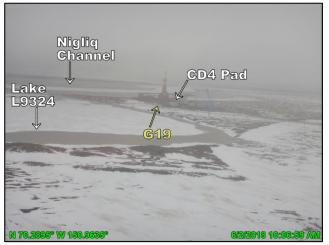
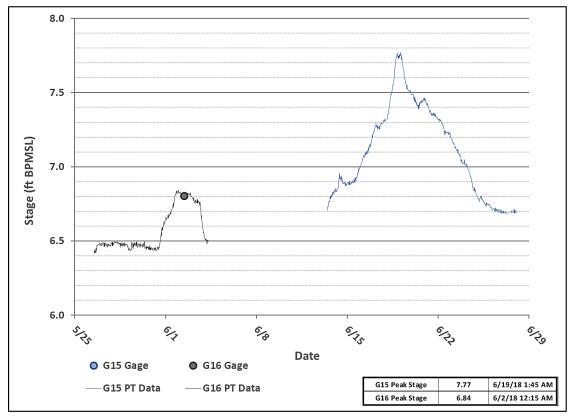
Gage G17 remained dry throughout monitoring (Photo 4.28), and local melt was observed at gage G18. Peak discharge was not calculated due to gage G17/G18 remaining dry or only measuring local melt. At the CD4 pad, gage G19 remained dry (Photo 4.29). Stage at G20 was affected by ice conditions in the Nigliq Channel and is estimated to have peaked at the same time as stage peaked at MON20 on June 3.

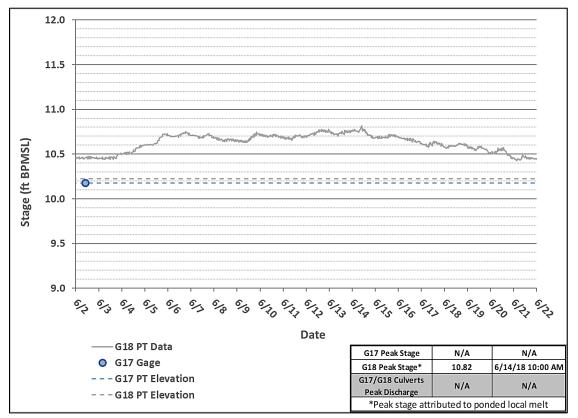
Stage at gages G15/G16, G17/G18, and G19/G20 is provided in Graph 4.10, Graph 4.11, and Graph 4.12. The graphs show stage above the PT only; gaps in data indicate stage dropped below the PT. Culvert discharge data is summarized in Appendix C.

Photo 4.26: North end of CD4 road the day of peak stage at G16, looking north; June 2, 2018

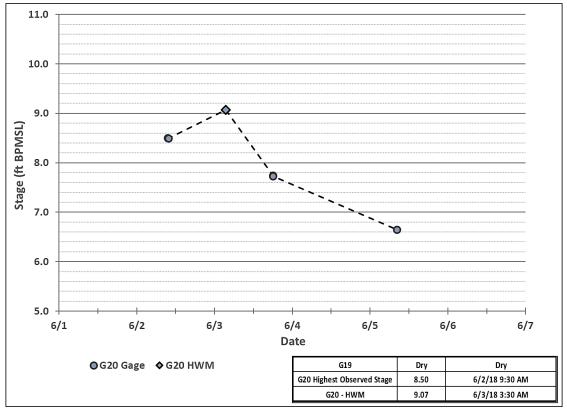
Photo 4.28: CD4 road at gage G17 showing dry conditions, looking northwest; June 2, 2018

Photo 4.27: CD4 road culvert at gage G16 the day after peak stage, looking south; June 3, 2018


Photo 4.29: CD4 pad at gage G19 showing dry conditions, looking northwest; June 2, 2018

2018 COLVILLE RIVER DELTA


Graph 4.10: CD4 Road Culverts (Gages G15 & G16) Stage

Graph 4.11: CD4 Road Culverts (Gages G17 & G18) Stage & Discharge

ConocoPhillips Alaska INTERNATIONAL

2018 COLVILLE RIVER DELTA

Graph 4.12: CD4 Pad (Gages G19 & G20) Stage

CD5 ROAD

Stage data and observations of breakup processes have been collected along the CD5 road since 2009. CRD floodwater remained within channels and no overbank flooding was observed along the CD5 road.

C. LAKE L9323 BRIDGE

Nigliq Channel floodwaters did not hydraulically connect to Lake L9323. The measured rise in stage at the downstream gage (G25) was from accumulating local melt which peaked on June 4. Drifted snow at the bridge opening initially prevented equalization of the local melt. A sharp drop in stage on June 4 suggests the downstream local melt passed through the drifted snow under the bridge and equalized with the upstream gage.

Lake L9323 Bridge stage data is provided in Graph 4.13. The graph shows stage above the PT only; gaps in data indicate stage dropped below the PT.

2018 COLVILLE RIVER DELTA

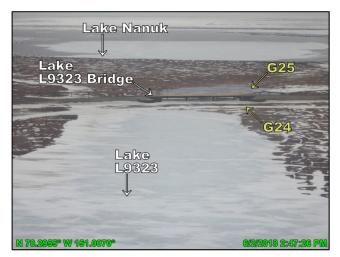
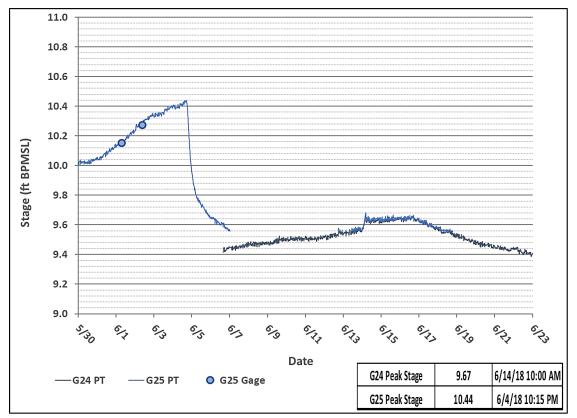



Photo 4.30: CD5 road at gage G24/G25 two days prior to peak stage at G25, looking north; June 2, 2018

Graph 4.13: Lake L9323 Bridge (Gages G24 & G25) Stage

D. NIGLIQ BRIDGE

Leading edge of floodwater passed under the bridge around May 20, and water levels remained low through the end of May. Stage slowly increased from May 30 until cresting on June 1. During this time, the channel ice at the bridge remained intact. Stage dropped slightly on June 1 followed by a series of stage fluctuations associated with the progression of small ice jams upstream of the bridge. On June 2, stage remained elevated and channel ice was observed near the Nigliq bridge (Photo 4.28). Peak stage at the Nigliq bridge occurred early on June 3 and was the

result of the ice jam and backwater release at MON20. Game camera images indicate channel ice was still present around the bridge during peak stage but was flushed a few hours afterwards (Photo 4.32).

Discharge was measured from the upstream side of the Nigliq Bridge on June 4. At the time of the measurement, the channel was mostly clear of snow and ice and conditions were considered steady and uniform (Photo 4.33). The average velocity was 1.90 fps and the highest depth-averaged velocity was 2.75 fps. The quality of the measurement was classified as fair. Indirect discharge calculated at the time of direct measurement was 1.9% higher than the measured discharge.

Indirect discharge calculations indicate peak discharge occurred on the morning of June 3 and coincided with the release of channel ice at the bridge opening. Peak discharge was assigned a fair quality rating (Table 2.1) because of these influences.

Nigliq Bridge stage and discharge data is provided in Graph 4.13. A summary of the discharge measurement, peak discharge calculation methods, and plan and profile drawings are presented in Appendix C.

Photo 4.31: Nigliq Bridge, the day before peak stage, looking west; June 2, 2018

Photo 4.32: Peak conditions at the Nigliq Bridge from remote camera, looking east; June 3, 2018

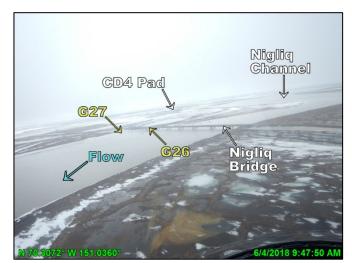
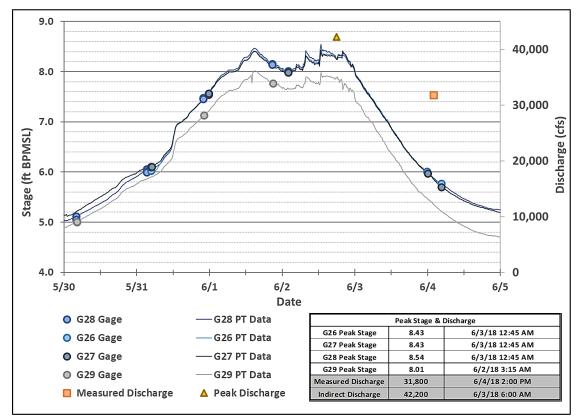



Photo 4.33: Nigliq Bridge the day of discharge measurement, looking south (upstream): June 4, 2018

ConocoPhillips Alaska INTERNATIONAL

Graph 4.14: Nigliq Bridge (Gages G26, G27, G28, & G29) Stage & Discharge

E. LAKE L9341 BRIDGE

Lake L9341 received backwater from the Nigliq Channel at the north end of the lake (Photo 4.34), the influence of which drove peak stage at the downstream gage on June 3. Lake L9341 was not hydraulically connected to the Nigliq Channel on the south end of the lake. As a result, there was no discernable flow through the Lake L9341 Bridge and discharge was not measured or calculated. Lake L9341 Bridge stage data is provided in Graph 4.15.

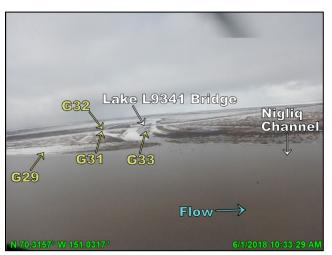
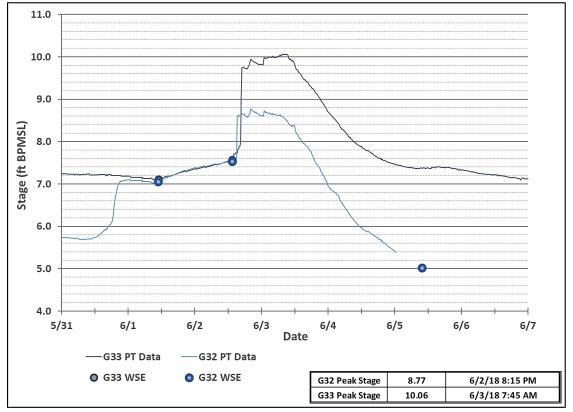



Photo 4.34: North end of Lake L9341 hydraulically connected to the Nigliq Channel two days prior to peak stage, looking southwest; June 1, 2018

ConocoPhillips Alaska INTERNATIONAL

Graph 4.15: Lake L9341 Bridge (Gages G32 & G33) Stage

F. NIGLIAGVIK BRIDGE

The Nigliagvik Channel is an anabranch of the Nigliq Channel. The Nigliagvik Channel branches off from the Nigliq Channel approximately 4 RM and 5.5 RM upstream of the Nigliq and Nigliagvik Bridges, respectively, and converges with the Nigliq Channel approximately 2 RM downstream of the Nigliq and Nigliagvik Bridges. Water from the Nigliq Channel diverges into the upstream connection of the Nigliagvik; however, this year, backwater from the Nigliq Channel reached the Nigliagvik Bridge prior to the initiation of downstream flow (Photo 4.32, and Photo 4.33). This can be seen in the stage hydrograph as water levels at the downstream gage were initially higher than water levels at the upstream gage from May 28 through May 30 (Graph 4.16). Upstream and downstream stage equalized at the bridge around May 30. Drifted snow in the Nigliagvik Channel prevented downstream flow from reaching the bridge during breakup and only Nigliq Channel backwater was observed. Because of this, the timing and magnitude of peak stage at the Nigliagvik Bridge were similar to the Nigliq Channel, with peak stage occurring on the morning of June 3.

Since no discernable flow was observed, discharge was not measured, and peak discharge was not calculated. Nigliagvik Bridge stage data is provided in Graph 4.16. Plan and profile drawings at the Nigliagvik Bridge are presented in Appendix C.

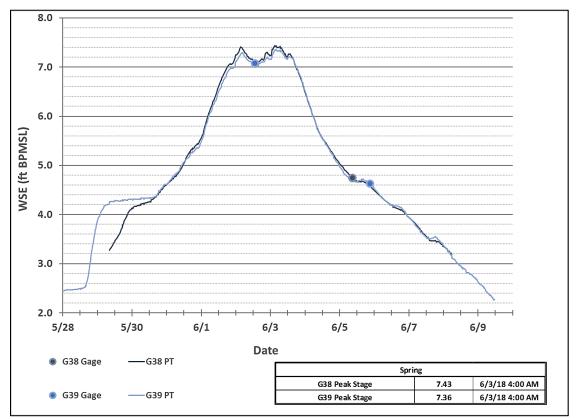


Photo 4.35: Nigliagvik Channel the day prior to peak stage, looking south (upstream); June 2, 2018

Photo 4.36: Nigliagvik Channel two days prior to peak stage, looking southwest (upstream); June 1, 2018

Graph 4.16: Nigliagvik Bridge (Gages G38 & G39) Stage

2018 COLVILLE RIVER DELTA

G. CULVERTS

CD5 culverts east of the Nigliagvik Channel convey overbank floodwater from the Nigliq and Nigliagvik Channels or equalize local meltwater across the CD5 road. CD5 culverts west of the Nigliagvik Channel are topographically isolated from CRD flooding and are limited to equalizing local melt in surrounding lake basins and flow in small channels and swales forming hydraulic connections between lake basins. Culverts in this region allow hydraulic equalization of meltwater between lakes, swales, and/or paleochannels.

Water levels at gages G30/G31, gages G34/G35, and gages G36/G37 were below PT elevation throughout breakup; these gages only saw ponding of local meltwater. Peak stage at gage G30/G31 was recorded from a HWM due to ponding. Gages G34/G35 stage and discharge data is provided in Graph 4.17. Flow was observed on June 5 and was due to equalization of local melt and surface runoff.

Stage remained below the PT elevation at gages S1/S1D throughout breakup. No water was observed at S1D during the 2018 monitoring season. No hydraulic connections were observed through culverts CD5-33S and CD5-32S on June 1 (Photo 4.34) and culvert CD5-04 on June 4 (Photo 4.38). Discharge through CD5-04 was not calculated due to a lack of measurable WSE at S1D. Gages S1/S1D stage and discharge data is provided in Graph 4.18.

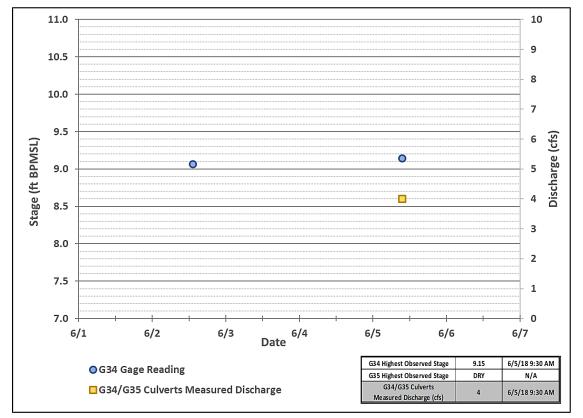


Photo 4.37: Culvert CD5-32S and CD5-33S along the CD5 road, looking southeast; June 1, 2018

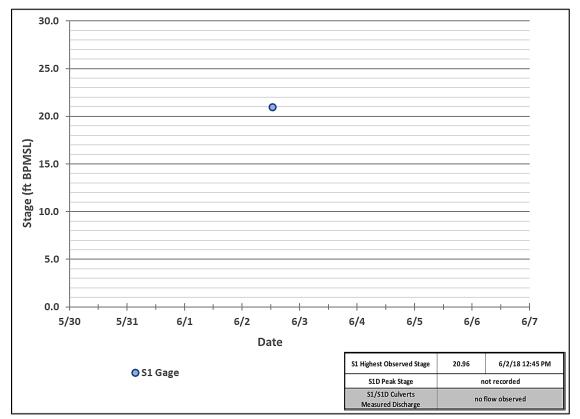
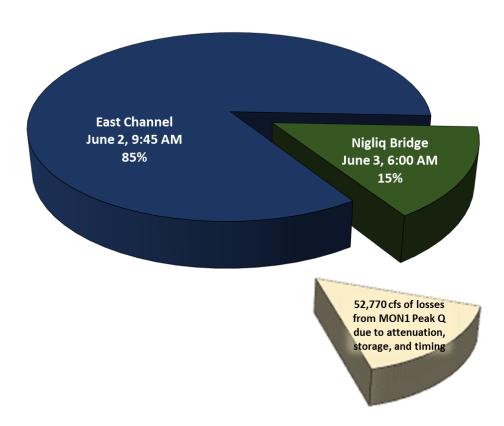


Photo 4.38: Hydraulic connection through CD5 culvert CD5-04 looking west, June 4, 2018

Graph 4.17: CD5 Road Culverts (Gages G34 & G35) Stage



Graph 4.18: CD5 Road Culverts (Gages S1 & S1D) Stage and Discharge

ConocoPhillips Alaska INTERNATIONAL

4.5 PEAK DISCHARGE DISTRIBUTION

The distribution of peak discharge between the East Channel and Nigliq Channel bifurcations is presented in Figure 4.1. Each section of the pie graph is represented by the location's peak discharge; however, peak discharge did not occur at the same time and date for each location. Total peak discharge was underestimated by 16% when compared to peak discharge calculated for the Colville River at MON1. Hydraulic connections typically seen during breakup were not present or were delayed due to the cold weather and remaining snowpack. Additionally, storage and attenuation are likely to have contributed to the under estimate, as are the possible errors associated with indirect methods.

5. POST-BREAKUP CONDITIONS ASSESSMENT

Alpine road and pads were inspected for erosion between June 4 and June 6 (Photo 5.1 through Photo 5.4). Other than minor washlines, no discernable erosion was observed during aerial and ground reconnaissance of the CD2, CD4, and CD5 roads. Floodwaters did not reach CD5 bridge abutments or the CD5 road within the CRD. A prominent washlines from 2015 spring breakup was evident along portions of the CD2, CD4, and CD5 roads. There were no signs of sloughing or undermining at drainage structures. Additional photo documentation of erosion surveys and breakup conditions along the Alpine facilities roads and pads are shown in Appendix D.

Photo 5.1: North side of CD4 road near CD4 pad, looking west; June 5, 2018

Photo 5.2: West side of CD4 road near CD5 intersection, looking southeast; June 5, 2018

Photo 5.3: South side of CD2 road, looking northwest; June 6, 2018

Photo 5.4: North side of CD5 at the Nigliagvik Channel looking south; June 5, 2018

6. CD5 PIER SCOUR, BANK EROSION, & BATHYMETRY

6.1 PIER SCOUR

Post-breakup pier scour elevations that encompass all piles in each pier group were measured by UMIAQ in August 2018. Post-breakup contour plots around the piers and within the main channel of the Nigliq Bridge and Nigliagvik Bridge are provided in Appendix E (UMIAQ 2018a).

NIGLIQ BRIDGE

Field crews cleared ice and snow from the pier scour casings, attached to the bridge piers, during spring setup and installed the sonar units. During the freeze thaw cycle, ice plugs had formed around the sonar units, lifting them out of position when stage increased. Field crews were able to de-ice and re-install the sonars into position at the bottom of the casings prior to peak conditions.

The minimum post-breakup scour elevation (-30.2 ft BPMSL at pier 4, pile C) is 1.3 ft below the 50-year design scour elevation and 2.8 ft above the 200-year scour elevation. A comparison of design and observed scour elevations are presented in Table 6.1. Real-time pier scour at piers 2 through 5 and corresponding WSEs during spring breakup monitoring are presented in Graph 6.1 through Graph 6.4. Real-time pier scour measurements indicated little to no active scour during peak conditions. The scatter in sonar measurements during real-time monitoring at some locations may be attributed to a high concentration of near-bed sediments suspended in turbulence associated with eddies converging on the downstream side of the pier. In these cases, the lower readings are interpreted as the true bed elevations.

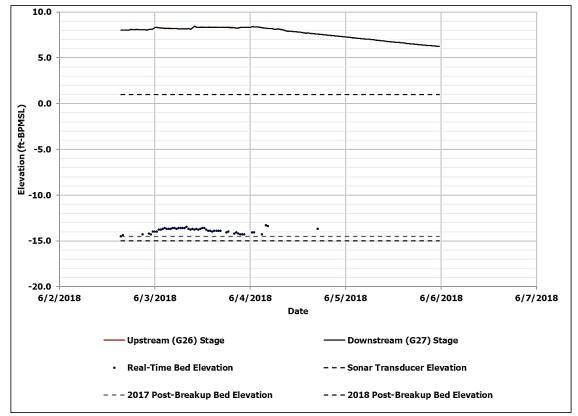
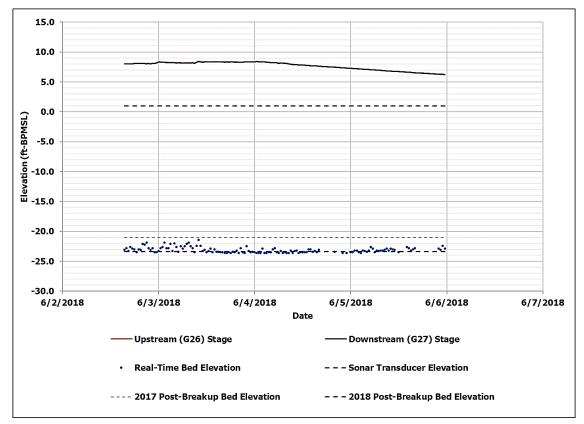

Nigliq Bridge Pier Scour								
Du	ring Breakup 2018	Elevation (ft-BPMSL) ^{1,2}						
Pier 2	Pile E	-14.5						
Pier 3	Pile E	-23.6						
Pier 4	Pile E	-30.4						
Pier 5	Pile E	-22.4						
Po	ost-Breakup 2018	Elevation (ft-BPMSL) ³						
Pier 2	Pile A on northeast side	-21.7						
Pier 3	Pile A on north side	-25.3						
Pier 4	Pile C on northwest side	-30.2						
Pier 5	Pile E on southeast side	-20.2						
	Design 2013	Elevation (ft-BPMSL) ^{4,5}						
EQ woor	Pier 2-6	-28.9						
50-year	Pier 7-8	-7.1						
200	Pier 2-6	-33.0						
200-year	Pier 7-8	-16.4						
	annel bed elevations recorded by r our measurements at downstream	real-time scour system in June 2018 side of downstream pile						

Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations

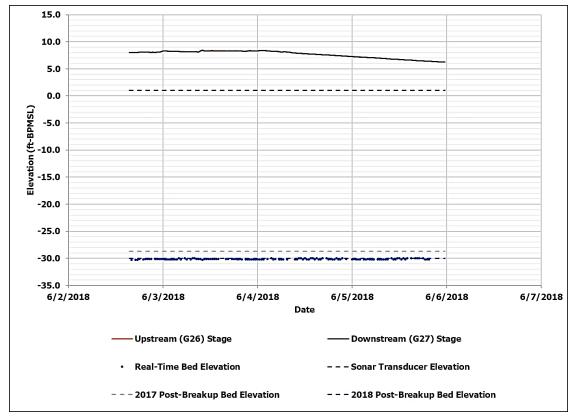

- 2. Real-time scour measurements at downstream side of downstream pi
- 3. Minimum channel bed elevations recorded by LCMF in August 2018
- 4. Design values presented in PND 2013
- 5. Elevations based on LCMF 2008 survey

2018 COLVILLE RIVER DELTA

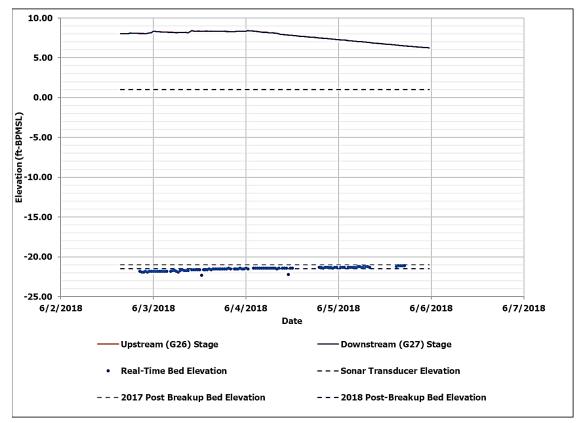
Graph 6.1: Nigliq Bridge Pier 2 (Pile E) Real-Time Scour Elevations

Graph 6.2: Nigliq Bridge Pier 3 (Pile E) Real-Time Scour Elevations

ConocoPhillips


Alaska

Michael Baker


INTERNATIONAL

11.29.18 • PAGE 54

2018 COLVILLE RIVER DELTA

Graph 6.3: Nigliq Bridge Pier 4 (Pile E) Real-Time Scour Elevations

Graph 6.4: Nigliq Bridge Pier 5 (Pile E) Real-Time Scour Elevations

ConocoPhillips

Alaska

Michael Baker

INTERNATIONAL

11.29.18 • PAGE 55

NIGLIAGVIK BRIDGE

The nearly stagnant flow at the Nigliagvik Bridge throughout breakup was ineffective in eroding the bottomfast ice at the base of pier 3. As a result, scour measurements were unattainable during breakup because of insufficient clearance between the sonar transducer and the bottomfast ice (less than 1.5 feet). Therefore, only the post-breakup scour elevations are reported. The minimum post-breakup pier scour elevation (-5.8 ft BPSML at pier 3, pile A) is 8.4 feet above the 50-year design scour elevation and 16 feet above the 200-year design scour elevation. A comparison of design and observed scour elevations are presented in Table 6.2.

•	Post-Breakup 2018	Elevation (ft-BPMSL) ¹						
Pier 3	Pile A on southwest side	-5.8						
Pier 4	Pile A on west-southwest side	-5.6						
	Design 2013	Elevation (ft-BPMSL) ^{2,3}						
50-year	Pier 3-4	-14.2						
200-year	Pier 3-4	-21.8						
Notes: 1. Minimum channel bed elevations recorded by LCMF in August 2018 2. Design values presented in PND 2013 3. Elevations based on LCMF 2008 survey								

Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations

6.2 BANK EROSION

Photos from the bank erosion survey at the Nigliq Bridge and Nigliagvik Bridge are presented in Photo 6.1 through Photo 6.4. Maximum incremental and cumulative erosion at the Nigliq Bridge and Nigliagvik Bridge and maximum incremental, maximum cumulative, and average erosion along the top of bank, upstream and downstream of the bridges, is presented in Table 6.3. Bank erosion tabulated data presented in Appendix E (UMIAQ 2018b).

Photo 6.1: West bank of the Nigliq Channel under the Nigliq Bridge, looking north; September 11, 2018

Photo 6.2: East bank of the Nigliq Channel near the Nigliq Bridge, looking north; September 11, 2018

Photo 6.3: West bank of the Nigliagvik Channel at the Nigliagvik Bridge, looking north; September 11, 2018

Photo 6.4: East bank of the Nigliagvik Channel at the Nigliagvik Bridge abutment, looking north; September 11, 2018

		Nigliq Channel						Nigliagvik Channel					
		West Bank			East Bank			West Bank			East Bank		
		Station ¹ (STA)	Distance (ft)	Rate (ft/yr)									
Stations ²	Maximum Incremental Erosion (2017-2018)	10+00	2.6		None	None		None	None		None	None	
Bridge S	Maximum Cumulative Erosion (2013-2018)	12+00	9.3	1.9	14+00	4.2	0.8	5+00	20.9	4.2	4+00	7.3	1.5
	Maximum Incremental Erosion ³ (2017-2018)	2+00	3.9		None	None		10+00	0.9		None	None	
All Stations	Maximum Cumulative Erosion ³ (2013-2018)	0+00	33.2	6.6	12+00	7.5	1.5	0+00	9.3	1.9	3+00	0.1	0.0
	Average Cumulative Erosion (2013-2018)	All		1.7	All		0.1	All		1.0	All		0.1

 Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion

Notes:

^{1.} Stationing begins upstream of bridge

² Nigliq Bridge Stations 10+00 through 13+00 on West Bank and 13+00 through 15+00 on East Bank. Nigliagvik Bridge Stations 4+00 through 6+00 on both banks

^{3.} Excludes bridge transects

6.3 BATHYMETRY

BATHYMETRY AT BRIDGES

The 2018 survey results at each CD5 bridge location were compared with the survey results from 2013-2017 to obtain maximum incremental scour and deposition between 2018 and 2017, and maximum cumulative scour and deposition between 2018 and 2013 (Table 6.4). Transect profiles, bathymetric cross-sections, and tabulated data are provided in Appendix E (UMIAQ 2018c).

	Nigliq Bridge			Lak	Lake L9341 Bridge			Nigliagvik Bridge		
	Depth (ft)	Station (STA)	Transect	Depth (ft)	Station (STA)	Transect	Depth (ft)	Station (STA)	Transect	
Maximum Incremental Scour (2017-2018)	2	4+26	9	2.8	2+20	36	2.2	2+19	25	
Maximum Cumulative Scour (2013-2018)	12.4	2+67	10	2.5	2+20	36	3.4	1+00	25	
Maximum Incremental Deposition (2017-2018)	4.9	8+33	9	1.3	1+89	36	1	2+19	26	
Maximum Cumulative Deposition (2013-2018)	3.9	8+79	8	0.3	0+00	37	3.4	1+03	26	

Table 6.4: Nigliq Bridge, Lake L9341 Bridge, & Nigliagvik Bridge Scour & Deposition

CHANNEL BATHYMETRY

The 2018 survey results at Nigliq Channel and Nigliagvik Channel were compared with the 2013, 2016, and 2017 survey results to obtain maximum incremental scour and deposition between 2018 and 2017, and maximum cumulative scour and deposition between 2018 and 2013 (Table 6.5). Transect profiles, bathymetric cross-sections, and tabulated data are provided in Appendix E (UMIAQ 2018c).

Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition

	N	igliq Channel		Nigliagvik Channel			
	Depth (ft)	Station (STA)	Transect	Depth (ft)	Station (STA)	Transect	
Maximum Incremental Scour (2017-2018)	7.3	25+33	14	5.6	0+79	30	
Maximum Cumulative Scour (2013-2018)	20.7	39+38	13	5.9	0+79	30	
Maximum Incremental Deposition (2017-2018)	14.6	16+87	6	2.2	1+37	28	
Maximum Cumulative Deposition (2013-2018)	15.2	21+96	5	3.4	1+03	26	

7. ICE ROAD CROSSINGS BREAKUP

Ice roads are constructed annually for ground transportation of supplies and equipment to Alpine facilities. Aerial surveys were conducted during spring breakup to observe and document the progression of melting of the ice road crossings. To facilitate melt and the progression of breakup flooding, ice road crossings are mechanically slotted at the conclusion of the winter season.

In general, ice road crossings melted at a similar rate as channel ice. Aerial surveys showed that slotting was completed, and floodwaters were passing freely through the ice road crossings. The majority of the crossings were submerged during the peak of flooding. When flooding receded, the ice road crossings and channel ice had cleared at most locations. Photos of all monitored ice road crossings are presented in Appendix D.

8. HISTORICAL BREAKUP TIMING & MAGNITUDE

Colville River breakup monitoring has been ongoing, intermittently, since 1962. The timing and magnitude of breakup flooding has been determined consistently since 1992 by measuring WSEs and discharge at established locations throughout the delta.

8.1 COLVILLE RIVER – HEAD OF THE DELTA

The historical record of peak stage and peak discharge for the CRD is at MON1C, at the head of the delta. Annual peak stage and peak discharge at MON1C has been recorded intermittently from 1962 to 1992 and annually from 1992 to 2018 (Table 8.1 and Graph 8.1).

Peak stage at MON1C was 15.90 feet BPMSL and occurred on June 2. The average historical peak stage is 16.93 ft BPMSL and the average date is May 30. The maximum historical peak stage is 23.47 ft BPMSL occurring in 2015.

Peak discharge at MON1C was 331,000 cfs and occurred on June 1. The average historical peak discharge is 313,000 cfs and the average date is May 31. The maximum historical peak discharge is 590,000 cfs occurring in 2011.

Statistical analysis of historical peak stage dates shows 78% of the peaks at MON1C occur during a 13-day period from May 23 to June 5. This represents one standard deviation of 6.3 days on either side of the average (mean) peak stage date of May 30, based on a normal distribution, as illustrated in Graph 8.2. Peak stage at MON1C this year was three days after the historical average.

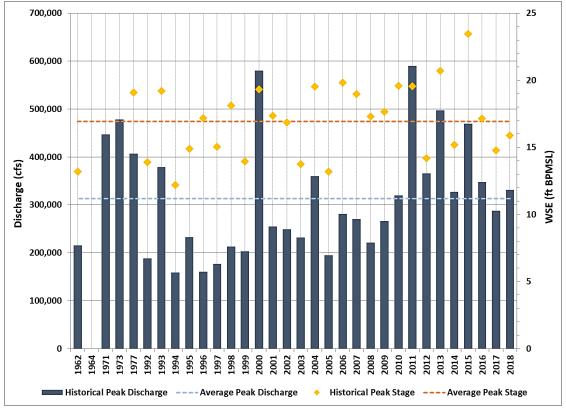
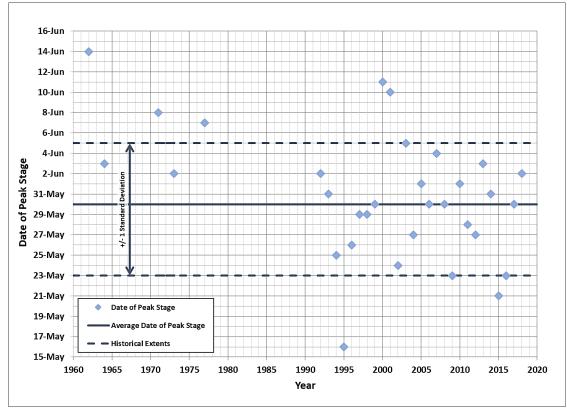
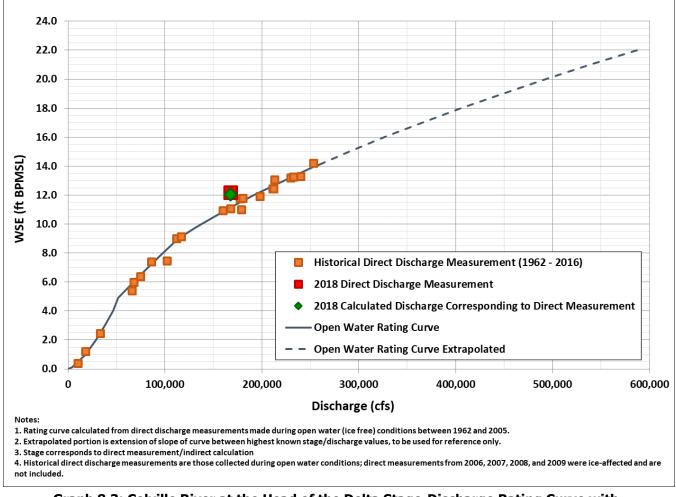


Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary


	Discharge				
Year	Peak Discharge Date (cfs)		Stage (WSE) Peak Stage (ft BPMSL)		Reference
2018	331,000	1-Jun	15.90	2-Jun	This Report
2017	288,000	30-May	14.79	30-May	Michael Baker 2017
2016	348,000	23-May	17.16	23-May	Michael Baker 2016
2015	469,000	22-May	23.47	21-May	Michael Baker 2015
2014	327,000	1-Jun	15.18	31-May	Michael Baker 2014
2013	497,000	3-Jun	20.69	3-Jun	Michael Baker 2013
2012	366,000	1-Jun	14.18	27-May	Michael Baker 2012b
2011	590,000	28-May	19.56	28-May	Michael Baker 2012a
2010	320,000	31-May	19.59	1-Jun	Michael Baker 2010
2009	266,000	23-May	17.65	23-May	Michael Baker 2009b
2008	221,000	28-May	17.29	30-May	Michael Baker 2008
2007	270,000	3-Jun	18.97	4-Jun	Michael Baker 2007b
2006	281,000	30-May	19.83	30-May	Michael Baker 2007a
2005	195,000	9-Jun	13.18	1-Jun	Michael Baker 2005b
2004	360,000	26-May	19.54	27-May	Michael Baker 2005a
2003	232,000	11-Jun	13.76	5-Jun	Michael Baker 2006a
2002	249,000	27-May	16.87	24-May	Michael Baker 2006a
2001	255,000	11-Jun	17.37	10-Jun	Michael Baker 2006a
2000	580,000	11-Jun	19.33	11-Jun	Michael Baker 2000
1999	203,000	30-May	13.97	30-May	Michael Baker 1999
1998	213,000	3-Jun	18.11	29-May	Michael Baker 1998b
1997	177,000	-	15.05	29-May	Michael Baker 2002b
1996	160,000	26-May	17.19	26-May	Shannon & Wilson 1996
1995	233,000	-	14.88	16-May	ABR 1996
1994	159,000	25-May	12.20	25-May	ABR 1996
1993	379,000	31-May	19.20	31-May	ABR 1996
1992	188,000	-	13.90	2-Jun	ABR 1996
1977	407,000	-	19.10	7-Jun	ABR 1996
1973	478,000	-	-	2-Jun	ABR 1996
1971	447,000	8-Jun	-	8-Jun	ABR 1996
1964	-	-	-	3-Jun	ABR 1996
1962	215,000	-	13.20	14-Jun	ABR 1996

2018 COLVILLE RIVER DELTA

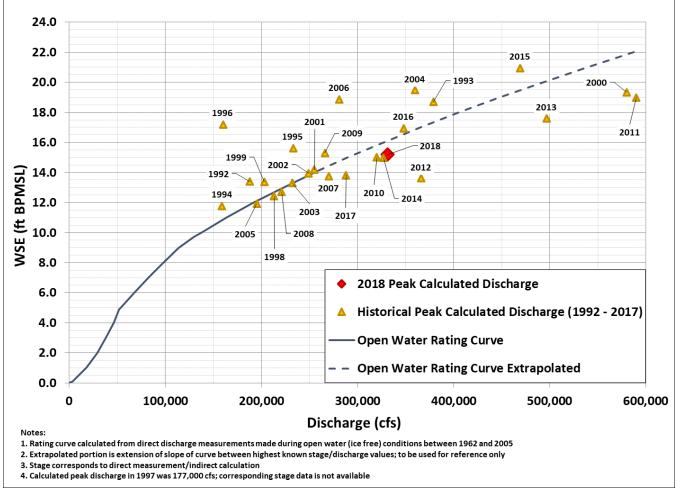
Graph 8.1: Colville River at the Head of the Delta Historical Peak Stage and Peak Discharge



Graph 8.2: Colville River at the Head of the Delta Historical Timing of Peak Stage

ConocoPhillips Alaska INTERNATIONAL

2018 COLVILLE RIVER DELTA


The MON1C stage-discharge rating curve, shown in Graph 8.3, represents a relationship between stage and discharge. The rating curve was calculated from direct discharge measurements taken during ice-free conditions between 1992 and 2016. Colville River discharge can be greatly influenced by channel ice; the rating curve more accurately represents the relationship between stage and discharge at lower stage values when ice-free discharge measurements are possible.

Graph 8.3: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Measured Discharge

Peak discharge between 1992 and 2018 are plotted against the open water rating curve in Graph 8.4. Open water conditions rarely occur (ice is generally present) at or near peak stage during breakup. Differences between peak discharge and the open water rating curve are attributed to ice effects on stage and discharge. Values that fall to the right and below the rating curve tend to be the result of an upstream ice jam release. Conversely, values that fall to the left and above the rating curve tend to be the result of downstream ice jam backwater effects. Peak discharge in 2018 falls to the right of the rating curve by 10.3%.

Graph 8.4: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Peak Discharge

8.2 CD2 ROAD BRIDGES

Discharge has been measured at the CD2 road bridges since 2000, and overall the measurements are estimated to be within 5-10% of the true discharge value based on the quality rating assigned to measurements. A summary of historical discharge measurements at the CD2 road bridges is presented in Table 8.2. Measured flow through both the Long Swale Bridge and Short Swale Bridge was 84.2% of the average annual measured flow through both bridges (3,700 cfs).

Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary

05/25/16 7.39 0.32 53 322 2.11 700 G 27 Cable Michael Baker 20 05/23/15 7.85 0.05 54 373 0.81 302 F 19 Cable Michael Baker 20 06/02/14 7.90 0.12 54 365 1.31 479 F 28 Cable Michael Baker 20 06/03/12 7.04 0.17 52 336 2.51 840 F 27 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 06/03/10 7.58 0.16 55 211 0.58 120 P 14 Cable Michael Baker 20 06/05/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 05/29/04 8.34 0.14 55 451 1.60 720 <th>Date</th> <th>Stage¹ (ft)</th> <th>Stage Differential² (ft)</th> <th>Width (ft)</th> <th>Area (ft²)</th> <th>Mean Velocity³ (ft/s)</th> <th>Discharge (cfs)</th> <th>Measurement Rating⁴</th> <th>Number of Sections</th> <th>Measurement Type</th> <th>Reference</th>	Date	Stage ¹ (ft)	Stage Differential ² (ft)	Width (ft)	Area (ft²)	Mean Velocity ³ (ft/s)	Discharge (cfs)	Measurement Rating⁴	Number of Sections	Measurement Type	Reference		
201 ³ - - <th colspan="13">Short Swale Bridge (62 ft)</th>	Short Swale Bridge (62 ft)												
05/25/16 7.39 0.32 53 322 2.11 700 G 27 Cable Michael Baker 20 05/23/15 7.85 0.05 54 373 0.81 302 F 19 Cable Michael Baker 20 06/02/14 7.90 0.12 54 365 1.31 479 F 28 Cable Michael Baker 20 06/05/13 9.75 0.46 54 446 3.60 1,608 G 36 Cable Michael Baker 20 06/03/12 7.04 0.17 52 336 2.51 840 F 27 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 06/05/10 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 05/29/04 8.34 0.14 55 451 1.60 720 </th <th>06/03/18</th> <th>6.63</th> <th>0.08</th> <th>36</th> <th>32</th> <th>0.22</th> <th>5.40</th> <th>Р</th> <th>22</th> <th>Wading</th> <th>This Report</th>	06/03/18	6.63	0.08	36	32	0.22	5.40	Р	22	Wading	This Report		
05/23/15 7.85 0.05 54 373 0.81 302 F 19 Cable Michael Baker 20 06/02/14 7.90 0.12 54 365 1.31 479 F 28 Cable Michael Baker 20 06/05/13 9.75 0.46 54 446 3.60 1.608 G 36 Cable Michael Baker 20 06/03/12 7.04 0.17 52 306 1.26 386 F 19 Cable Michael Baker 20 06/03/10 7.83 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 05/29/08 6.35 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 05/59/07 7.83 0.09 55 451 1.59 980 F 200 Cable Michael Baker 20 05/29/04 8.34 0.14 55 451 1.60 720<	2017 ⁵	-	-	-	-	-	-	-	-	-	Michael Baker 2017		
06/02/14 7.90 0.12 54 365 1.31 479 F 28 Cable Michael Baker 20 06/05/13 9.75 0.46 54 446 3.60 1,608 G 36 Cable Michael Baker 20 06/03/12 7.04 0.17 52 306 1.26 386 F 19 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 06/03/10 7.58 0.16 55 211 0.58 120 P 14 Cable Michael Baker 20 06/05/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 06/31/06 8.49 0.26 55 615 1.59 980 F 17 Cable Michael Baker 20 05/29/04 8.34 0.14 55 451 1.60 720 </td <td>05/25/16</td> <td>7.39</td> <td>0.32</td> <td>53</td> <td>322</td> <td>2.11</td> <td>700</td> <td>G</td> <td>27</td> <td>Cable</td> <td>Michael Baker 2016</td>	05/25/16	7.39	0.32	53	322	2.11	700	G	27	Cable	Michael Baker 2016		
06/05/13 9.75 0.46 54 446 3.60 1,608 G 36 Cable Michael Baker 20 06/03/12 7.04 0.17 52 306 1.26 386 F 19 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 2009 - - - - - - - Michael Baker 20 06/03/10 7.88 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 06/05/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 05/29/04 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 05/29/04 8.44 0.14 55 451 1.60 720 F 17 Cable<	05/23/15	7.85	0.05	54	373	0.81	302		19	Cable	Michael Baker 2015		
06/03/12 7.04 0.17 52 306 1.26 386 F 19 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 06/23/08 6.35 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 06/50/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 05/29/04 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 05/29/04 8.34 0.14 55 451 1.60 720 F 17 Cable Michael Baker 20 05/25/02 6.74 0.22 56 283 1.52 430 <td>06/02/14</td> <td>7.90</td> <td>0.12</td> <td>54</td> <td>365</td> <td>1.31</td> <td>479</td> <td>F</td> <td>28</td> <td>Cable</td> <td>Michael Baker 2014</td>	06/02/14	7.90	0.12	54	365	1.31	479	F	28	Cable	Michael Baker 2014		
05/28/11 8.15 0.43 52 336 2.51 840 F 27 Cable Michael Baker 20 06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 05/29/08 6.35 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 05/29/08 6.35 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 05/31/06 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 05/25/02 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 <td>06/05/13</td> <td>9.75</td> <td>0.46</td> <td>54</td> <td>446</td> <td>3.60</td> <td>1,608</td> <td>G</td> <td>36</td> <td>Cable</td> <td>Michael Baker 2013</td>	06/05/13	9.75	0.46	54	446	3.60	1,608	G	36	Cable	Michael Baker 2013		
06/03/10 7.58 0.16 55 316 1.79 570 F 28 Cable Michael Baker 20 2003' - - - - - - - Michael Baker 20 05/29/08 6.35 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 06/50/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 2005' -	06/03/12	7.04	0.17	52	306	1.26	386	F	19	Cable	Michael Baker 2012b		
2009 ⁵ - - - - - - - Michael Baker 20 06/52/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 06/05/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 05/31/06 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 2003 ⁵ - - - - - - - - - Michael Baker 20 05/25/02 6.74 0.22 56 283 1.52 430 G 15 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Mi	05/28/11	8.15	0.43	52	336	2.51	840	F	27	Cable	Michael Baker 2012a		
05/29/08 6.35 0.18 55 211 0.58 120 P 14 Cable Michael Baker 20 06/05/07 7.83 0.09 55 292 1.18 350 F 200 Cable Michael Baker 20 05/31/06 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 2005' - - - - - - - Michael Baker 20 2003' - - - - - - - - Michael Baker 20 05/12/02 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/11/01 7.64 0.56 433 2,090 F 27 Cable Michael Baker 20 06/03/18 <td>06/03/10</td> <td>7.58</td> <td>0.16</td> <td>55</td> <td>316</td> <td>1.79</td> <td>570</td> <td>F</td> <td>28</td> <td>Cable</td> <td>Michael Baker 2010</td>	06/03/10	7.58	0.16	55	316	1.79	570	F	28	Cable	Michael Baker 2010		
06/05/07 7.83 0.09 55 292 1.18 350 F 20 Cable Michael Baker 20 005/31/06 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 2005 ¹ - - - - - - - - Michael Baker 20 2003 ¹ - - - - - - - - Michael Baker 20 05/25/02 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable Michael Baker 20 05/25/16 7.48 0.40 445 1,505 0.86 1,290 F 27 Cable	200 9⁵	-	_	-	-	-	-	-	-	_	Michael Baker 2009b		
05/31/06 8.49 0.26 55 615 1.59 980 F 20 Cable Michael Baker 20 2005* - - - - - - - - - - Michael Baker 20 2003* - Michael Baker 20 05/25/20 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/01/17 75 0.61 431 2,090 1.50 3,140 P <t< td=""><td>05/29/08</td><td>6.35</td><td>0.18</td><td>55</td><td>211</td><td>0.58</td><td>120</td><td>Р</td><td>14</td><td>Cable</td><td>Michael Baker 2008</td></t<>	05/29/08	6.35	0.18	55	211	0.58	120	Р	14	Cable	Michael Baker 2008		
2005 ⁵ - - - - - - - - Michael Baker 20 05/29/04 8.34 0.14 55 451 1.60 720 F 17 Cable Michael Baker 20 2003 ⁵ - - - - - - - Michael Baker 20 2004 ⁵ - - - - - - - Michael Baker 20 06/12/02 6.74 0.22 56 283 1.79 600 G 15 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/01/00 7.87 0.61 431 2,090 1.50 3,140 P - Cable Michael Baker 20 05/21/15 7.92 0.04 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/22/15	06/05/07	7.83	0.09	55	292	1.18	350	F	20	Cable	Michael Baker 2007b		
05/29/04 8.34 0.14 55 451 1.60 720 F 17 Cable Michael Baker 20 2003 ⁵ - - - - - - - - Michael Baker 20 05/25/02 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/10/00 7.87 0.61 47 175 3.30 580 F 13 Cable Michael Baker 20 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,027 2.25 4,800 G/F	05/31/06	8.49	0.26	55	615	1.59	980	F	20	Cable	Michael Baker 2007a		
2003 ⁵ - - - - - - - - - Michael Baker 20 05/25/02 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/10/00 7.87 0.61 47 175 3.30 580 F 13 Cable Michael Baker 20 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable Michael Baker 20 05/25/16 7.48 0.40 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 <td>2005⁵</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>Michael Baker 2005b</td>	2005 ⁵	-	-	-	-	-	-	-	-	-	Michael Baker 2005b		
05/25/02 6.74 0.22 56 283 1.52 430 G 17 Cable Michael Baker 20 06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/10/00 7.87 0.61 47 175 3.30 580 F 13 Cable Michael Baker 20 Long Swale Bridge (452 ft) 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable Michael Baker 20 05/25/16 7.48 0.40 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/03/12 7.10	05/29/04	8.34	0.14	55	451	1.60	720	F	17	Cable	Michael Baker 2005a		
06/11/01 7.64 0.56 56 336 1.79 600 G 15 Cable Michael Baker 20 06/10/00 7.87 0.61 47 175 3.30 580 F 13 Cable Michael Baker 20 Long Swale Bridge (452 ft) 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,027 2.25 4,800 G/F 28 Cable Michael Baker 20 05/25/16 9.83 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/05/13 9.87	2003 ⁵	_	-	-	-	-	-	-	-	-	Michael Baker 2003		
06/10/00 7.87 0.61 47 175 3.30 580 F 13 Cable Michael Baker 20 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable This Report 06/01/17 5.92 0.04 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/03/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 06/03/12 7.10 0.17 445 1,686 <t< td=""><td>05/25/02</td><td>6.74</td><td>0.22</td><td>56</td><td>283</td><td>1.52</td><td>430</td><td>G</td><td>17</td><td>Cable</td><td>Michael Baker 2002b</td></t<>	05/25/02	6.74	0.22	56	283	1.52	430	G	17	Cable	Michael Baker 2002b		
Long Swale Bridge (452 ft) 06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable This Report 06/01/17 5.92 0.04 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/02/14 8.00 0.13 445 2,183 1.30 2,842 G 38 Cable Michael Baker 20 06/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 05/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 05/29/01 6.35 <td>06/11/01</td> <td>7.64</td> <td>0.56</td> <td>56</td> <td>336</td> <td>1.79</td> <td>600</td> <td>G</td> <td>15</td> <td>Cable</td> <td>Michael Baker 2001</td>	06/11/01	7.64	0.56	56	336	1.79	600	G	15	Cable	Michael Baker 2001		
06/03/18 7.05 0.16 431 2,090 1.50 3,140 P - Cable This Report 06/01/17 5.92 0.04 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/02/14 8.00 0.13 445 2,183 1.30 2,842 G 38 Cable Michael Baker 20 06/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 05/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 05/29/01 7.97 0.47 441 1,699	06/10/00	7.87	0.61	47	175	3.30	580	F	13	Cable	Michael Baker 2000		
06/01/17 5.92 0.04 445 1,505 0.86 1,290 F 27 Cable Michael Baker 20 05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/02/14 8.00 0.13 445 2,183 1.30 2,842 G 38 Cable Michael Baker 20 06/05/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 06/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 05/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 05/26/09 5.89 0.09 445 1,592						Long	Swale Bridge	(452 ft)					
05/25/16 7.48 0.40 445 2,025 2.25 4,800 G/F 28 Cable Michael Baker 20 05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/02/14 8.00 0.13 445 2,183 1.30 2,842 G 38 Cable Michael Baker 20 06/05/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 06/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 05/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 05/26/09 5.89 0.09 445 1,592 0.82 730 F 21 Wading Michael Baker 20 05/29/08 6.35 0.18 445 949	06/03/18	7.05	0.16	431	2,090	1.50	3,140	Р	-	Cable	This Report		
05/22/15 9.93 0.55 447 3,024 3.12 9,440 G 24 Cable Michael Baker 20 06/02/14 8.00 0.13 445 2,183 1.30 2,842 G 38 Cable Michael Baker 20 06/05/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 06/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 05/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 05/29/11 8.16 0.38 447 2,027 2.22 4,500 G 25 Cable Michael Baker 20 05/26/09 5.89 0.09 445 1,592 0.82 730 F 21 Wading Michael Baker 20 05/29/08 6.35 0.18 445 949	06/01/17	5.92	0.04	445	1,505	0.86	1,290	F	27	Cable	Michael Baker 2017		
O6/02/14 8.00 0.13 445 2,183 1.30 2,842 G 38 Cable Michael Baker 20 O6/05/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 O6/05/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 O6/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 O5/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 O6/01/10 7.97 0.47 441 1,699 2.66 4,500 G 25 Cable Michael Baker 20 O5/26/09 5.89 0.09 445 1,592 0.82 730 F 21 Wading Michael Baker 20 O5/29/08 6.35 0.18 445 949	05/25/16	7.48	0.40	445	2,025	2.25	4,800	G/F	28	Cable	Michael Baker 2016		
O6/05/13 9.87 0.42 448 2,947 2.47 7,286 G 36 Cable Michael Baker 20 O6/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 O5/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 O6/01/10 7.97 0.47 441 1,699 2.66 4,500 G 25 Cable Michael Baker 20 O5/26/09 5.89 0.09 445 1,592 0.82 730 F 27 Wading Michael Baker 20 O5/29/08 6.35 0.18 445 949 2.03 1,930 F 21 Wading Michael Baker 20 O6/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 O5/31/06 8.42 0.18 409 1,730	05/22/15	9.93	0.55	447	3,024	3.12	9,440	G	24	Cable	Michael Baker 2015		
O6/03/12 7.10 0.17 445 1,686 1.53 2,582 - 26 Cable Michael Baker 20 O5/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 O6/01/10 7.97 0.47 441 1,699 2.66 4,500 G 25 Cable Michael Baker 20 O5/26/09 5.89 0.09 445 1,592 0.82 730 F 27 Wading Michael Baker 20 O5/26/09 5.89 0.09 445 1,592 0.82 730 F 21 Wading Michael Baker 20 O5/29/08 6.35 0.18 445 949 2.03 1,930 F 21 Wading Michael Baker 20 O6/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 O5/31/06 8.42 0.18 409 1,730	06/02/14	8.00	0.13	445	2,183	1.30	2,842	G	38	Cable	Michael Baker 2014		
05/29/11 8.16 0.38 447 2,027 2.22 4,500 F 26 Cable Michael Baker 20 06/01/10 7.97 0.47 441 1,699 2.66 4,500 G 25 Cable Michael Baker 20 05/26/09 5.89 0.09 445 1,592 0.82 730 F 27 Wading Michael Baker 20 05/29/08 6.35 0.18 445 949 2.03 1,930 F 21 Wading Michael Baker 20 06/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 05/31/06 8.42 0.18 409 1,730 1.89 3,260 F 29 Cable Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 05/29/04 8.34 0.14 446 1,700	06/05/13	9.87	0.42	448	2,947	2.47	7,286	G	36	Cable	Michael Baker 2013		
O6/01/10 7.97 0.47 441 1,699 2.66 4,500 G 25 Cable Michael Baker 20 O5/26/09 5.89 0.09 445 1,592 0.82 730 F 27 Wading Michael Baker 20 O5/29/08 6.35 0.18 445 949 2.03 1,930 F 21 Wading Michael Baker 20 O6/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 O5/31/06 8.42 0.18 409 1,730 1.89 3,260 F 29 Cable Michael Baker 20 O6/02/05 6.13 0.08 445 841 1.37 1,100 G 20 Wading Michael Baker 20 O5/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 O5/29/04 8.34 -0.05 444 478	06/03/12	7.10	0.17	445	1,686	1.53	2,582	-	26	Cable	Michael Baker 2012b		
05/26/09 5.89 0.09 445 1,592 0.82 730 F 27 Wading Michael Baker 20 05/29/08 6.35 0.18 445 949 2.03 1,930 F 21 Wading Michael Baker 20 06/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 05/31/06 8.42 0.18 409 1,730 1.89 3,260 F 29 Cable Michael Baker 20 06/02/05 6.13 0.08 445 841 1.37 1,100 G 20 Wading Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 06/08/03 5.48 -0.05 444 478	05/29/11	8.16	0.38	447	2,027	2.22	4,500	F	26	Cable	Michael Baker 2012a		
05/29/08 6.35 0.18 445 949 2.03 1,930 F 21 Wading Michael Baker 20 06/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 05/31/06 8.42 0.18 409 1,730 1.89 3,260 F 29 Cable Michael Baker 20 06/02/05 6.13 0.08 445 841 1.37 1,100 G 20 Wading Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 06/08/03 5.48 -0.05 444 478 0.88 420 G 16 Wading Michael Baker 20 05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	06/01/10	7.97	0.47	441	1,699	2.66	4,500	G	25	Cable	Michael Baker 2010		
06/05/07 7.76 0.08 447 1,670 0.74 1,240 F 20 Cable Michael Baker 20 05/31/06 8.42 0.18 409 1,730 1.89 3,260 F 29 Cable Michael Baker 20 06/02/05 6.13 0.08 445 841 1.37 1,100 G 20 Wading Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 06/08/03 5.48 -0.05 444 478 0.88 420 G 16 Wading Michael Baker 20 05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	05/26/09	5.89	0.09	445	1,592	0.82	730	F	27	Wading	Michael Baker 2009b		
05/31/06 8.42 0.18 409 1,730 1.89 3,260 F 29 Cable Michael Baker 20 06/02/05 6.13 0.08 445 841 1.37 1,100 G 20 Wading Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 06/08/03 5.48 -0.05 444 478 0.88 420 G 16 Wading Michael Baker 20 05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	05/29/08	6.35	0.18	445	949	2.03	1,930	F	21	Wading	Michael Baker 2008		
06/02/05 6.13 0.08 445 841 1.37 1,100 G 20 Wading Michael Baker 20 05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 06/08/03 5.48 -0.05 444 478 0.88 420 G 16 Wading Michael Baker 20 05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	06/05/07	7.76	0.08	447	1,670	0.74	1,240	F	20	Cable	Michael Baker 2007b		
05/29/04 8.34 0.14 446 1,700 1.40 2,400 F 18 Cable Michael Baker 20 06/08/03 5.48 -0.05 444 478 0.88 420 G 16 Wading Michael Baker 20 05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	05/31/06	8.42	0.18	409	1,730	1.89	3,260	F	29	Cable	Michael Baker 2007a		
06/08/03 5.48 -0.05 444 478 0.88 420 G 16 Wading Michael Baker 20 05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	06/02/05	6.13	0.08	445	841	1.37	1,100	G	20	Wading	Michael Baker 2005b		
05/25/02 6.74 0.22 445 930 3.47 3,200 G 17 Cable Michael Baker 20	05/29/04	8.34	0.14	446	1,700	1.40	2,400	F	18	Cable	Michael Baker 2005a		
	06/08/03	5.48	-0.05	444	478	0.88	420	G	16	Wading	Michael Baker 2003		
	05/25/02	6.74	0.22	445	930	3.47	3,200	G	17	Cable	Michael Baker 2002b		
06/11/01 7.64 0.56 460 1,538 2.40 3,700 G 16 Cable Michael Baker 20	06/11/01	7.64		460	1,538	2.40	3,700	G	16	Cable	Michael Baker 2001		
06/09/00 7.34 0.78 437 1,220 3.27 4,000 F 15 Cable Michael Baker 20	06/09/00	7.34	0.78	437	1,220	3.27	4,000	F	15	Cable	Michael Baker 2000		
Notes:													

1. Source of stage is G3

2. Stage differential between G3/G4 at time of discharge measurement

3. Mean velocities adjusted with angle of flow coefficient

4. Measurement Rating -

E - Excellent: Within 2% of true value

G - Good: Within 5% of true value

F - Fair: Within 8% of true value

P - Poor: Velocity < 0.70 ft/s; Shallow depth for measurement; greater than 8% error

5. Bridge obstructed with snow or ice and/or lack of flow, no measurement made

Calculated peak flow through both bridges was 72.0% of the average annual peak flow through both bridges (4,500 cfs). Table 8.3 summarizes peak stage and peak calculated discharge at the CD2 Long and Short Swale Bridges between 2000 and 2018.

	Peak	Stage	Long Swal (452		Short Swale Bridge (62 ft)		
Date ¹	Stage ² (ft BPMSL)	Differential ³ (ft)	Peak Discharge (cfs)	Mean Velocity (ft/s)	Peak Discharge (cfs)	Mean Velocity (ft/s)	References
06/02/18	7.12	0.25	3,240	1.50	12	0.22	This Report
05/31/17	6.04	0.04	1,350	0.86	_ ⁴	_ ⁴	Michael Baker 2017
05/25/16	7.50	0.44	4,800	2.35	680	2.06	Michael Baker 2016
05/22/15	11.93	1.54	12,350	3.12	484	0.81	Michael Baker 2015
06/02/14	8.18	0.19	2,971	1.30	501	1.31	Michael Baker 2014
06/04/13	10.27	1.17	7,723	2.47	1,706	3.60	Michael Baker 2013
06/03/12	7.60	0.41	2,940	1.53	425	1.26	Michael Baker 2012b
05/29/11	8.89	0.30	5,200	2.22	940	2.51	Michael Baker 2012a
06/02/10	8.64	0.59	5,300	2.66	670	1.79	Michael Baker 2010
05/25/09	7.63	0.45	1,400	0.82	_ ⁴	_ ⁴	Michael Baker 2009b
05/30/08	6.49	0.26	2,100	0.49	130	0.58	Michael Baker 2008
06/05/07	8.60	0.43	1,500	1.35	400	1.18	Michael Baker 2007b
05/31/06	9.72	0.87	4,400	1.77	1,100	1.59	Michael Baker 2007a
05/31/05	6.48	0.20	1,400	1.37	_ 4	_ 4	Michael Baker 2005b
05/27/04	9.97	0.50	3,400	1.38	900	1.59	Michael Baker 2005a
06/07/03	6.31	0.12	700	0.88	_ 4	_ 4	Michael Baker 2003
05/26/02	7.59	0.69	4,000	3.47	500	1.52	Michael Baker 2002b
06/11/01	7.95	0.73	3,900	2.40	600	1.79	Michael Baker 2001
06/12/00	9.48	0.73	7,100	3.60	1,000	4.30	Michael Baker 2000
Notos		•				•	·

Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary

Notes:

1. Based on gage HWM readings

2. Source of stage is Gage 3

3. Stage differential between G3/G4 at time of peak discharge

4. Bridge obstructed with snow or ice, no velocity measurements

8.3 CD5 ROAD BRIDGES

Peak annual discharge has been calculated at the Nigliq Bridge since 2009 and at the Nigliagvik, Lake L9341, and Lake L9323 Bridges since 2012. A summary of peak stage and peak discharge during breakup flood events for the CD5 road bridges is shown in Table 8.4.

	Lake L932	23 Bridge	Nigliq I	Bridge	Lake L934	1 Bridge	Nigliagvi	k Bridge
Year	Peak Discharge (cfs)	Peak Stage [G24] (ft BPMSL)	Peak Discharge (cfs)	Peak Stage [G26] (ft BPMSL)	Peak Discharge (cfs)	Peak Stage [G32] (ft BPMSL)	Peak Discharge (cfs)	Peak Stage [G38] (ft BPMSL)
			Pos	t-Bridge Cons	truction			
2018	- 1	9.67	42,200	8.43	- 1	8.77	10,400	7.43
2017	_ 1	9.54	47,400	8.60	_ 1	7.10	2,550	6.86
2016	- 1	8.85	65,000	9.05	- 1	8.65	2,800	8.35
2015 ²	9,100	15.39	112,000	14.50	22,500	14.51	17,300	13.57
2014	_ 1	8.58	66,000	9.38	_ 3	8.48	7,800	8.64
			Pre	e-Bridge Cons	truction			
2013	- 1	12.40	110,000 ⁴	12.42 ⁵	5,000 ⁴	11.07	7,800 ⁴	11.41
2012	- 1	8.55	94,000 ⁶	8.82	6,000 ⁶	8.58	11,000 ⁶	8.51
2011	_ ³	- ³	141,000 ⁶	9.89 ⁷	_ 3	9.5 ⁸	_ 3	8.78 ⁹
2010	- ³	- 3	134,000 ⁶	9.65 ⁷	_ 3	5.85 ⁸	- 3	8.69 ⁹
2009	_ 3	_ 3	57,000 ⁶	7.91 ⁷	_ 3	7.98 ⁸	_ 3	7.71 ⁹

Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary

Notes:

1. No discharge reported because of a lack of hydraulic connection through bridge, backwater flow, and/or ice conditions return unreasonable calculation results

2. Discharge influenced by flow contraction through bridges

3. Data not available

4. Indirect discharge computed with consideration of intact channel ice present at time of peak discharge

5. Inferred from G25 at Lake L9323 Crossing

6. Indirect discharge computed as open water conditions, even though channel ice was present at time of peak discharge

7. Stage data from decommissioned gage G21 at proposed bridge centerline

8. Stage data from decommissioned gage G22 at proposed bridge centerline

9. Stage data from decommissioned gage G23 at proposed bridge centerline

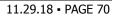
8.4 ALPINE DRINKING WATER LAKES RECHARGE

Recharge of Alpine drinking water lakes L9312 and L9313 has been documented annually since 1998. Primary recharge mechanisms for these lakes are overland flood flow and local melt. Lakes are determined to be fully recharged if bankfull conditions are met - either overland floodwater was observed flowing into the lake, or there was evidence of a stage rise and fall on the breakup hydrograph.

In most years, Lake L9313 is recharged by overland flow from the Sakoonang Channel via the North Paleo Lake and Lake M9525. The historical record of observed flooding and stage indicates bankfull elevation of Lake L9313 is approximately 6.5 feet BPMSL at gage G10 (Michael Baker 2006a, 2007b). Observations on July 10 and July 18, 2018 indicated a hydraulic connection was established between Lakes L9313 and M9525 (see photos in Section 4.4), implying WSE at Lake L9313 was at or above bankfull elevation. The measured WSE on July 10 was 6.29 feet BPMSL, suggesting actual bankfull elevation at L9313 is lower than 6.5 feet BPMSL. Based on the 2018 observations, the bankfull recharge elevation at Lake L9313 has been revised to 6.29 feet BPMSL.

Lake L9312 is surrounded by higher tundra than Lake L9313 and is less frequently recharged by floodwater from the Sakoonang Channel. Recharge at this lake relies more on local melt of snow and ice and precipitation. Bankfull elevation of Lake L9312 is 7.8 ft BPMSL at gage G9 per the Fish Habitat Permit FG99-III-0051-Amendment #8.

Table 8.5 provides a historical summary of Alpine drinking water lakes stage and bankfull recharge record. Lake L9312 has recharged to bankfull 15 of the last 21 years, and Lake L9313 has recharged to bankfull 18 of the last 21 years.


	La	ake L9312	La	ake L9313
Year	Peak Stage (ft BPMSL)	Bankfull Recharge to 7.8 ft BPMSL ¹	Peak Stage (ft BPMSL)	Bankfull Recharge to 6.29 ft BPMSL ²
2018	8.10	Yes ³	6.29	Yes ³
2017	-	No ³	7.40	Yes
2016	7.47	No ³	8.15	Yes
2015	13.32	Yes	12.71	Yes
2014	7.94	Yes	8.59	Yes
2013	8.79	Yes	10.44	Yes
2012	8.23	Yes	8.20	Yes
2011	10.72	Yes	10.67	Yes
2010	7.63	No ³	7.52	Yes
2009	7.65	No ³	7.12	Yes
2008	7.45	No ³	6.95	Yes
2007	9.35	Yes	9.47	Yes
2006	9.55	Yes	9.95	Yes
2005	8.00	Yes	6.12	No ³
2004	8.37	Yes	9.40	Yes
2003	8.01	Yes	7.12	Yes
2002	8.05	Yes	7.98	Yes
2001	7.55	No ³	8.31	Yes
2000	-	Yes	-	Yes
1999	7.93	Yes	6.14	No ³
1998	8.35	Yes	7.35	Yes

Notes:

1. Bankfull recharge is based on peak stage exceeding 7.8 ft BPMSL per Fish Habitat Permit FG99-III-0051, Amendment #8.

2. Bankfull recharge elevation is based on visual observations of hydraulic connectivity of lake to breakup floodwater.

3. Lake recharged from snow meltwater.

9. FLOOD & STAGE FREQUENCY ANALYSES

9.1 FLOOD FREQUENCY

Both continuous record and design-magnitude flood frequency analyses were performed for the Colville River at the head of the delta (MON1) in 2018. These were based on reported annual peak discharge data from 1992 through 2018 and the extrapolated data extending back to 1971, which is recommended for design-magnitude extrapolation with less than 50 years of record. The data was ranked by Weibull distribution for the continuous record and fitted to a Log-Pearson Type III distribution for design-magnitude extrapolation. Results were compared between the 2015 Weibull and Log-Pearson Type III analyses for the period of continuous record; the 2002, 2012, and 2015 Log-Pearson Type III analyses for the period of continuous record; and the 2002, 2012, and 2015 Log-Pearson Type III analyses for design-magnitude returns. The 2002 results are the basis of current design criteria.

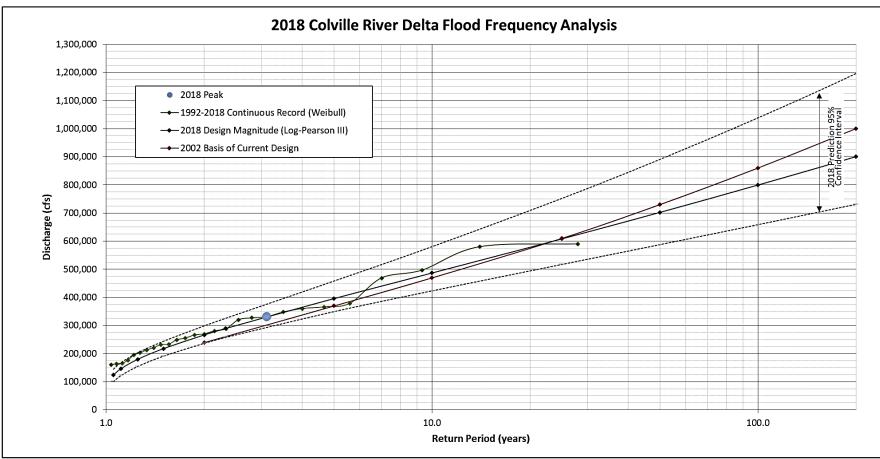
Comparison of the 2018 Weibull and Log-Pearson Type III flood frequency analyses for the period of continuous record (1992 to 2018) are presented in Table 9.1, ranked in order (largest to smallest) of peak discharge. As noted, the Weibull analysis limits the return period (also known as recurrence interval) to the number of record years plus one. As a result, the return period for each year is based solely on the ranked position within the continuous record with a maximum return period of 28 years assigned to the event with the largest peak discharge.

Year	Discharge (cfs)	Weibull Return Period (years)	Log-Pearson Type III Return Period (years)	Difference
2011	590,000	28.0	22.8	-18.7%
2000	580,000	14.0	21.5	53.8%
2013	497,000	9.3	11.3	20.6%
2015	469,000	7.0	9.0	28.9%
1993	379,000	5.6	4.6	-18.2%
2012	366,000	4.7	4.3	-8.8%
2004	360,000	4.0	4.1	2.6%
2016	348,000	3.5	3.8	8.6%
2018	331,000	3.1	3.4	8.4%
2014	327,000	2.8	3.3	16.9%
2010	320,000	2.5	3.1	21.6%
2017	288,000	2.3	2.3	-1.1%
2006	281,000	2.2	2.2	2.5%
2007	270,000	2.0	2.1	2.5%
2009	266,000	1.9	2.0	6.9%
2001	255,000	1.8	1.9	7.6%
2002	249,000	1.6	1.8	10.5%
1995	233,000	1.6	1.7	6.5%
2003	232,000	1.5	1.6	11.7%
2008	221,000	1.4	1.5	9.5%
1998	213,000	1.3	1.5	10.1%
1999	203,000	1.3	1.4	10.2%
2005	195,000	1.2	1.3	10.8%
1997	177,000	1.2	1.2	6.1%
1994	165,000	1.1	1.2	6.0%
1992	164,000	1.1	1.2	9.9%
1996	160,000	1.0	1.2	12.5%

Table 9.1: Colville River Flood Frequency Analysis Results

Michael Baker Alaska INTERNATIONAL

A flood frequency analysis is performed every three years for the head of the CRD at MON1 to estimate and update flood magnitudes for standard recurrence intervals. The current basis of design flood magnitudes are compared with the flood frequency analysis results to ensure the basis of design values are relevant as the body of data grows. These values are presented in Table 9.2 along with the current basis of design. Graph 9.1 provides a plotted comparison of the 2018 continuous record, 2018 design-magnitude, and 2002 design-magnitude flood frequency analysis results.


This year's peak discharge of 331,000 cfs has a recurrence interval of 3.4 years. The flood recurrence interval should be considered with respect to conditions at the time of peak discharge. A comparison of the 2002, 2015, and 2018 Log-Pearson Type III flood frequency results for the period of continuous record (1992 to 2018) is presented in Table 9.3.

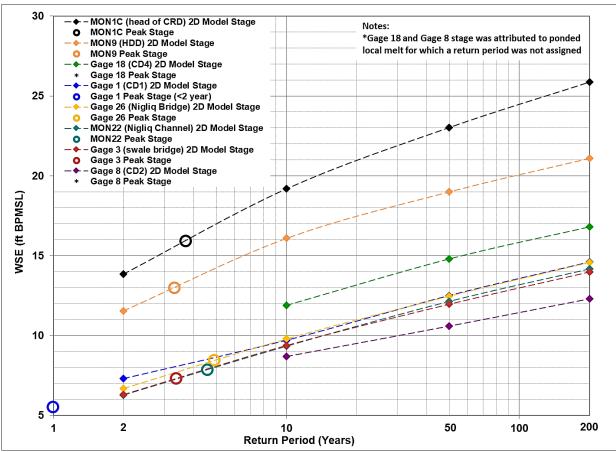
Return	Basis for Current Design Criteria ¹	2015 Analysis Values ²	2018 Analysis Values
Period	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)
2-year	240,000	261,000	266,000
5-year	370,000	394,000	396,000
10-year	470,000	491,000	487,000
25-year	610,000	623,000	608,000
50-year	730,000	727,000	702,000
100-year	860,000	837,000	800,000
200-year	1,000,000	953,000	901,000
Notes: 1. Michael B 2. Michael B	Baker and Hydroconsult 2002 Baker 2015		

Table 9.2: Colville River Flood Frequency Analysis Comparison

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT 2018 COLVILLE RIVER DELTA

Graph 9.1: CRD Flood Frequency Analysis Distribution

Table 9.3: Comparison of Colville River 2002, 2015, and 2018 Log-Pearson Type III Analysis Resultsfor the Period of Continuous Record (1992-2018)


Year	Peak Discharge (cfs)	2002 Return Period (Basis of Current Design Criteria) (years)	2015 Log-Pearson Type III Return Period (years)	2018 Log-Pearson Type III Return Period (years)
2011	590,000	22.9	21.3	22.8
2000	580,000	21.8	20.2	21.5
2013	497,000	12.9	10.7	11.3
2015	469,000	10.0	8.9	9.0
1993	379,000	5.5	4.6	4.6
2012	366,000	4.9	4.3	4.3
2004	360,000	4.8	4.2	4.1
2016	348,000	4.5	3.9	3.8
2018	331,000	4.0	3.4	3.4
2014	327,000	3.8	3.2	3.3
2010	320,000	3.8	3.2	3.1
2017	288,000	3.1	2.4	2.3
2006	281,000	2.9	2.3	2.2
2007	270,000	2.7	2.1	2.1
2009	266,000	2.6	2.1	2.0
2001	255,000	2.3	1.9	<2
2002	249,000	2.2	1.9	<2
1995	233,000	<2	1.7	<2
2003	232,000	<2	1.7	<2
2008	221,000	<2	1.6	<2
1998	213,000	<2	1.5	<2
1999	203,000	<2	1.4	<2
2005	195,000	<2	1.4	<2
1997	177,000	<2	1.3	<2
1994	165,000	<2	1.2	<2
1992	164,000	<2	1.2	<2
1996	160,000	<2	1.2	<2

9.2 STAGE FREQUENCY

HIGH MAGNITUDE, LOW FREQUENCY

The CRD 2D surface water model was first developed in 1997 to estimate stage and velocities at the proposed Alpine facility locations (Michael Baker 1998a). The model has undergone numerous revisions to include improved topographic and bathymetric data and the addition of CD3, CD4, and CD5 facilities (Michael Baker 2002a, 2006b, 2009a, and 2012b).

The 2D model was developed to predict open water flood conditions during low-frequency, high-magnitude events, i.e. design events having 50- and 200-year recurrence intervals. To estimate the relationship between discharge and stage during more frequent, lower magnitude floods, 2- and 10-year recurrence intervals have also been modeled. The 2018 peak stage at select gage stations were assigned a recurrence interval relative to the 2D model predictions (Graph 9.2 and Table 9.4). The 2D model assumes open water steady-state conditions and does not account for snow, channel ice, or ice jams. Elevated stage resulting from snow and ice effects is typically localized and more pronounced during lower magnitude flood events. As a result, the 2D model generally under-predicts stage for lower recurrence intervals of approximately 10-years and less.

Graph 9.2: 2D Model Stage and Peak Stage Recurrence Intervals

Table 9.4: Peak Stag	Je Frequency Relative to 2D Model S	tage Frequency	/ Analysis
	2D Model Stage Recurrence		Peak Stage

Gage Station	20	Int (ft	tage Recur ervals ^{1,2} BPMSL)	rence	Peak Stage (ft BPMSL)	Peak Stage Recurrence Interval	
	2-year	10- year	50-year	200-year		(years)	
			olville River		·		
MON1C (head of CRD)	13.9	19.2	23.0	25.9	15.9	4	
		Colville R	liver East C	hannel			
MON9 (HDD)	11.5	16.1	19.0	21.1	13.0	3	
MON35 (Helmericks)	4.3	5.4	6.1	6.5	4.2	<2	
	r		liq Channe				
MON20	7.8	11.4	14.6	16.8	8.6	3	
MON22	6.3	9.3	12.1	14.2	7.9	5	
MON23	5.1	7.4	10.2	12.0	6.7	6	
MON28	3.1	3.4	3.9	4.3	3.3	6	
	CD	1 Pad & [Drinking Wa	ater Lakes			
Gage G1	7.3	9.7	12.5	14.6	5.5	<2	
Gage G9 (Lake L9312)	8.3	10.8	13.4	15.7	8.1	<2	
Gage G10 (Lake L9313)	8.3	10.8	13.4	15.7	6.3	<2	
		CD2	Pad & Roa	d			
Gage G8 (CD2 pad)	\	8.7	10.6	12.3	9.1 ³	-	
Gage G3 (swale bridges)	6.3	9.4	12.0	14.0	7.3	3	
Gage G4 (swale bridges)	6.2	8.5	10.1	11.6	7.3	4	
Gage G6	\	9.5	12.2	14.2	Dry	-	
Gage G7	\	8.4	10.0	11.6	Dry	-	
Gage G12	\	9.5	12.1	14.1	7.4 ³	-	
Gage G13	\	8.4	10.0	11.6	7.5 ³	-	
		CD3 I	Pad & Pipel	ine			
Gage G11	5.2	6.4	6.9	8.0	Dry	-	
SAK Gage (Crossing #2)	6.4	8.9	11.2	12.9	5.8	<2	
TAM Gage (Crossing #4)	6.7	8.5	9.0	9.8	7.8	6	
ULAM Gage (Crossing #5)	5.5	7.1	7.8	8.7	6.9	8	
		CD4	Pad & Roa	nd			
Gage G19 (CD4 pad)	\	\	14.7	16.8	Dry	-	
Gage G20 (CD4 pad)	Ň	11.1	14.3	16.4	9.1	<10	
Gage G15	8.4	10.8	13.5	15.9	7.8 ³	-	
Gage G16	8.4	11.1	14.2	16.3	6.8 ³	-	
Gage G17	\	11.1	14.2	16.3	Dry	-	
Gage G18	Ì	11.9	14.8	16.8	10.8 ³	-	
	·,		CD5 Road	·			
Gage G24 (Lake L9323 Bridge)	\	11.1	14.1	16.0	9.7 ³	-	
Gage G26 (Nigliq Bridge)	6.7	9.8	12.5	14.6	8.4	5	
Gage G27 (Nigliq Bridge)	6.7	9.8	12.5	14.5	8.4	5	
Gage G30	١	\	13.3	15.5	6.0 ³	-	
Gage G32 (Lake L9341 Bridge)	Ň	Ň	13.3	15.1	8.8	<2	
Gage G34	Ň	Ň	13.3	15.7	9.2 ³	-	
Gage G36	Ň	Ń	13.3	15.7	10.9 ³	-	
Gage G38 (Nigliagvik Bridge)	6.9	10.0	12.8	14.9	7.4	3	
Notes:					··· 1	3	
1. Sites having dry ground in 2D mo	del are de	noted with	a backward	slash "\"			

1. Sites having dry ground in 2D model are denoted with a backward slash "\"

2. 2D WSEs based on post-CD5 model results

3. Stage attributed to ponded local melt

LOW MAGNITUDE, HIGH FREQUENCY

A site-specific stage frequency analysis using the historical record can provide a better estimate of low magnitude stage recurrence intervals. Uncertainty increases when extrapolating stage data beyond the continuous record for a river impacted by ice and ice jamming (USACE 2002; FEMA 2003). This is because of the inherent unpredictability of ice jams, the greater impact ice effects have on lower magnitude events, and the upper limit of stage considering available floodplain storage for overbank flow (i.e. water height can only increase so much once it has crested the banks and spilled into the floodplain). Stage frequency was extrapolated to the 50-year recurrence interval, twice the continuous record at MON1C, for comparison to the 2D model because this is where the 2D model results and stage frequency analysis results tend to converge. Unlike the 2D model, the observed data upon which the stage frequency analyses are based reflect ice-affected flooding conditions. Therefore, the stage frequency analysis results can be used to supplement design criteria for low-magnitude, ice impacted flood events.

Stage frequency was performed at MON1, MON22, and gages G1, G3, and G18, which have the longest periods of continuous record and are distributed throughout the project area. The maximum period of continuous record is 25 years at MON1C. Analyses have been performed every three years as the body of data grows (Michael Baker 2007a, 2009a, 2012b, and 2015), and were performed again this year to incorporate the 2016, 2017, and 2018 stage data. Similar to the flood frequency analysis, stage at the select locations was ranked by Weibull distribution for the continuous record and fitted to a Log-Pearson Type III distribution for design-magnitude extrapolation. Measured, estimated, and extrapolated peak annual stage data from 1992 through 2018 for locations used in the stage frequency analysis are presented in Table 9.5.

Table 9.6 and Graph 9.3 presents the Log-Pearson Type III 2018 stage frequency analysis results and the assigned recurrence interval to the 2018 peak stage. Based on the stage frequency analysis, all gage stations fell below the 2-year recurrence interval. Graph 9.4 through Graph 9.8 visually compare the stage frequency analysis and 2D model results to the measured or extrapolated peak annual stage for each selected location.

Voor	Monument 1	Monument 22	Gage 1	Gage 3	Gage 18
Year	(Head of Delta)	(Nigliq/CD2)	(CD1)	(Swale Bridge)	(CD4)
2018	15.90	7.85	5.50	7.30	10.82 ⁴
2017	14.79	7.27	6.17	6.04	10.33
2016	17.16	8.52	7.17	7.49	10.84
2015	23.47	11.98	11.26	11.93	16.58
2014	15.18	8.67	8.29	8.18	-
2013	20.69	10.56	9.90	10.27	14.20
2012	14.18	8.17	7.97	7.60	-
2011	19.56	8.97	9.33	8.89	12.84
2010	19.59	8.69	7.15	8.64	11.72
2009	17.65	7.76	6.65	7.63	11.34
2008	17.29	6.78	5.61	8.60	8.60
2007	18.97	9.04	8.64	6.49	10.98
2006	19.83	9.95	9.29	9.72	14.67
2005	13.18	7.65	4.46	6.48	8.17
2004	19.54	10.17	8.88	9.97	11.58
2003	13.76	7.02	6.07	6.31	8.03
2002	16.87	7.94	7.68	7.59	9.60
2001	17.37	8.80	6.95	7.95	10.16
2000	19.33	9.58	9.10	<i>9.48</i>	10.44
1999	13.97	5.89	4.64	5.79	7.10
1998	18.11	10.20	9.51	8.02	11.39
1997	15.05	7.56	6.27	7.02	8.64
1996	17.19	8.41	7.42	7.91	10.26
1995	14.88	7.49	6.18	6.94	8.52
1994	12.20	6.42	4.73	5.82	6.50
1993	19.20	9.22	8.51	8.76	11.77
1992	13.90	7.10	5.65	6.53	7.78
Average:	16.99	8.43	7.37	7.90	10.50
Linear Equations:	N/A	y=0.4x+1.5382	y=0.5401x-1.8595	y=0.4203x+0.6897	y=0.7528x-2.6853

Table 9.5: Peak Annual Stage for Selected Locations (1992-2018)

Notes:

1. Italicized values were estimated based on linear comparison to peak stage at proximal monitoring locations

2. Bold values were linearly extrapolated based on peak stage at Monument 1

3. Dash "- "indicates no observed WSE

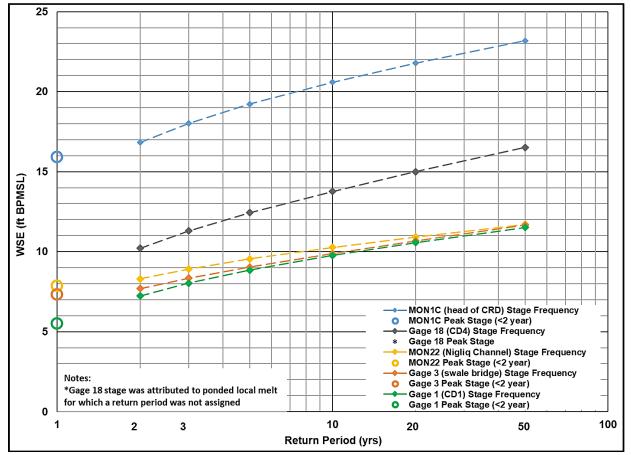
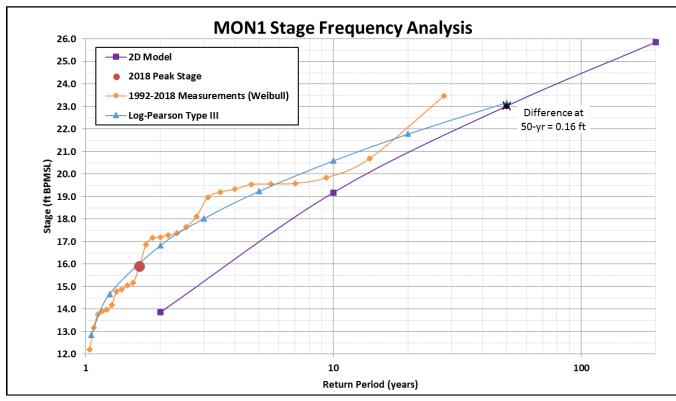
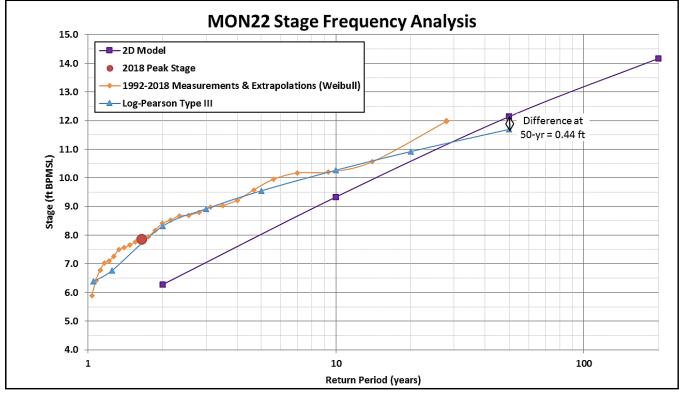

4. Stage attributed to ponded local melt

Table 5.0. Feak Stage frequency Relative to Stage frequency Analysis										
Monitoring Location	Stag	e Frequ	_	ecurren PMSL)	ce Inte	Peak Stage	Peak Stage			
Monitoring Location	2- year	3- year	5- year	10- year	20- year	50- year	(ft BPMSL)	Recurrence Interval (years)		
MON1C (head of CRD)	16.82	18.02	19.23	20.59	21.78	23.18	15.90	<2		
MON22 (Nigliq Channel)	8.31	8.92	9.55	10.27	10.92	11.70	7.85	<2		
Gage G1 (CD1 Pad)	7.24	8.03	8.84	9.77	10.57	11.52	5.50	<2		
Gage G3 (CD2 Road)	7.70	8.35	9.04	9.88	10.67	11.67	7.30	<2		
Gage G18 (CD4 Road) 10.22 11.30 12.43 13.77 15.00 16.52						16.52	10.82 ¹	-		
Notes:										
1. Stage attributed to pondec	1. Stage attributed to ponded local melt									

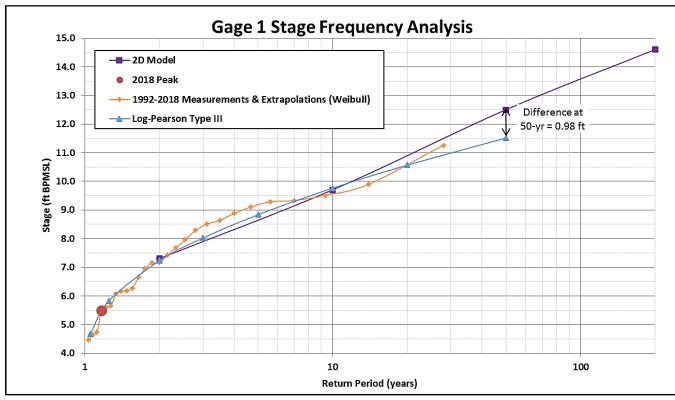
Table 9.6: Peak Stage Frequency Relative to Stage Frequency Analysis



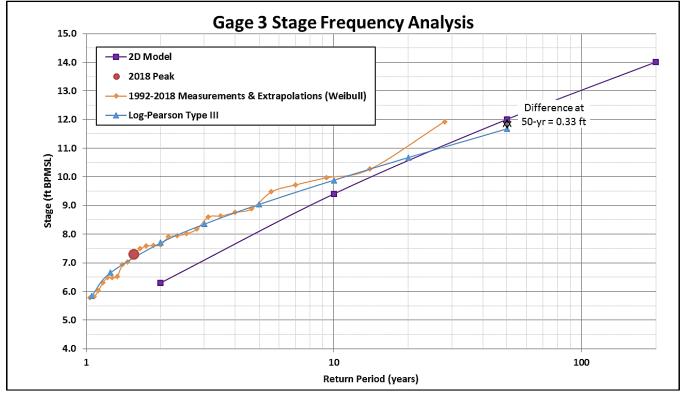
2018 COLVILLE RIVER DELTA



Graph 9.3: Stage Frequency and Peak Stage Recurrence Intervals

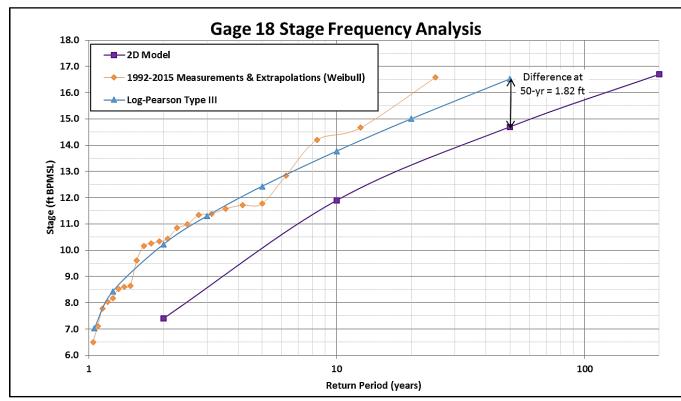


Graph 9.4: MON1 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data



Graph 9.5: MON22 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data

ConocoPhillips Alaska INTERNATIONAL



Graph 9.6: Gage 1 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data

Graph 9.7: Gage 3 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data

ConocoPhillips Alaska INTERNATIONAL

Graph 9.8: Gage 18 Stage Frequency Analysis, 2D Model Results and Peak Annual Stage Data

10. REFERENCES

- Alaska Biological Research (ABR). 1996. Geomorphology and Hydrology of the Colville River Delta, Alaska, 1995. Prepared for ARCO Alaska, Inc.
- Chow, V.T., 1959, Open-Channel Hydraulics, New York, McGraw-Hill, p. 138.
- Federal Emergency Management Agency (FEMA). 2003. Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix F: Guidance for Ice-Jam Analysis and Mapping. April 2003.

ICE Consult and Design (ICE). 2018 NPR-A North Tundra Monitoring Station. Cumulative Freezing Degree Days. Winters 2002-2018 Coldest to Warmest Year. October 2018.

- Michael Baker International (Michael Baker). 1998a. Colville River Delta Two-Dimensional Surface Water Model Project Update. September 1998. Prepared for ARCO Alaska, Inc.
- ------ 1998b. 1998 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. October 1998. Prepared for ARCO Alaska, Inc.
- ------ 1999. 1999 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. November 1999. Prepared for ARCO Alaska, Inc.
- ------ 2000. Alpine Facilities Spring 2000 Breakup Monitoring Alpine Development Project. November 2000. Prepared for Phillips Alaska, Inc.
- ------ 2001. Alpine Facilities 2001 Spring Breakup and Hydrologic Assessment. August 2001. Prepared for Phillips Alaska, Inc.
- ------ 2002a. Colville River Delta Two-Dimensional Surface Water Model, CD-Satellite Project Update. May 2002. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2002b. Alpine Facilities 2002 Spring Breakup and Hydrologic Assessment. October 2002. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2003. Alpine Facilities 2003 Spring Breakup and Hydrologic Assessment. September 2003. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2005a. Alpine Facilities 2004 Spring Breakup and Hydrologic Assessment. March 2005. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2005b. 2005 Colville River Delta and Fish Creek Basin Spring Breakup and Hydrologic Assessment. December 2005. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2006a. 1992-2005 Annual Peak Discharge Colville River Monument 1 Estimate, Calculation, and Method Review. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2006b. Colville River Delta Two-Dimensional Surface Water Model CD5 Update. February 2006. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2007a. 2006 Colville River Delta and Fish Creek Basin Spring Breakup and Hydrological Assessment. January 2007. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2007b. 2007 Colville River Delta Spring Breakup and Hydrologic Assessment. November 2007. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2008. 2008 Colville River Delta Spring Breakup and Hydrologic Assessment. December 2008. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2009a. Colville River Delta, Two-Dimensional Surface Water Model Update. CD5 Alpine Satellite Development Project. September 2009. Prepared for ConocoPhillips Alaska, Inc.

- ------ 2009b. Colville River Delta Spring Breakup 2009 Hydrologic Assessment. December 2009. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2009c. Alpine Pipeline River Crossings 2009 Monitoring Report. September 2009. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2010. 2010 Colville River Delta Spring Breakup 2010 Hydrologic Assessment. November 2010. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2012a. Colville River Delta Spring Breakup 2011 Hydrologic Assessment. January 2012. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2012b. 2012 Colville River Delta Spring Breakup Monitoring and Hydrologic Assessment. December 2012. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2013a. 2013 Colville River Delta Spring Breakup Monitoring and Hydrologic Assessment. November 2013. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2014. 2014 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2014. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2015. 2015 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2015. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2016. 2016 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. December 2016. Prepared for ConocoPhillips Alaska, Inc.
- ------ 2017. 2017 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2017. Prepared for ConocoPhillips Alaska, Inc.
- Michael Baker International (Michael Baker) and Alaska Biological Research (ABR), 2013 Monitoring Plan with an Adaptive Management Strategy CD5 Development Project for ConocoPhillips, Alaska. March 2013.
- Michael Baker International (Michael Baker) and Hydroconsult EN3 Services, Ltd. 2002. Colville River Flood Frequency Analysis, Update. September 2002. Prepared for ConocoPhillips Alaska, Inc.
- National Oceanic and Atmospheric Administration (NOAA). Website access 2018. (<u>https://www.noaa.gov/weather</u>).
- Natural Resource Conservation Service (NRCS). 2018. Alaska Snow Survey Report. July 2018. United States Department of Agriculture (USDA).
- Office of Surface Water (OSW). 1999a. Development of New Standard Rating Tables for the Price Type AA and Pygmy Current Meters. Technical Memorandum No. 99.05. Website access 2009. (http://water.usgs.gov/admin/memo/SW/sw99.05.html). U.S. Geological Survey (USGS).
- ------ 1999b. Care and Maintenance of Vertical-Axis Current Meters. Technical Memorandum No. 99.06. Website access 2009. (<u>http://water.usgs.gov/admin/memo/SW/sw99.06.html</u>). USGS.

PND Engineers (PND). 2013. Proposed CD5 Access Road Bridges Scour Estimates Summary. May 2013.

- Shannon & Wilson, Inc. 1996. 1996 Colville River Delta Spring Breakup and Hydrologic Assessment, North Slope, Alaska. November 1996. Prepared for Michael Baker Jr., Inc.
- UMIAQ/LCMF LLC, Inc. (UMIAQ) 2002. As-built survey. CD2 and CD4 culverts. Prepared for ConocoPhillips Alaska, Inc. (Submitted as Kuukpik/UMIAQ LLC, Inc. [UMIAQ]).
- ------ 2004. Cross-section survey, Colville River at Monument 01. Prepared for Michael Baker Jr., Inc. (Submitted as Kuukpik/UMIAQ LLC, Inc. [UMIAQ]).
- ------ 2014. DOT HDD Waterway Crossing Inspection. Prepared for ConocoPhillips Alaska, Inc. 2014.

2018 COLVILLE RIVER DELTA

- ------ 2016a. Cross-section survey of the Nigliq & Nigliagvik Channel crossings. Prepared for ConocoPhillips Alaska, Inc. July 2016.
- ------ 2017. As-built survey, CD2, CD4, and CD5 access road culverts. Prepared for ConocoPhillips Alaska, Inc. July 2017.
- ------ 2018a. CD5 access road Nigliq & Nigliagvik Bridge scour monitoring. Prepared for ConocoPhillips Alaska, Inc. August 2018.
- ------ 2018b. Top of bank survey of the Nigliq Channel & Nigliagvik Channel. Prepared for ConocoPhillips Alaska, Inc. August 2018.
- ------ 2018c. Cross-section survey of the Nigliq Channel, Nigliagvik Channel, and Lake L9341. Prepared for ConocoPhillips Alaska, Inc. August 2018.
- ------ 2018d. As-built survey, CD2, CD4, and CD5 access road culverts. Prepared for ConocoPhillips Alaska, Inc. July 2018.
- U.S. Army Corps of Engineers (USACE). 1991. U.S. Army Corps of Engineers Ice-Influenced Flood Stage Frequency Analysis TL 110-2-325. Washington D.C. July 2002.
- ------ 2002. U.S. Army Corps of Engineers Ice Engineering Manual EM 1110-2-1612. Washington D.C. 30 October 2002.
- ------ 2010. User's Manual for HEC-SSP Statistical Software Program Version 2.0, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines. Brunner, G.W. and Fleming, M.J.
- U.S. Geological Survey (USGS). 1968. Bodhaine, G.L. Measurement of Peak Discharge at Culverts by Indirect Methods. Techniques of Water Resources Investigations of the U.S. Geological Survey. USGS-TWRI Book 3, Chapter A3. United States Government Printing Office, Washington, DC. 1968.
- ------ 1982. Measurement and Computation of Streamflow, Vols. 1 and 2. S.E. Rantz and others. Water Supply Paper 2175.
- ------ 2006. Mueller, D.S., and Wagner, C.R. Measuring discharge with acoustic Doppler current profilers from a moving boat. U.S. Geological Survey Techniques and Methods 3A-22,72p. (available online at http://pubs.water.usgs.gov/tm3a22).
- ------ 2018a. Gage height and discharge data, May 26 through June 15. Website access September 2, 2018. https://waterdata.usgs.gov/nwis/uv?site_no=15875000.
- ------ 2018b. Guidelines for determining flood flow frequency—Bulletin 17C: U.S. Geological Survey Techniques and Methods, book 4, chap. B5, <u>https://doi.org/10.3133/tm4B5</u>.

APPENDIX A VERTICAL CONTROL, GAGE LOCATIONS, & CULVERT LOCATIONS

VERTICAL CONTROL A.1

Control	Elevation (ft BPMSL)	Latitude (NAD83) ¹	Longitude (NAD83)	Control Type	Reference
CD2-14N	10.864	N 70.3371°	W 151.0110°	Culvert top	UMIAQ 2016
CD4-10W	12.248	N 70.3275°	W 150.9934°	Culvert top	UMIAQ 2016
CD4-10E	11.799	N 70.3274°	W 150.9930°	Culvert top	UMIAQ 2016
CD4-12W	12.412	N 70.3401°	W 150.9962°	Culvert top	UMIAQ 2016
CD4-12E	11.463	N 70.3235°	W 150.9954°	Culvert top	UMIAQ 2016
CD4-20AE	7.024	N 70.3022°	W 150.9937°	Culvert top	UMIAQ 2016
CD5-35N	13.089	N 70.3063°	W 151.0522°	Culvert top	UMIAQ 2015
CD5-35S	13.256	N 70.3061°	W 151.0526°	Culvert top	UMIAQ 2015
CD5-40S	10.927	N 70.3048°	W 151.0443°	Culvert top	UMIAQ 2015
СР08-11-23	8.524	N 70.3916°	W 150.9079°	Alcap	UMIAQ 2008
CP08-11-35	8.880	N 70.4066°	W 150.8822°	Alcap	BAKER 2015 (UMIAQ 2010)
MONUMENT 1	27.930	N 70.1659°	W 150.9400°	Alcap	UMIAQ 2006
MONUMENT 9	25.060	N 70.2446°	W 150.8583°	Alcap	UMIAQ 2008
MON 12	9.038	N 70.3397°	W 150.0428°	Capped drill stem	UMIAQ 2016
MON 22	11.209	N 70.3423°	W 150.9321°	Capped drill stem	UMIAQ 2015
MONUMENT 22	10.030	N 70.3181°	W 151.0560°	Alcap	BAKER 2010
MONUMENT 23	9.546	N 70.3444°	W 151.0613°	Alcap	BAKER 2009c
MONUMENT 25	17.893	N 70.3024°	W 151.0130°	Capped drill stem	UMIAQ 2016
MONUMENT 27	13.858	N 70.3060°	W 151.0533°	Capped drill stem	UMIAQ 2016
MONUMENT 28 (CD5)	11.365	N 70.4256°	W 151.0670°	Capped drill stem	UMIAQ 2016
MONUMENT 28 (Colville @ Coast)	3.650	N 70.4256°	W 151.0670°	Alcap	UMIAQ GPS 2002
MOUNMENT 29	28.629	N 70.3052°	W 151.1229°	Capped drill stem	UMIAQ 2016
MONUMENT 31	26.897	N 70.3051°	W 151.1992°	Capped drill stem	UMIAQ 2016
MONUMENT 35	5.570	N 70.4325°	W 150.3834°	Alcap	Lounsbury 1996
NANUQ-2	12.926	N 70.3041°	W 150.9974°	Alcap	UMIAQ 2016
NANUQ-5	17.415	N 70.2917°	W 150.9806°	Alcap	UMIAQ 2016
PBM-F	17.862	N 70.3393°	W 151.0468°	PBM in Casing	UMIAQ 2016
PBM-P	20.937	N 70.2914°	W 150.9889°	PBM in Casing	UMIAQ 2016
Pile 08	16.740	-	-	SW Bolt	UMIAQ 2010
Pile 568	23.719	N 70.3639°	W 150.9206°	HSM cap SW bolt	UMIAQ 2010
ТВМ А	5.890	-	-	Corner of entryway	BAKER 2016
TBM 01-13-09A	12.925	N 70.3401°	W 150.9844°	NE bridge abutment	UMIAQ 2016
TBM L99-32-59	14.605	N 70.3338°	W 150.9522°	Pile Cap SE VSM	UMIAQ 2015
1. North American Datum of	⁻ 1983 (NAD83)				

A.2 CRD GAGE LOCATIONS

Gage Station	Gage Type	Gage Assembly	Latitude (NAD83)	Longitude (NAD83)	Control
		MON1U-A ¹	N 70.1585°	W 150.9450°	MONUMENT 1
		MON1U-A1 ²	N 70.1585°	W 150.9451°	
		MON1U-B	N 70.1585°	W 150.9455°	
MON1U		MON1U-C	N 70.1585°	W 150.9461°	
		MON1U-D	N 70.1585°	W 150.9462°	
		MON1U-E	N 70.1585°	W 150.9464°	
		MON1U-F	N 70.1585°	W 150.9465°	
		MON1C-A ¹	N 70.1657°	W 150.9383°	
		MON1C-A1 ²	N 70.1656°	W 150.9385°	
	Indirect-Read	MON1C-B	N 70.1658°	W 150.9386°	
MON1C		MON1C-C	N 70.1658°	W 150.9392°	
		MON1C-D	N 70.1658°	W 150.9393°	
		MON1C-E	N 70.1658°	W 150.9395°	
		MON1C-F	N 70.1659°	W 150.9397°	
		MON1D-A ¹	N 70.1738°	W 150.9359°	
		MON1D-B ²	N 70.1738°	W 150.9371°	
MON1D		MON1D-C	N 70.1738°	W 150.9372°	
		MON1D-D	N 70.1738°	W 150.9373°	
		MON1D-Z	N 70.1737°	W150.9376°	
		MON9-A ¹	N 70.2447°	W 150.8573°	MONUMENT 9
		MON9-B ¹	N 70.2447°	W 150.8575°	
		MON9-B1	N 70.2446°	W 150.8576°	
		MON9-C	N 70.2447°	W 150.8578°	
		MON9-D	N 70.2446°	W 150.8580°	
MON9		MON9-E	N 70.2446°	W 150.8580°	
		MON9-F	N 70.2446°	W 150.8580°	
		MON9-F1	N 70.2446°	W 150.8580°	
		MON9-F2	N 70.2446°	W 150.8580°	
		MON9-G	N 70.2446°	W 150.8581°	
		MON9-BARO ³	N 70.2442°	W 150.8605°	
	Indirect-Read	MON9D-A ¹	N 70.2586°	W 150.8593°	
		MON9D-B ¹	N 70.2586°	W 150.8597°	
		MON9D-C	N 70.2586°	W 150.8598°	
MON9D		MON9D-D	N 70.2586°	W 150.8600°	
		MON9-D1	N 70.2586°	W 150.8600°	
		MON9D-E	N 70.2586°	W 150.8600°	
		MON35-A	N 70.4260°	W 150.4058°	TBM A
		MON35-B	N 70.4260°	W 150.4058°	
MON35		MON35-C	N 70.4261°	W 150.4058°	
		MON35-D	N 70.4261°	W 150.4058°	
		MON35-E	N 70.4261°	W 150.4058°	
		MON20-A ¹	N 70.2786°	W 150.9986°	PBM-P
		MON20-B	N 70.2786°	W 150.9985°	
MON20		MON20-C	N 70.2786°	W 150.9983°	
		MON20-D	N 70.2785°	W150.9982°	
		MON20-E	N 70.2785°	W 150.9982°	
		MON22-A ¹	N 70.3186°	W 151.0546°	MONUMENT 22
		MON22-B	N 70.3185°	W 151.0549°	
MON22		MON22-C	N 70.3185°	W 151.0550°	
	Indirect-Read	MON22-D	N 70.3183°	W 151.0555°	
		MON22-B MON23-A ¹	N 70.3436°	W 151.0659°	MONUMENT 23
		MON23-A MON23-B	N 70.3436°	W 151.0657°	
MON23		MON23-C	N 70.3436°	W 151.0652°	
		MON23-D	N 70.3436°	W 151.0649°	
		MON23-E	N 70.3436°	W 151.0649 W 151.0648°	
		MON28-A ¹	N 70.4258°	W 151.0648 W 151.0697°	
MON28		MON28-B	N 70.4257°	W 151.0697 W 151.0692°	MONUMENT 28
INCIV20		MON28-C	N 70.4256°	W 151.0692 W 151.0672°	(Colville @ Coast)
			N /1 / / 56 ⁻	WV 151 Ub//2	

1. PT, 2. RTFM PT, 3. Baro PT

2018 COLVILLE RIVER DELTA

A.3 ALPINE FACILITIES GAGE LOCATIONS

Gage Station	Gage Type	Gage Assembly	Latitude (NAD83)	Longitude (NAD83)	Control
G1		G1 ¹	N 70.3428°	W 150.9208°	MON 22
G9	Direct-Read	G91	N 70.3336°	W 150.9519°	MON 22
G10		G10 ¹	N 70.3425°	W 150.9328°	TBM L99-32-59
G3	Discot David	G3 ^{1,2}	N 70.3400°	W 150.9831°	TDNA 04 42 00A
G4	Direct-Read	G4 ¹	N 70.3403°	W 150.9833°	TBM 01-13-09A
G6	Discot Devel	G61	N 70.3397°	W 151.0292°	MON 42
G7	Direct-Read	G71	N 70.3400°	W 151.0289°	MON 12
G12		G12 ¹	N 70.3367°	W 151.0117°	CD2-14N
G13	Indirect-Read	G131	N 70.3373°	W 151.0118°	
G8	Indirect-Read	G8	N 70.3393°	W 151.0491°	PBM-F
		SAK-A ¹	N 70.3646°	W 150.9217°	Pile 568 cap SW bol
SAK		SAK-B	N 70.3645°	W 150.9220°	
		SAK-C	N 70.3645°	W 150.9220°	
		TAM-A ¹	N 70.3917°	W 150.9115°	CP08-11-23
		TAM-B	N 70.3915°	W 150.9113°	
TAM	Indirect-Read	TAM-C	N 70.3914°	W 150.9113°	
		TAM-Z	N 70.3912°	W 150.9109°	
		ULAM-A ¹	N 70.4068°	W 150.8835°	CP08-11-35
		ULAM-B	N 70.4069°	W 150.8833°	
ULAM		ULAM-C	N 70.4070°	W 150.8831°	
		ULAM-Z	N 70.4070°	W 150.8831°	
G11	Direct-Read	G11	N 70.4175°	W 150.9105°	Pile 08
011	Direct field	G15-A ¹	N 70.3023°	W 150.9929°	CD4-20AE
G15		G15-B	N 70.3024°	W 150.9939°	
		G16-A ¹	N 70.3017°	W 150.9933°	
G16	Indirect-Read	G16-B	N 70.3018°	W 150.9933 W 150.9943°	
G17		G10-B	N 70.2933°	W 150.9943 W 150.9827°	NANUQ-5
617		G17-A G18-A	N 70.2930°	W 150.9827 W 150.9818°	NANOQ-5
G18	Direct-Read	G18-B ^{1,2,3,4}	N 70.2925°	W 150.9818 W 150.9828°	
G19	Direct-Read	G18-B-,-,-,-	N 70.2915°	W 150.9828 W 150.9882°	
619	Direct-Read	G19 G20-A	N 70.2913		PBM-P
G20		G20-A G20-B	N 70.2917	W 150.9968° W 150.9968°	P BIVI-P
C 40					CD4 13W/
G40	Indirect-Read	G40	N 70.3234°	W 150.9968°	CD4-12W
G41		G41	N 70.3235°	W 150.9949°	
G42		G42	N 70.3276°	W 150.9939°	CD4-10W
G43		G43	N 70.3274°	W 150.9924°	
G24		G24-A ¹	N 70.3030°	W 151.0065°	MONUMENT 25
		G24-B	N 70.3034°	W 151.0041°	
G25		G25-A ¹	N 70.3044°	W 151.0066°	
		G25-B	N 70.3046°	W 151.0049°	
	Indirect-Read	G26-A ¹	N 70.3024°	W 151.0227°	MONUMENT 25
		G26-B ¹	N 70.3022°	W 151.0206°	
G26		G26-C	N 70.3022°	W 151.0190°	
		G26-D	N 70.3022°	W 151.0190°	
		G26-E	N 70.3023°	W 151.0185°	

11.29.18 • PAGE A.3

2018 COLVILLE RIVER DELTA

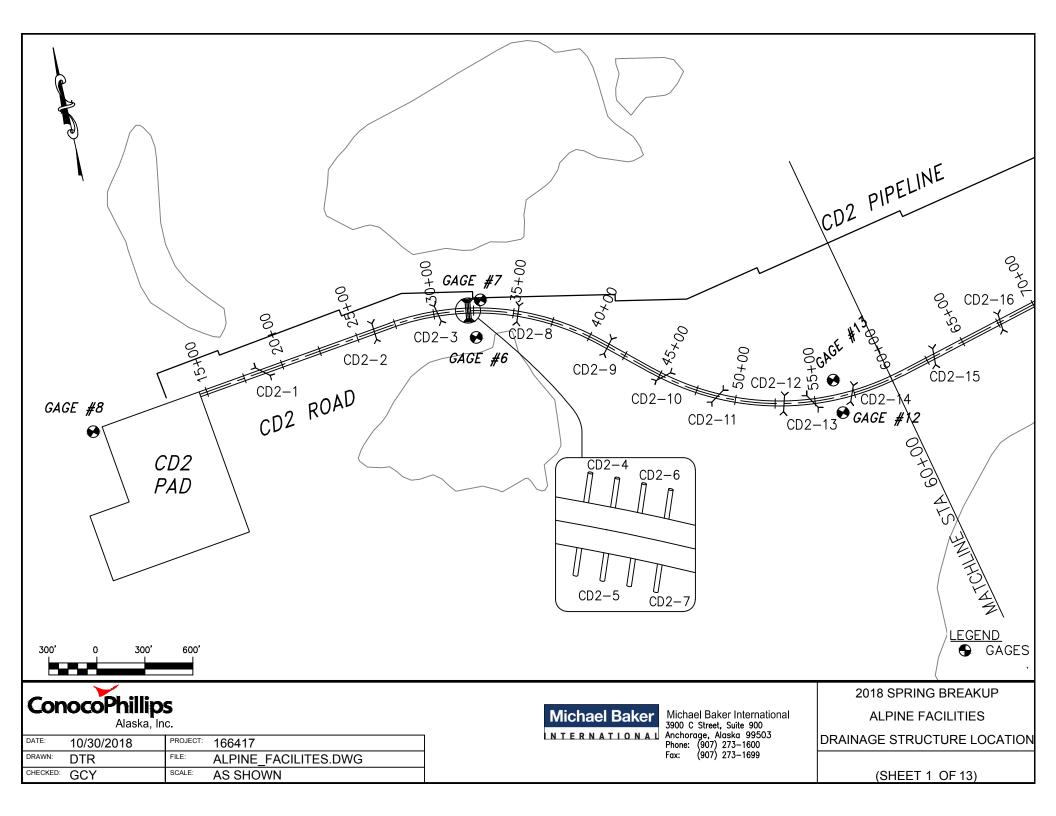
	Gage Type	Gage Assembly	Latitude (NAD83)	Longitude (NAD83)	Control
		G27-A ¹	N 70.3033°	W 151.0224°	MONUMENT 25
		G27-B ¹	N 70.3033°	W 151.0207°	J
G27		G27-C	N 70.3033°	W 151.0194°	J
		G27-D	N 70.3032°	W 151.0185°	J
		G27-E	N 70.3032°	W 151.0179°	J
		G28-A ¹	N 70.2961°	W 151.0328°]
		G28-B	N 70.2961°	W 151.0331°]
G28		G28-C	N 70.2961°	W 151.0331°	
		G28-D	N 70.2961°	W 151.0332°]
		G28-E	N 70.2961°	W 151.0335°	
		G29-A ¹	N 70.3095°	W 151.0332°	
		G29-B	N 70.3095°	W 151.0334°]
G29		G29-C	N 70.3095°	W 151.0337°	
		G29-D	N 70.3094°	W 151.0343°	
		G29-E	N 70.3093°	W 151.0350°	
C 22		G32-A ¹	N 70.3054°	W 151.0507°	MONUMENT 27
G32		G32-B	N 70.3055°	W 151.0513°]
	Indirect-Read	G33-A ¹	N 70.3065°	W 151.0484°]
G33		G33-B	N 70.3065°	W 151.0487°	
		G33-C	N 70.3068°	W 151.0500°	
		G38-A ¹	N 70.3046°	W 151.1187°	MONUMENT 29
C 20		G38-B ¹	N 70.3046°	W 151.1185°]
G38		G38-C	N 70.3046°	W 151.1183°]
		G38-D	N 70.3047°	W 151.1172°]
		G39-A ¹	N 70.3064°	W 151.1177°	1
G39		G39-B ¹	N 70.3063°	W 151.1175°	
		G39-C	N 70.3063°	W 151.1172°	
G30		G30 ¹	N 70.3046°	W 151.0443°	CD5-40S
G31		G31 ¹	N 70.3051°	W 151.0437°	
G34		G34 ¹	N 70.3060°	W 151.0710°	CD5-35S
G35		G35 ¹	N 70.3067°	W 151.0711°	ĺ
G36		G36 ¹	N 70.3055°	W 151.0968°	MONUMENT 28
G37		G37 ¹	N 70.3063°	W 151.0971°	(CD5)
		S1-A ¹	N 70.3058°	W 151.1944°	MONUMENT 31
S1		S1-D ¹	N 70.3066°	W 151.1957°	

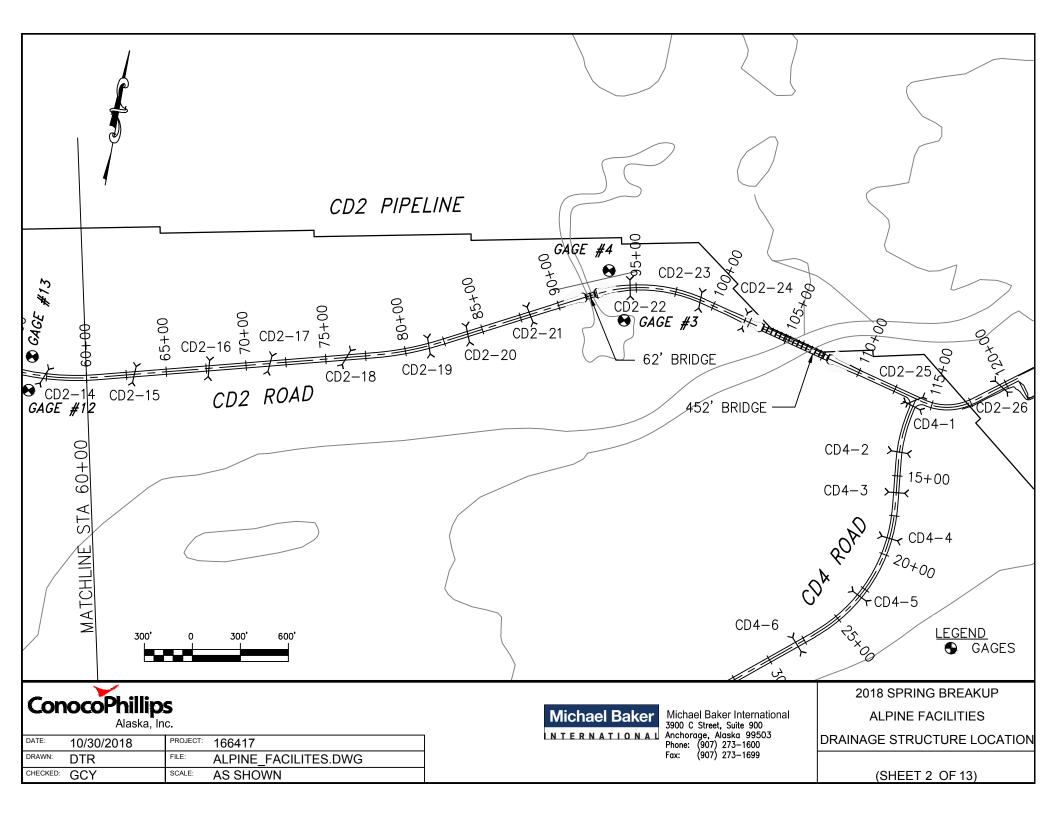
2018 COLVILLE RIVER DELTA

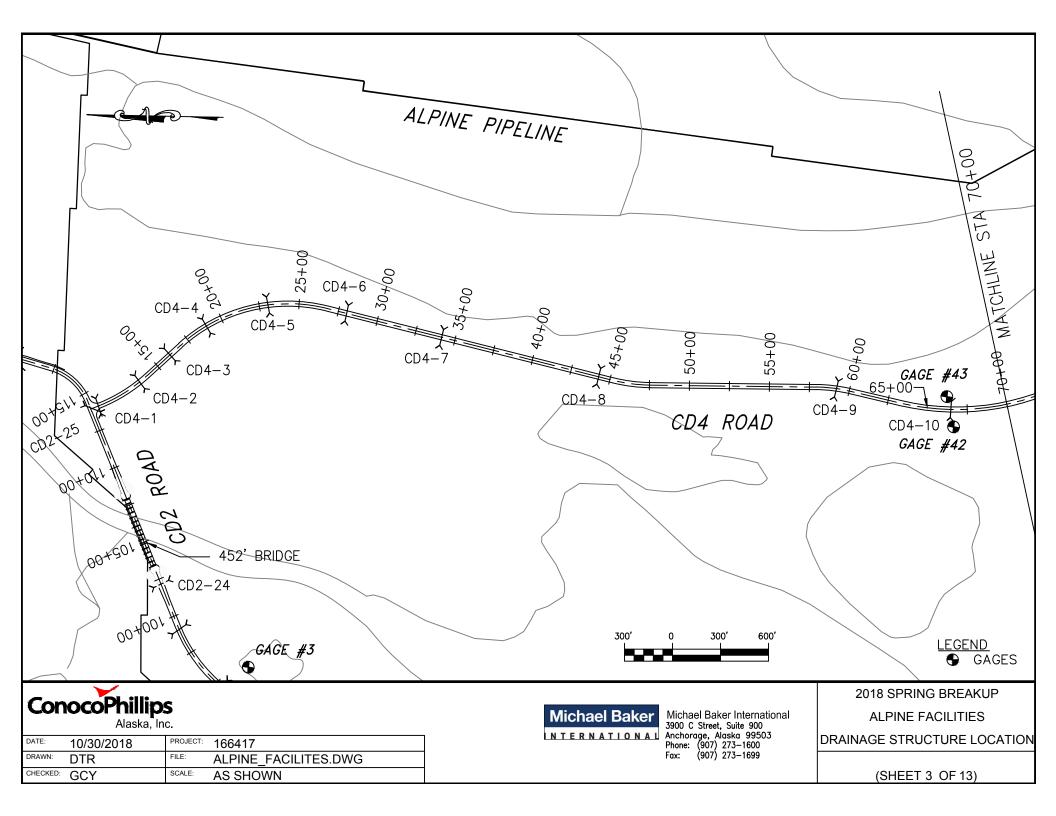
CULVERT LOCATIONS A.4

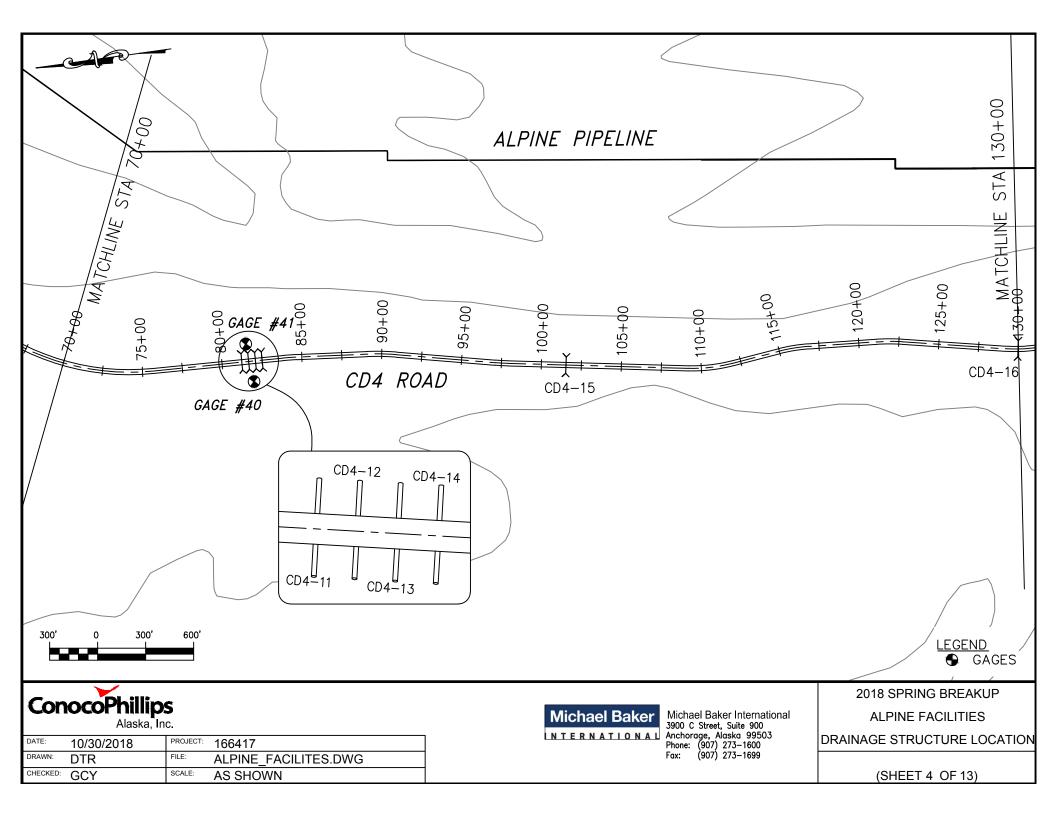
Culvert	Station	Latitude (NAD83)	Longitude (NAD83)
CD2-01N		N 70.3396	W 151.0403
CD2-01S	18+71	N 70.3395	W 151.0396
CD2-02N		N 70.3399	W 151.0340
CD2-02S	26+12	N 70.3397	W 151.0340
CD2-03N		N 70.3399	W 151.0308
CD2-03S	30+24	N 70.3397	W 151.0306
CD2-04N		N 70.3399	W 151.0292
CD2-04S	32+01	N 70.3397	W 151.0292
CD2-05N		N 70.3399	W 151.0291
CD2-05S	32+10	N 70.3397	W 151.0292
CD2-06N		N 70.3399	W 151.0290
CD2-06S	32+21	N 70.3397	W 151.0291
CD2-07N		N 70.3399	W 151.0290
CD2-07S	32+30	N 70.3397	W 151.0291
CD2-08N		N 70.3397	W 151.0265
CD2-08S	35+29	N 70.3394	W 151.0268
CD2-09N		N 70.3388	W 151.0200
CD2-09S	41+30	N 70.3386	W 151.0224
CD2-093	<u> </u>	N 70.3381	W 151.0227 W 151.0198
CD2-10N CD2-10S	45+25	N 70.3379	W 151.0198
CD2-11N		N 70.3375	W 151.0200
CD2-11N CD2-11S	48+85	N 70.3374	W 151.0174 W 151.0180
CD2-113 CD2-12N		N 70.3372	W 151.0180
CD2-12N CD2-12S	53+08		
CD2-125 CD2-13N		N 70.3370 N 70.3371	W 151.0145
	54+84	N 70.3371	W 151.0133
CD2-13S			W 151.0129
CD2-14N	57+38	N 70.3371	W 151.0110
CD2-14S		N 70.3369	W 151.0111
CD2-15N	63+01	N 70.3373	W 151.0065
CD2-15S		N 70.3372	W 151.0066
CD2-16N	67+69	N 70.3377	W 151.0029
CD2-16S		N 70.3375	W 151.0029
CD2-17N	71+51	N 70.3380	W 150.9999
CD2-175		N 70.3378	W 150.9999
CD2-18N	76+29	N 70.3383	W 150.9960
CD2-185		N 70.3381	W 150.9963
CD2-19N	81+56	N 70.3387	W 150.9922
CD2-195		N 70.3386	W 150.9921
CD2-20N	84+06	N 70.3391	W 150.9905
CD2-20S		N 70.3389	W 150.9901
CD2-21N	88+50	N 70.3396	W 150.9873
CD2-21S		N 70.3394	W 150.9869
CD2-22N	94+42	N 70.3403	W 150.9829
CD2-22S		N 70.3401	W 150.9827
CD2-23N	98+66	N 70.3403	W 150.9793
CD2-23S		N 70.3402	W 150.9795
CD2-24N	101+43	N 70.3402	W 150.9771
CD2-24S		N 70.3400	W 150.9772
CD2-25N	113+94	N 70.3393	W 150.9670
CD2-255		N 70.3391	W 150.9679
CD2-26N	119+33	N 70.3397	W 150.9638
CD2-26S		N 70.3396	W 150.9632
CD4-01E	10+50	N 70.3391	W 150.9670
CD4-01W		N 70.3391	W 150.9678
CD4-02E	13+51	N 70.3383	W 150.9674
CD4-02W		N 70.3383	W 150.9679
CD4-26E	201+05	N 70.2932	W 150.9813
CD4-26W		N 70.2934	W 150.9818
CD4-27E	201+05	N 70.2932	W 150.9815
CD4-27W		N 70.2934	W 150.9820

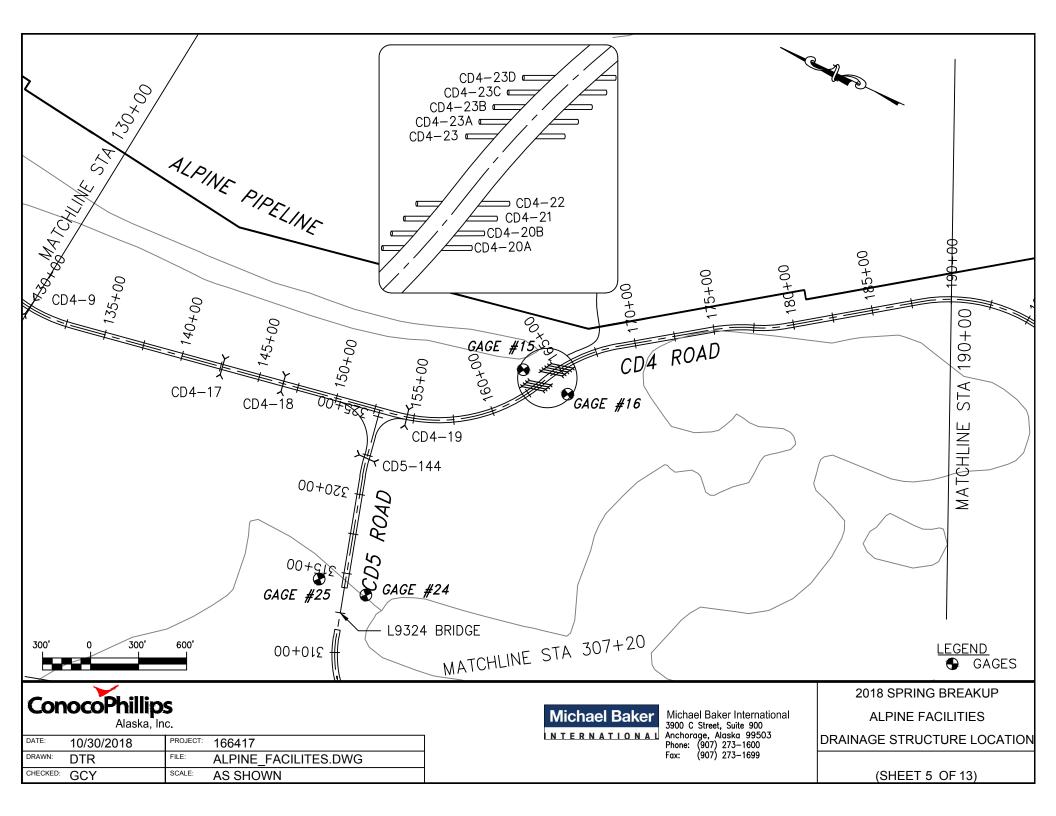
Culvert	Station	Latitude	Longitude
	Station	(NAD83)	(NAD83)
CD4-03E	16+02	N 70.3376	W 150.9672
CD4-03W		N 70.3376	W 150.9676
CD4-04E	18+95	N 70.3368	W 150.9669
CD4-04W		N 70.3369	W 150.9674
CD4-05E	23+08	N 70.3358	W 150.9680
CD4-05W		N 70.3359	W 150.9685
CD4-06E	28+03	N 70.3347	W 150.9707
CD4-06W		N 70.3349	W 150.9711
CD4-07E	34+16	N 70.3336	W 150.9747
CD4-07W		N 70.3338	W 150.9750
CD4-08E	44+28	N 70.3318	W 150.9811
CD4-08W		N 70.3320	W 150.9815
CD4-09E	59+20	N 70.3287	W 150.9886
CD4-09W		N 70.3288	W 150.9890
CD4-10E	66+48	N 70.3273	W 150.9929
CD4-10W		N 70.3274	W 150.9934
CD4-11E	81+24	N 70.3235	W 150.9954
CD4-11W		N 70.3235	W 150.9961
CD4-12E	81+66	N 70.3234	W 150.9954
CD4-12W		N 70.3234	W 150.9961
CD4-13E	82+09	N 70.3233	W 150.9955
CD4-13W		N 70.3233	W 150.9961
CD4-14E	82+51	N 70.3232	W 150.9955
CD4-14W		N 70.3232	W 150.9960
CD4-15E	102+00	N 70.3179	W 150.9980
CD4-15W		N 70.3179	W 150.9985
CD4-16E	129+97	N 70.3104	W 151.0003
CD4-16W		N 70.3104	W 151.0009
CD4-17E	143+00	N 70.3070	W 150.9990
CD4-17W		N 70.3068	W 150.9994
CD4-18E	146+55	N 70.3059	W 150.9985
CD4-18W		N 70.3059	W 150.9989
CD4-19E	154+57	N 70.3038	W 150.9973
CD4-19W		N 70.3037	W 150.9978
CD4-20AE	162+95	N 70.3022	W 150.9937
CD4-20AW		N 70.3019	W 150.9936
CD4-20BE	163+15	N 70.3021	W 150.9934
CD4-20BW		N 70.3018	W 150.9933
CD4-21E	163+35	N 70.3021	W 150.9933
CD4-21W		N 70.3018	W 150.9932 W 150.9932
CD4-22E	163+55	N 70.3021	
CD4-22W		N 70.3018	W 150.9930
CD4-23E CD4-23W	164+40	N 70.3019	W 150.9926
		N 70.3017	W 150.9925
CD4-23AE CD4-23AW	164+60	N 70.3019 N 70.3016	W 150.9924 W 150.9923
CD4-23AW CD4-23BE		N 70.3019	W 150.9923 W 150.9923
CD4-23BE CD4-23BW	164+80	N 70.3019	W 150.9923 W 150.9922
CD4-23BW CD4-23CE		N 70.3016	W 150.9922 W 150.9921
	165+00	-	
CD4-23CW		N 70.3016	W 150.9920
CD4-23DE CD4-23DW	165+20	N 70.3018 N 70.3016	W 150.9920 W 150.9919
CD4-23DW CD4-24E		N 70.2942	W 150.9798
CD4-24E CD4-24W	197+02	N 70.2942	W 150.9798 W 150.9803
CD4-25E	200+89	N 70.2933	W 150.9812
CD4-25W	126 - 42	N 70.2934	W 150.9818
CD5-21S	126+42	N 70.3033	W 151.1546 W 151.1513
CD5-22N	130+54	N 70.3034	
CD5-22S	149.07	N 70.3032	W 151.1512
CD5-23N	148+07	N 70.3043	W 151.1377

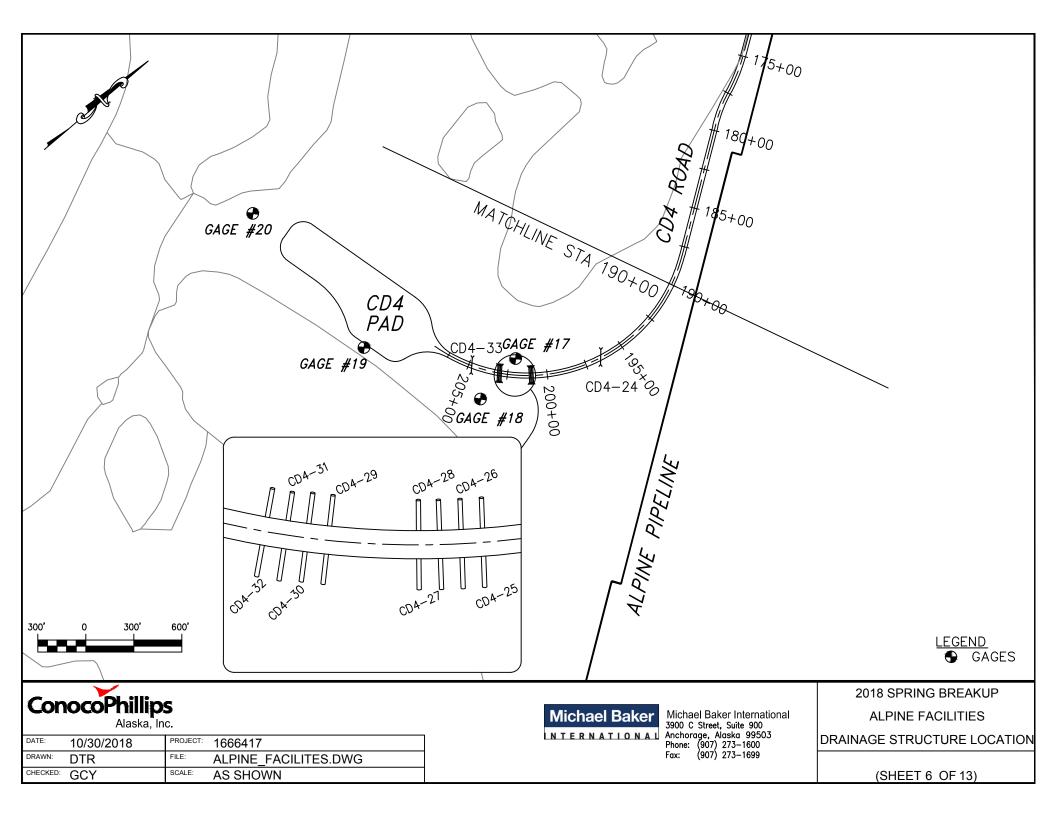


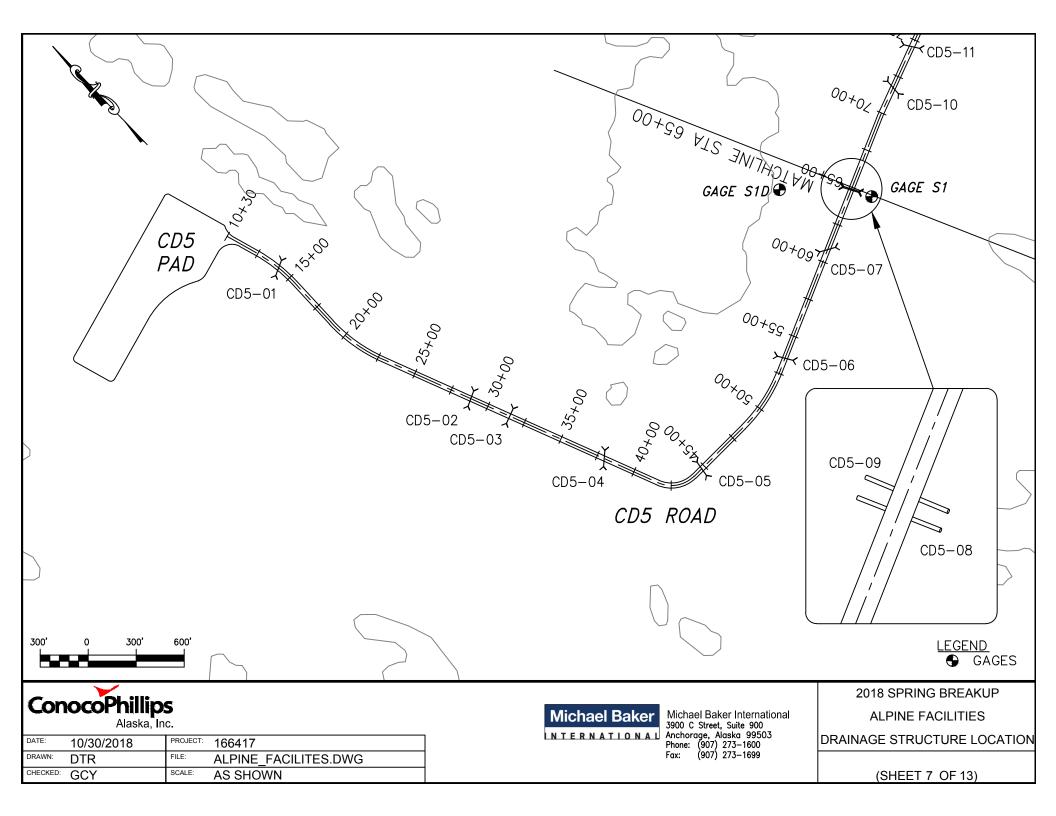

2018 COLVILLE RIVER DELTA

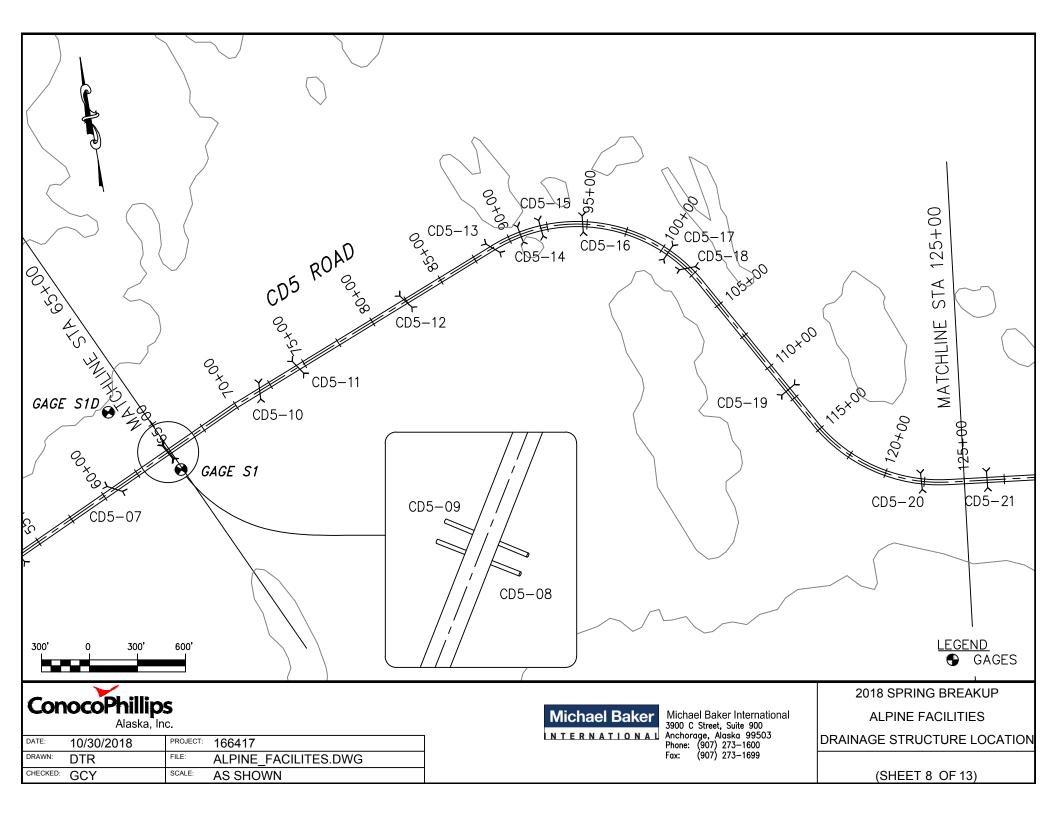

Culvert	Station	Latitude	Longitude
CD4-28E		(NAD83) N 70.2932	(NAD83) W 150.9816
CD4-28U	201+21	N 70.2933	W 150.9810
CD4-29E		N 70.2929	W 150.9825
CD4-29W	201+21	N 70.2931	W 150.9828
CD4-30E		N 70.2929	W 150.9826
CD4-30W	201+37	N 70.2930	W 150.9829
CD4-31E		N 70.2928	W 150.9827
CD4-31W	201+37	N 70.2930	W 150.9830
CD4-32E		N 70.2928	W 150.9828
CD4-32W	202+88	N 70.2930	W 150.9832
CD4-33E		N 70.2926	W 150.9838
CD4-33W	202+88	N 70.2928	W 150.9841
CD5-01E		N 70.3122	W 151.2186
CD5-01W	14+08	N 70.3121	W 151.2190
CD5-02E		N 70.3083	W 151.2161
CD5-02W	28+83	N 70.3082	W 151.2166
CD5-03E		N 70.3076	W 151.2153
CD5-03W	31+50	N 70.3075	W 151.2158
CD5-04N		N 70.3060	W 151.2134
CD5-04S	37+97	N 70.3059	W 151.2138
CD5-05N		N 70.3047	W 151.2103
CD5-05S	44+77	N 70.3045	W 151.2104
CD5-06N		N 70.3051	W 151.2036
CD5-06S	53+53	N 70.3049	W 151.2033
CD5-07N		N 70.3059	W 151.1984
CD5-07S	60+82	N 70.3058	W 151.1978
CD5-08N		N 70.3064	W 151.1953
CD5-08S	64+82	N 70.3062	W 151.1950
CD5-09N		N 70.3064	W 151.1952
CD5-09S	64+89	N 70.3062	W 151.1950
CD5-10N	74.74	N 70.3072	W 151.1900
CD5-10S	71+74	N 70.3070	W 151.1901
CD5-11N	74.50	N 70.3074	W 151.1881
CD5-11S	74+56	N 70.3073	W 151.1878
CD5-12N	02.45	N 70.3082	W 151.1821
CD5-12S	82+45	N 70.3081	W 151.1818
CD5-13N	88+82	N 70.3089	W 151.1774
CD5-13S	00+02	N 70.3087	W 151.1769
CD5-14N	90+76	N 70.3090	W 151.1757
CD5-14S	50+70	N 70.3088	W 151.1756
CD5-15N	92+09	N 70.3091	W 151.1746
CD5-15S	52105	N 70.3089	W 151.1746
CD5-16N	94+73	N 70.3090	W 151.1724
CD5-16S	54175	N 70.3088	W 151.1725
CD5-17N	100+44	N 70.3083	W 151.1683
CD5-17S	200.11	N 70.3081	W 151.1686
CD5-18N	101+99	N 70.3079	W 151.1673
CD5-18S		N 70.3079	W 151.1679
CD5-19N	111+86	N 70.3056	W 151.1634
CD5-19S		N 70.3055	W 151.1639
CD5-20N	122+31	N 70.3037	W 151.1578
CD5-20S		N 70.3035	W 151.1578
CD5-21N	126+42	N 70.3035	W 151.1545

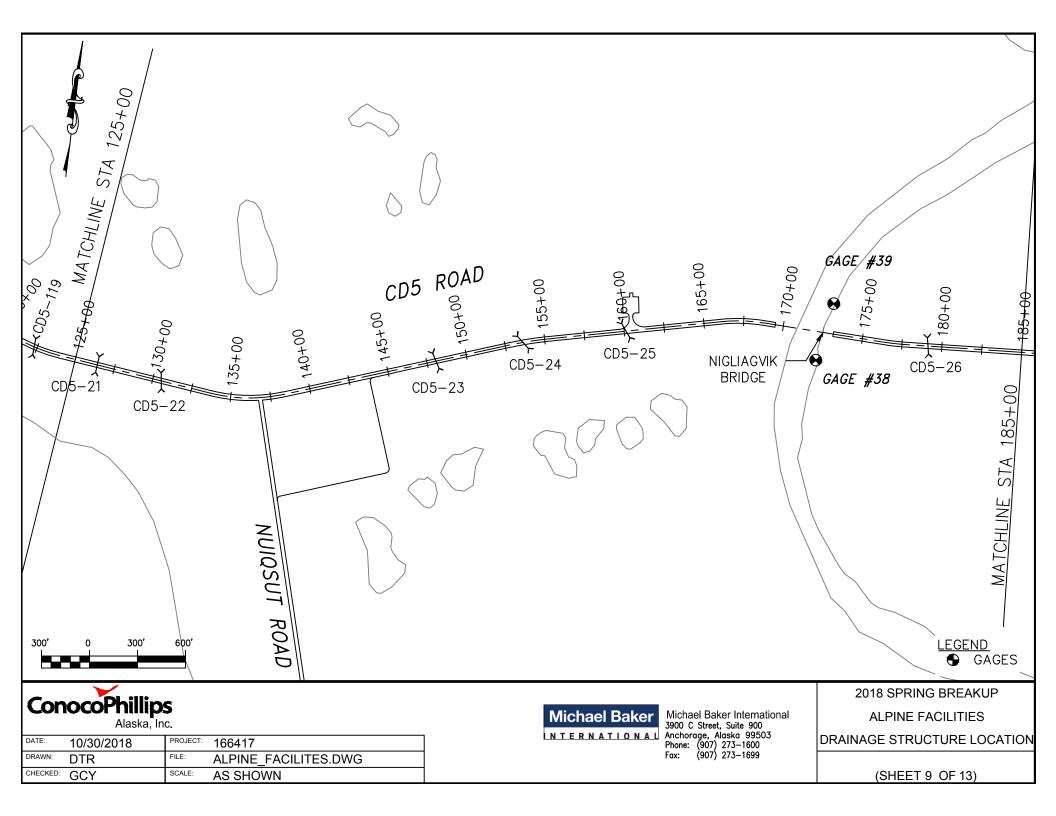

		Latitude	Longitude	
Culvert	Station	(NAD83)	(NAD83)	
CD5-23S		N 70.3041	W 151.1374	
CD5-24N		N 70.3048	W 151.1336	
CD5-24S	153+63	N 70.3046	W 151.1331	
CD5-25N	100.11	N 70.3052	W 151.1284	
CD5-25S	160+11	N 70.3050	W 151.1280	
CD5-26N	170.12	N 70.3056	W 151.1130	
CD5-26S	179+13	N 70.3054	W 151.1129	
CD5-27N	100,00	N 70.3058	W 151.1054	
CD5-27S	188+59	N 70.3056	W 151.1052	
CD5-28N	196+71	N 70.3059	W 151.0987	
CD5-28S	190+71	N 70.3057	W 151.0987	
CD5-29N	201+40	N 70.3060	W 151.0951	
CD5-29S	201+40	N 70.3058	W 151.0948	
CD5-30N	205+72	N 70.3060	W 151.0916	
CD5-30S	203+72	N 70.3058	W 151.0913	
CD5-31N	209+46	N 70.3061	W 151.0885	
CD5-31S	209+40	N 70.3059	W 151.0883	
CD5-32N	216+78	N 70.3062	W 151.0824	
CD5-32S	210170	N 70.3060	W 151.0826	
CD5-33N	216+86	N 70.3062	W 151.0823	
CD5-33S	210180	N 70.3060	W 151.0825	
CD5-34N	225+38	N 70.3063	W 151.0755	
CD5-34S	223130	N 70.3061	W 151.0755	
CD5-35N	234+35	N 70.3065	W 151.0683	
CD5-35S	231:33	N 70.3063	W 151.0683	
CD5-36N	239+00	N 70.3065	W 151.0645	
CD5-36S		N 70.3064	W 151.0645	
CD5-37N	245+56	N 70.3066	W 151.0592	
CD5-37S		N 70.3065	W 151.0592	
CD5-38N	249+12	N 70.3066	W 151.0563	
CD5-38S		N 70.3064	W 151.0564	
CD5-39N	254+23	N 70.3063	W 151.0522	
CD5-39S		N 70.3060	W 151.0525	
CD5-40N	265+63	N 70.3049	W 151.0439	
CD5-40S		N 70.3047	W 151.0441	
CD5-41N	272+56	N 70.3041	W 151.0388	
CD5-41S		N 70.3039	W 151.0391	
CD5-42N	276+40	N 70.3036	W 151.0359	
CD5-42S		N 70.3035	W 151.0365	
CD5-43N	322+30	N 70.3042	W 151.0003	
CD5-43S		N 70.3040	W 151.0003	

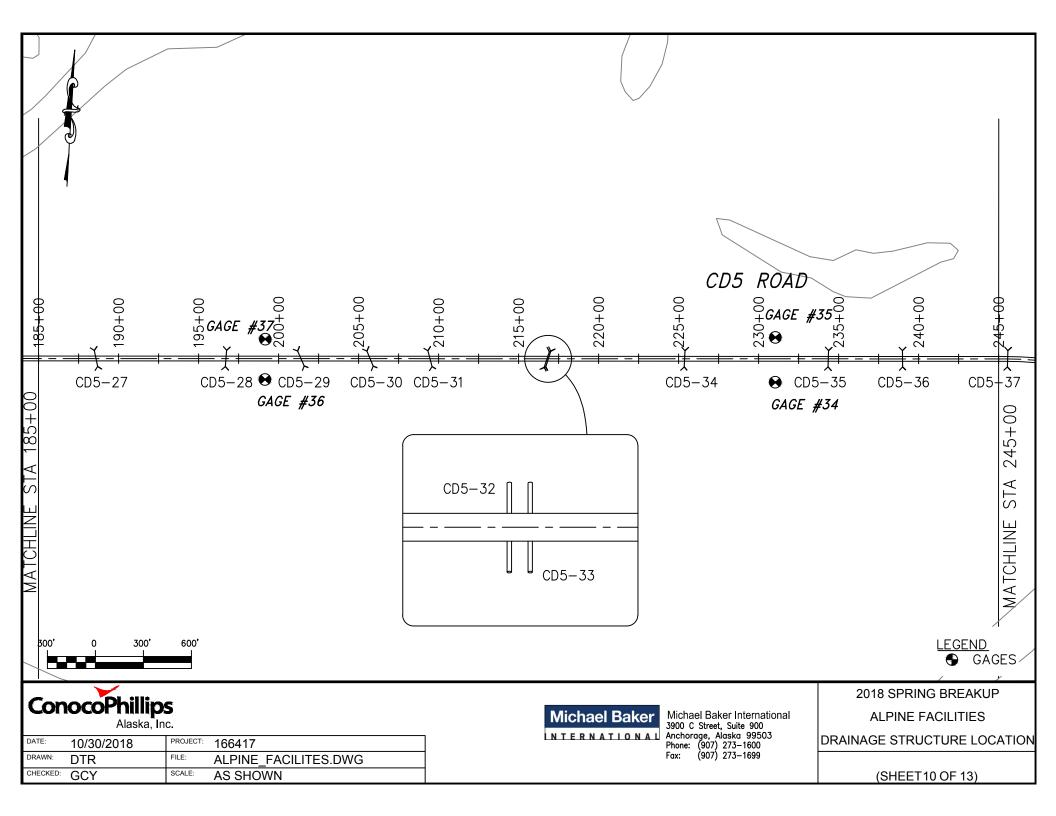


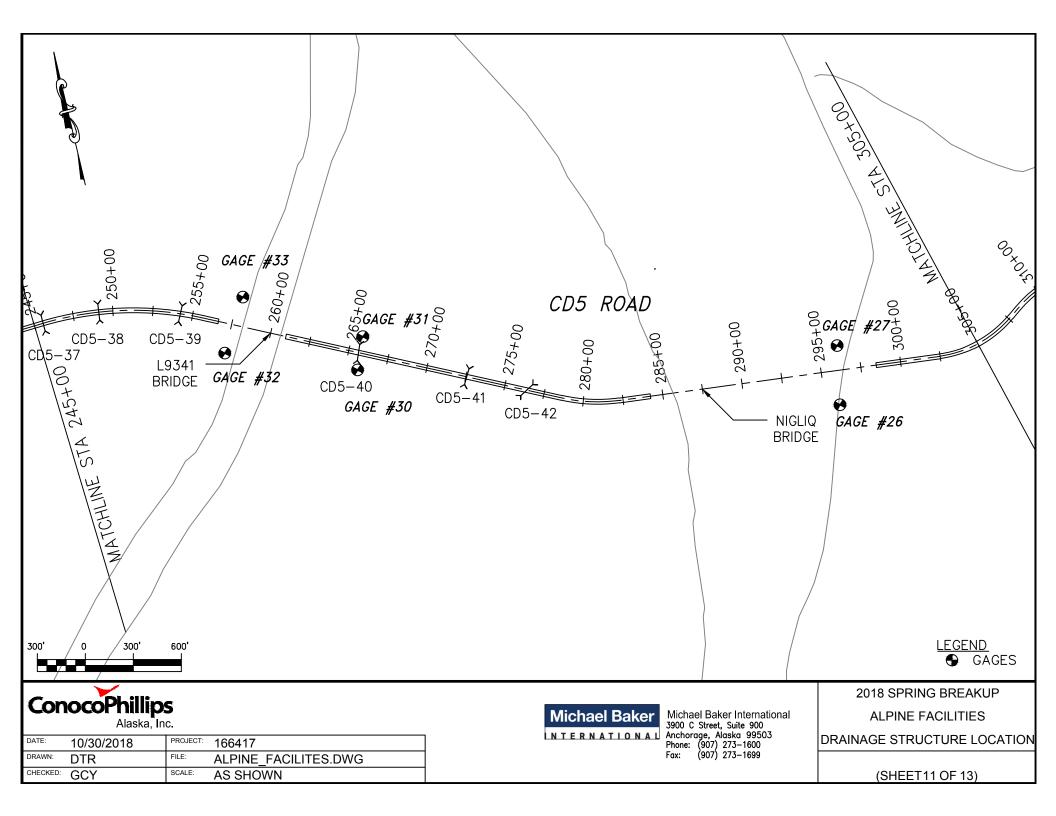


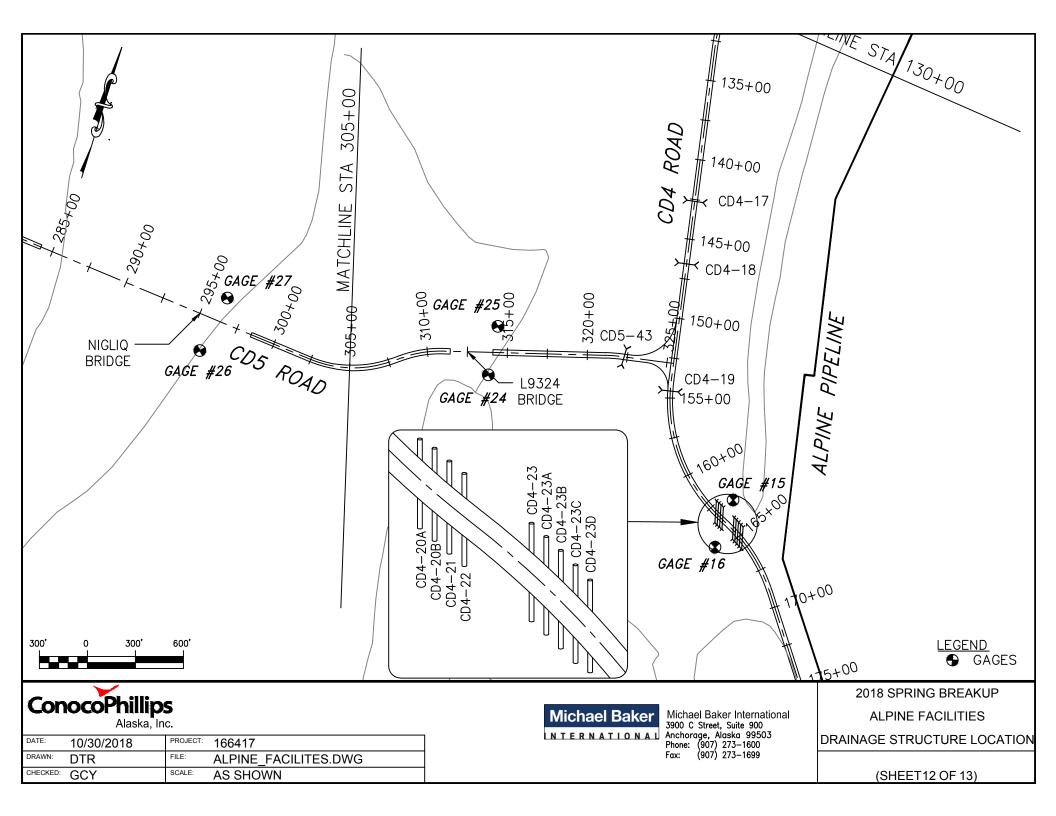


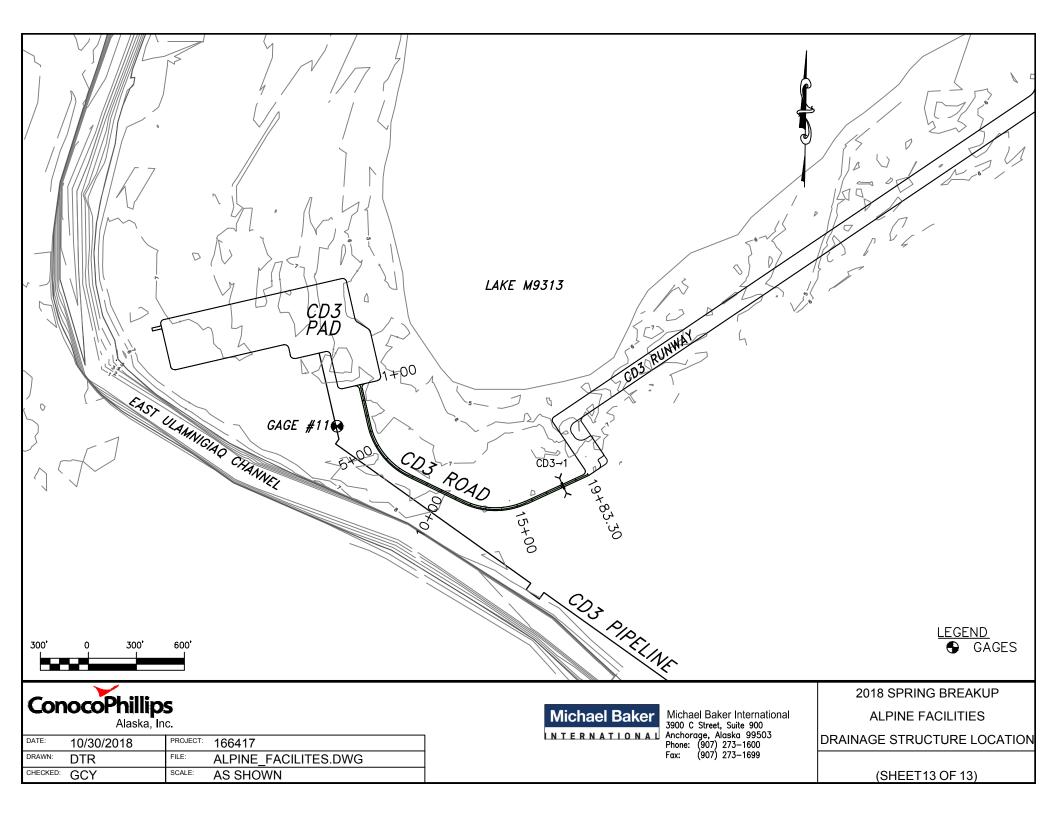












APPENDIX B PT SETUP & TESTING METHODS

PTs measure the absolute pressure of the atmosphere and water, allowing the depth of water above the sensor to be calculated. Resulting data yield a comprehensive record of the fluctuations in stage. The reported pressure is the sum of the forces imparted by the water column and atmospheric conditions. Variations in local barometric pressure were taken into account using a Solinst Barologger[®] barometric pressure logger. A correction of barometric pressure was obtained from the Solinst Levelogger installed at the Tinmiaqsiugvik Bridge.

The PTs were tested before field mobilization. The PTs were configured using Solinst Levelogger[®] v4.0.3 (for both the Solinst Leveloggers and Barologgers) software prior to placement in the field. Absolute pressure was set to zero. The PT sensor was surveyed during setup to establish a vertical datum using local control.

PT-based stage values were determined by adding the calculated water depth and the surveyed sensor elevation. PTs have the potential to drift and can be affected by ice and sediment. Gage WSE readings were used to validate and adjust the data collected by the PTs. A standard conversion using the density of water at 0°C was used to calculate all water depths from adjusted gage pressures. Fluctuations in water temperature during the sampling period did not affect WSE calculations because of the limited range in temperature and observed water depths

APPENDIX C DISCHARGE METHODS, SITE SPECIFIC INFORMATIN, & PLAN & PROFILE DRAWINGS

C.1 METHODS

C.1.1 MEASURED DISCHARGE

1) USGS Midsection Technique

Bridge flow depth and velocity measurements were taken from the upstream side of each bridge deck using a sounding reel mounted on a USGS Type A crane with 4-wheel truck. A Price AA velocity meter was attached to the sounding reel and stabilized with a counter weight. A tag line was placed along the bridge rail to define the cross section and to delineate measurement subsections within the channel. The standard rating table No.2 for Price AA velocity meters, developed by the USGS Office of Surface Water (OSW) Hydraulic Laboratory as announced in the OSW Technical Memorandum No. 99.05 (OSW 1999a), was used to convert revolutions to stream velocity. The Price AA velocity meter was serviced prior to spring breakup monitoring in accordance with USGS precise standards. A spin test of the meter was completed prior to and after each measurement. Procedures outlined in OSW Technical Memorandum No. 99.06 (OSW 1999b) were followed to confirm accurate meter performance. Discharge was calculated based on velocity and flow depth.

2) USGS Velocity/Area Technique

Standard USGS velocity/area techniques (USGS 1968) were used to measure depth of flow and velocity to determine discharge at each culvert experiencing flow. Depth of flow and velocity were measured on the downstream end of the culvert using a HACH FH950 electromagnetic velocity meter attached to a wading rod. The accuracy of the HACH meter is \pm 2% of the reading, \pm 0.05 ft/s between 0 ft/s and 10 ft/s, and \pm 4% of the reading from between 10 ft/s and 16 ft/s. Discharge was calculated based on velocity, flow depth, and culvert geometry.

3) ADCP METHODS

Direct discharge measurements were collected at MON1 using an Acoustic Doppler Current Profiler (ADCP).

A. HARDWARE & SOFTWARE

A Teledyne RD Instruments 600-kilohertz Workhorse Sentinel broadband ADCP was used. The unit has a phased array, Janus four-beam transducer with a 20-degree beam angle. The ADCP unit and supporting laptop (Panasonic Toughbook CF-19) were self-powered via internal batteries.

BBTalk v3.06, a DOS-based communication program, was used to perform pre-deployment tests. WinRiverII v2.18 was used to configure, initiate, and communicate with the ADCP while on the river. WinRiverII was also used to review and evaluate collected discharge data after returning from the field.

B. PRE-DEPLOYMENT TESTING

Prior to deployment of the ADCP unit, a full suite of tests were run in accordance with the manufacturer's instructions using BBTalk. The tests confirmed the signal path and all major signal processing subsystems were functioning properly. Tests also confirmed accurate tilt and pitch readings. A beam continuity test was performed to verify the transducer beams were connected and operational. Additional diagnostic tests were performed using WinRiverII. Pre-deployment tasks also included compass calibration and verification and a moving bed test. The internal compass was calibrated multiple times until the error was down to 13.19°, which is still outside the specified

5° limit. Additional compass calibration did not decrease the error beyond 13.19° so the overall measurement rating was reduced. A loop test was performed to detect and estimate compensation for a moving bed.

C. ADCP DEPLOYMENT & DATA COLLECTION

The Workhorse Sentinel ADCP was mounted to an Achilles SGX-132 inflatable raft powered by a Tohatsu 9.8 horsepower outboard motor. A fabricated aluminum tube framework spanning the boat's gunwales provided a rigid and secure placement of the ADCP unit, and allowed necessary navigation adjustments as river conditions required.

Cross sections were identified at established monitoring sites MON1C. A minimum of four transects were completed, so the measured discharges varied by less than five percent of their mean. Cross section end points were dependent on a depth associated with a minimum of two good bins to provide acceptable data.

Cross section end points were marked with handheld GPS units having wide area augmentation system enabled accuracy. The position of the boat was determined by tracking the bottom of the channel with the ADCP. Distances to the right and left edge of water from respective end points were estimated from GPS coordinates.

D. ADCP BACKGROUND & DATA PROCESSING

An ADCP measures the velocity of particles in the water. Particles, on average, move at the same horizontal velocity of the water relative to the ADCP unit. The velocity of flow is then calculated relative to the earth, based on the simultaneous velocity and position of the boat. The velocity and position of the boat were recorded by tracking the bottom of the channel with the ADCP unit.

The Colville River channel is composed of fine-grained sediment, and water velocities are sufficient to entrain the materials resulting in a moving river bed condition. When using bottom tracking, a moving bed can affect the accuracy of the results by biasing the velocity and discharge lower than actual values. This phenomenon can be eliminated with the use of either a differential global positioning system (DGPS), the loop method (USGS 2006). To account for the bias introduced by a moving bed, the loop method was employed.

The loop method is a technique to determine whether a moving bed is present and, if present, to provide an approximate correction to the final discharge value. The USGS established guidance for the loop method by outlining procedures for mean correction and distributed correction (USGS 2006). Both procedures yield results within 2 percent of the actual discharge, as measured using DGPS. The mean correction procedure was applied to the Colville River discharge calculations because of the simple geometry of the channel cross section. The results of the loop test, performed during discharge measurements, was used to estimate the mean velocity of the moving bed. The mean velocity was multiplied by the cross-sectional area perpendicular to the mean observed flow to yield a discharge correction. The resulting correction was applied to each transect, and the resulting direct discharge measurement was determined by averaging the corrected discharge measurements.

C.1.2 PEAK DISCHARGE

Bentley CulvertMaster[®] software was used to calculate peak discharge through the CD2 road culverts. Timing and magnitude of peak discharge through the culverts was determined based on recorded stage on both sides of the road prism. Peak discharge results were evaluated against visual assessment of performance. Average velocity and discharge through the culverts assumes ice-free open-water conditions and were estimated based on several variables, including:

- Headwater and tailwater elevations at each culvert (hydraulic gradient)
- Culvert diameter and length from UMIAQ as-built surveys (UMIAQ 2002, 2017)
- Culvert upstream and downstream invert elevations (UMIAQ 2017, 2018d)

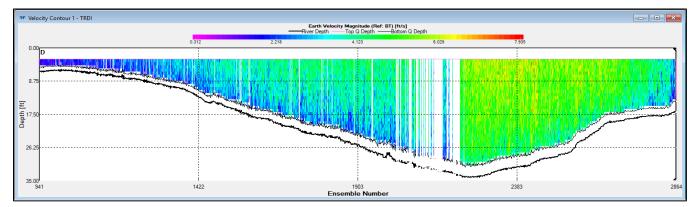
• Culvert Manning's roughness coefficients (0.013 for smooth steel and 0.024 for corrugated metal pipe)

1) Normal Depth

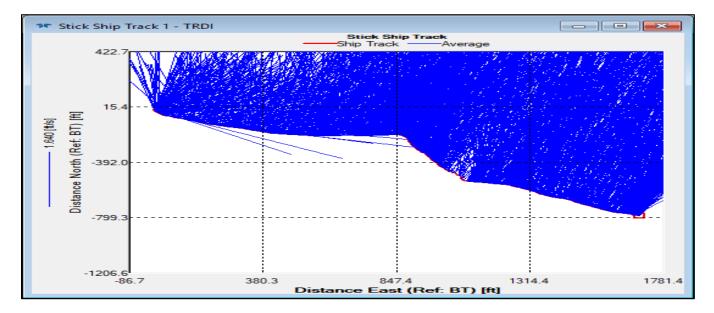
The Normal Depth method (Chow 1959) was used to calculate peak discharge at MON1, MON9, and the Nigliq Bridge using channel cross section geometry and stage differential between gage sites as an estimate for the energy grade line.

Cross sectional geometry for MON1 is current as of 2004 (UMIAQ 2004), MON9 is current as of 2014 (UMIAQ 2014), cross sectional geometry at the Nigliagvik Bridge and Nigliq Bridge is current as of 2016 (UMIAQ 2016a). Because of channel bed morphology, cross sectional geometry becomes less accurate with time, particularly for those CRD channels that are predominantly comprised of fine grained soils or have bottom-fast ice. Stage and energy gradient data were obtained from observations, gage data, and PT data.

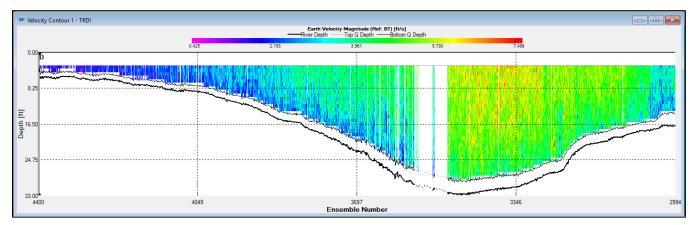
C.2 Site Specific Data & Plan & Profile Drawings

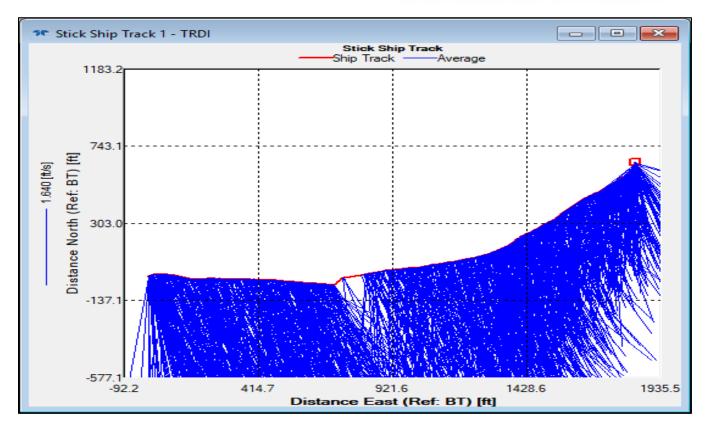

C.2.1 MON1

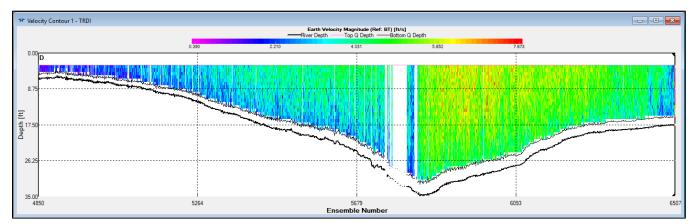
1)


MON1 JUNE 3 SPRING BREAKUP MEASURED DISCHARGE SUMMARY

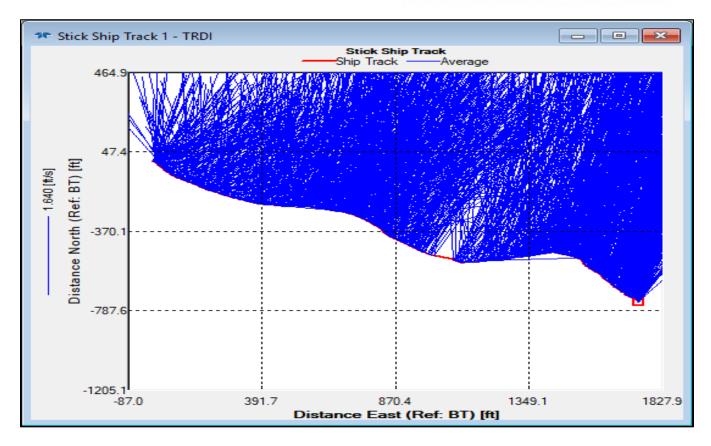
	Area (ft²)	Unadjusted Measured Discharge (cfs)	Discharge Correction Attributed to Moving Bed (cfs)	Adjusted Measured Discharge (cfs)	Error	Average Velocity (ft/s)
Transect MON1000 at 18:21	40,184	153,724	13,904	167,628	-0.22%	4.17
Transect MON1001 at 18:36	41,296	155,672	14,288	169,960	1.17%	4.12
Transect MON1002 at 18:50	40,518	152,667	14,019	166,686	-0.78%	4.11
Transect MON1004 at 19:26	40,735	153,644	14,094	167,738	-0.16%	4.12
Average	40,683	153,927	14,076	168,000		4.13

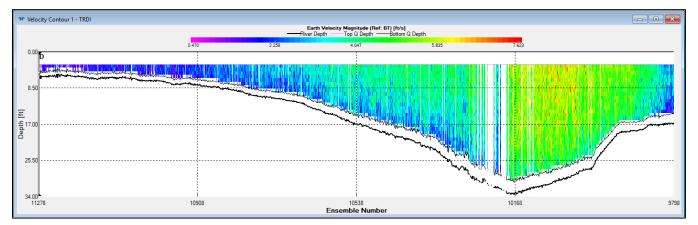

E. TRANSECT MON1000 RAW DATA OUTPUT

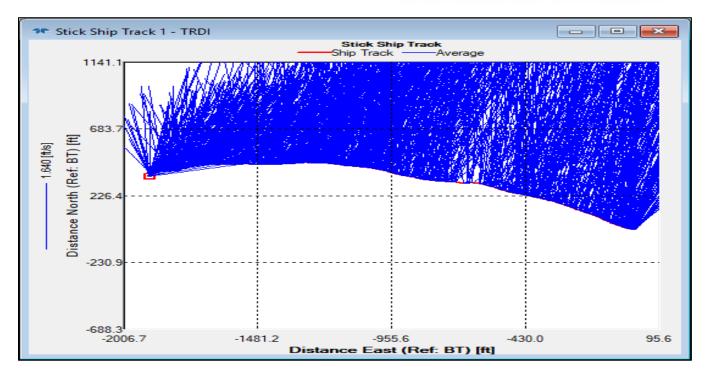




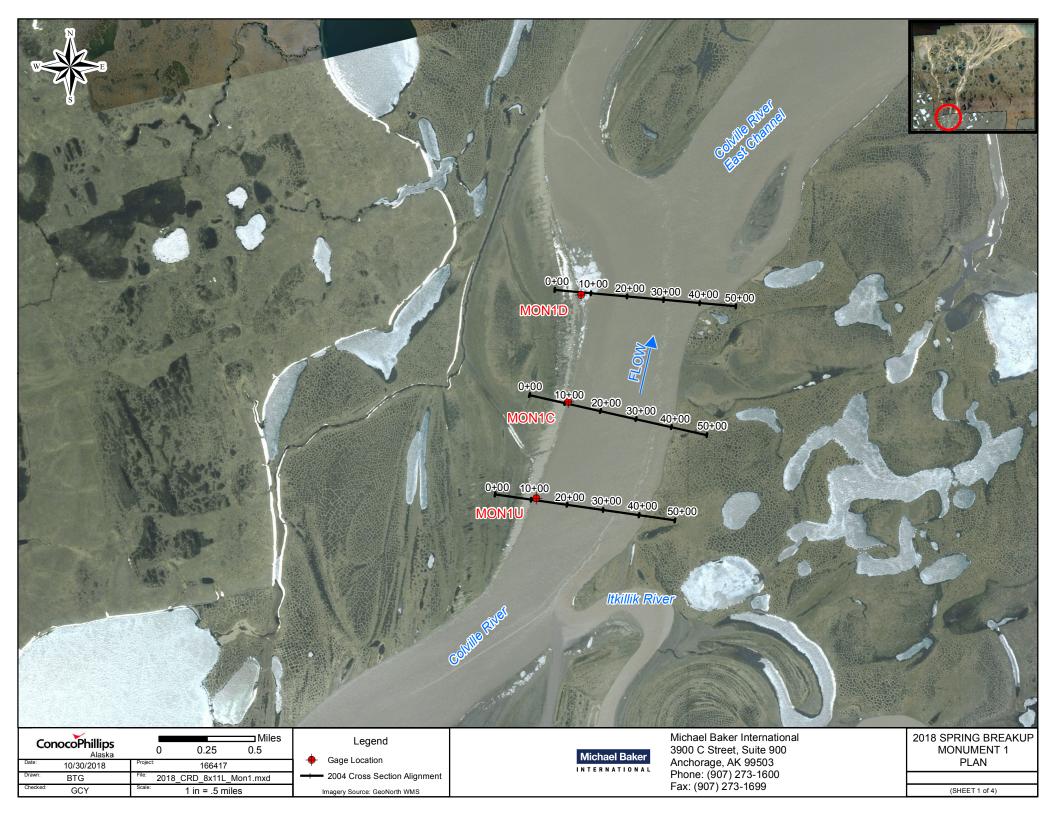
F. TRANSECT MON1001 RAW DATA OUTPUT



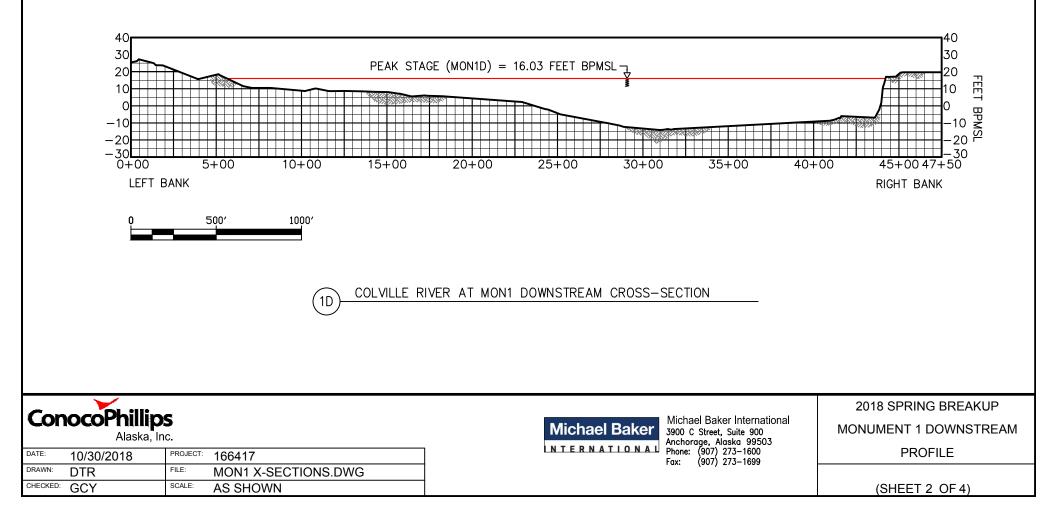

G. TRANSECT MON1002 RAW DATA OUTPUT



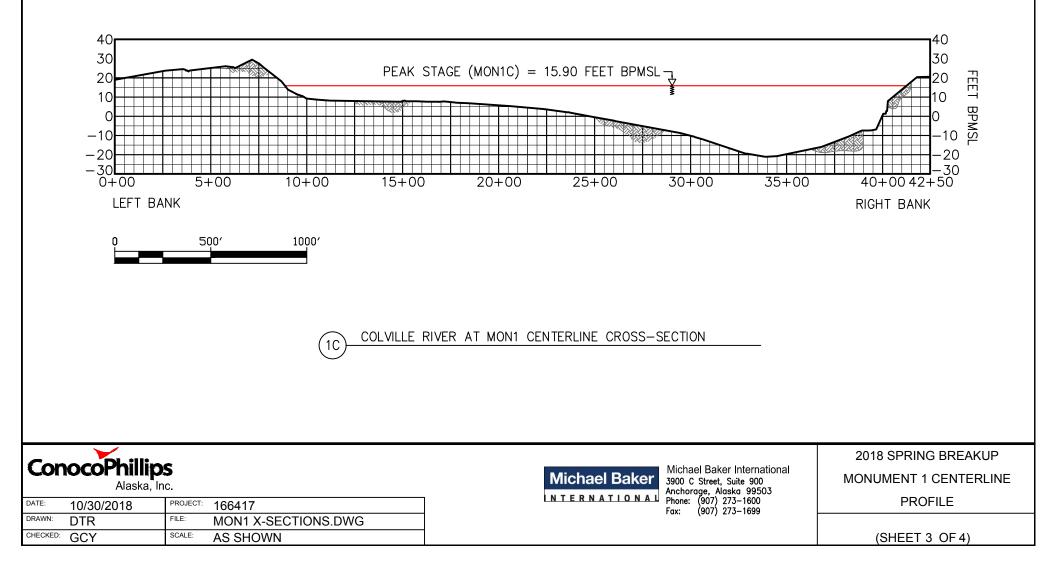
H. TRANSECT MON1004 RAW DATA OUTPUT



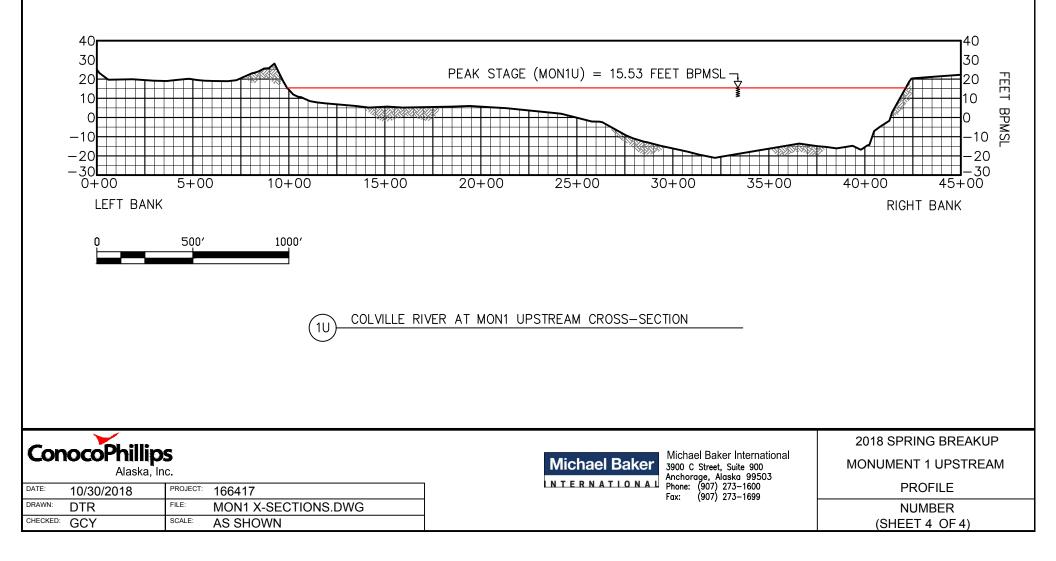
2) PEAK DISCHARGE DATA


Peak discharge at MON1 was calculated indirectly using the Normal Depth method. The Slope Area method was not used because of the limited time that stage was high enough to be recorded by the MON1D PT. The energy grade-line was approximated by the average water surface slope between MON1U, MON1C, and MON1D. Manning's n roughness values used were 0.0256 for the main channel and 0.06 for the overbanks, based on 2016 measured discharge and corresponding WSE.

3) PLAN & PROFILES

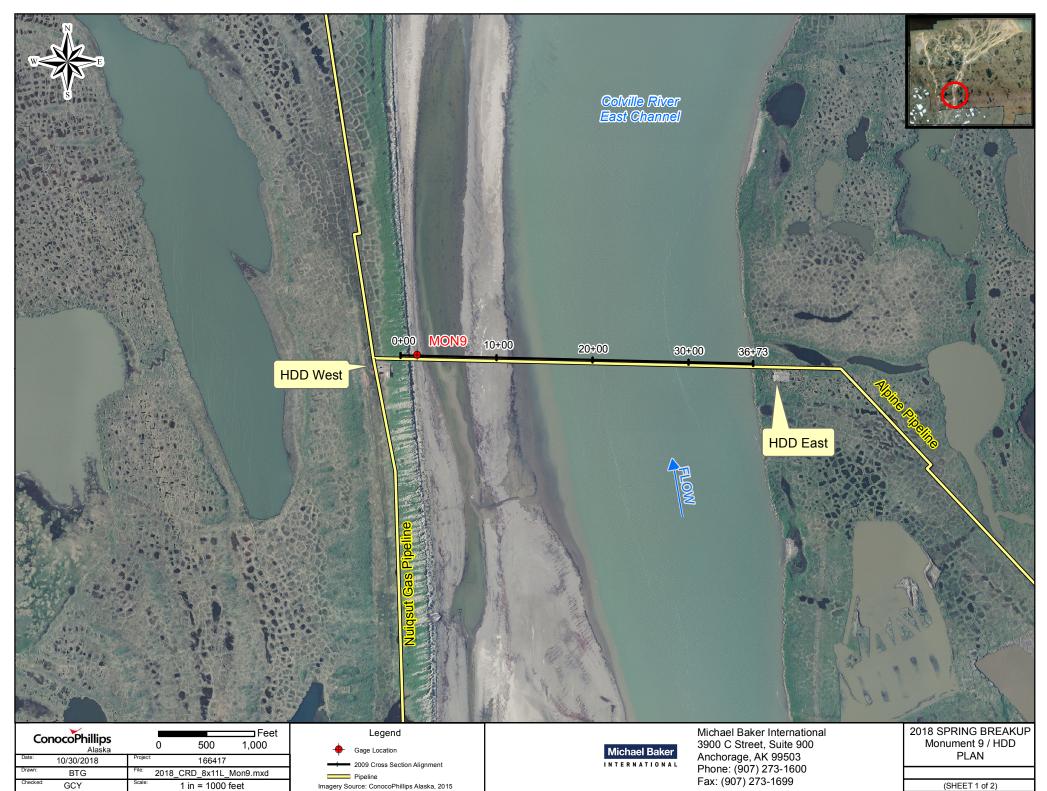


- 1. BASIS OF ELEVATION, MONUMENT 1.
- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED
 - AUGUST 2004 BY UMIAQ (KUUKPIK/LCMF INC.)



- 1. BASIS OF ELEVATION, MONUMENT 1.
- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED AUGUST 2004 BY UMIAQ (KUUKPIK/LCMF INC.)

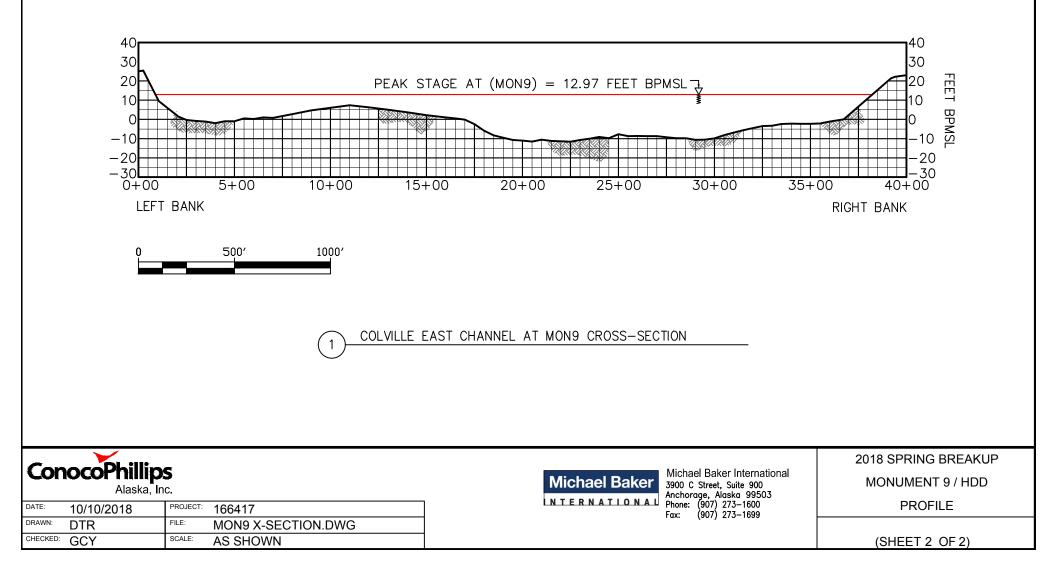
- 1. BASIS OF ELEVATION, MONUMENT 1.
- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED
 - AUGUST 2004 BY UMIAQ (KUUKPIK/LCMF INC.)


C.2.2 MON9

1) PEAK DISCHARGE DATA

The energy grade-line was approximated by the water surface slope between MON9 and MON9D. Manning's n roughness values used were 0.021 for the low flow channel and 0.023 for the main channel.

2) PLAN & PROFILE



Imagery Source: ConocoPhillips Alaska, 2015

- 1. BASIS OF ELEVATION, MONUMENT 9.
- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED NOVEMBER 2009 BY UMIAQ (KUUKPIK/LCMF INC.)

C.2.3 NIGLIQ BRIDGE

1)

Γ

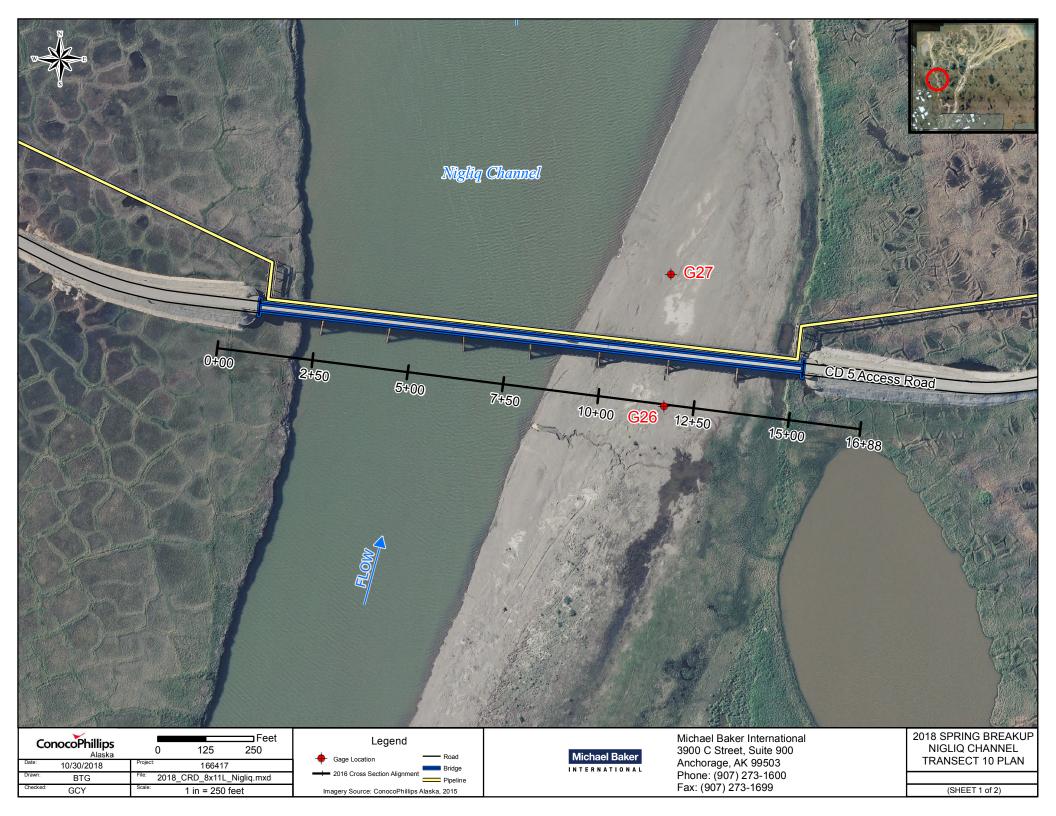
MEASURED DISCHARGE

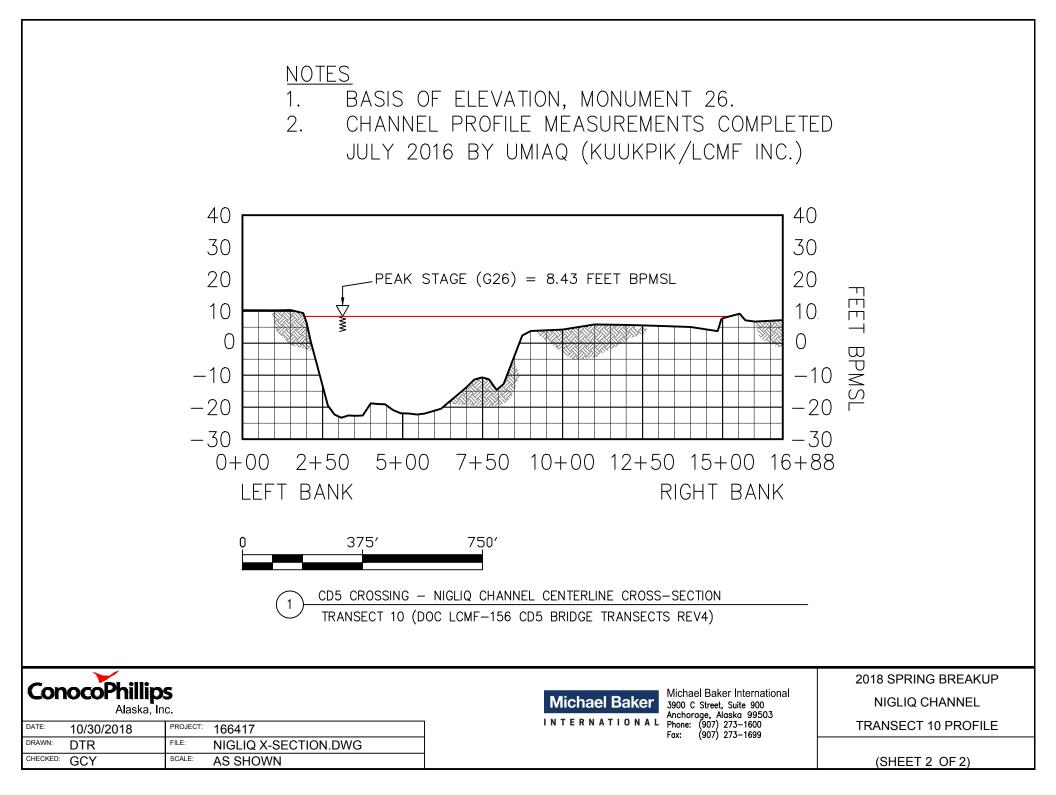
Michael Bake		Discha	arge Measure	ment Notes	E)ate:	June 4, 2018
	ime:	Nialia Br	idae		C	omputed By Checked By	: KDB
	ME, GCY, MDM, KDB			55 Finish:			
	31 °F						
Channel Characte							
	dth: 750 ft						
	nod: 0.6; 0.2/0.8; S						N/A
Spin T	est: OK	minutes after	OK minutes	Meter:		Price AA	
	GAGE READ		Channe	Meter:	f	t above botto	om of weight
Gage G26	Start 6.01	Finish 5.77	Change 0.24	Weight:	50	lbs	
G27	5.97	5.7	0.27			lce Boat	
				Upstream	or	ownstream	side of bridge
GPS Data: W Left Edge of		ä	п	LE Floodplain:	o	ï	
Water:	W º	·······					
Right Edge of				RE Floodplain:	°		
Water:	AA						
EE	Bridge Abutment						
E E Measurement Rate Descriptions:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section: Flow:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section: Flow:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section: Flow:	Bridge Abutment ed: Excellent			·			
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						
E E Measurement Rate Descriptions: Cross Section: Flow: Remarks:	Bridge Abutment ed: Excellent						

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

	Distance		È.	2				VELOCITY			
Angle Coeff	Distance from initial point	Section Width	Water Depth	Observed Depth	Revolution Count	Time Increment	At Point	Mean in Vertical	Adjusted for Angle Coeff	Area	Discharge
	(ft)	(ft)	(ft)	(ft)		(sec)	(fps)	(fps)	(fps)	(s.f.)	(cfs)
	120										
1	120	10.0	5.5	4.4	6	46	0.31	0.33	0.33	55.0	18.32
0.9	140	20.0	6.9	1.1 5.5	7 15	45 53	0.36 0.64	0.87	0.78	138.0	107.75
1	160	15.0	22.4	1.4 17.9	20 25	41 48	1.09 1.17	1.43	1.43	336.0	480.73
1	170	15.0	23.8	4.5 19	35 30	46 47	1.70 1.43	1.66	1.66	357.0	592.50
	190	20.0	26.3	4.8	40 50	47 48	1.89 2.31	2.52	2.52	526.0	1323.42
1	210	20.0	27.6	5.3 22.1	60 50	49 48	2.72 2.31	2.52	2.52	552.0	1420.55
		2018220	10,000,000,000,000	5.5 23	60 40	47 41	2.83 2.17		(K22 (K23-327)		
1	230	20.0	28.8	5.8 23.7	50 50	41 45	2.71 2.47	2.44	2.44	576.0	1404.12
1	250	20.0	29.6	5.9 23.4	60 50	44	3.02	2.75	2.75	592.0	1625.61
1	270	20.0	29.3	5.9 23.3	60 50	49 42 49	3.17	2.72	2.72	586.0	1592.49
1	290	20.0	29.1	5.8	60	49	2.72	2.49	2.49	582.0	1450.68
1	310	20.0	27.9	22.3 5.6	50 60	47 47	2.36 2.83	2.60	2.60	558.0	1449.62
1	330	20.0	28.7	23 5.7	50 60	48 46	2.31 2.89	2.60	2.60	574.0	1494.72
1	350	20.0	27.3	21.8 5.5	40 50	41 44	2.17 2.52	2.35	2.35	546.0	1280.94
1	370	20.0	25.6	20.5 5.1	40 60	41 44	2.17 3.02	2.60	2.60	512.0	1329.45
1	390	20.0	25.2	20.2 5	50 60	49 48	2.27 2.77	2.52	2.52	504.0	1270.43
1	410	20.0	25.0	20 5	40 60	40 45	2.22 2.96	2.59	2.59	500.0	1295.03
1	430	20.0	24.9	19.9 5	50 60	49 47	2.27 2.83	2.55	2.55	498.0	1269.91
1	450	20.0	24.3	19.4 4.9	50 50	47 48	2.36 2.31	2.34	2.34	486.0	1136.71
1	470	20.0	25.1	20.1	40 60	42 47	2.12 2.83	2.48	2.48	502.0	1242.46
1	490	20.0	25.5	20.4 5.1	40 60	42	2.12	2.51	2.51	510.0	1277.87
1	510	20.0	25.8	20.6	50	46 47	2.89 2.36	2.57	2.57	516.0	1325.38
1	530	20.0	30.6	5.2 24.5	50 50	40 47	2.77 2.36	2.24	2.24	612.0	1371.17
1	550	20.0	30.8	6.1 24.6	40 30	42 50	2.12 1.34	1.66	1.66	616.0	1022.04
1	570	20.0	24.8	6.2 19.8	40 40	45 41	1.98 2.17	2.27	2.27	496.0	1123.97
1	590	25.0	21.2	5 17	50 40	47 44	2.36 2.02	2.05	2.05	530.0	1084.10
1	620	30.0	18.3	4.2	40 40	43 49	2.07 1.82	1.88	1.88	549.0	1030.10
1	650	30.0	16.9	3.7 13.5	40 25	46 42	1.94 1.33	-2050702	1.00	507.0	760.90
				3.4 16	30 20	40 51	1.67 0.88	1.50			
1	680	35.0	20.0	4 20.4	20 7	43 54	1.04	0.96	0.96	700.0	674.00
1	720	30.0	25.5	5.1 15.8	3	55 57	0.14	0.22	0.22	765.0	168.94
1	740	25.0	19.7	3.9	5	69	0.18	0.19	0.19	492.5	95.74
1	770	40.0	5.0	4	10 7	52 53	0.44	0.38	0.38	200.0	75.08
1	820	50.0	3.5	2.1	0	0	0.00	0.00	0.00	175.0	0.00
1	870	25.0	1.0	0.0	0.0	0.0 st depth avera	0.00	2.75		25.0	0.00


11.29.18 • PAGE C.16


2) PEAK DISCHARGE DATA

Peak discharge was calculated using the Normal Depth method. The channel geometry applied in the Normal Depth calculation was from Transect 10 surveyed for the *Monitoring Plan with an Adaptive Management Strategy* in July 2016. The friction slope used in the Normal Depth calculation was based on WSEs at gages G26 and G28. The channel roughness values used were calibrated from the measured discharge. Manning's n values used were 0.095 for the left overbank, 0.06 for the right overbank, and 0.036 for the main channel. Main channel roughness is relatively high to account for minor obstructions from the bridge piers and scour holes.

3) PLAN & PROFILE

C.2.4 NIGLIAGVIK BRIDGE

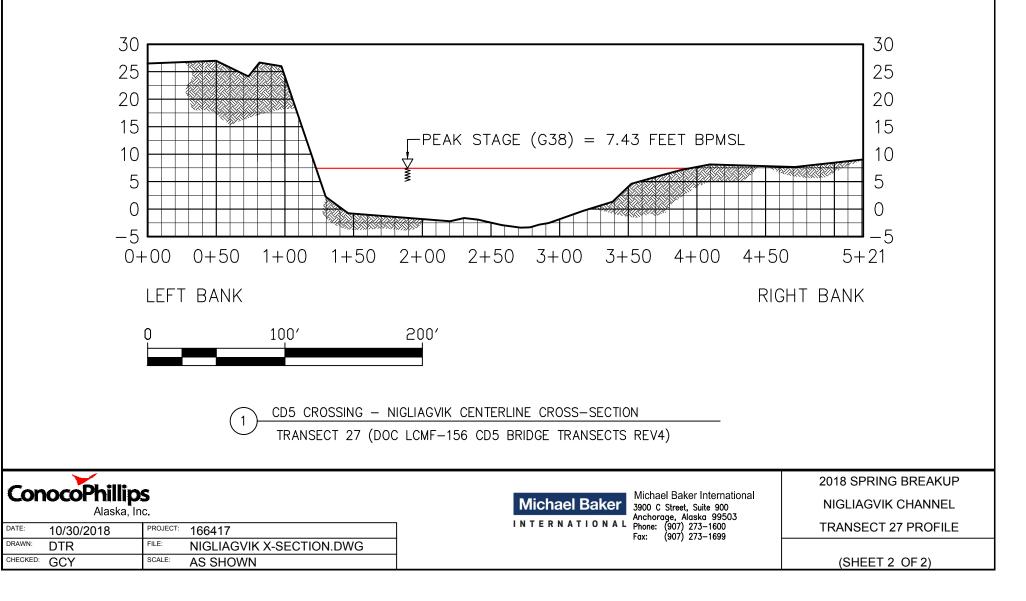
1) MEASURED DISCHARGE

Discharge was not measured at the Nigliagvik Bridge as floodwaters were not observed at gages G38/G39.

2) PEAK DISCHARGE DATA

Peak discharge was not calculated at the Nigliagvik Bridge as floodwaters were not observed at gages G38/G39.

3) PLAN & PROFILE



1. BASIS OF ELEVATION, MONUMENT 29.

2. CHANNEL PROFILE MEASUREMENTS COMPLETED JULY 2016 BY UMIAQ (KUUKPIK/LCMF INC.)

C.2.5 LONG SWALE BRIDGE 1) MEASURED DISCHARGE

NTERNATIONAL		2100	nu ge meusu	rement Notes	С	omputed By	June 3, 2018 KDB
Location Name:		Long Swa	ale Bridge			Checked By	WAB
Party: G	CY, SME, KAO	Start:	6/3/2018 1	0:20 Finish:	6/3/2	018 13:15	
Temp:	26 °F	Weather:		Fog	gy/Overca	st	
Channel Characteristi	cs:						
Width	430.5 f	ft Area: 2090	sq ft	Velocity: 1.50	fps	Discharge	: 3143 cfs
		Number of s					
		minutes after				rice AA- Brow	
Spin rest.	GAGE REA		UN seco				
Gage	Start	Finish	Change				m of weight
G3 G4	7.05 6.89	6.87 6.75	-0.18 -0.14	Weight:	30	lbs	
				Wading	Cable	lce Boat	
				Upstream	or l	Downstream	side of bridge
GPS Data: W Brid					•		
Left Edge of Water:				LE Floodplain:			
Right Euge of 3	TN 04745			RE Floodplain:	•		
Measurement Rated: Descriptions: Cross Section:	Rated: Exceller				10	~	
Descriptions: Cross Section:	Rated: Exceller				St.	DRIFTED SHOW	
Descriptions: Cross Section: surement riptions: Flow:	Rated: Exceller					DRIFTED	
Descriptions: Cross Section: Flow: Remarks:	Rated: Exceller					DRIFTED SNOW	
Descriptions: Cross Section: surement Flow: s Section:	Rated: Exceller	nt Good (Fair)				DRIFTED	
Descriptions: Cross Section: Flow: Remarks:	Rated: Exceller		(Poor) based on to			DRIFTED SNOW	
Descriptions: Cross Section: Flow: Remarks:	Rated: Exceller	nt Good (Fair)	Poor based on to	Henrichtune"		DRIFTED	
Descriptions: Cross Section: Flow: Remarks:	Rated: Exceller	nt Good (Fair)	(Poor) based on TO Speak address (Correction of the speak (Correction of the speak (Correction of the speak) (Correction o	Hereform"		DRIFTOD SNOW	
Descriptions: Cross Section: Flow: Remarks:	Rated: Exceller	nt Good (Fair)	Poor based on to Speed address Speed address Spe	Henrythan'		DRIFTED	
Descriptions: Cross Section: Flow: s Section: Remarks:	Rated: Exceller	nt Good (Fair)	Poor based on to Speed address Speed address Spe	Hardparter		DRIFTON SHOW	
Descriptions: Cross Section: Flow: s Section: Remarks:	Rated: Exceller	nt Good (Fair)	Poor based on to Speed address Speed address Spe	Hardparter		DRIFTED	
Descriptions: Cross Section: Flow: s Section: Remarks:	Rated: Exceller	nt Good (Fair)	Poor base on to poor base on to specific delivery poor delivery	Hardpart		DRIFTON SHOW	
Descriptions: Cross Section: Flow: s Section: Remarks:	Rated: Exceller	nt Good (Fair)	Poor base on to poor base on to specific delivery poor delivery	Hardparter		DRIFTED	
Descriptions: Cross Section: Flow: s Section: Remarks:	Rated: Exceller	nt Good (Fair)	Poor base on to poor base on to specific delivery poor delivery	Hardpart		DRIFTED	
Descriptions: Cross Section: Flow: s Section: Remarks:	Rated: Exceller	nt Good (Fair)	Poor base on to poor base on to poor dilicits provide dilicits	Hardpart		DRIFTED	

ConocoPhillips Alaska INTERNATIONAL

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

Angle Coeff	Distance from initial	Section Width	Water Depth	Observed Depth	Revolution Count	Time Increment	At Point	VELOCITY Mean in	Adjusted for Angle	Area	Discharge
	point (ft)	(ft)	(ft)	(ft)		(sec)	(fps)	Vertical (fps)	Coeff (fps)	(s.f.)	(cfs)
1	15		0.0								
1	16	3.0	1.7	1.4	7	51	0.32	0.32	0.32	5.1	1.63
0.99	20	7.0	2.0	1.6	7	42	0.39	0.39	0.38	14.0	5.34
0.9	30	10.0	2.4	1.8	3	90	0.09	0.09	0.08	24.0	1.97
0.9	40	10.0	2.2	1.7	0	0		AND STORES	100 participa	22.0	0.00
0.7	50	10.0	3.2	1.9	7	93	0.18	0.18	0.13	32.0	4.12
0.5	60	10.0	4.0	2.4	15	61	0.56	0.56	0.28	40.0	11.20
0.99	70	7.5	3.5	2.1	40	45	1.98	1.98	1.96	26.3	51.39
0.99	75	5.0	3.4	2	50	43	2.58	2.58	2.56	17.0	43.45
1	80	5.0	3.5	2.1	60	48	2.77	2.77	2.77	17.5	48.54
1	85	5.0	4.2	3.4	50	47	2.36	2.53	2.53	21.0	53.23
1	90	7.5	4.2	0.8	50 40	41 42	2.71 2.12	2.54	2.54	31.5	79.93
1	100	10.0	3.6	0.8	60 50	45 41	2.96 2.71	2.71	2.71	36.0	97.44
1	110	15.0	3.4	2	50	46	2.41	2.41	2.41	51.0	123.13
1	130	20.0	3.5	2.1	40	43	2.07	2.07	2.07	70.0	144.81
1	150	20.0	4.7	3.8	30	43	1.56	1.84	1.84	94.0	172.66
1	170	20.0	4.1	0.9	40 25	42 41	2.12 1.36	1.69	1.69	82.0	138.76
1	190	20.0	4.1	0.8	40 30	44 48	2.02	1.76	1.76	82.0	144.05
1	210	21.0	5.3	0.8 4.2	40 20	42 54	2.12 0.83	1.50	1.50	111.3	167.13
1	232	15.0	6.3	1 5	40 50	41 41	2.17 2.71	3.00	3.00	94.5	283.88
0.75	232	9.0	13.1	1.3 10.5	70 7	47 97	3.30 0.18	1.25	0.93	117.9	110.15
0.75	240	9.0	14.3	2.6	50 20	48 47	2.31 0.96	1.25	0.93	143.0	103.91
0.7	250	20.0	7.4	2.9 5.9	22 25	44 41	1.12 1.36	1.04	0.75	143.0	126.19
0.98	200	omorphonol		1.5 4.5	15 30	44 47	0.77 1.43	1.89	Caracteria.	140.0	100103-00020-050
0.98	310	25.0 15.0	5.6	1.1	50 40	47 40	2.36	2.56	1.86 2.46	75.0	259.89 184.18
595356591	101402000			1 4	60 40	46 44	2.89 2.02	01.1001	10.0004.00.00	1000000000	0000000000000
0.92	320	10.0	5.0	1 3.8	60 50	45 44	2.96	2.49	2.29	50.0	114.53
0.96	330	10.0	4.7	0.9	60 50	45 54	2.96	2.74	2.63	47.0	123.65
0.96	340	10.0	4.1	0.8	40	44 42	2.02	2.04	1.96	41.0	80.32
0.75	350	10.0	4.2	0.8	<u>20</u> 10	45 45	1.00 0.51	1.30	0.97	42.0	40.80
0.6	360	10.0	5.5	1.1 4.4	10 15	46 45	0.50	0.50	0.30	55.0	16.58
1	370	10.0	5.5	1.1 3.7	25 25	43 54	1.04	0.90	0.90	55.0	49.26
1	380	15.0	4.6	0.9 4.2	30 20	45 47 47	1.43	1.36	1.36	69.0	94.00
0.99	400	20.0	5.2	4.2 1 3.4	30 20	47 42 49	0.90 1.59 0.92	1.27	1.26	104.0	131.21
0.98	420	15.0	4.3	0.9	30	49 43 48	1.56	1.24	1.21	64.5	78.18
1	430	7.5	3.6	2.2	25 20	48	1.17	1.17	1.17	27.0	31.49
0.99	435	5.0	3.4		7	40	0.39	1.12	1.11	17.0	18.85
0.98	440	5.0	3.0	1.8	55 205	200.07 28		0.39	0.38	15.0	5.66
1	445	3.0	2.7	1.6	5.0	64.0	0.19	0.19	0.19	8.1	1.54
	446										

Long Swale Bridge

ConocoPhillips Alaska INTERNATIONAL

C.2.6 SHORT SWALE BRIDGE

1) MEASURED DISCHARGE

	Date:	6/3/2018				Time:	4:22 PM	Method:	USGS cross section
	Location:	Short Swale Bridge				Crew:	GCY, SME, KAO	Observed Depth:	Water Surface
	Lat:	N 70.3402				Long:	W 150.9847	Equipment:	HACH METER
Station (ft)	Depth	Channel bottom elvation(ft BPMSL)	V1	V2	V3	Average Velocity (ft/s)	Section Width (ft)	Area (ft ²)	Discharge (ft ³ /s)
0+11.0	0	6.63	0	0	0	0.00	-	-	-
0+13.0	0.6	6.03	0	-0.04	-0.04	-0.03	2	1.20	-0.03
0+15.0	0.5	6.13	-0.05	-0.06	-0.06	-0.06	2	1.00	-0.06
0+17.0	0.8	5.83	-0.05	-0.05	-0.06	-0.05	2	1.60	-0.09
0+19.0	0.9	5.73	0.02	0.01	0.02	0.02	2	1.80	0.03
0+21.0	1	5.63	0.06	0.05	0.06	0.06	1.5	1.50	0.09
0+22.0	1	5.63	0.07	0.06	0.07	0.07	1	1.00	0.07
0+23.0	1	5.63	0.32	0.38	0.28	0.33	1	1.00	0.33
0+24.0	1.1	5.53	0.71	0.87	0.94	0.84	1	1.10	0.92
0+25.0	1.2	5.43	0.81	0.82	0.8	0.81	1	1.20	0.97
0+26.0	1.2	5.43	0.77	0.76	0.87	0.80	1	1.20	0.96
0+27.0	1.3	5.33	0.65	0.59	0.58	0.61	1	1.30	0.79
0+28.0	1.3	5.33	0.59	0.66	0.61	0.62	1	1.30	0.81
0+29.0	1.2	5.43	0.44	0.47	0.42	0.44	1	1.20	0.53
0+30.0	1.1	5.53	0.26	0.19	0.17	0.21	1	1.10	0.23
0+31.0	1	5.63	0.03	0.03	0.05	0.04	1	1.00	0.04
0+32.0	1.0	5.63	0.03	0.01	0.01	0.02	1.5	1.50	0.03
0+34.0	1	5.63	-0.02	-0.03	-0.01	-0.02	2	2.00	-0.04
0+36.0	1	5.63	-0.01	-0.01	0	-0.01	2	2.00	-0.01
0+38.0	1	5.63	-0.03	-0.02	-0.01	-0.02	3	3.00	-0.06
0+42.0	0.8	5.83	-0.07	-0.01	-0.01	-0.03	4	3.20	-0.10
0+46.0	0.5	6.13	0	-0.02	-0.01	-0.01	2.5	1.25	-0.01
0+47.0	0	6.63							
Notes:									
1. Measuren	nent perform	ned downstream of Crea Bridge.							
	, , , -	, , ,							
Total Width (ft)	Average Depth (ft)					Average Velocity (ft/s)	-	Total Area (ft ²)	Total Discharge (ft ³ /
36.0	1.0					0.22	_	31.5	5.4

C.2.7 CULVERTS

1) MEASURED DISCHARGE

Date	Time	Culvert ID	Flow Conditions	Flow Direction	Total Depth (ft)	Measured Depth (ft)	v1 (ft/s)	v2 (ft/s)	v3 (ft/s)	Upstream Gage	Upstream WSE (ft BPMSL)	Downstream Gage	Downstream WSE (ft BPMSL)	
6/2/2018	08:30	CD2-22	Flowing	South to North	2.0	0.80	0.32	0.31	0.30	G3	7.21	G4	7.20	
6/3/2018	17:27	CD2-20	Flowing	North to South	0.8	0.32	-0.36	-0.38	-0.37	G3	6.53	G4	6.47	Hydraulic connection may not h
6/3/2018	17:20	CD2-21	Flowing	South to North	1.3	0.52	0.90	0.88	0.90	G3	6.56	G4	6.46	
6/3/2018	17:37	CD2-22	Flowing	South to North	1.2	0.48	2.04	2.03	2.04	G6	6.53	G7	6.47	
Note: Any cu	ulvert not l	isted was obse	rved to either be	stagnant or dry at the	e time of th	ne discharge me	easureme	nts (June	2 or June	2 3).				

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT **2018 COLVILLE RIVER DELTA**

Notes

ot have been established through culvert at the time of measurement

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

2) PEAK DISCHARGE

				ulator Report k Differential		
olve For: Discharge						
Culvert Summary						
Allowable HW Elevation	7.14 ft	Headwater Depth/Height	0.28			
Computed Headwater Elevation	7.13 ft	Discharge	5.37 cfs			
Inlet Control HW Elev.	6.94 ft	Tailwater Elevation	6.89 ft			
Outlet Control HW Elev.	7.13 ft	Control Type	Outlet Control			
Grades						
Upstream Invert	6.03 ft	Downstream Invert	5.97 ft			
Length	72.80 ft	Constructed Slope	0.000824 ft/ft			
Hydraulic Profile						
Profile	M2	Depth, Downstream	0.92 ft			
Slope Type	Mild	Normal Depth	0.92 ft			
Flow Regime	Subcritical	Critical Depth	0.67 ft			
Velocity Downstream	2.48 ft/s	Critical Slope	0.003739 ft/ft			
Section						
Section Shape	Circular	Mannings Coefficient	0.013			
Section Material	Steel	Span	4.00 ft			
Section Size	48 inch	Rise	4.00 ft			
Number Sections	1					
Outlet Control Properties				•		
Outlet Control HW Elev.	7.13 ft	Upstream Velocity Head	0.09 ft			
Ke	0.90	Entrance Loss	0.08 ft			
Inlet Control Properties						
Inlet Control HW Elev.	6.94 ft	Flow Control	Unsubmerged			
Inlet Type	Projecting	Area Full	12.6 ft ^a			
K	0.03400	HDS 5 Chart	2			
M	1.50000	HDS 5 Scale	3			
C	0.05530	Equation Form	1			
itle: 2018 CRD Spring Breakup \culvert master files\2018 crd culv 0/29/18 02:28:57 PM	erts.cvm	() Bantlas Custama Ing		age Office Center Watertown, CT 06795 USA +1-203-75	EE 1000	Project Engin CulvertMaster v3.3

			Culvert Calco CD2-21 Peal		
Solve For: Discharge					
Culvert Summary					
Allowable HW Elevation	7.14 ft	Headwater Depth/Height	0.46		
Computed Headwater Elevation	7.14 ft	Discharge	12.84 cfs		
Inlet Control HW Elev.	6.89 ft	Tailwater Elevation	6.89 ft		
Outlet Control HW Elev.	7.14 ft	Control Type	Outlet Control		
Carden					
Grades Upstream Invert	5.30 ft	Downstream Invert	5.20 ft		
Length	76.70 ft	Constructed Slope	0.001304 ft/ft		
Hydraulic Profile					
Profile	M1	Depth, Downstream	1.68 ft		
Slope Type	Mild	Normal Depth	1.36 ft		
Flow Regime	Subcritical	Critical Depth	1.05 ft		
Velocity Downstream	2.55 ft/s	Critical Slope	0.003551 ft/ft		
Section					
Section Shape	Circular	Mannings Coefficient	0.013		
Section Material	Steel	Span	4.00 ft		
Section Size	48 inch	Rise	4.00 ft		
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	7.14 ft	Upstream Velocity Head	0.11 ft		
Ke	0.90	Entrance Loss	0.10 ft		
Inlet Control Properties					
Inlet Control HW Elev.	6.89 ft	Flow Control	Unsubmerged		
Inlet Type	Projecting	Area Full	12.6 ft ^a		
к	0.03400	HDS 5 Chart	2		
M	1.50000	HDS 5 Scale	3		
С	0.05530	Equation Form	1		
Fitle: 2018 CRD Spring Breakup \culvert master files\2018 crd culv	erts.cvm		Anchora	1e Office	Project Er CulvertMaster v3

Culvert Calculator Report
CD2-22 Peak Differential

Solve	For:	Discharge	

Ilowable HW Elevation	7.14	ft	Headwater Depth/Height	0.48	
Computed Headwater Elevation	7.13	ft	Discharge	13.24	cfs
Inlet Control HW Elev.	6.89	ft	Tailwater Elevation	6.89	ft
Outlet Control HW Elev.	7.13	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	5.21	ft	Downstream Invert	5.15	ft
Length	72.80	ft	Constructed Slope	0.000549	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.73	ft
Slope Type	Mild		Normal Depth	1.74	ft
Flow Regime	Subcritical		Critical Depth	1.06	ft
Velocity Downstream	2.53	ft/s	Critical Slope	0.003548	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Steel		Span	4.00	ft
Section Size	48 inch		Rise	4.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	7.13	ft	Upstream Velocity Head	0.10	ft
Ke	0.90		Entrance Loss	0.09	ft
Inlet Control Properties					
Inlet Control HW Elev.	6.89	ft	Flow Control	Unsubmerged	
Inlet Type	Projecting		Area Full	12.6	ftª
к	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
с	0.05530		Equation Form	1	
0	0.54000				

SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2018 COLVILLE RIVER DELTA

APPENDIX D ADDITIONAL PHOTOGRAPHS

D.1 EROSION SURVEY

D.1.1 CD2 & CD4 ROADS & PADS

Photo D.1: CD2 road at the Long Swale Bridge post breakup, looking west; June 18, 2018

Photo D.2: CD4 road near the CD4 Pad, looking west; June 8, 2018

D.1.2 CD5 ROAD

Photo D.3: CD5 road between Lake L9341 and the Nigliagvik Channel, looking southwest; June 17, 2018

Photo D.4: Culverts along the CD5 road, looking south; June 5, 2018

Photo D.5: Culverts along the CD5 road, looking south; June 5, 2018

D.2 ICE ROAD CROSSINGS BREAKUP

Photo D.6: Colville River East Channel at HDD pre-breakup, looking east; May 20, 2018

Photo D.7: Colville River East Channel at HDD during breakup, looking north; May 30, 2018

Photo D.8: Colville River East Channel at HDD post-breakup, looking south, June 4, 2018

Photo D.9: Kachemach River during breakup, looking north; June 9, 2018

Photo D.10: Silas Slough during breakup, looking east; June 4, 2018

Photo D.12: Toolbox Creek ice road crossing pre-breakup, looking south; May 29, 2018

Photo D.11: Silas Slough during breakup, looking south; June 8, 2018

Photo D.13: Toolbox Creek post-breakup, looking east; June 8, 2018

Photo D.14: Slemp Slough pre-breakup, looking northwest; June 1, 2018

Photo D.16: Tamayayak Channel during breakup, looking west, June 1, 2018

Photo D.15: Slemp Slough post-breakup, looking southwest; June 8, 2018

Photo D.17: Tamayayak Channel during breakup, looking northwest; June 8, 2018

Photo D.19: No Name Creek post-breakup, looking northwest; June 15, 2018

Photo D.18: No Name Creek pre-breakup, looking east; June 4, 2018

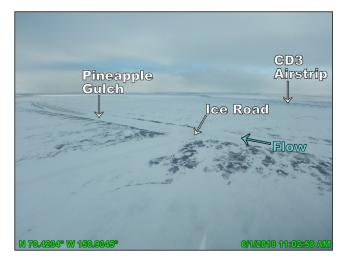
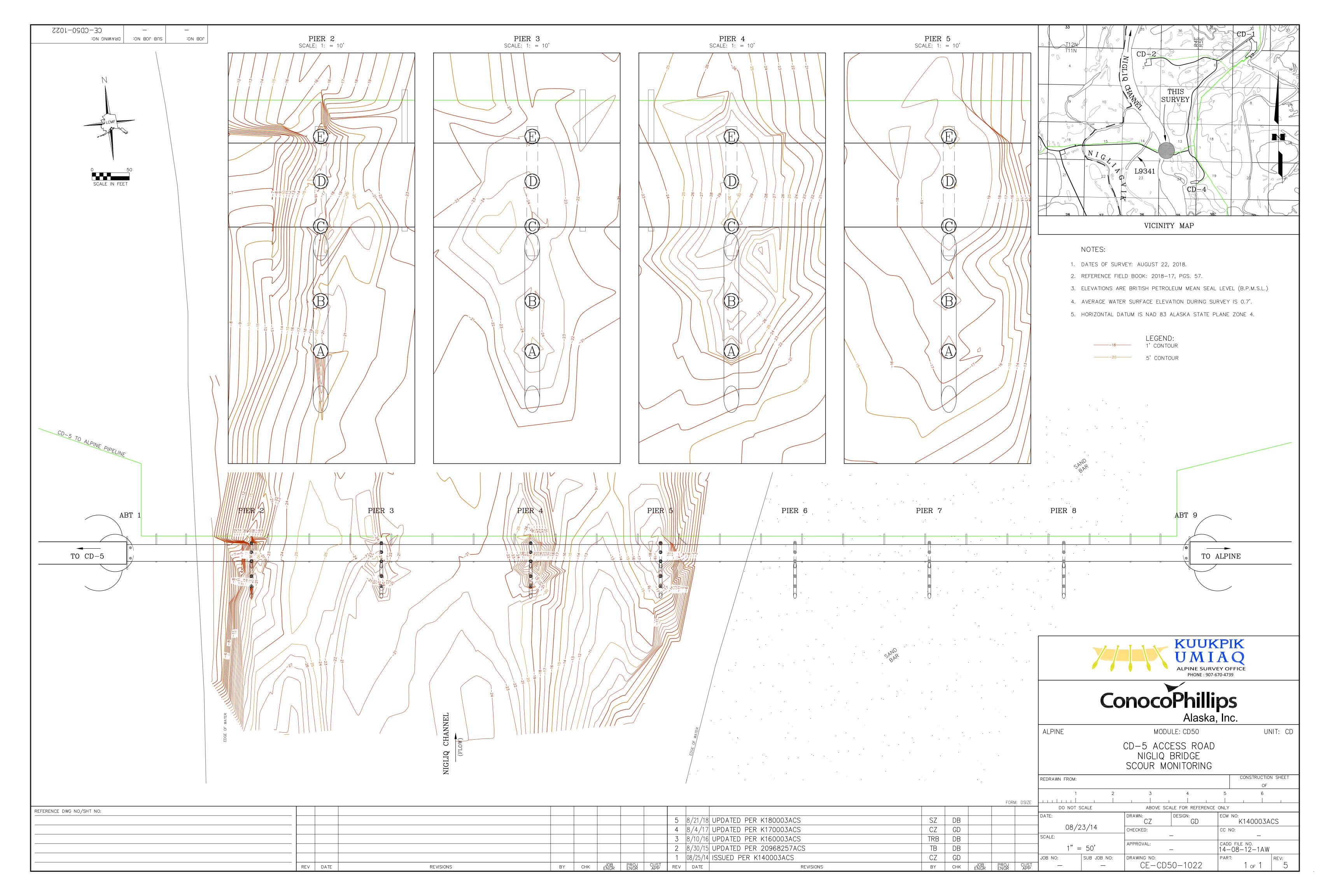
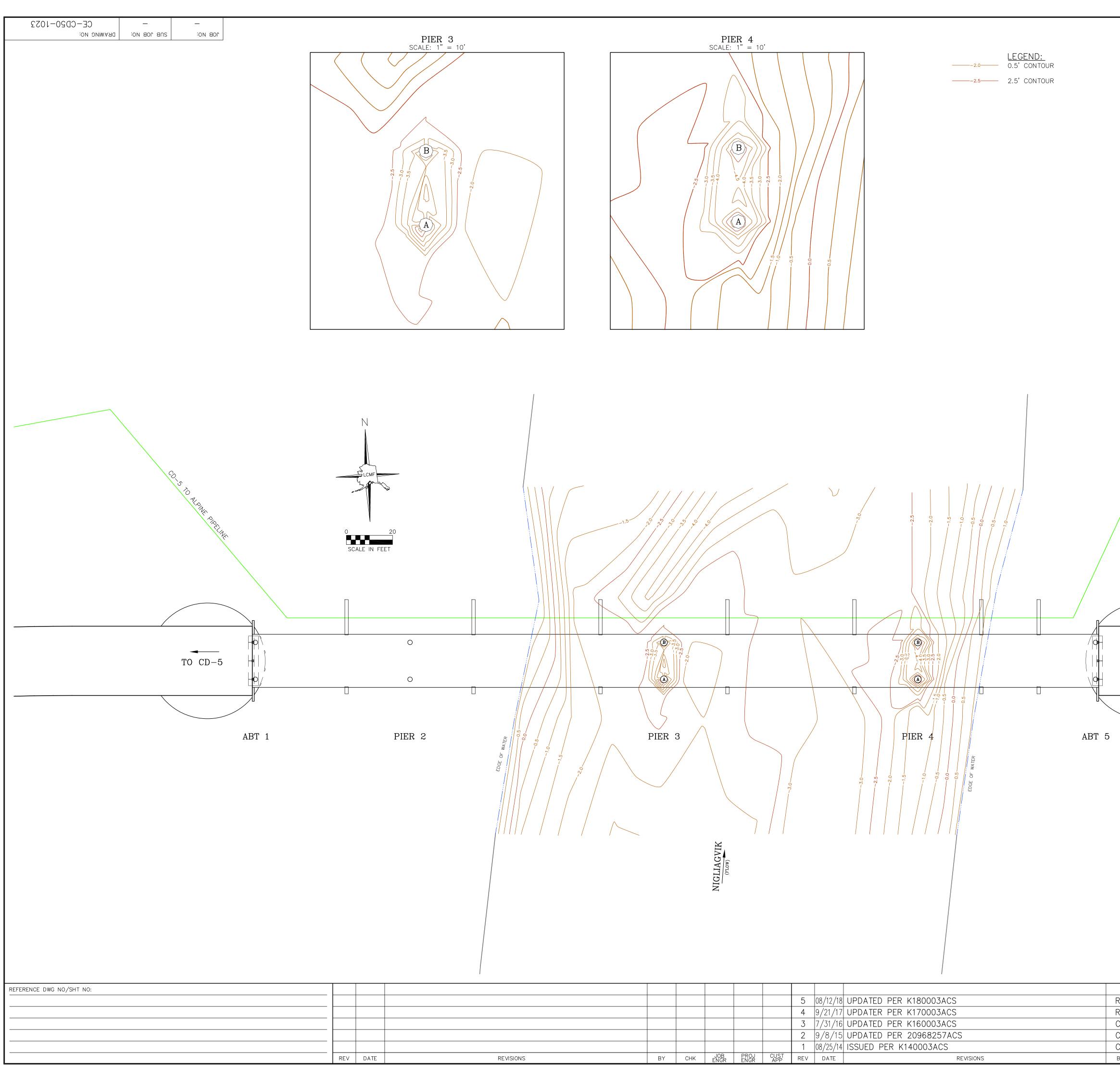
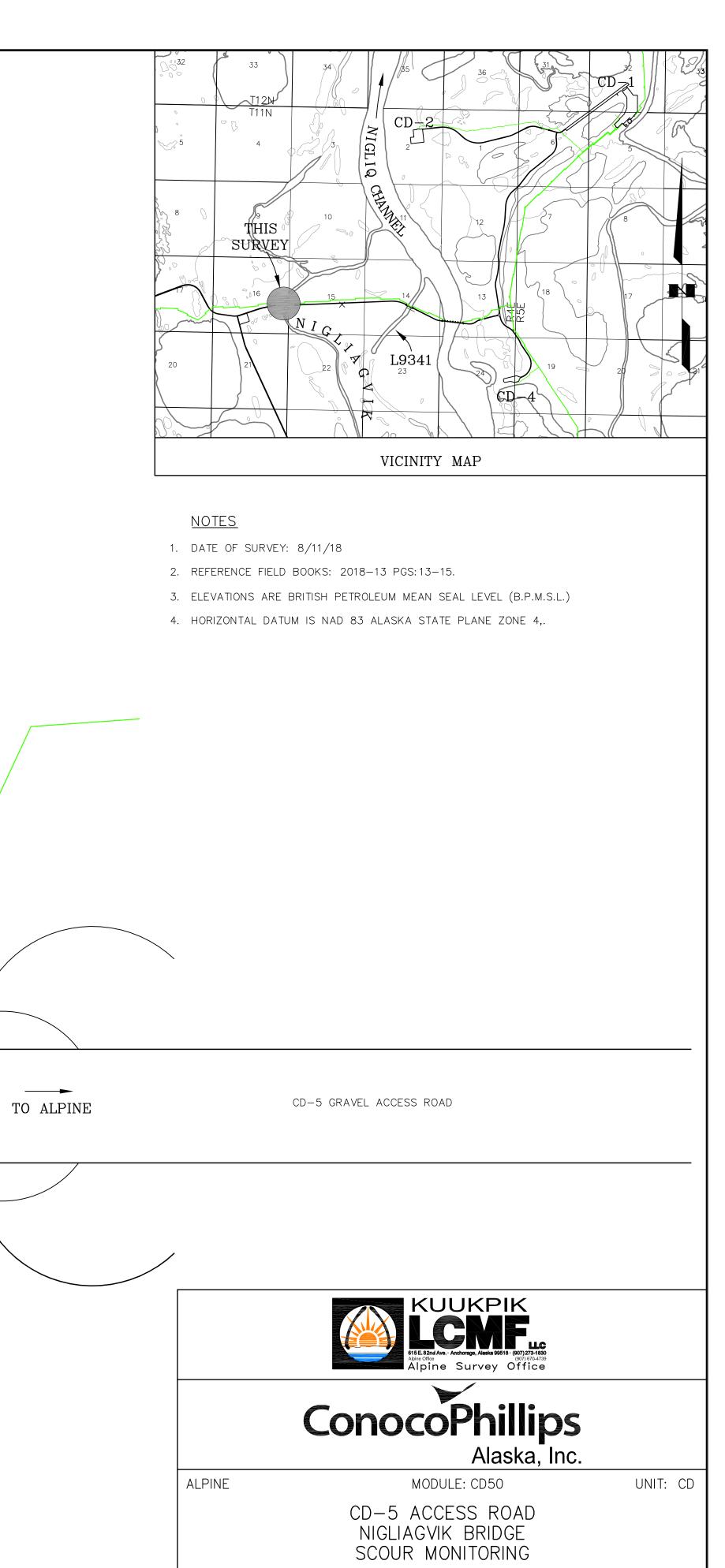


Photo D.20: Pineapple Gulch pre-breakup, looking east; June 1, 2018


Photo D.21: Pineapple Gulch during breakup, looking northwest; June 8, 2018

APPENDIX E CD5 PIER SCOUR, BANK EROSION, & BATHYMETRY


- E.1 PIER SCOUR
- E.1.1 NIGLIQ BRIDGE



E.1.2 NIGLIAGVIK BRIDGE

REDRAWN FROM:

OF 4 6 FORM: DSIZE ABOVE SCALE FOR REFERENCE ONLY DO NOT SCALE DRAWN: ECM NO: K140003ACS DATE: DESIGN: RR CZ _ 8/25/14 RR DB CHECKED: CC NO: GD _ SCALE: CZ DB cadd file no. 14-08-12-1CW APPROVAL: CZ DB 1" = 20' _ CZ GD PART: JOB NO: SUB JOB NO: DRAWING NO: REV: CE-CD50-1023 1 of 1 5 ВҮ СНК _ — JOB PROJ ENGR ENGR

CONSTRUCTION SHEET

E.2 BANK EROSION

E.2.1 NIGLIQ CHANNEL WEST & EAST BANK TABULATED DATA

Calc/d By: TB Date: 08/25/2018	
RPT-CE-CD-112 REV6	
Baseline	

Alpine AP00 West Bank Nigliq Streambank Monitor

Kuukpik/LCMF Alpine Survey Office Doc.LCMF-155 REV6

Baseline Station	1	West Bank	Monitor - T	op of Ban	k Location	s	Description
Station	8/21/2013	8/24/2014	8/27/2015	7/6/2016	8/24/2017	8/24/2018	Date
0+00	180.2			153.6	147.0	147.0	Baseline Offset (In Feet)
				-26.6	-6.6	0.0	Incremental Change
				-26.6	-33.2	-33.2	Cumulative Change
1+00	191.0			168.5	168.5	164.8	Baseline Offset (In Feet)
1.00	131.0	i		-22.5	0.0	-3.7	Incremental Change
				-22.5	-22.5	-26.2	Cumulative Change
	100.1				101.0		
2+00	193.1			184.4	181.6	177.7	Baseline Offset (In Feet)
				-8.7	-2.8	-3.9	Incremental Change
				-8.7	-11.5	-15.4	Cumulative Change
3+00	189.2			186.1	186.1	183.4	Baseline Offset (In Feet)
				-3.1	0.0	-2.7	Incremental Change
				-3.1	-3.1	-5.8	Cumulative Change
4+00	192.2			187.7	187.7	185.7	Baseline Offset (In Feet
4.00	102.2			-4.5	0.0	-2.0	Incremental Change
				-4.5	-4.5	-6.5	Cumulative Change
5+00	202.9			197.1	194.8	191.3	Baseline Offset (In Feet)
				-5.8	-2.3	-3.5	Incremental Change
				-5.8	-8.1	-11.6	Cumulative Change
6+00	224.0			207.8	203.8	203.8	Baseline Offset (In Feet
				-16.2	-4.0	0.0	Incremental Change
				-16.2	-20.2	-20.2	Cumulative Change
7+00	228.9			209.3	206.0	202.7	Baseline Offset (In Feet
• *****				-19.6	-3.3	-3.3	Incremental Change
				-19.6	-22.9	-26.2	Cumulative Change
8+00	232.9			219.1	215.1	212.3	Baseline Offset (In Feet
0+00	202.9			-13.8	-4.0	-2.8	Incremental Change
				-13.8	-4.0	-2.8	Cumulative Change
0100	000.0			017.0	047.0	017.0	
9+00	220.0			217.9	217.9	217.9	Baseline Offset (In Feet
				-2.1 -2.1	0.0 -2.1	0.0 -2.1	Incremental Change Cumulative Change

Doc LCMF-155 Nigliq Bank Monitor Rev6.xlsx

1 of 3

West Bank Monitor

Alaska INTERNATIONAL

Calc/d By: TB Date: 08/25/2018 RPT-CE-CD-112 REV6

Alpine AP00 West Bank Nigliq Streambank Monitor

Kuukpik/LCMF Alpine Survey Office Doc.LCMF-155 REV6

Baseline Station	1	Vest Bank	Monitor - T	op of Ban	West Bank Monitor - Top of Bank Locations											
Station	8/21/2013	8/24/2014	8/27/2015	7/6/2016	8/24/2017	8/24/2018	Date									
10+00	216.8	216.8	213.5	213.5	213.5	210.9	Baseline Offset (In Feet									
		0.0	-3.3	0.0	0.0	-2.6	Incremental Change									
		0.0	-3.3	-3.3	-3.3	-5.9	Cumulative Change									
11+00	209.1	209.1	204.9	204.8	204.8	204.8	Baseline Offset (In Feet									
A A ISAA		0.0	-4.2	-0.1	0.0	0.0	Incremental Change									
		0.0	-4.2	-4.3	-4.3	-4.3	Cumulative Change									
40:00	400.0	100.0	100.0	100.0	100.0	400.7										
12+00	199.0	199.0	199.0	199.8	189.8	189.7	Baseline Offset (In Feel									
		0.0	0.0	0.8	-10.0	-0.1	Incremental Change									
		0.0	0.0	0.8	-9.2	-9.3	Cumulative Change									
13+00	192.1	192.1	192.1	192.1	188.3	188.3	Baseline Offset (In Fee									
		0.0	0.0	0.0	-3.8	0.0	Incremental Change									
		0.0	0.0	0.0	-3.8	-3.8	Cumulative Change									
14+00	200.9			198.8	193.7	193.7	Baseline Offset (In Fee									
14+00	200.9			-2.1	-5.1	0.0	Incremental Change									
				-2.1	-7.2	-7.2	Cumulative Change									
15+00	190.0			190.0	186.2	186.2	Deceline Offect (In Fee									
19700	190.0			0.0	-3.8	0.0	Baseline Offset (In Fee Incremental Change									
				0.0	-3.8	-3.8	Cumulative Change									
				0.0	-3.0	-3.0										
16+00	211.0			209.5	203.3	203.3	Baseline Offset (In Fee									
	10448 PP 102041023			-1.5	-6.2	0.0	Incremental Change									
		1		-1.5	-7.7	-7.7	Cumulative Change									
17+00	204.0			204.0	202.9	200.6	Baseline Offset (In Fee									
				0.0	-1.1	-2.3	Incremental Change									
				0.0	-1.1	-3.4	Cumulative Change									
18+00	010.0			200.2	200.2	208.3	Papalina Offact (In Ess									
10700	212.0			208.3 -3.7	208.3 0.0	208.3	Baseline Offset (In Fee Incremental Change									
				-3.7 -3.7	-3.7	-3.7	Cumulative Change									
- Patrick Dr.				1010 - 11 Ma												
19+00	221.9			221.9	221.9	221.9	Baseline Offset (In Fee									
				0.0	0.0	0.0	Incremental Change									
				0.0	0.0	0.0	Cumulative Change									

Doc LCMF-155 Nigliq Bank Monitor Rev6.xlsx

2 of 3

West Bank Monitor

Alaska INTERNATIONAL

Calc/d By: TB Date: 08/25/2018 RPT-CE-CD-112 REV6

Alpine AP00 West Bank Nigliq Streambank Monitor

Kuukpik/LCMF Alpine Survey Office Doc.LCMF-155 REV6

Baseline Station	v	Vest Bank	Monitor - T	op of Ban	k Location	s	Description
Station	8/21/2013	8/24/2014	8/27/2015	7/6/2016	8/24/2017	8/24/2018	Date
20+00	232.9			232.9	232.9	232.9	Baseline Offset (In Fee
				0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change
21+00	233.9			227.5	227.5	227.5	Baseline Offset (In Fee
	200.0			-6.4	0.0	0.0	Incremental Change
				-6.4	-6.4	-6.4	Cumulative Change
22+00	237.8			233.3	233.3	233.3	Baseline Offset (In Fee
22.00	201.0			-4.5	0.0	0.0	Incremental Change
				-4.5	-4.5	-4.5	Cumulative Change
							Ŭ
23+00	237.9			233.0	233.0	233.0	Baseline Offset (In Fee
				-4.9	0.0	0.0	Incremental Change
				-4.9	-4.9	-4.9	Cumulative Change
24+00	229.9			229.9	229.9	229.9	Baseline Offset (In Fee
	220.0			0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change
25+00	214.1			214.1	214.1	214.1	Baseline Offset (In Fee
	6 t 15 t			0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change
					210.0	010.0	
25+11	213.9			213.9	213.9	213.9	Baseline Offset (In Fee
				0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change
*		alatad an Q	00/42	upped for bo	L data		Incremental/Cumulative

Doc LCMF-155 Nigliq Bank Monitor Rev6.xlsx

3 of 3

Alaska INTERNATIONAL

d By: TB 08/25/2018 CE-CD-112 I	REV6		Eas	Alpine A st Bank reambank I	Nigliq		Kuukpik/ Alpine Survey Doc.LCMF-155	
Baseline Station	- 1	East Bank	Monitor - T	op of Banl	k Locations	5	Description	
	8/22/2013	8/24/2014	8/27/2015	7/6/2016	8/24/2017	8/25/2018	Date	
0+00	169.9			169.9	169.9	169.9	Baseline Offset (In Feet	
				0.0	0.0	0.0	Incremental Change	
				0.0	0.0	0.0	Cumulative Change	
1+00	174.0			174.0	174.0	174.0	Baseline Offset (In Feel	
1.00	17 4.0			0.0	0.0	0.0	Incremental Change	
				0.0	0.0	0.0	Cumulative Change	
0.00	170.0			170.0	170.0	470.0	Deceline Offerst (In Fact	
2+00	178.9			178.9 0.0	178.9 0.0	178.9	Baseline Offset (In Feet	
				0.0	0.0	0.0	Incremental Change Cumulative Change	
3+00	191.0			191.0	191.0	191.0	Baseline Offset (In Feet	
				0.0	0.0	0.0	Incremental Change	
				0.0	0.0	0.0	Cumulative Change	
4+00	188.0			188.0	188.0	188.0	Baseline Offset (In Feet	
				0.0	0.0	0.0	Incremental Change	
				0.0	0.0	0.0	Cumulative Change	
5+00	196.1			196.1	196.1	196.1	Baseline Offset (In Feet	
	18,810			0.0	0.0	0.0	Incremental Change	
				0.0	0.0	0.0	Cumulative Change	
6+00	201.1			201.1	201.1	201.1	Baseline Offset (In Feel	
				0.0	0.0	0.0	Incremental Change	
				0.0	0.0	0.0	Cumulative Change	
7+00	208.1			208.1	208.2	208.2	Baseline Offset (In Feet	
<u>184 (1974))</u>	2642-1147222000			0.0	0.1	0.0	Incremental Change	
				0.0	0.1	0.1	Cumulative Change	
8+00	199.8			199.8	199.9	199.9	Baseline Offset (In Feet	
				0.0	0.1	0.0	Incremental Change	
				0.0	0.1	0.1	Cumulative Change	
9+00	406.2			406.2	406.0	406.0	Baseline Offset (In Feet	
	100.2			0.0	-0.2	0.0	Incremental Change	
				0.0	-0.2	-0.2	Cumulative Change	

Doc LCMF-155 Nigliq Bank Monitor Rev6.xlsx

1 of 2

East Bank Monitor

08/25/2018 CE-CD-112	REV6		Eas	Alpine Al st Bank reambank M	Nigliq		Alpine Survey Doc.LCMF-155
Baseline Station		East Bank	Monitor - T	op of Bank	Description		
	8/22/2013	8/24/2014	8/27/2015	7/6/2016	8/24/2017	8/25/2018	Date
10+00	280.9			280.7	280.6	280.6	Baseline Offset (In Feet
ALEX DOLDA				-0.2	-0.1	0.0	Incremental Change
				-0.2	-0.3	-0.3	Cumulative Change
11+00	192.2			192.0	192.0	192.0	Baseline Offset (In Feet
				-0.2	0.0	0.0	Incremental Change
				-0.2	-0.2	-0.2	Cumulative Change
12+00	100.1			107.9	107.6	107.6	Baseline Offset (In Feet
				7.8	-0.3	0.0	Incremental Change
				7.8	7.5	7.5	Cumulative Change
13+00	192.0	192.0	192.0	192.0	191.8	191.8	Baseline Offset (In Feel
		0.0	0.0	0.0	-0.2	0.0	Incremental Change
		0.0	0.0	0.0	-0.2	-0.2	Cumulative Change
14+00	210.0	210.0	210.0	*Unable to	205.8	205.8	Baseline Offset (In Feel
		0.0	0.0	Survey - Under	-4.2	0.0	Incremental Change
		0.0	0.0	Bridge	-4.2	-4.2	Cumulative Change
15+00	192.0	192.0	192.0	192.0	192.0	192.0	Baseline Offset (In Feet
10.00	102.0	0.0	0.0	0.0	0.0	0.0	Incremental Change
		0.0	0.0	0.0	0.0	0.0	Cumulative Change
	105 /			405.4	105.1	405.4	
15+56	195.4			195.4	195.4	195.4	Baseline Offset (In Feet
				0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change

East Bank Monitor

Doc LCMF-155 Nigliq Bank Monitor Rev6.xlsx 2 of 2

E.2.2 NIGLIAGVIK CHANNEL WEST & EAST BANK TABULATED DATA

By: CZ 08/25/2018 E-CD-111 R	EV6		West	Alpine A Bank N eambank	Kuukpik/ Alpine Survey Doc.LCMF-154		
Baseline Station	٨	Vest Bank	Monitor - T	op of Ban	k Location	s	Description
	8/21/2013	8/21/2014	8/28/2015	7/6/2016	8/24/2017	8/25/2018	Date
0+00	110.0			100.7	100.7	100.7	Baseline Offset (In Feet)
0100	110.0			-9.3	0.0	0.0	Incremental Change
				-9.3	-9.3	-9.3	Cumulative Change
1+00	103.0			97.9	97.9	97.9	Baseline Offset (In Feet)
				-5.1	0.0	0.0	Incremental Change
			· · · · · · · · · · · · · · · · · · ·	-5.1	-5.1	-5.1	Cumulative Change
2+00	99.6			99.6	97.5	97.5	Baseline Offset (In Feet)
				0.0	-2.1	0.0	Incremental Change
				0.0	-2.1	-2.1	Cumulative Change
3+00	98.8			91.3	91.3	91.3	Baseline Offset (In Feet)
				-7.5	0.0	0.0	Incremental Change
				-7.5	-7.5	-7.5	Cumulative Change
4+00	106.0	106.0	106.0	102.4	102.4	102.4	Baseline Offset (In Feet)
		0.0	0.0	-3.6	0.0	0.0	Incremental Change
		0.0	0.0	-3.6	-3.6	-3.6	Cumulative Change
5+00	102.0	93.5	93.5	81.1	81.1	81.1	Baseline Offset (In Feet)
		-8.4	0.0	-12.4	0.0	0.0	Incremental Change
		-8.4	-8.4	-20.9	-20.9	-20.9	Cumulative Change
0.00		00.1	00.4	07.0	07.0	07.0	
6+00	92.0	90.4	90.4	87.9	87.9	87.9	Baseline Offset (In Feet)
		-1.6 -1.6	0.0	-2.5 -4.1	0.0	0.0	Incremental Change Cumulative Change
		-1.6	-1.0	-4.1	-4.1	-4.1	Cumulative Change
7+00	107.1			107.1	107.1	107.1	Baseline Offset (In Feet)
1.00	107.1			0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change
				0.0	0.0	0.0	
8+00	115.0			112.8	112.8	112.8	Baseline Offset (In Feet)
0.00	110.0			-2.2	0.0	0.0	Incremental Change
	<u>.</u>			-2.2	-2.2	-2.2	Cumulative Change
9+00	96.1			91.8	91.8	91.8	Baseline Offset (In Feet)
				-4.3	0.0	0.0	Incremental Change
				-4.3	-4.3	-4.3	Cumulative Change

Doc LCMF-154 Nigliagvik Bank Monitor Rev6.xlsx 1 of 2

West Bank Monitor

Calc/d By: CZ Date: 08/25/2018 RPT-CE-CD-111 REV6

Alpine AP00 West Bank Nigliagvik Streambank Monitor

Kuukpik/LCMF Alpine Survey Office Doc.LCMF-154 REV6

Baseline Station	l l	Vest Bank	Description				
	8/21/2013	8/21/2014	8/28/2015	7/6/2016	8/24/2017	8/25/2018	Date
10+00	106.1			106.1	106.1	105.2	Baseline Offset (In Feet)
				0.0	0.0	-0.9	Incremental Change
				0.0	0.0	-0.9	Cumulative Change
10+28	112.0			112.0	112.0	112.0	Baseline Offset (In Feet)
				0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	Cumulative Change
	 Survey comp Negative nui				l seline data	to compute	Incremental/Cumulative

Doc LCMF-154 Nigliagvik Bank Monitor Rev6.xlsx 2 of 2 West Bank Monitor

By: CZ 08/25/2018 :E-CD-111 F	REV6		East	Alpine A Bank N reambank	igliagvil	k	Umia Alpine Survey Doc.LCMF-154
Baseline Station	-	East Bank	Monitor - T	op of Ban	Description		
	8/21/2013	8/21/2014	8/28/2015	7/6/2016	8/24/2017	8/24/2018	Date
0+00.0	165.1			165.1	165.3	165.3	Baseline Offset (In Feet)
0.00.0	100.1			0.0	0.2	0.0	Incremental Change
				0.0	0.2	0.0	Cumulative Change
				0.0	0.2	0.2	
1+00.0	185.0			185.0	185.0	185.0	Baseline Offset (In Feet)
1.00.0	100.0			0.0	0.0	0.0	Incremental Change
	· · · · · · · · · · · · · · · · · · ·			0.0	0.0	0.0	Cumulative Change
				0.0	0.0	0.0	
2+00.0	165.0			165.0	165.1	165.1	Baseline Offset (In Feet)
				0.0	0.1	0.0	Incremental Change
				0.0	0.1	0.1	Cumulative Change
3+00.0	162.3			162.3	162.2	162.2	Baseline Offset (In Feet)
				0.0	-0.1	0.0	Incremental Change
				0.0	-0.1	-0.1	Cumulative Change
	1510		15.1.0				
4+00.0	154.9	154.9	154.9	147.6	147.6	147.6	Baseline Offset (In Feet)
		0.0	0.0	-7.3	0.0	0.0	Incremental Change
		0.0	0.0	-7.3	-7.3	-7.3	Cumulative Change
5+00.0	141.0	141.0	138.4	Under	143.7	143.7	Baseline Offset (In Feet)
5100.0	141.0	0.0	-2.7	Bridge	5.3	0.0	Incremental Change
		0.0	-2.7	Diluge	2.7	2.7	Cumulative Change
		0.0	-2.1		2.1	2.1	
6+00.0	120.9	120.9	120.9	120.9	121.1	121.1	Baseline Offset (In Feet)
		0.0	0.0	0.0	0.2	0.0	Incremental Change
		0.0	0.0	0.0	0.2	0.2	Cumulative Change
7+00.0	119.0			119.0	119.5	119.5	Baseline Offset (In Feet)
				0.0	0.5	0.0	Incremental Change
				0.0	0.5	0.5	Cumulative Change
8+00.0	120.9			120.9	121.3	121.3	Baseline Offset (In Feet)
				0.0	0.4	0.0	Incremental Change
				0.0	0.4	0.4	Cumulative Change

Doc LCMF-154 Nigliagvik Bank Monitor Rev6.xlsx 1 of 2

East Bank Monitor

ConocoPhillips Alaska INTERNATIONAL

Calc/d By: CZ Date: 08/25/2018 RPT-CE-CD-111 REV6

Alpine AP00 East Bank Nigliagvik Streambank Monitor

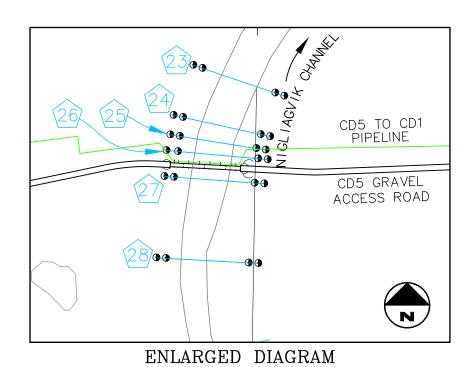
Umiaq LLC Alpine Survey Office Doc.LCMF-154 REV6

Description	De	5	E	Baseline Station										
Date		8/24/2018	8/24/2017	7/6/2016	8/28/2015	8/21/2014	8/21/2013							
e Offset (In Feet)	Baseline (116.1	116.1	115.7			115.7	8+91.0						
ental Change	Increment	0.0	0.4	0.0										
ative Change	Cumulativ	0.4	0.4	0.0										
ental/Cumulative	Increment	to compute	seline data t				Survey comp Negative nur	1725/372322.004/254292534. 203						
ND 96 D			seline data t imagery, the		ate erosion.	mbers indic	legative nur	Change. N						

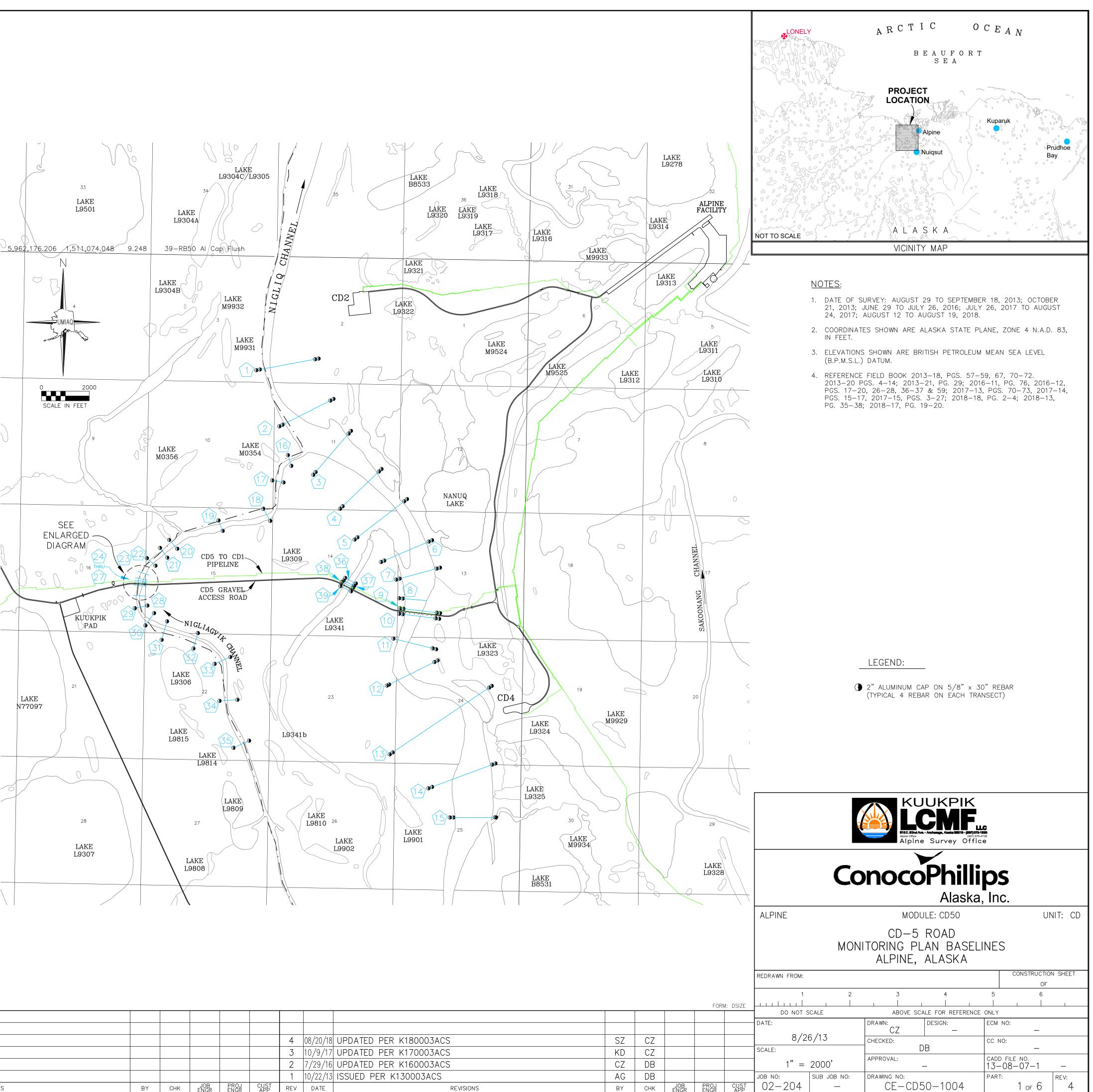
3+00 along the east bank is considered a misrepresentation of the bank at the time of survey. There is no visible erosion at this location and the 2013 top of bank was repositioned to align with the 2016 top of bank.

Doc LCMF-154 Nigliagvik Bank Monitor Rev6.xlsx 2 of 2

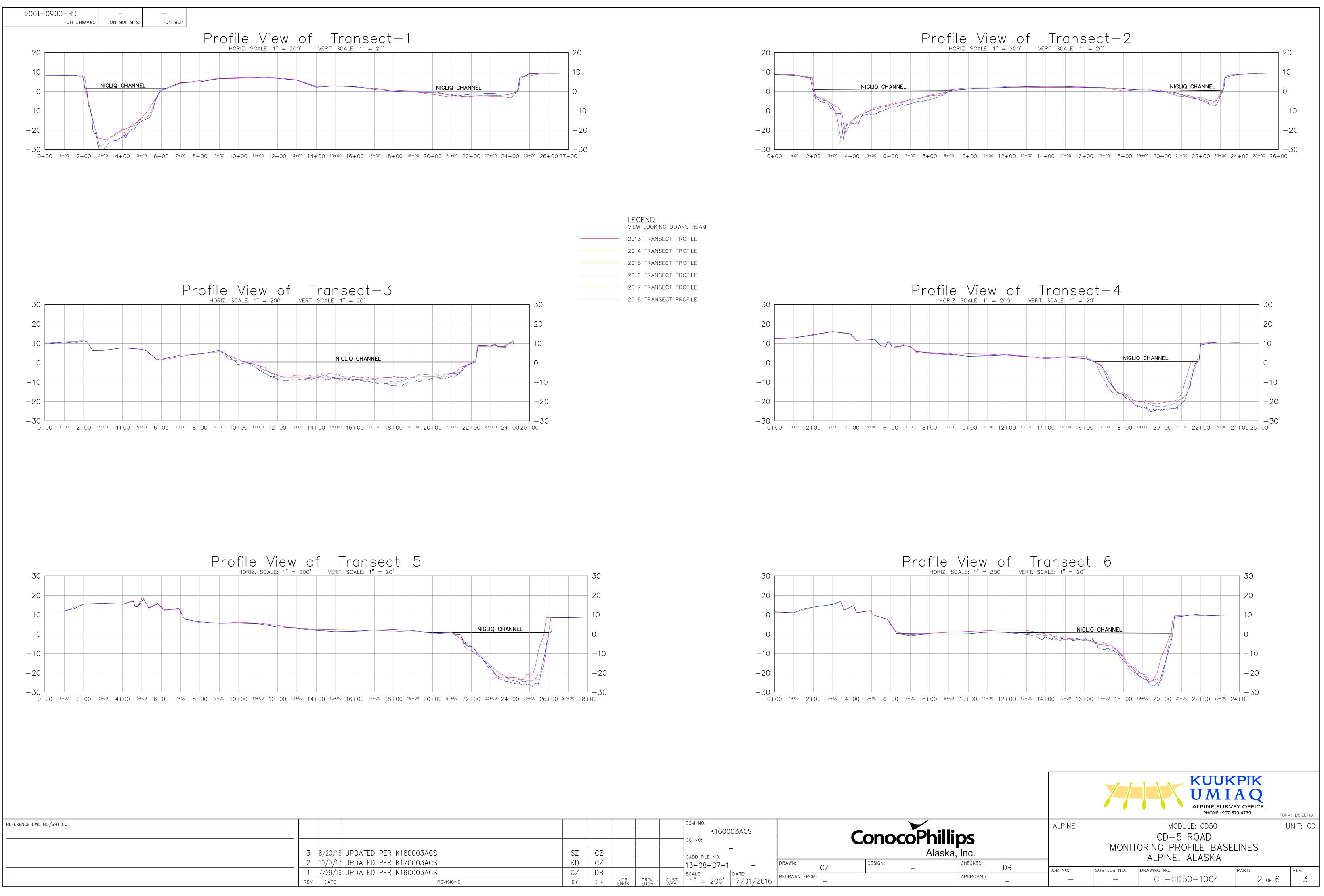
East Bank Monitor


E.3 BATHYMETRY

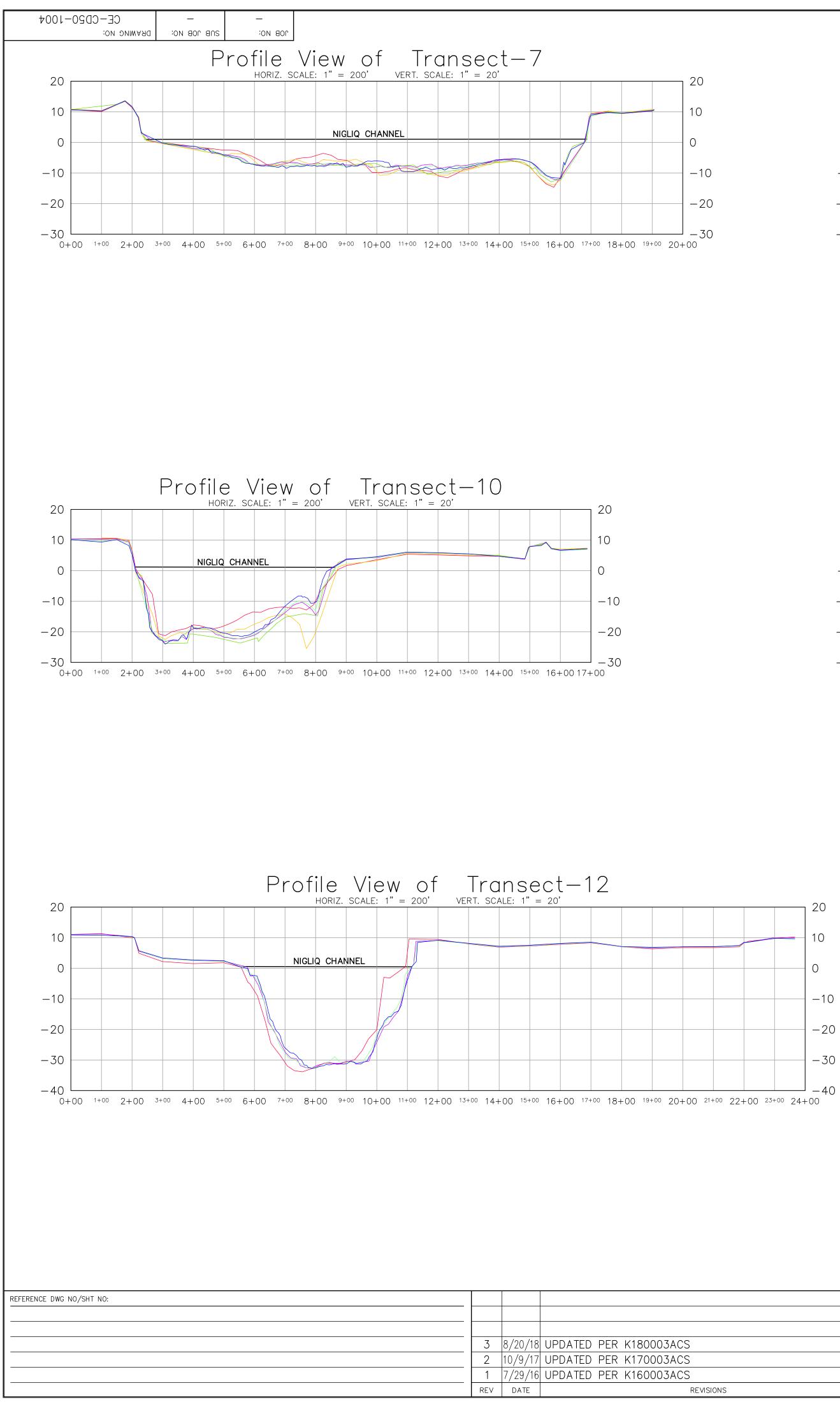
E.3.1 TRANSECT PROFILES

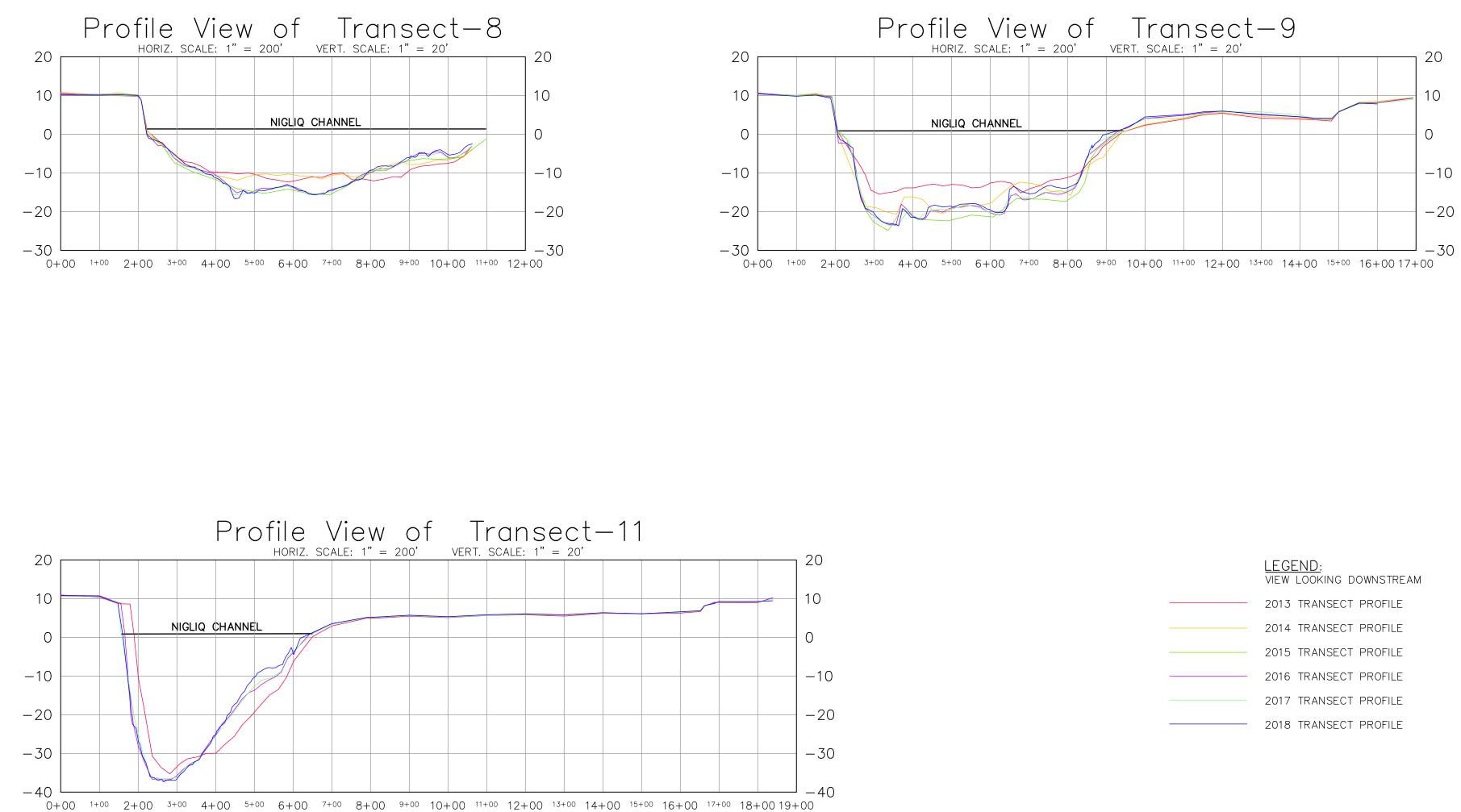

CD5 2017 TRANSECT CONTROL

NORTHING	EASTING	ELEV	DESCRIPTION	NORTHING	EASTING	ELEV	DESCRIPTION
5,971,410.079	1,507,156.531	8.39	01-LB200 Al Cap Flush	5,963,972.572	1,503,814.158	7.59	20-RB50 Al Cap Flush
5,971,437.609 5,971,895.666		8.37 9.13	01-LB50 Al Cap Flush 01-RB200 Al Cap Flush	5,963,970.131 5,963,929.997	<u>1,503,127.991</u> 1,503,157.807	24.55 20.75	21-LB100 Al Cap Flush 21-LB50 Al Cap Flush
5,971,868.384		9.13	01-RB50 Al Cap Flush	5,963,562.385	1,503,430.606	8.83	21-RB100 Al Cap Flush
5,969,060.212		8.87	02-LB200 Al Cap Flush	5,963,602.552	1,503,400.707	9.12	21-RB50 Al Cap Flush
,969,127.986		7.65	02–LB50 Al Cap Flush	5,963,540.635	1,502,578.236	26.09	22-LB110 Al Cap Flush
,970,206.007		9.26	02—RB200 Al Cap Flush	5,963,500.929	1,502,623.041	24.05	22-LB50 Al Cap Flush
,970,138.188		8.96	02-RB50 Al Cap Flush	5,963,224.550	1,502,936.061	8.70	22-RB100 Al Cap Flush
,967,032.227		9.67	03-LB200 Al Cap Flush	5,963,257.784	1,502,898.581	9.16	22-RB50 Al Cap Flush
<u>,967,145.969</u>		10.13	03-LB50 Al Cap Flush	5,962,989.540	1,502,198.702	25.27	23-LB100 Al Cap Flsh
<u>,968,868.865</u> ,968,755.138		9.41	03-RB200 Al Cap Flush 03-RB50 Al Cap Flush	5,962,973.551 5,962,828.919	<u>1,502,246.078</u> 1,502,671.911	25.13 10.17	23—LB50 Al Cap Flush 23—RB100 Al Cap Flush
,965,610.351		12.54	04–LB200 Al Cap Flush	5,962,844.993		7.92	23-RB50 Al Cap Flush
	1,510,772.064	13.71	04-LB50 Al Cap Flush	5,962,728.640		26.44	24-LB100 Al Cap Flush
	1,512,396.862	10.36	04-RB200 Al Cap Flush	5,962,717.858	1,502,144.429	26.95	24–LB50 Al Cap Flush
,967,169.020		10.23	04—RB50 Al Cap Flush	5,962,617.871	1,502,598.118	9.07	24-RB100 Al Cap Flush
,964,321.998		11.98	05—LB200 Al Cap Flush	5,962,628.701	1,502,549.442	8.42	24-RB50 Al Cap Flush
,964,413.665		13.14	05—LB50 Al Cap Flush	5,962,627.134	1,502,078.374	27.30	25—LB100 Al Cap Flush
,966,013.940		8.66	05-RB200 Al Cap Flush	5,962,619.297	1,502,127.805	26.17	25-LB50 Al Cap Flush
,965,922.233		8.66	05-RB50 Al Cap Flush	5,962,548.009	1,502,575.213	8.35	25-RB100 Al Cap Flush
<u>,963,381.239</u>		11.39	06-LB200 Al Cap Flush	5,962,555.885	1,502,525.978	8.2	25-RB50 Al Cap Flush
<u>,963,439.930</u> ,964,291.972	1,512,511.976	13.14 9.79	06—LB50 Al Cap Flush 06—RB250 Al Cap Flush	5,962,545.552 5,962,540.029	<u>1,502,059.146</u> 1,502,118.494	27.26 27.46	26-LB110 Al Cap Flush 26-LB50 Al Cap Flush
<u>,964,291.972</u> ,964,233.822		9.79	06-RB250 Al Cap Flush	5,962,498.526	1,502,118.494	9.40	26-RB100 Al Cap Flush
,962,644.628		10.19	07-LB200 Al Cap Flush	5,962,502.417	1,502,535.991	8.29	26-RB50 Al Cap Flush
,962,683.997		12.40	07-LB50 Al Cap Flush	5,962,409.840	1,502,047.832	26.75	27-LB100 Al Cap Flush
,963,144.351		10.50	07-RB200 Al Cap Flush	5,962,406.393	1,502,097.689	27.08	27-LB50 Al Cap Flush
,963,105.246		9.82	07-RB50 Al Cap Flush	5,962,371.836	1,502,567.565	9.06	27-RB100 Al Cap Flush
,961,864.665	1,513,132.738	10.2	08-LB200 Al Cap Flush	5,962,375.576	1,502,517.753	7.45	27-RB50 Al Cap Flush
,961,851.284		10.33	08—LB50 Al Cap Flush	5,961,986.379		20.98	28—LB100 Al Cap Flush
,961,442.295		10.42	09-LB200 Al Cap Flush	5,961,983.603	1,502,055.994	21.16	28-LB50 Al Cap Flush
<u>,961,424.719</u>		10.13	09-LB50 Al Cap Flush	5,961,957.194	1,502,536.500	9.11	28-RB100 Al Cap Flush
<u>,961,244.647</u> ,961,260.962		9.12 8.00	09-RB200 Al Cap Flush 09-RB60 Al Cap Flush	5,961,959.887 5,961,446.898	1,502,486.585 1,502,073.299	8.59 24.32	28-RB50 Al Cap Flush 29-LB100 Al Cap Flush
<u>,961,200.902</u> ,961,214.591	1,513,133.902	10.18	10-LB200 Al Cap Flush	5,961,457.481	1,502,122.198	23.74	29-LBTOO AI Cap Flush
,961,195.839		10.25	10-LB50 Al Cap Flush	5,961,559.094	1,502,596.981	9.95	29-RB100 Al Cap Flush
	1,514,808.574	7.14	10-RB200 Al Cap Flush	5,961,548.539		8.74	29-RB50 Al Cap Flush
	1,514,659.873		10-RB50 Al Cap Flush	5,960,727.323	1,502,515.764	23.70	30-LB100 AI Cap Flush
	1,512,898.140	10.87	11-LB200 Al Cap Flush	5,960,768.246		23.31	30-LB50 Al Cap Flush
	DESTROYED		11—LB50 Al Cap Flush	5,961,239.638	1,502,877.149	10.09	30-RB100 Al Cap Flush
<u>,959,731.052</u>		9.82	11-RB200 Al Cap Flush	5,961,198.817	1,502,848.288	9.62	30-RB50 Al Cap Flush
,959,767.242		9.00	11-RB50 Al Cap Flush	5,960,124.411	1,503,193.299	8.62	31-LB100 Al Cap Flush
,958,209.440	, ,	11.02	12-LB200 Al Cap Flush	5,960,172.274	1,503,207.266	9.61	31-LB50 Al Cap Flush
,958,254.040		10.92	12-LB100 Al Cap Flush	5,960,896.074	1,503,418.951	10.76	31-RB100 Al Cap Flush
,959,260.219		9.87 8.71	12-RB200 Al Cap Flush	5,960,848.125	<u>1,503,404.834</u> 1,504,523.242	11.27	31-RB50 Al Cap Flush
	1,514,611.494 1,512,738.208	11.43	12-RB50 Al Cap Flush 13-LB200 Al Cap Flush	5,959,762.546 5,959,810.524	1,504,537.152	8.41 7.89	32-LB100 Al Cap Flush 32-LB50 Al Cap Flush
,955,412.750		12.06	13-LB50 Al Cap Flush	5,960,406.267	1,504,711.424	10.85	32-RB100 Al Cap Flush
,958,195.963		10.14	13-RB200 Al Cap Flush	5,960,358.129	1,504,697.371	11.51	32-RB50 Al Cap Flush
,958,123.467		11.55	13-RB70 Al Cap Flush	5,959,118.940	1,505,412.996	10.03	33–LB100 Al Cap Flush
,953,908.305		13.31	14–LB215 Al Cap Flush	5,959,138.921	1,505,458.863	8.59	33—LB50 Al Cap Flush
,953,965.587	1,514,513.819	15.69	14—LB50 Al Cap Flush	5,959,403.885	1,506,064.808	10.64	33-RB120 Al Cap Flush
,954,950.427	· · · ·	9.37	14-RB200 Al Cap Flush	5,959,375.851	1,506,000.615	10.61	33-RB50 Al Cap Flush
<u>,954,898.227</u>		9.62	14-RB50 Al Cap Flush	5,957,567.999		12.62	34-LB100 Al Cap Flush
,952,688.560		13.81	15-LB200 Al Cap Flush	5,957,571.228	1,505,667.234	12.76	34-LB50 Al Cap Flush
<u>,952,688.785</u> ,952,691.528		16.65 12.55	15-LB50 Al Cap Flush 15-RB100 Al Cap Flush	5,957,615.360 5,957,612.187	<u>1,506,366.139</u> 1,506,316.238	10.14	34-RB100 Al Cap Flush 34-RB50 Al Cap Flush
,952,691.528 ,952,691.504		12.55	15-RB50 Al Cap Flush	5,955,603.337	1,506,200.646	12.56	35-LB100 Al Cap Flush
,967,852.411		9.97	16-LB100 Al Cap Flush	5,955,624.160	1,506,246.181	13.00	35-LB50 Al Cap Flush
,967,804.830		9.22	16-LB50 Al Cap Flush	5,955,901.753	1,506,854.754	10.25	35-RB100 Al Cap Flush
,967,407.583		9.35	16-RB100 Al Cap Flush	5,955,880.833	1,506,809.440	9.42	35-RB50 Al Cap Flush
,967,455.156	1,508,606.495	8.81	16-RB50 Al Cap Flush	5,962,713.562		8.07	36-LB100 Al Cap Flush
,966,795.092		8.49	17-LB100 Al Cap Flush	5,962,690.396	1,510,921.695	8.07	36-LB50 Al Cap Flush
<u>,966,786.414</u>		8.36	17-LB50 Al Cap Flush	5,962,479.473	1,511,322.888	9.50	36-RB100 Al Cap Flush
,966,712.462	· · · · ·	8.55	17-RB100 Al Cap Flush	5,962,502.709	1,511,278.659	8.95	36-RB50 Al Cap Flush
<u>,966,720.904</u> ,965,609.736	1,508,245.574 1,507,451.191	8.57 8.67	17-RB50 Al Cap Flush 18-LB100 Al Cap Flush	5,962,603.138 5,962,580.899	<u>1,510,806.681</u> 1,510,851.601	8.54 8.30	37-LB100 Al Cap Flush 37-LB50 Al Cap Flush
<u>,965,566.246</u>		8.64	18-LB100 Al Cap Flush	5,962,382.914	1,511,254.351	9.43	37-RB100 Al Cap Flush
,965,103.321	1,507,739.424	7.92	18-RB100 Al Cap Flush	5,962,405.072	1,511,209.390	8.82	37-RB50 Al Cap Flush
,965,146.872	· · · · ·	7.65	18-RB50 Al Cap Flush	5,962,540.247	1,510,738.266	7.55	38-LB100 Al Cap Flush
,965,119.506		8.71	19-LB100 Al Cap Flush	5,962,518.495	1,510,783.408	7.94	38-LB50 Al Cap Flush
,965,073.146	1,505,592.274	8.72	19–LB50 Al Cap Flush	5,962,311.243	1,511,215.086	8.87	38-RB100 Al Cap Flush
,964,684.662	1,505,750.583	8.18	19-RB100 Al Cap Flush	5,962,332.728	1,511,169.935	8.96	38-RB50 Al Cap Flush
,964,730.844		8.59	19-RB50 Al Cap Flush	5,962,367.922	1,510,674.689	8.40	39-LB100 Al Cap Flush
,964,307.555		13.76	20-LB100 Al Cap Flush	5,962,346.127	1,510,719.731	7.44	39-LB50 Al Cap Flush
<u>,964,270.636</u>		15.57	20-LB50 Al Cap Flush	5,962,154.431	1,511,119.189	9.32	39-RB100 Al Cap Flush
\dots		/ 68	i 20-RR100 Al Can Flush	15.962.176.176	1.511.0/4.056	9.20	39-RB50 Al Cap Flush

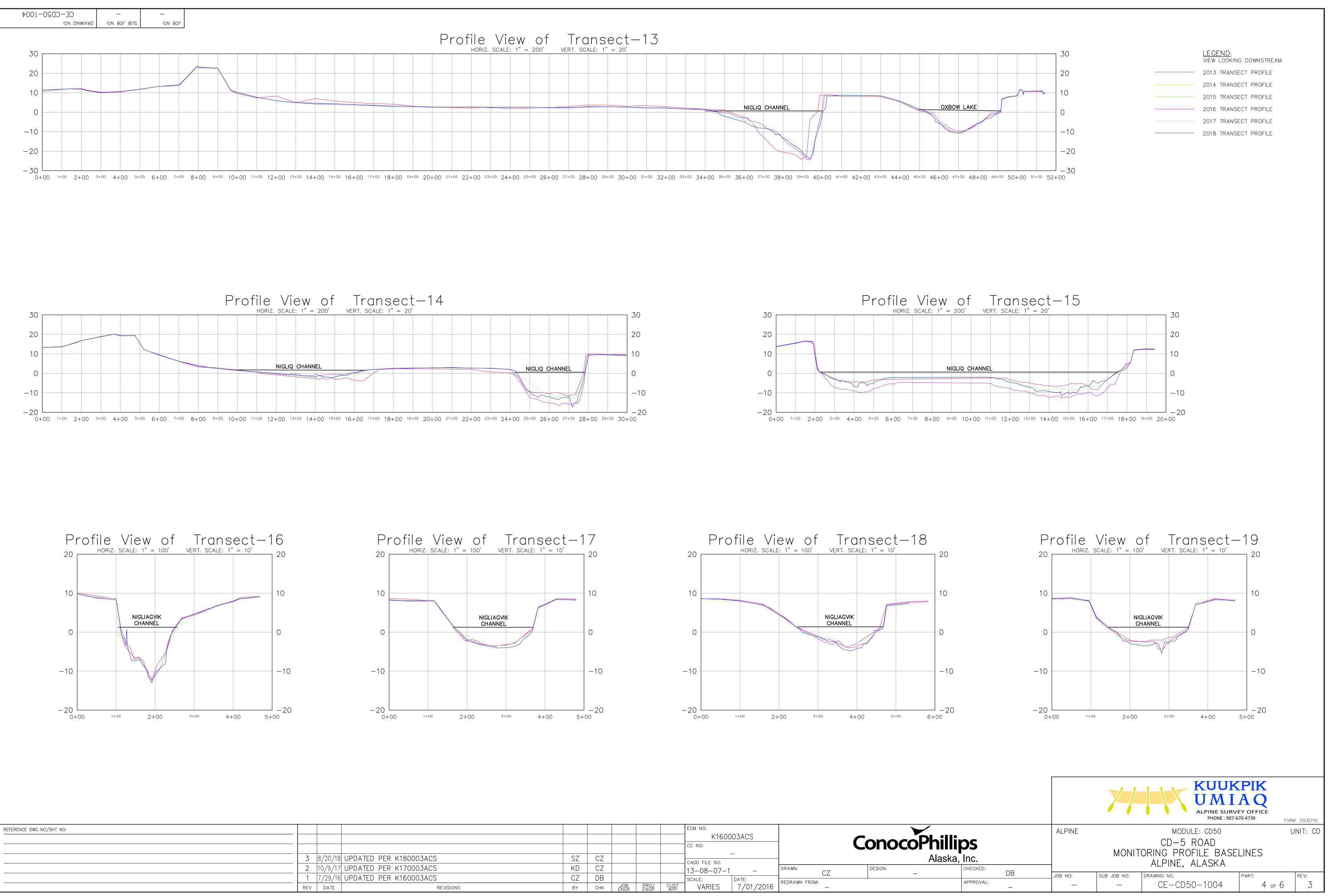


REFERENCE DWG NO/SHT NO:

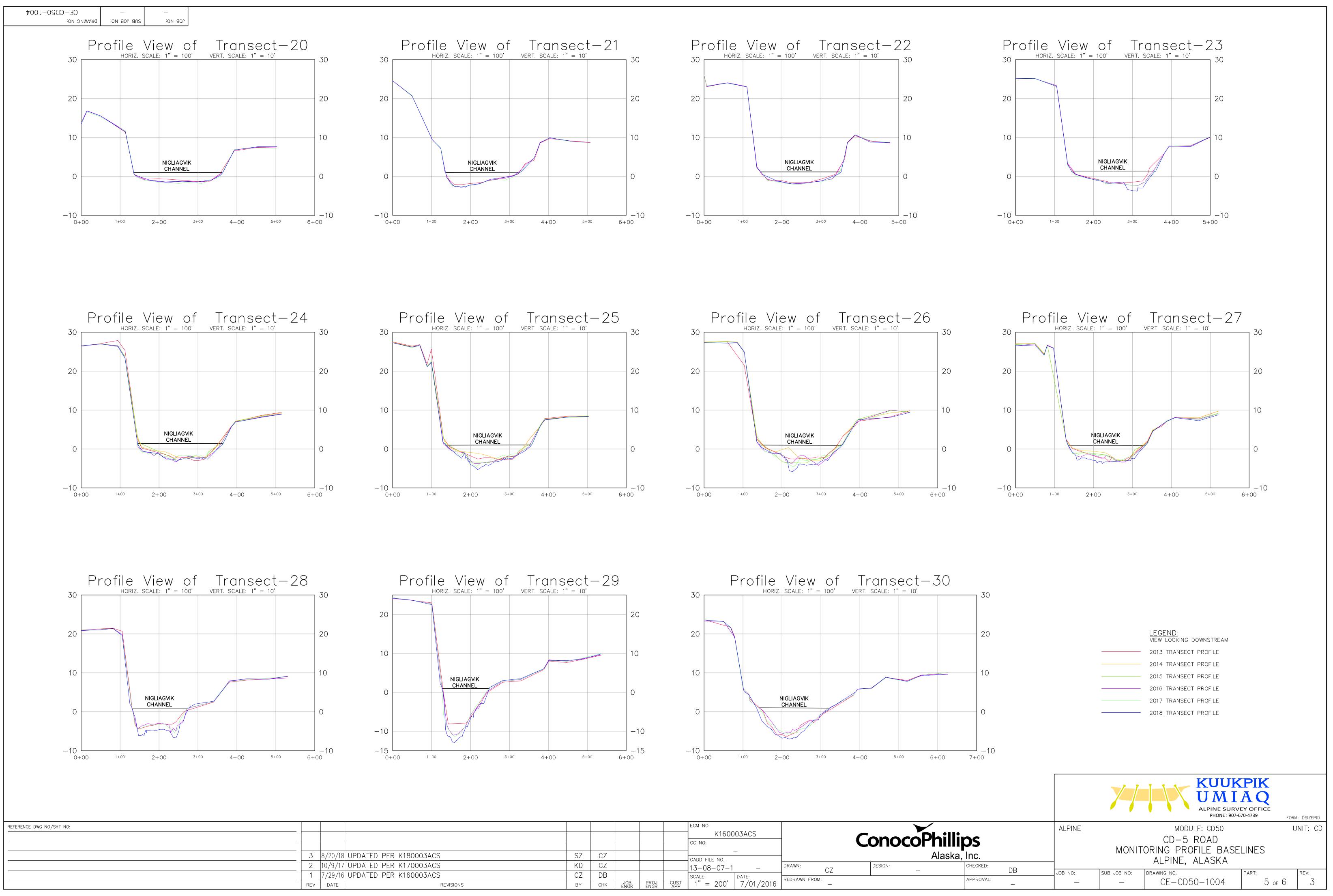

REV DATE

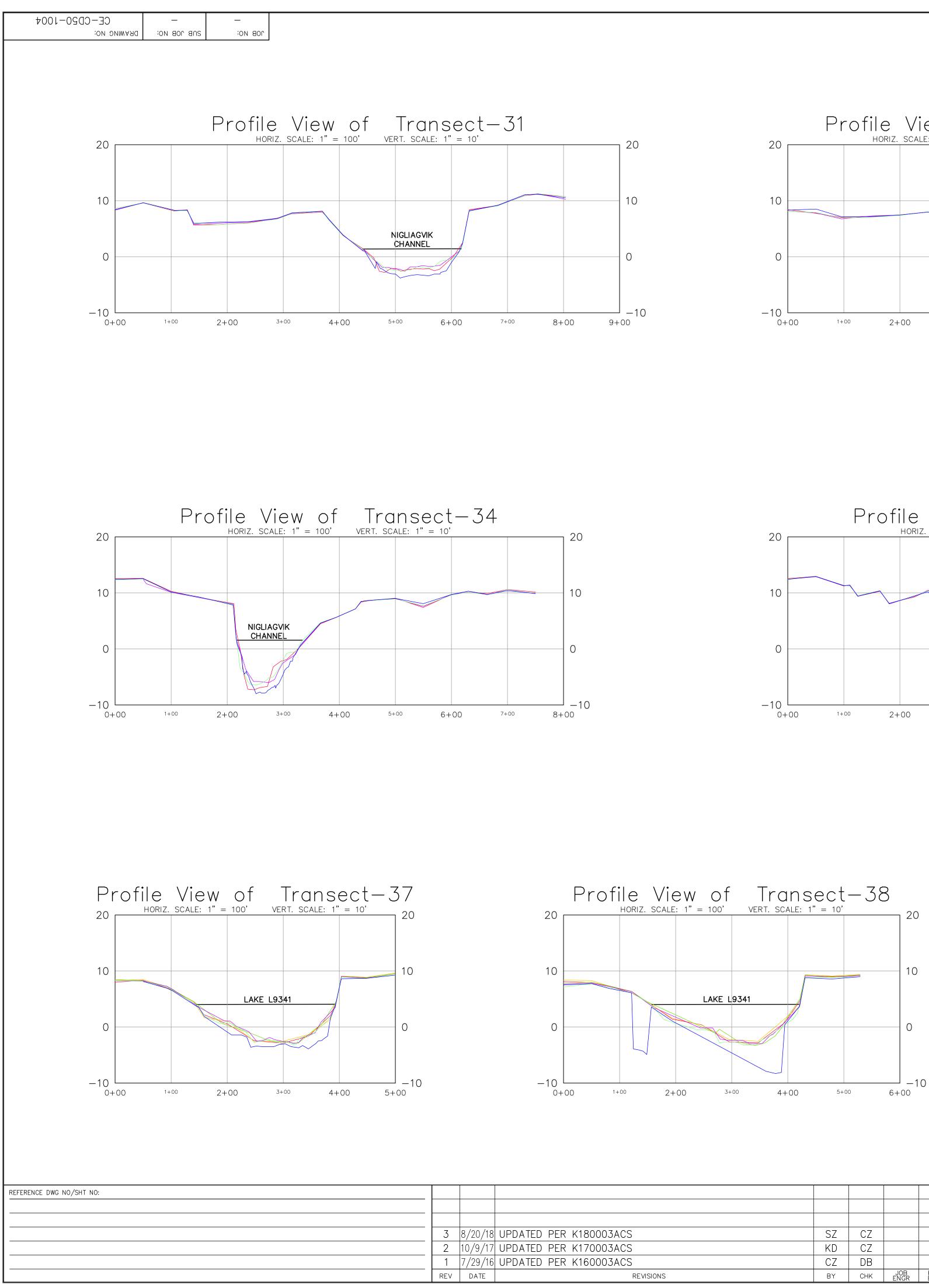


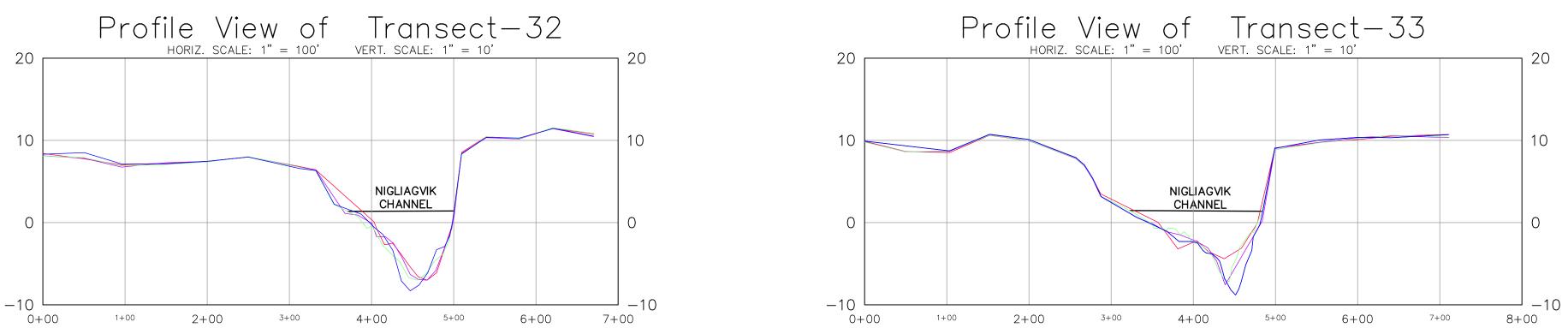
					4	08/20/18	UPDATED PER K180003ACS	SZ
					3	10/9/17	UPDATED PER K170003ACS	KD
					2	7/29/16	UPDATED PER K160003ACS	CZ
					1	10/22/13	ISSUED PER K130003ACS	AG
BY	СНК	JOB ENGR	PROJ ENGR	CUST APP	REV	DATE	REVISIONS	BY

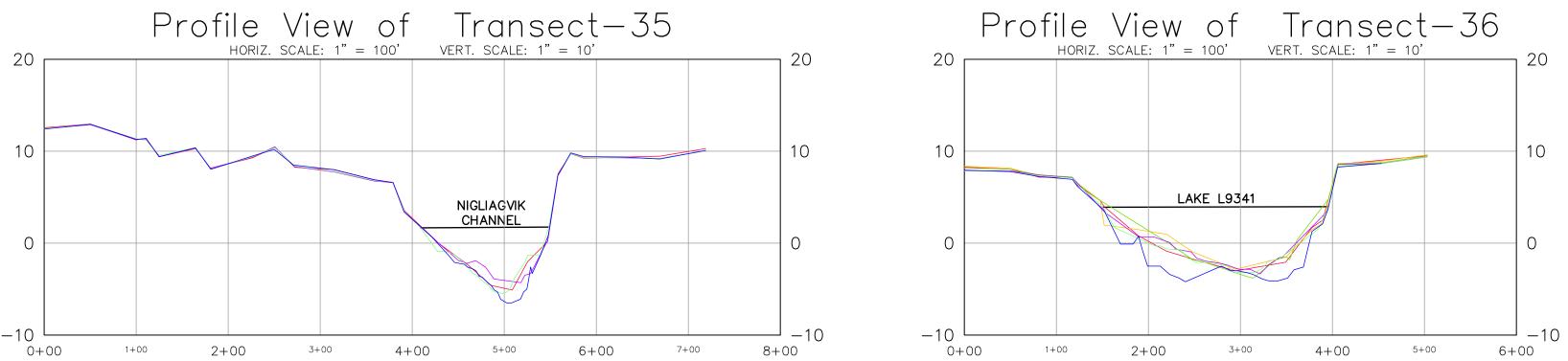


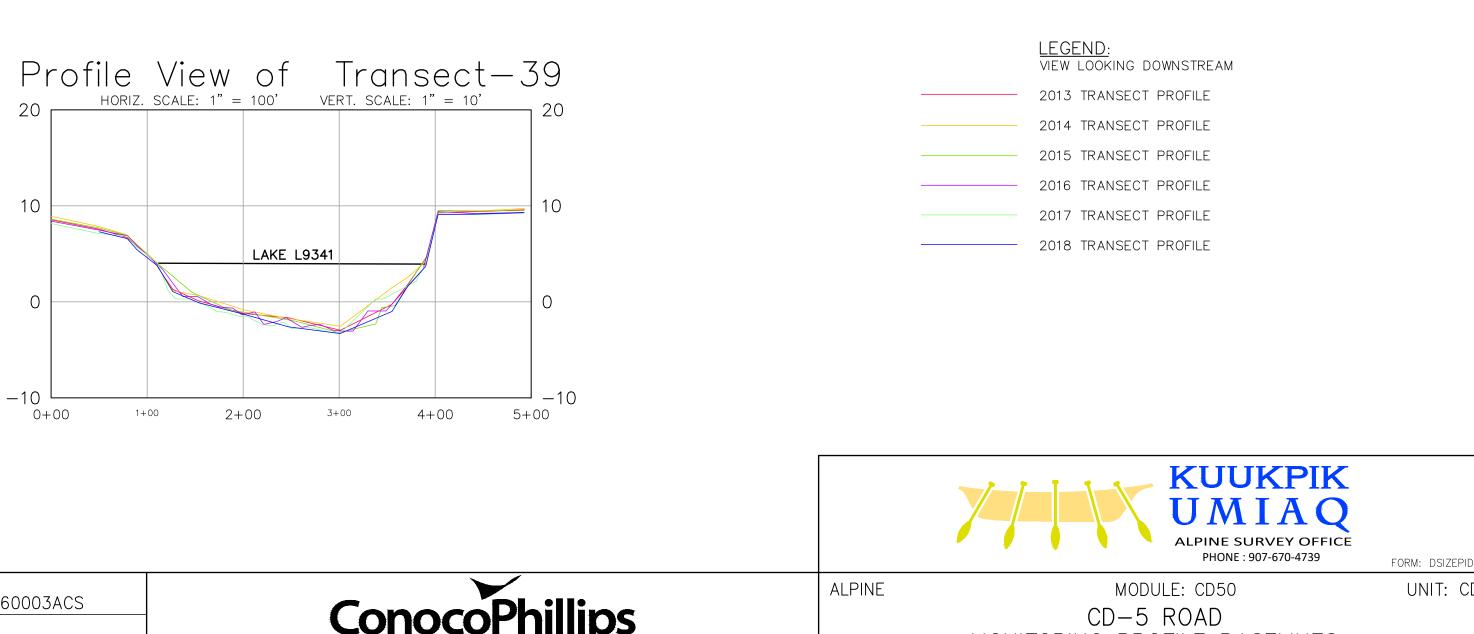
						ECM NO: K160003ACS		Concella
	SZ	CZ				CC NO: — CADD FILE NO.		ConocoPhil Alas
	KD	CZ					DRAWN: CZ	DESIGN:
DNS	CZ вү	DB снк	JOB ENGR	PROJ ENGR	CUST APP	SCALE: DATE: 1" = 200' 7/01/2016	REDRAWN FROM:	




																	UKPIK AIAQ SURVEY OFFICE NE : 907-670-4739	FORM: DSIZEPID
						ECM NO:								ALPINE		MODULE: CD5	0	UNIT: CD
							DOJACS	_		Conor	coPhill	inc				CD-5 ROAD		
						CC NO:									MONI	TORING PROFILE I		
	SZ	CZ				CADD FILE NO.	_	-			Alaska	a, Inc.				ALPINE, ALASH		
	KD	CZ				13-08-07-1	_	DRAWN:	07	DESIGN:		CHECKED:	DB					
	CZ	DB				SCALE:	DATE:				_		סט	JOB NO:	SUB JOB NO:	DRAWING NO.	PART:	REV:
IONS	BY	СНК	JOB ENGR	PROJ ENGR	CUST APP	1" = 200'	7/01/2016	REDRAWN FROM	M:			APPROVAL:	_		_	CE-CD50-100	4 3 of	6 3




						ECM NO:					
						K160003ACS			С	onoco	Dhi
						CC NO:					
	SZ	CZ									Alas
	KD	CZ				CADD FILE NO.	_ [DRAWN:	07	DESIGN:	
	CZ	DB				SCALE: DATE:			CZ		
IONS	ΒY	СНК	JOB ENGR	PROJ ENGR	CUST APP	VARIES 7/01/	/2016	REDRAWN FROM:	_		



						ECM NO:				/
						K160003ACS	_		Conoco) hil
						CC NO:			CONOCOF	
	SZ	CZ					-			Alas
	KD	CZ				CADD FILE NO. 13-08-07-1 -	DRAWN:	07	DESIGN:	
	CZ	DB				SCALE: DATE:		CZ		
ONS	BY	СНК	JOB	PROJ	CUST	1" = 200' 7/01/2016	REDRAWN FROM			

																		FOR	M: DSIZEPID
						ECM NO:	07400							ALPINE		MODULE: CD5	0	ι	JNIT: CD
						КТ600 Сс NO:	03ACS			Conoc	:oPhilli	ns				CD-5 ROAD			
															MONIT	ORING PROFILE		5	
	SZ	CZ				CADD FILE NO.		-			Alaska	, Inc.							
	KD	CZ				13-08-07-1	_	DRAWN:	07	DESIGN:		CHECKED:		_		ALPINE, ALASI	ΛA		
	CZ	DB					DATE:		CZ		_		DB	JOB NO:	SUB JOB NO:	DRAWING NO.	PART:		REV:
SIONS	ΒY	СНК	JOB ENGR	PROJ ENGR	CUST APP	1" = 200'	7/01/2016	REDRAWN FRO				APPROVAL:	_	_	_	CE-CD50-100)4	6 оғ б	3

E.3.2

NIGLIQ CHANNEL & BRIDGE TABULATED DATA (TRANSECTS 1 - 15)

By: SZ 8/20/18 CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCMI Alpine Survey Offic DOC LCMF-156 REV(
	STA	2013	2016	2017	2018	Description	
	0+00	8.4	8.2	8.3	8.5	Ground Shot	
	1+00	8.4	8.5	8.4	8.3	Ground Shot	
	1+50	8.1	20 X	8.1	8.5	Ground Shot	
	2+00		7.3	7.3		Top of Bank	
	2+05	7.5	-	23	-	Top of Bank (2013)	
	2+06		1.9	1.6	1.5	Toe of Bank	
	Varies	0.0	0.3	-0.8	1.5	Edge of Water	
	2+24	-5.5	-6.4	-5.5	-3.1	River Bottom	
	2+73	-24.2	-24.2	-24.9	-25.7	River Bottom	
	3+22	-25.0	-23.2	-24.7	-27.9	River Bottom	
	3+71	-21.3	-22.1	-21.9	-25.2	River Bottom	
	4+27	-19.0	-21.7	-20.1	-22.0	River Bottom	
	4+82	-15.5	-14.2	-15.8	-16.5	River Bottom	
	5+31	-10.0	-13.1	-13.1	-13.9	River Bottom	
	5+70	-3.7	-6.8	-4.1	-4.6	River Bottom	
	Varies	0.1	0.3	-0.1	1.3	Edge of Water	
	7+00	4.2	4.6	4.4	4.5	Sand Bar	
	8+00	5.6	5.0	5.0	5.0	Sand Bar	
	9+00	6.4	7.0	6.6	6.6	Sand Bar	
	10+00	6.8	7.2	6.9	6.9	Sand Bar	
	11+00	7.2	7.5	7.3	7.2	Sand Bar	
	12+00	6.7	7.1	6.7	6.8	Sand Bar	
	13+00	5.9	5.9	5.7	5.8	Sand Bar	
	14+00	2.7	2.3	2.2	2.1	Sand Bar	
	15+00	2.7	2.9	2.8	2.9	Sand Bar	
	16+00	2.4	2.2	2.1	2.5	Sand Bar	
	17+00	1.5	1.0	0.9	0.9	Sand Bar	
	18+00	0.6	0.1	0.1	0.1	Sand Bar	
	Varies	0.3	0.3	0.1	1.5	Edge of Water	
	20+98	-2.9	-2.1	-2.5	-2.3	River Bottom	
	21+53	-2.6	-2.6	-3.0	-1.9	River Bottom	
	21+96	-2.8	-2.3	-1.9	-1.5	River Bottom	
	22+55	-2.8	-2.0	-2.1	-1.1	River Bottom	
	23+00	-2.6	-2.0	-1.7	-1.1	River Bottom	
	23+59	-2.6	-2.1	-2.0	-1.5	River Bottom	
	24+05	-3.4	-1.3	-1.9	-1.3	River Bottom	
	Varies	0.3	0.3	0.1	1.4	Edge of Water	
	24+50	7.3	7.3	7.2	6.7	Top of Bank	
	25+02	101100K	0. VENEN	9.1	9.2	Ground Shot	
	25+50	8.9	9.2	9.2	9.0	Ground Shot	
	26+51	9.1	9.3	9.1	9.2	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 1 of 22

ConocoPhillips Alaska INTERNATIONAL

RPT-CE-CD-114 REV6				Bridge	ransects		DOC LCMF-156 REV6
Γ	STA	2013	2016	2017	2018	Description	
ľ	0+00	8.9	8.5	8.5	8.7	Ground Shot	
	1+00	8.7	8.6	8.6	8.3	Ground Shot	
	1+50	9 9		7.5	7.5	Ground Shot	
	1+93		6.9	5.9		Top of Bank	
	1+95	7.2	-	23		Top of Bank (2013)	
	Varies	0.7	0.1	0.7	1.5	Edge of Water	
	2+12	-2.8	-2.7	-3.0	-1.8	River Bottom	
	2+35	-3.4	-3.1	-3.9	-4.9	River Bottom	
	2+58	-4.3	-4.7	-3.5	-5.7	River Bottom	
ſ	2+81	-5.4	-6.1	-5.6	-7.2	River Bottom	
	3+10	-7.6	-8.4	-9.2	-10.2	River Bottom	
[3+27	-8.1	-13.2	-18.0	-11.5	River Bottom	
[3+47	-11.1	-25.2	-22.8	-11.5	River Bottom	
[3+67	-21.7	-18.5	-18.1	-19.4	River Bottom	
[3+87	-17.6	-16.7	-16.0	-16.7	River Bottom	
[4+07	-14.3	-15.1	-14.9	-16.4	River Bottom	
	4+27	-13.5	-13.3	-13.2	-16.1	River Bottom	
[4+46	-12.2	-11.4	-12.4	-13.2	River Bottom	
[4+78	-10.7	-10.7	-12.0	-11.8	River Bottom	
	4+98	-9.7	-9.7	-10.4	-12.3	River Bottom	
[5+18	-9.3	-8.5	-10.2	-11.8	River Bottom	
[5+35	-8.7	-8.0	-9.3	-11.0	River Bottom	
[5+55	-8.1	-7.6	-8.8	-10.3	River Bottom	
[5+81	-7.6	-7.4	-8.1	-8.9	River Bottom	
	6+01	-7.1	-6.8	-7.5	-8.0	River Bottom	
	6+24	-6.3	-6.1	-7.2	-8.0	River Bottom	
	6+44	-5.9	-5.5	-6.5	-7.0	River Bottom	
	6+64	-5.5	-5.0	-5.9	-6.6	River Bottom	
	6+83	-4.7	-4.4	-5.5	-6.8	River Bottom	
	7+03	-4.9	-3.7	-5.5	-6.3	River Bottom	
	7+23	-4.0	-3.9	-5.4	-5.5	River Bottom	
ļ	7+55	-3.4	-3.5	-4.3	-5.0	River Bottom	_
	7+75	-2.7	-2.4	-3.7	-4.5	River Bottom	
	7+92	-2.5	-2.1	-3.7	-4.4	River Bottom	
-	8+09	-2.2	-1.8	-3.3	-4.0	River Bottom	
	8+38	-1.9	-1.3	-2.6	-3.1	River Bottom	_
-	8+55	-2.1	-1.0	-2.2	-2.0	River Bottom	
-	Varies	0.8	0.2	0.7	1.5	Edge of Water	
-	10+00	1.8	1.3	1.3	1.3	Sand Bar	
-	11+00	1.9	1.6	1.7	1.5	Sand Bar	
-	12+00	2.0	2.6	2.3	2.2	Sand Bar	
-	13+00	2.2	2.8	2.6	1.2	Sand Bar	
-	14+00	2.0	2.8	2.7	2.5	Sand Bar	
-	15+00	2.1	2.6	2.6	2.6	Sand Bar	
-	16+00	1.9	2.3	2.2	2.5	Sand Bar	_
-	17+00	1.6	2.1	2.0	2.1	Sand Bar	
ŀ	18+00	1.3	0.1	0.5	1.0	Sand Bar	_
	19+00 Veries	0.8	0.9	0.9	0.8	Sand Bar	
-	Varies	0.8	0.0	-0.3	1.6	Edge of Water	
ł	20+84	-2.4	-1.6	-1.6	-0.7	River Bottom	
-	21+07	-2.5	-2.0	-2.0	-1.7	River Bottom	-
	21+36	-2.1	-2.0	-2.5	-2.9	River Bottom	

CD-5 Michael Baker

Bridge Transects

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 2 of 22

-2.5

-2.9

-3.6

-3.4

River Bottom

21+53

Transect_02

Kuukpik/LCMF

Alpine Survey Office

ConocoPhillips

Calc'd By: SZ

Date: 8/20/2018

Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6

CD-5 Michael Baker Bridge Transects

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

STA	2013	2016	2017	2018	Description
21+72	-2.9	-3.4	-3.5	-3.6	River Bottom
21+85	-2.9	-3.3	-3.0	-3.9	River Bottom
22+01	-4.1	-3.0	-3.0	-5.1	River Bottom
22+21	-4.7	-4.0	-3.4	-5.4	River Bottom
22+38	-5.6	-4.6	-4.2	-6.2	River Bottom
22+55	-6.2	-4.6	-5.0	-7.0	River Bottom
22+75	-4.6	-5.5	-5.6	-7.5	River Bottom
Varies	0.7	0.0	0.2	1.6	Edge of Water
23+13		0.8	0.5		Toe of Bank
23+16	1.8	-	17.0		Toe of Bank (2103)
23+24	7.8	7.8			Top of Bank (2016)
23+26			7.5	7.1	Top of Bank
23+90	8.6	8.7	8.9		Ground Shot
24+50	9.0	9.1	8.9	8.9	Ground Shot
25+40	9.3	9.4	9.2	9.0	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 3 of 22

Transect_02

Description

Ground Shot

Ground Shot

Ground Shot

Top of Bank

Toe of Bank

Ground Shot

Ground Shot

Ground Shot

Top of Bank

Toe of Bank

Sand Bar

Sand Bar

Sand Bar

Sand Bar

Top of Bank

Toe of Bank

Edge of Water

River Bottom

10:05	-2.2	-1.0	-2.2	-0.0	Kiver Dottom	
10+95	-2.2	-1.3	-2.6	-2.9	River Bottom	1
11+07	-2.3	-1.6	-3.1	-4.0	River Bottom	1
11+17	-3.1	-1.9	-3.5	-4.6	River Bottom	1
11+31	-3.8	-2.3	-4.1	-5.1	River Bottom	1
11+44	-4.3	-3.9	-4.6	-5.9	River Bottom	1
11+60	-5.0	-4.9	-5.8	-6.7	River Bottom	1
11+85	-6.1	-5.6	-6.5	-7.8	River Bottom	1
12+07	-6.8	-6.7	-7.7	-8.9	River Bottom	1
12+23	-7.3	-7.0	-7.6	-9.0	River Bottom	1
12+48	-7.4	-6.8	-7.4	-9.3	River Bottom	1
12+72	-7.4	-6.7	-7.0	-8.8	River Bottom	1
12+89	-7.4	-6.4	-6.7	-9.9	River Bottom	1
13+15	-7.4	-6.3	-6.8	-8.6	River Bottom	1
13+40	-7.3	-6.3	-7.6	-8.7	River Bottom	1
13+64	-7.5	-6.3	-7.3	-8.1	River Bottom	1
13+81	-7.4	-6.8	-6.9	-8.4	River Bottom	1
14+07	-7.3	-6.7	-6.9	-7.6	River Bottom	1
14+32	-6.9	-6.3	-7.2	-7.4	River Bottom	1
14+48	-6.6	-7.0	-7.0	-8.9	River Bottom	1
14+75	-7.9	-5.6	-7.3	-8.1	River Bottom	1
14+99	-8.2	-6.0	-7.6	-7.5	River Bottom	1
15+16	-8.2	-5.9	-7.2	-8.2	River Bottom	1
15+42	-8.3	-7.2	-7.3	-9.3	River Bottom	1
15+61	-8.0	-7.3	-7.6	-8.5	River Bottom	1
15+86	-8.5	-7.0	-8.1	-9.3	River Bottom	1
16+02	-8.6	-7.3	-8.7	-8.6	River Bottom	1
16+27	-8.5	-7.6	-8.8	-9.1	River Bottom	-
16+51	-8.9	-7.3	-8.6	-9.7	River Bottom	1
16+75	-8.3	-7.9	-8.4	-9.6	River Bottom	+
16+98	-8.6	-8.2	-8.8	-10.1	River Bottom	┨
17+14	-8.2	-8.8	-9.2	-10.7	River Bottom	1
17+14	-7.7	-8.7	-9.8	-10.4	River Bottom	-
17+59	-7.5	-8.7	-10.2	-10.4	River Bottom	-
17+85	-7.6	-9.5	-10.2	-11.6	River Bottom	+
17+85	-7.0	-10.0	-10.3	-11.8		┥
10-02	-/.1	-10.0	-10.7	-11.0	River Bottom	

CD-5 Michael Baker Bridge Transects

2018

9.6

10.7

11.3

6.2

6.3

7.7

7.0

6.0

2.0

1.9

3.9

4.6

6.4

4.9

4.0

0.5

-0.8

2017

9.6

10.8

11.4

11.0

6.3

6.5

7.7

6.9

6.0

2.0

1.7

4.0

4.6

5.8

4.9

3.9

0.4

-2.2

Calc'd By: SZ

ConocoPhillips

Alaska INTERNATIONAL

Date: 8/20/2018

RPT-CE-CD-114 REV6

STA

0+00

1+00

2+00

2+17

2+47

3+00

4+00

5+00

5+25

5+74

6+00

7+00

8+00

9+00

9+27

9+40

Varies 10+85 2013

10.0

10.8

11.4

11.1

6.4

6.4

7.6

6.8

6.1

1.7

1.5

3.2

4.8

5.6

5.7

2.0

0.2

-2.2

2016

9.5

10.7

11.3

11.0

6.3

6.5

7.7

7.0

6.0

2.0

1.9

3.9

4.6

5.8

5.1

4.2

0.8

-1.0

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

Transect_03

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV	6				hael Baker Fransects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	18 + 28	-7.7	-9.8	-10.4	-12.2	River Bottom	
	18+53	-7.4	-8.8	-9.6	-11.2	River Bottom	
	18+69	-7.7	-8.3	-8.6	-10.3	River Bottom	
	18+96	-8.0	-7.6	-8.0	-9.9	River Bottom	
	19+12	-6.9	-7.0	-7.4	-9.6	River Bottom	
	19+37	-6.6	-5.7	-6.6	-9.6	River Bottom	
	19+53	-7.0	-6.1	-6.8	-8.8	River Bottom	
	19+80	-7.1	-6.0	-7.0	-8.7	River Bottom	
	20+04	-7.0	-5.8	-7.2	-7.9	River Bottom	
	20+19	-7.4	-5.6	-7.1	-7.9	River Bottom	
	20+43	-7.6	-7.0	-7.5	-8.3	River Bottom	
	20+60	-6.0	-6.9	-7.9	-8.4	River Bottom	
	20+82	-5.6	-6.0	-6.8	-7.6	River Bottom	
	21+04	-5.2	-5.4	-6.2	-6.8	River Bottom	
	21+19	-4.9	-5.4	-6.0	-7.0	River Bottom	
	21+31	-3.8	-4.8	-6.0	-6.0	River Bottom	
	21+50	-2.2	-1.9	-4.1	-4.0	River Bottom	
	Varies	-0.4	0.9	0.2	0.4	Edge of Water	
	22+22	1	1.0	0.8	0.5	Toe of Bank	
	22+35	-	9.0	8.8	8.8	Top of Bank	
	23+00	8.2	8.7	8.9	8.6	Ground Shot	
	23+22	9.2	10.0	9.8	9.5	Top of Bank	
	23+36	8.1	8.5	8.5	8.2	Toe of Bank	
	23+76	7.9	8.9	8.7	8.4	Toe of Bank	
	24+15	10.7	11.5	11.5	11.3	Top of Bank	5.

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 5 of 22

24+22

8.9

9.4

9.3

9.4

Toe of Bank

Transect_03

F1-CE-CD-114 KEV0							DOC LUMP-130 KE
	STA	2013	2016	2017	2018	Description]
	0+00	12.2	12.6	12.4	12.5	Ground Shot	1
	1+00	12.8	13.0	13.0	12.9	Ground Shot	1
	2+00	14.2	14.4	14.5	14.6	Ground Shot	
	3+00	16.1	16.2	16.3	16.2	Ground Shot	
	3+91	14.7	15.2	15.2	15.0	Top of Bank	
	4+24	11.5	11.6	11.6	11.5	Toe of Bank	
	5+00	12.1	12.1	12.1	12.0	Ground Shot]
	5+12	12.4	12.4	12.3	12.2	Top of Bank]
	5+49	8.6	8.7	8.8	8.6	Toe of Bank]
	5+74	8.3	8.4	8.5	8.3	Toe of Bank	
	5+83	10.7	10.9	10.8	10.7	Top of Bank	
	5+91	10.7	11.0	10.9	10.8	Top of Bank]
	6+04	8.2	8.6	8.6	8.7	Toe of Bank]
	6+47	7.5	8.0	8.1	8.2	Toe of Bank	
	6+59	9.7	9.2	9.1	9.1	Top of Bank	
	7+05	8.0	7.9	8.1	8.2	Top of Bank	
	7+31	5.3	5.9	5.8	5.8	Toe of Bank	
	8+00	4.9	5.3	5.1	5.1	Sand Bar]
	9+00	4.2	4.9	4.7	4.5	Sand Bar	
	10+00	4.7	3.3	3.4	3.3	Sand Bar	
	11+00	4.5	3.8	3.6	3.6	Sand Bar	
	12+00	3.9	4.5	3.9	4.0	Sand Bar	
	13+00	3.0	3.3	3.3	3.2	Sand Bar	
	14+00	2.8	2.2	2.8	2.7	Sand Bar	
	15+00	3.1	3.0	2.9	3.0	Sand Bar	
	16+00	3.2	2.3	2.2	2.2	Sand Bar	
	Varies	-0.1	1.0	1.0	-0.3	Edge of Water	
	16+70	-3.1	-0.7	-1.6	-1.4	River Bottom	
	16+84	-6.0	-1.7	-3.4	-4.0	River Bottom	
	17+01	-8.6	-4.0	-8.6	-4.1	River Bottom	
	17+18	-12.4	-5.8	-12.4	-8.6	River Bottom	
	17+42	-15.3	-11.4	-12.4	-12.7	River Bottom	
	17+63	-16.5	-14.5	-15.3	-14.5	River Bottom	
	17+80	-15.7	-15.7	-16.2	-16.0	River Bottom	
	18+00	-16.4	-15.5	-16.2	-17.4	River Bottom	_
	18+21	-17.6	-16.3	-17.3	-18.5	River Bottom	_
	18+36	-19.2	-17.4	-18.4	-19.5	River Bottom	
	18+55	-19.3	-18.9	-19.9	-21.0	River Bottom	_
	18+79	-19.9	-19.7	-20.2	-23.3	River Bottom	_
	18+96	-20.3	-20.1	-20.7	-23.3	River Bottom	_
	19+13	-19.4	-20.8	-21.0	-23.3	River Bottom	-
	19+37	-20.2	-21.2	-21.6	-25.3	River Bottom	_
	19+54	-21.1	-22.1	-21.8	-24.0	River Bottom	-
	19+75	-21.3	-22.6	-22.6	-23.9	River Bottom	-
	19+92	-20.9	-22.9	-22.9	-24.7	River Bottom	_
	20+12	-20.4	-22.4	-22.8	-24.3	River Bottom	-
	20+29	-20.2	-21.9	-22.3	-24.0	River Bottom	4
	20+48	-19.9	-21.8	-21.8	-23.8	River Bottom	-
	20+65	-19.7	-20.8	-20.8	-23.6	River Bottom	-
	20+84	-18.6	-19.3	-19.8	-21.9	River Bottom	-
	21+06	-15.1	-18.1	-18.0	-20.5	River Bottom	-
	21+15 Veries	-10.4	-15.9	-17.3	-18.8	River Bottom	-
	Mamaa		1 1 1	1 11 7	11 2	Lidgo of Wotor	

CD-5 Michael Baker

Bridge Transects

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 6 of 22

-0.2

1.1

0.2

-0.3

Edge of Water

Varies

Transect_04

Kuukpik/LCMF

Alpine Survey Office

DOC LCMF-156 REV6

ConocoPhillips Alaska

Calc'd By: SZ

Date: 8/20/2018

RPT-CE-CD-114 REV6

Alaska INTERNATIONAL

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

CD-5 Michael Baker Bridge Transects

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6

STA	2013	2016	2017	2018	Description
21+91	2.1	1.5	2.0	0.9	Toe of Bank
21+98	10.1	9.3	9.3	9.3	Top of Bank
22+53	1		10.2	10.2	Ground Shot
23+00	10.7	10.8	10.8	10.7	Ground Shot
24+03	10.4	10.3	10.4	10.4	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 7 of 22

Transect_04

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	11.9	11.9	11.9	12.1	Ground Shot	-
	1+00	12.0	12.1	12.0	11.9	Ground Shot	
	2+00	15.5	15.5	15.5	15.4	Ground Shot	
	3+00	16.1	16.0	16.0	15.8	Ground Shot	
	4+00	15.4	15.4	15.4	15.3	Ground Shot	
	4+56	17.2	17.1	17.0	16.9	Top of Bank	
	4+65	14.2	14.2	14.1	14.0	Toe of Bank	
	4+81	14.3	14.1	14.1	14.1	Toe of Bank	
	5+08	18.5	18.2	18.2	18.1	Top of Bank	
	5+36	13.6	13.4	13.3	13.3	Toe of Bank	
	5+82	15.9	15.7	15.6	15.5	Top of Bank	
	6+16	12.6	12.5	12.4	12.3	Toe of Bank	
	6+92	13.0	12.9	13.4	13.4	Top of Bank	
	7+20	7.8	7.8	7.5	7.7	Toe of Bank	
	8+00	5.9	6.3	6.5	6.3	Sand Bar	
	9+00	5.6	5.7	5.6	5.5	Sand Bar	
	10+00	6.1	5.6	5.6	5.6	Sand Bar	
	11+00	5.7	5.3	5.1	5.3	Sand Bar	
	12+00	4.4	3.7	3.7	3.7	Sand Bar	
	13+00	3.0	3.1	3.1	3.0	Sand Bar	
	14+00	2.5	2.3	2.2	1.9	Sand Bar	_
	15+00	2.4	1.1	1.1	1.3	Sand Bar	
	16+00	1.9 2.0	1.4	1.3 2.1	1.5 2.2	Sand Bar	
	17+00 18+00	1.6	2.1	2.1	2.2	Sand Bar Sand Bar	
	18+00	1.0	1.6	1.6	1.9	Sand Bar	
	20+00	1.0	0.5	0.3	0.6	Sand Bar	-
	21+00	0.6	0.8	0.8	-0.3	Sand Bar	
	Varies	-0.5	0.8	0.8	-0.3	Edge of Water	
	21+62	-6.1	-3.5	-3.5	-3.6	River Bottom	
	21+79	-8.2	-4.4	-4.8	-5.8	River Bottom	
	21+96	-8.4	-6.8	-5.8	6.8	River Bottom	-
	22+17	-9.5	-8.3	-8.0	-7.5	River Bottom	
	22+36	-11.3	-9.7	-10.7	-10.4	River Bottom	
	22+53	-12.1	-11.0	-11.7	-12.1	River Bottom	
	22+73	-15.1	-14.3	-13.4	-15.0	River Bottom	
	22+93	-16.8	-16.0	-15.6	-16.6	River Bottom	
	23+13	-19.1	-17.5	-17.3	-19.5	River Bottom	
	23+30	-21.4	-18.9	-18.8	-21.8	River Bottom	
	23+49	-22.4	-20.2	-20.5	-23.2	River Bottom	
	23+73	-22.5	-21.1	-22.2	-24.3	River Bottom	
	23+93	-22.2	-23.4	-23.3	-24.7	River Bottom	
	24+10	-22.4	-24.0	-23.1	-24.9	River Bottom	
	24+29	-22.2	-23.7	-23.5	-25.4	River Bottom	
	24+53	-23.4	-23.2	-23.2	-28.8	River Bottom	
	24+70	-23.3	-24.3	-23.3	-25.8	River Bottom	
	24+87	-20.5	-24.5	-23.9	-26.4	River Bottom	_
	25+04	-21.6	-24.0	-24.2	-26.4	River Bottom	
	25+18	-20.5	-24.1	-23.8	-27.0	River Bottom	_
	25+30	-16.9	-23.6	-23.4	-25.4	River Bottom	_
	25+47	-8.2	-21.3	-23.6	-25.5	River Bottom	_
	Varies	-0.5	0.8	-0.5	-0.3	Edge of Water	_
	25+87	8.5	-	-	-	Top of Bank (2013)	

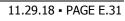
Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 8 of 22 Transect_05

ConocoPhillips Alaska Michael Baker

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

CD-5 Michael Baker Bridge Transects


Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6

26+11 8.6 - - Top of Bank (2016) 26+17 8.5 8.1 Top of Bank 27+00 8.6 8.5 8.5 Ground Shot 27+70 8.7 8.6 8.6 Ground Shot	STA	2013	2016	2017	2018	Description
27+00 8.6 8.5 8.5 8.5 Ground Shot	26+11		8.6	-	-	Top of Bank (2016)
	26+17			8.5	8.1	Top of Bank
27+70 8.7 8.7 8.6 8.6 Ground Shot	27+00	8.6	8.5	8.5	8.5	Ground Shot
	27+70	8.7	8.7	8.6	8.6	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 9 of 22

Transect_05

CD-5 Michael Baker Bridge Tr

2018	CULVILLE	RIVER

Kuukpik/LCMF

Date: 8/20/2018 RPT-CE-CD-114 REV6				Bridge T	ransects		Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	11.4	11.6	11.5	11.5	Ground Shot	
	1+00	11.0	11.1	11.1	11.1	Ground Shot	
	2+00	14.0	13.9	14.0	13.9	Ground Shot	
	3+00	15.3	15.2	15.4	15.2	Ground Shot	-
	3+42	17.1	16.9	16.8	16.8	Top of Bank	
	3+59	12.5	12.3	12.4	12.5	Toe of Bank	
	4+08	14.8	14.6	14.7	14.6	Top of Bank	
	4+23	11.1	11.1	11.0	11.0	Toe of Bank	
	4+96	12.3	12.2	12.2	12.1	Top of Bank	
	5+11	9.8	9.8	9.8	9.8	Toe of Bank	
	5+81	7.8	7.7	7.7	7.7	Top of Bank	
	6+31	1.1	0.4	0.5	0.4	Edge of Water/Toe of Bank	
	7+00	-0.3	-0.5	-0.5	-0.8	River Bottom	
	8+00	0.5	0.0	0.1	0.3	Edge of Water	
	9+00	1.0	0.0	0.0	0.0	Sand Bar	
	10+00	1.4	0.3	0.4	0.1	Sand Bar	
	11+00	1.8	1.0	1.1	1.2	Sand Bar	
	12+00	2.3	1.1	0.8	0.9	Sand Bar	_
	13+00	2.0	0.5	0.4	-0.3	Sand Bar	
	Varies	-0.2	0.5	0.4	-0.4	Edge of Water	
	14+68	-3.3	-1.5	-2.1	-3.2	River Bottom	_
	14+78	-3.1	-1.7	-2.2	-2.0	River Bottom	
	14+94	-2.8	-1.9	-2.3	-2.3	River Bottom	
	15+14	-2.4	-2.1	-2.5	-2.8	River Bottom	-
	15+34	-2.8	-2.3	-2.7	-3.0	River Bottom	
	15+49	-2.6	-2.5	-2.9	-3.3	River Bottom	
	15+72	-2.9	-2.8	-3.1	-2.7	River Bottom	-
	15+95	-3.5	-3.1	-3.3	-2.6	River Bottom	
	16+15	-3.3	-3.5	-3.5	-3.2	River Bottom	
	16+38	-3.8	-3.5	-3.7	-3.1	River Bottom	
	16+61	-4.1	-4.4	-3.9	-4.3	River Bottom	-
	16+87 17+06	-4.1 -4.8	-5.4 -5.6	-7.3 -7.7	7.3 -8.0	River Bottom River Bottom	-
	17+00	-4.0	-5.6	-9.2	-7.9	River Bottom	
	17+29	-7.2	-3.0	-9.2	-7.9	River Bottom	_
	17+33	-10.0	-10.2	-12.5	-12.0	River Bottom	-
	18+08	-13.4	-12.2	-12.5	-12.0	River Bottom	
	18+31	-17.8	-16.2	-19.7	-16.5	River Bottom	-
	18+57	-19.9	-17.4	-20.8	-19.2	River Bottom	
	18+80	-20.3	-19.8	-22.0	-21.5	River Bottom	
	19+02	-20.8	-20.4	-23.1	-23.0	River Bottom	-
	19+28	-24.5	-23.3	-24.7	-24.7	River Bottom	-
	19+51	-24.1	-23.5	-26.4	-26.6	River Bottom	
	19+74	-20.4	-23.1	-26.8	-25.0	River Bottom	-
	19+93	-12.5	-16.2	-24.0	-26.5	River Bottom	
	20+10	-8.6	-4.1	-20.7	-6.6	River Bottom	
	Varies	-0.3	0.6	1.6	-0.3	Edge of Water	
	20+63	12	9.4	9.0	8.5	Top of Bank	1
	21+50	9.8	10.0	9.9	9.9	Ground Shot	1
	22+50	9.3	9.5	9.4	9.5	Ground Shot	
	23+24	9.8	9.8	9.7	9.8	Ground Shot	
							_

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 10 of 22 Transect_06

Calc'd By: SZ

Kuukp Alpine Sur			CD-5 Mich Bridge T				18
DOC LCMF-	2018	2017	2016	2015	2014	2013	114 REV6
Description		2017			0 Pert # 241 Pert		STA
Ground Shot	10.6	10.5	10.7	10.7	10.9	10.6	0+00
Ground Shot	10.3	10.3	10.3	10.4	10.4	10.1	1+00 1+50
Ground Shot	13.5	12.5	13.5	12.4	12.4	13.4	1+30
Grade Break							
Ground Shot	11.6 8.1	11.6	11.6 8.3	11.7	11.6	11.3	2+00 2+20
Top of Bank		8.0		8.4	8.1	0.1	
Top of Bank (2014) Toe of Bank	3.1	- 2.9	- 2.2	-	2.925.57	8.1	2+23
Edge of Water	-0.3	1.0	3.3 0.3	3.7	3.0	2.8	2+30 Varies
River Bottom	-0.5	-4.0	-4.0	-4.2	-4.1	-2.5	4+93
River Bottom	-3.9	-4.5	-4.0	-4.2	-4.1	-2.5	5+06
River Bottom	-4.4	-4.5	-4.3	-4.0	-4.4	-2.5	5+06
River Bottom	-5.2	-5.0	-4.7	-5.3	-3.7	-2.0	5+45
River Bottom	-6.8	-6.2	-4.7	-5.5	-3.7	-2.7	5+68
River Bottom	-0.8	-0.2	-3.0	-7.0	-5.8	-4.5	5+91
River Bottom	-7.6	-7.6	-7.5	-7.3	-3.2	-4.5	6+17
River Bottom	-7.7	-7.0	-7.3	-7.7	-7.0	-3.8	
	-7.7	-7.2	-7.2	-7.7	-7.4	-7.4	6+42
River Bottom				-7.7			6+65
River Bottom	-7.6	-6.7	-6.4	111000	-6.3	-7.2	6+88
River Bottom	-8.2	-6.7	-6.6	-7.6	-6.0	-6.8	7+11
River Bottom	-7.8	-6.9	-6.8	-7.6	-5.5	-5.4	7+37
River Bottom	-7.9	-7.3	-7.2	-7.6	-6.3	-5.1	7+56
River Bottom	-7.7	-7.7	-7.3	-7.6	-7.1	-4.9	7+82
River Bottom	-7.8	-7.3	-6.7	-7.6	-7.1	-4.3	8+02
River Bottom	-7.9	-6.9	-7.5	-7.6	-5.6	-3.6	8+25
River Bottom	-7.1	-6.8	-7.0	-7.5	-5.9	-4.2	8+50
River Bottom	-7.0	-7.5	-7.2	-7.5	-6.2	-5.6	8+74
River Bottom	-8.0	-7.9	-7.5	-7.4	-6.1	-5.9	9+03
River Bottom	-7.8	-7.6	-7.8	-7.2	-5.5	-7.6	9+32
River Bottom	-6.6	-7.6	-7.3	-7.0	-6.7	-7.0	9+58
River Bottom	-6.2	-7.9	-8.2	-6.9	-7.4	-9.8	9+84
River Bottom	-6.2	-8.0	-7.8	-7.4	-10.8	-9.9	10+10
River Bottom	-6.7	-8.5	-8.2	-8.0	-10.5	-9.5	10+39
River Bottom	-7.9	-7.9	-7.5	-7.8	-9.2	-8.7	10+68
River Bottom	-9.6	-7.9	-7.8	-7.6	-9.3	-8.3	10+91
River Bottom	-9.3	-8.4	-7.8	-7.4	-9.4	-8.9	11+21
River Bottom	-8.6	-8.4	-7.5	-9.4	-9.7	-9.2	11+50
River Bottom	-9.0	-7.7	-7.2	-10.3	-10.5	-9.4	11+76
River Bottom	-8.6	-8.6	-8.4	-9.9	-10.7	-11.0	12+02
River Bottom	-8.6	-8.4	-8.1	-9.5	-10.7	-11.6	12+31
River Bottom	-8.6	-8.0	-7.5	-9.1	-9.4	-10.4	12+57
River Bottom	-8.4	-7.9	-7.7	-8.8	-9.5	-9.0	12+83
River Bottom	-7.9	-7.4	-7.2	-8.0	-8.7	-8.4	13+09
River Bottom	-7.0	-6.8	-6.8	-7.6	-8.1	-7.6	13+35
River Bottom	-6.5	-6.5	-6.4	-7.2	-7.2	-6.7	13+64
River Bottom	-6.4	-6.3	-6.1	-6.5	-6.7	-6.3	13+87
River Bottom	-5.7	-5.7	-5.6	-6.3	-6.5	-5.7	14+17
River Bottom	-5.6	-5.5	-5.4	-6.2	-6.2	-5.9	14+40
River Bottom	-5.4	-5.7	-5.7	-6.3	-6.5	-6.6	14+69
River Bottom	-6.1	-6.4	-6.5	-7.8	-7.9	-7.8	14+98
River Bottom	-7.9	-8.6	-7.8	-9.2	-10.6	-10.7	15+24
River Bottom	-10.5	-10.9	-10.9	-11.8	-13.3	-13.6	15+53
River Bottom	-11.5	-11.9	-12.2	-12.6	-13.9	-14.7	15+79

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 11 of 22 Transect_07

ConocoPhillips Alaska INTERNATIONAL

9.5

10.3

10.5

2018 COLVILLE RIVER DELTA

Ground Shot

Ground Shot

Ground Shot

Calc'd By: SZ Date: 8/17/20 RPT-CE-CD	018					hael Baker Fransects		Alpine	ukpik/LCMF Survey Office MF-156 REV6
	STA	2013	2014	2015	2016	2017	2018	Description]
	16+02	-11.1	-12.3	-12.3	-12.3	-12.2	-11.8	River Bottom	1
8	Varies	0.7	0.5	0.2	0.3	1.0	-0.2	Edge of Water	1
	16+95	8.5	8.4	8.4	8.3	-	-	Top of Bank (2016)	1
	16+97					8.7	7.9	Top of Bank	1
	17+00	9.2	9.5	9.4	9.3	9.2	8.9	Ground Shot	1
	17+57	10.1	10.3	10.0	9.7	9.6	9.8	Ground Shot	1

9.4

10.2

10.3

9.5

10.4

10.5

9.6

10.6

10.7

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 12 of 22 Transect_07

18+00

19+00

19+07

9.4

10.2

10.8

9.6

10.5

10.9

8					hael Baker Fransects		K Alpir
14 REV6							DOC LO
STA	2013	2014	2015	2016	2017	2018	Description
0+00	10.6	10.8	10.3	10.3	10.1	10.1	Ground Shot
1+00	10.1	10.2	10.3	10.2	10.1	10.1	Ground Shot
2+00	9.8	10.0	10.1	10.0	9.9	10.0	Ground Shot
2+08	8.9	9.0	9.0	9.0	8.9	8.7	Top of Bank
Varies	0.9	0.2	-0.4	0.2	1.3	-0.2	Edge of Water
2+99	-5.8	-5.5	-7.3	-6.6	-6.6	-3.7	River Bottom
3+20	-7.1	-7.7	-8.7	-8.3	-8.3	-7.8	River Bottom
3+40	-7.4	-8.8	-9.7	-8.6	-8.8	-8.4	River Bottom
3+61	-8.2	-9.6	-10.4	-9.2	-9.8	-9.1	River Bottom
3+85	-9.7	-10.5	-11.2	-9.9	-10.6	-10.4	River Bottom
4+09	-9.9	-10.8	-12.1	-11.2	-11.6	-11.5	River Bottom
4+33	-9.9	-11.3	-13.1	-13.6	-13.5	-12.9	River Bottom
4+57	-10.3	-11.9	-14.1	-15.2	-15.6	-16.5	River Bottom
4+85	-10.0	-10.9	-14.3	-15.3	-15.2	-15.3	River Bottom
5+09	-10.6	-10.4	-15.0	-14.4	-14.6	-14.9	River Bottom
5+33	-11.5	-10.3	-15.2	-14.0	-14.4	-14.5	River Bottom
5+60	-11.9	-10.7	-14.7	-13.8	-14.0	-13.6	River Bottom
5+87	-12.4	-10.3	-14.2	-13.2	-13.5	-13.2	River Bottom
6+19	-11.8	-10.8	-14.9	-14.3	-14.6	-14.6	River Bottom
6+46	-11.1	-10.8	-15.4	-15.6	-15.6	-15.4	River Bottom
6+73	-11.2	-11.6	-15.6	-15.5	-15.6	-15.3	River Bottom
7+01	-10.3	-10.6	-15.3	-14.4	-14.7	-14.5	River Bottom
7+28	-10.0	-10.3	-13.9	-13.5	-13.5	-13.6	River Bottom
7+53	-11.8	-11.0	-12.5	-12.4	-12.2	-12.4	River Bottom
7+80	-11.6	-11.0	-11.1	-10.5	-10.7	-11.3	River Bottom
8+08	-12.1	-9.5	-9.4	-9.7	-9.8	-9.1	River Bottom
8+36	-11.6	-8.2	-9.4	-9.1	-9.0	-8.2	River Bottom
8+59	-11.0	-7.8	-8.5	-8.6	-8.4	-8.3	River Bottom
8+79	-11.1	-7.1	-7.2	-7.5	-7.6	-7.2	River Bottom
9+04	-9.1	-7.9	-6.8	-7.1	-6.5	-5.6	River Bottom
9+28	-8.3	-7.7	-6.3	-5.0	-5.5	-4.8	River Bottom
9+53	-8.1	-7.2	-6.4	-5.2	-5.5	-5.4	River Bottom
9+76	-7.7	-6.6	-6.5	-4.6	-4.9	-4.1	River Bottom
9+96	-7.6	-6.7	-6.4	-5.6	-5.0	-5.1	River Bottom
10+17	-7.2	-6.2	-6.2	-6.2	-5.8	-5.2	River Bottom
10+42	-5.6	-5.6	-6.0	-4.8	-4.3	-3.3	River Bottom
10+62	-3.1	-3.9	-3.4	-3.1	-3.1	-2.5	River Bottom

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 13 of 22

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: S2 Date: 8/17/20 RPT-CE-CD-	018					hael Baker Fransects		Alpine S	kpik/LCMF Survey Office F-156 REV6
	STA	2013	2014	2015	2016	2017	2018	Description	
	0+00	10.6	10.6	10.6	10.6	10.3	10.4	Ground Shot	
	1+00	9.9	10.0	10.0	9.9	10.0	9.8	Ground Shot	
	1+50	10.5	10.5	10.3	10.1	10.0	10.1	Ground Shot	
	1+92	9.6	9.6	9.7	9.6	9.4	9.2	Top of Bank	
]	Varies	0.6	0.0	0.9	0.7	0.8	-0.2	Edge of Water	
	2+48	-5.7	-10.5	-7.1	-5.7	-7.0	-5.5	River Bottom	
	2+62	-7.7	-13.4	-13.8	-15.3	-14.6	-14.3	River Bottom	
	2+78	-10.5	-18.8	-18.7	-19.2	-17.4	-19.1	River Bottom	
	2+92	-14.5	-18.8	-21.6	-20.6	-20.2	-20.1	River Bottom	
	3+13	-15.5	-19.2	-23.5	-21.8	-21.9	-22.0	River Bottom	
1	3+33	-15.2	-20.1	-24.9	-23.0	-23.2	-23.0	River Bottom	
	3+58	-14.8	-20.7	-21.4	-23.5	-23.5	-23.3	River Bottom	
	3+79	-13.9	-16.2	-19.2	-19.4	-21.7	-19.8	River Bottom	
	4+03	-13.9	-16.2	-21.4	-21.5	-20.8	-21.4	River Bottom	
	4+26	-13.4	-16.9	-22.1	-22.0	-20.0	-22.0	River Bottom	
	4+54	-12.9	-19.9	-22.2	-19.8	-19.5	-18.4	River Bottom	
	4+78	-13.4	-20.5	-22.3	-20.2	-19.4	-18.8	River Bottom	
	5+02	-13.0	-19.3	-22.4	-19.0	-19.0	-18.8	River Bottom	
	5+30	-13.2	-18.4	-21.5	-19.0	-18.6	-18.1	River Bottom	
1	5+54	-13.9	-17.9	-20.9	-18.5	-18.5	-17.9	River Bottom	
	5+79	-13.7	-18.3	-21.3	-18.8	-19.4	-18.6	River Bottom	
	6+02	-12.6	-17.8	-19.7	-20.6	-20.3	-19.7	River Bottom	
	6+30	-12.2	-15.4	-17.7	-20.7	-21.0	-20.2	River Bottom	
	6+55	-12.7	-13.3	-16.7	-16.0	-15.5	-14.0	River Bottom	
	6+79	-15.2	-12.4	-16.8	-16.5	-16.3	-14.5	River Bottom	
	7+06	-14.0	-12.7	-17.0	-16.7	-16.6	-15.3	River Bottom	
	7+30	-13.3	-13.2	-16.8	-15.7	-15.6	-14.6	River Bottom	
	7+57	-11.9	-14.8	-17.0	-15.3	-14.8	-13.2	River Bottom	
	7+84	-11.6	-14.6	-17.3	-15.4	-14.9	-14.0	River Bottom	
	8+08	-11.0	-15.8	-16.6	-14.5	-13.9	-13.5	River Bottom	
	8+33	-9.9	-10.3	-15.1	-10.5	-15.9	-11.0	River Bottom	
	8+58	-6.9	-7.9	-6.2	-5.1	-5.1	-4.2	River Bottom	
	8+78	-5.2	-6.4	-4.1	-3.5	-2.3	-2.6	River Bottom	
	8+91	-3.3	-6.1	-2.8	-2.4	-2.0	-1.5	River Bottom	
	Varies	0.5	0.5	1.2	0.5	0.9	-0.3	Edge of Water	
	10+00	2.3	2.5	4.0	4.1	4.0	4.4	Sand Bar	
	11+00	3.9	4.1	4.9	4.9	4.2	5.1	Sand Bar	
	11+52	5.0	5.2	5.5	5.6	5.4	5.8	Edge of Vegetation	
	12+00	5.4	5.5	6.0	6.0	5.7	5.9	Ground Shot	
	13+00	4.2	4.6	5.0	5.0	5.8	5.2	Ground Shot	
	14+00	3.9	4.1	4.5	4.5	4.9	4.5	Ground Shot	
	14+39	3.7	3.9	4.0	4.0	4.0	4.1	Edge of Water	
	14+82	3.4	3.7	3.9	3.8	3.8	4.2	Edge of Water	
2	14+84	3.8	4.1	4.2	4.0	4.0	4.2	Toe of Bank	
	15+00	5.7	5.9	5.7	5.7	5.7	5.8	Top of Bank	
	15+52	8.0	8.2	8.0	7.9	7.8	8.0	Ground Shot	
	16+00	8.2	8.5	8.1	8.1	8.0	7.9	Ground Shot	
	16+92	9.4	9.4	9.3	9.3	9.0	7.8	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 14 of 22 Transect_09

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/17/20 RPT-CE-CD-	18					hael Baker Fransects		Alpine S	kpik/LCMF Survey Office IF-156 REV6
]	STA	2013	2014	2015	2016	2017	2018	Description	
-	0+00	10.3	10.4	10.3	10.3	10.2	10.1	Ground Shot	
	1+00	10.4	10.7	10.3	10.3	9.6	9.3	Ground Shot	
1	1+50	10.5	10.6	10.4	10.3	10.1	10.1	Ground Shot	
1	1+90	9.9	9.7	9.5	9.4	8.9	8.2	Top of Bank	
2	2+00	6.7	7.0	6.5	6.4	5.3	5.1	Ground Shot	
1	Varies	0.5	-0.8	-0.3	0.7	1.2	-0.2	Edge of Water	
	2+67	-7.8	-14.3	-20.4	-19.5	-19.9	-20.2	River Bottom	
	2+87	-20.7	-21.4	-21.3	-22.3	-21.6	-22.6	River Bottom	
	3+09	-21.3	-22.5	-23.8	-23.3	-23.2	-24.0	River Bottom	
1	3+30	-20.0	-21.2	-23.8	-22.6	-23.1	-22.8	River Bottom	
1	3+55	-19.4	-20.3	-23.7	-22.7	-22.4	-22.3	River Bottom	
1	3+76	-19.0	-20.7	-23.7	-22.6	-21.1	-22.3	River Bottom	
1	4+00	-17.8	-18.6	-20.8	-18.8	-18.3	-18.9	River Bottom	
1	4+21	-18.0	-19.2	-21.1	-19.0	-18.9	-18.8	River Bottom	
	4+45	-18.7	-19.2	-21.5	-19.1	-19.1	-18.6	River Bottom	
Î	4+70	-19.0	-19.9	-21.9	-20.9	-20.3	-19.3	River Bottom	
1	4+94	-18.4	-20.6	-22.3	-21.9	-21.2	-20.3	River Bottom	
	5+21	-17.3	-20.4	-23.0	-22.0	-22.0	-21.3	River Bottom	
	5+45	-16.1	-19.2	-23.7	-22.3	-22.2	-21.3	River Bottom	
	5+69	-14.6	-19.1	-23.2	-22.0	-21.5	-21.3	River Bottom	
Ì	5+96	-13.5	-17.7	-22.4	-21.2	-20.1	-20.4	River Bottom	
	6+20	-13.7	-16.8	-21.5	-20.5	-19.8	-19.1	River Bottom	
Î	6+47	-12.5	-15.3	-19.7	-18.2	-17.9	-17.4	River Bottom	
	6+71	-12.1	-14.7	-17.4	-16.2	-16.2	-15.4	River Bottom	
Î	6+99	-11.9	-14.2	-15.2	-13.8	-13.2	-11.8	River Bottom	
1	7+23	-12.4	-15.4	-14.8	-11.4	-10.8	-9.5	River Bottom	
	7+48	-12.2	-17.6	-14.4	-10.7	-9.7	-8.3	River Bottom	
1	7+70	-12.9	-25.5	-14.1	-11.3	-10.5	-9.1	River Bottom	
	7+94	-11.2	-21.7	-14.8	-14.6	-12.7	-10.6	River Bottom	
1	8+15	-6.8	-15.9	-10.8	-12.8	-7.9	-6.5	River Bottom	
1	Varies	0.4	1.2	2.6	0.8	1.1	-0.3	Edge of Water	
	9+00	1.6	2.1	3.7	3.8	3.5	3.6	Sand Bar	
1	10+00	3.6	3.2	4.3	4.3	4.4	4.6	Sand Bar	
	11+00	5.4	5.6	5.8	5.9	5.9	6.1	Edge of Vegetation	
	12+00	5.1	5.4	5.7	5.7	5.7	5.9	Ground Shot	
	13+00	4.8	5.0	5.4	5.4	5.3	5.5	Ground Shot	
	14+00	4.6	4.8	5.0	5.1	5.0	4.7	Ground Shot	
	14+84	3.7	3.8	3.7	3.7	3.8	3.9	Toe of Bank	
	14+96	7.7	7.7	6.8	7.5	7.4	7.5	Top of Bank	
	15+00	7.8	8.0	7.9	7.8	7.7	7.8	Ground Shot	
Î	15+38	8.6	8.5	8.4	8.8	8.4	8.2	Ground Shot	
1	15+53	9.1	9.4	9.4	9.2	9.1	9.2	Grade Break	
Ĩ	15+71	7.2	7.4	7.3	7.2	7.2	7.1	Grade Break	
1	16+00	6.7	7.0	6.8	6.7	6.4	6.6	Ground Shot	
1	16+88	7.2	7.4	7.2	7.2	6.9	7.1	Ground Shot	1

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 15 of 22

Transect_10

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/17/2018 RPT-CE-CD-114 REV6					hael Baker Transects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	10.9	10.9	10.7	10.7	Ground Shot	
	1+00	10.4	10.7	10.5	10.7	Ground Shot	
	1+47	2	3	9.1	8.8	Top of Bank	-
	1+50	8.7	-	1718	-	Ground Shot	-
	1+55	9 8	8.8			Top of Bank (2016)	
	1+79	8.6	-	-	-	Top of Bank (2013)	1
	Varies	0.6	0.8	0.9	-0.2	Edge of Water	
	2+01	-10.6	-28.3	-25.0	-26.9	River Bottom	
	2+16	-19.0	-33.1	-31.0	-32.5	River Bottom	
	2+36	-30.7	-36.7	-36.1	-36.2	River Bottom	
	2+59	-33.6	-36.6	-36.4	-36.7	River Bottom	
	2+82	-35.3	-36.7	-36.4	-36.9	River Bottom	7
	3+08	-32.7	-35.9	-35.5	-35.5	River Bottom	
	3+28	-31.4	-34.0	-33.3	-33.6	River Bottom	
	3+54	-30.9	-31.8	-31.8	-31.4	River Bottom	
	3+77	-30.0	-29.7	-29.2	-28.2	River Bottom	-
	4+00	-30.0	-25.0	-25.8	-25.1	River Bottom)
	4+23	-27.8	-22.5	-22.5	-22.1	River Bottom	
	4+48	-25.6	-18.3	-19.2	-17.3	River Bottom	
	4+68	-22.7	-16.0	-16.4	-14.6	River Bottom	
	4+94	-20.1	-13.7	-13.3	-10.7	River Bottom	
	5+16	-17.5	-12.3	-11.5	-8.6	River Bottom	
	5+40	-14.9	-11.1	-10.8	-7.9	River Bottom	
	5+62	-13.5	-9.1	-9.1	-7.3	River Bottom	
	5+82	-10.5	-5.6	-6.1	-4.9	River Bottom	
	6+02	-6.1	-3.6	-3.8	-4.5	River Bottom	
	Varies	0.2	0.8	0.9	-0.3	Edge of Water	
	7+00	2.9	3.4	3.4	3.5	Sand Bar	
	7+90	4.9	5.1	5.0	5.1	Edge of Vegetation	
	8+00	4.9	5.1	5.0	5.2	Ground Shot	
	9+00	5.5	5.6	5.6	5.7	Ground Shot	
	10+00	5.1	5.2	5.2	5.3	Ground Shot	
	11+00	5.6	5.7	5.7	5.8	Ground Shot	
	12+00	5.8	5.9	5.9	6.1	Ground Shot	
	13+00	5.5	5.8	5.7	5.8	Ground Shot	
	14+00	6.2	6.3	6.3	6.4	Ground Shot	
	15+00	6.1	6.2	6.1	6.1	Ground Shot	
	16+00	6.3	6.5	6.5	6.6	Edge of Vegetation	
	16+52	6.7	6.8	6.8	6.9	Grade Break	
	16+62	8.0	8.2	8.1	8.2	Grade Break	
1	16190	0.1	0.0	0 0	0 0	Cound Shat	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 16 of 22

16 + 89

17+00

18+00

18+39

9.1

8.9

9.0

10.2

8.9

9.1

9.0

10.2

8.8

9.1

9.2

9.8

8.8

9.3

9.3

9.4

Ground Shot

Ground Shot

Ground Shot

Ground Shot

ConocoPhillips

Michael Baker Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/17/2018 RPT-CE-CD-114 REV6					hael Baker Transects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	11.0	11.0	10.8	10.9	Ground Shot	-
	1+00	11.3	11.2	10.8	10.8	Ground Shot	-
	2+00	9.9	10.4	10.2	10.4	Ground Shot	-
	2+08	10.0	10.0	9.9	9.9	Top of Bank	
	2+22	4.9	5.6	5.6	5.7	Toe of Bank	-
	3+00	2.2	3.1	3.1	3.3	Sand Bar	
	4+00	1.5	2.5	2.5	2.6	Sand Bar	-
	5+00	1.8	2.3	2.2	2.5	Sand Bar	
	Varies	0.4	0.4	0.6	0.6	Edge of Water	
	5+79	-4.7	0.4	-1.7	-0.1	River Bottom	-
	5+85	-5.1	-2.6	-2.1	-2.2	River Bottom	
	6+10	-9.0	-5.6	-3.9	-2.5	River Bottom	-
	6+36	-17.5	-11.1	-11.3	-10.0	River Bottom	
	6+54	-24.6	-20.7	-18.4	-16.5	River Bottom	
	6+85	-28.6	-24.0	-25.9	-22.3	River Bottom	
	7+08	-32.0	-29.3	-28.6	-26.5	River Bottom	
	7+31	-33.5	-29.7	-29.8	-27.8	River Bottom	
	7+57	-33.9	-31.9	-31.6	-30.0	River Bottom	
	7+83	-33.0	-32.6	-32.6	-32.7	River Bottom	
	8+06	-32.1	-31.7	-32.2	-32.4	River Bottom	
	8+29	-31.0	-31.2	-31.1	-31.9	River Bottom	
	8+56	-31.1	-31.1	-29.6	-31.6	River Bottom	
	8+79	-31.3	-31.1	-30.8	-31.3	River Bottom	
	9+02	-30.7	-30.4	-30.6	-31.2	River Bottom	
	9+28	-29.9	-30.7	-30.6	-31.0	River Bottom	
	9+51	-27.1	-30.7	-30.6	-31.3	River Bottom	
	9+72	-23.2	-30.4	-28.1	-30.0	River Bottom	
	10+00	-20.1	-22.9	-21.9	-23.0	River Bottom	
	10+23	-3.0	-19.2	-19.1	-17.7	River Bottom	
	10+43	-3.2	-18.3	-15.9	-15.9	River Bottom	
	Varies	0.6	0.5	0.5	0.6	Edge of Water	
	11+05	9.5		-		Top of Bank (2013)	
	11+20		1.3	1.2	2.2	Toe of Bank	
	11+28		8.8	8.6	8.4	Top of Bank	
	12+00	9.4	9.1	9.0	9.1	Ground Shot	
	13+00	7.9	8.0	8.0	8.1	Edge of Vegetation	
	14+01	6.9	7.0	7.0	7.2	Ground Shot	
	15+01	7.2	7.3	7.3	7.5	Ground Shot	
	16+00	7.8	8.0	8.0	8.1	Ground Shot	
	17+01	8.3	8.4	8.4	8.5	Ground Shot	
	18+00	7.0	7.1	7.0	7.1	Ground Shot	
	19+00	6.3	6.6	6.7	6.9	Ground Shot	
	20+00	6.7	7.0	7.0	7.0	Ground Shot	
	21+00	6.7	7.1	7.0	7.0	Ground Shot	
	21+85	7.0	7.4	7.3	7.4	Toe of Bank	
	22+00	8.2	8.5	8.3	8.3	Top of Bank	
	22+16	8.8	8.6	8.4	8.6	Ground Shot	
	23+00	9.7	10.0	9.9	9.8	Ground Shot	
	23+67	10.2	10.0	9.4	9.7	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 17 of 22

Transect_12

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/17/2018 RPT-CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCM Alpine Survey Offic DOC LCMF-156 REV
]	STA	2013	2016	2017	2018	Description	
F	0+00	10.6	11.4	11.2	11.4	Ground Shot	
	1+00	11.7	11.7	11.7	11.8	Ground Shot	
F	1+50	12.1	11.9	12.0	12.1	Ground Shot	
F	2+00	12.2	11.8	11.7	11.8	Ground Shot	
	2+34	11.2	11.1	10.9	11.0	Edge of Vegetation	
	3+00	10.3	9.9	10.2	10.1	Ground Shot	
	4+00	10.3	10.6	10.6	10.6	Ground Shot	
	4+36	10.9	10.9	10.8	11.1	Edge of Vegetation	
	5+00	11.7	11.6	11.6	11.8	Ground Shot	
	6+00	13.2	13.2	13.1	13.3	Ground Shot	
	7+00	14.1	13.7	13.6	13.7	Ground Shot	
	7+11	14.9	14.6	14.6	14.7	Grade Break	
	7+95	23.7	23.4	23.4	23.6	Grade Break	
	8+00	22.8	23.0	22.9	23.1	Ground Shot	
	9+00	22.4	22.4	22.4	22.6	Top of Bank	
	9+67	11.2	11.1	11.3	11.3	Toe of Bank	
	10+00	9.6	10.0	10.0	10.2	Sand Bar	
	11+00	7.3	7.6	7.7	7.7	Sand Bar	
	12+00	8.3	5.9	5.8	5.9	Sand Bar	
	13+00	5.0	4.8	4.8	5.0	Sand Bar	
	14+00	6.9	4.2	4.4	4.7	Sand Bar	
	15+00	5.8	3.9	4.1	4.4	Sand Bar	
	16+00	4.9	3.7	3.7	3.9	Sand Bar	
	17+00	4.4	3.3	3.4	3.6	Sand Bar	
	18+01	4.2	2.8	2.9	3.2	Sand Bar	_
	19+00	3.1	2.6	2.6	2.9	Sand Bar	
	20+00	2.5	2.4	2.5	2.7	Sand Bar	_
-	21+00	2.3	2.4	2.4	2.6	Sand Bar	
-	22+00	2.1	2.5	2.4	2.7	Sand Bar	
-	23+00	2.5	2.2	2.3	2.5	Sand Bar	_
-	24+00	1.8	2.3	2.4	2.6	Sand Bar	
	25+00	2.0	2.2	2.2	2.6	Sand Bar	
	26+00	2.3	2.1	2.1	2.4	Sand Bar	
	27+00	3.0	2.2	2.1	2.4	Sand Bar	
-	28+00	3.7	2.9	2.7	2.7	Sand Bar	
-	29+00	3.6	2.8	2.7	2.8	Sand Bar	
-	30+00	3.1 3.4	2.7	2.5	2.6	Sand Bar	
ŀ	31+00 32+00	2.9	2.1 2.0	2.0	2.3 2.2	Sand Bar Sand Bar	-
-	33+00	2.9	1.5	1.5	1.8	Sand Bar	
-	34+00	1.6	0.9	1.6	1.0	Sand Bar	
-	35+00	1.0	-	1.0	2.0	Sand Bar	2
-	Varies	0.5	1.4	1.6	0.4	Edge of Water	
F	36+19	-3.2	-2.8	-4.6	-5.9	River Bottom	
-	36+39	-5.3	-4.4	-5.4	-7.0	River Bottom	
	36+59	-7.8	-5.0	-7.0	-7.5	River Bottom	_
	36+79	-10.9	-5.8	-7.0	-8.0	River Bottom	
t t	37+07	-13.3	-8.7	-7.3	-8.2	River Bottom	
F	37+30	-16.2	-9.0	-8.4	-8.7	River Bottom	
F	37+59	-18.8	-10.0	-10.1	-10.0	River Bottom	-1
ľ	37+84	-20.2	-11.5	-11.8	-11.2	River Bottom	
	38+16	-20.8	-15.6	-14.1	-14.0	River Bottom	1
	38+38	-21.1	-16.7	-13.5	-15.2	River Bottom	
Γ	38+70	-22.1	-19.2	-17.5	-17.7	River Bottom	
	38+92	-24.2	-22.1	-19.8	-19.0	River Bottom	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 18 of 22 Transect_13

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/17/2018 RPT-CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	39+21	-22.6	-24.4	-21.8	-22.6	River Bottom	
	39+38	-3.7	-23.5	-22.9	-24.4	River Bottom	
	Varies	0.1	1.1	0.3	0.4	Edge of Water	
	40+00	8.7	-	2		Ground Shot (2013)	
	40+12		9.1	-	-	Top of Bank (2016)	
	40+17			8.4		Top of Bank (2017)	
	40+26			1 4 0	8.2	Top of Bank (2018)	
	41+00	8.1	8.6	8.6	8.7	Ground Shot	
	42+00	8.1	8.5	8.5	8.7	Ground Shot	
	43+00	8.0	8.4	8.3	8.4	Ground Shot	
	43+53	6.7	7.0	6.9	7.1	Edge of Vegetation	
	44+00	5.2	5.6	5.5	5.6	Top of Bank	
	Varies	0.2	1.4	1.4	0.5	Edge of Water	
	45+19	0.4	0.8	0.7	-0.5	River Bottom	
	45+64	-1.5	-0.4	-1.4	-1.3	River Bottom	
	46+13	-6.5	-5.7	-5.6	-6.6	River Bottom	
	46+62	-10.0	-8.8	-9.4	-10.1	River Bottom	
	47+14	-10.3	-9.5	-9.8	-10.4	River Bottom	
	47+65	-7.8	-7.5	-7.9	-8.2	River Bottom	
	48+13	-5.2	-4.8	-5.2	-5.6	River Bottom	
	48+65	-1.5	-0.5	-2.2	-2.3	River Bottom	
	Varies	-0.2	1.1	0.7	0.5	Edge of Water	
	49+22	6.8	6.9	6.6	6.4	Top of Bank	
	49+53	7.6	7.8	7.9	7.8	Grade Break	
	50+00	8.3	8.2	8.2	8.5	Ground Shot	
	50+14	11.7	11.5	11.4	11.4	Ground Shot	
	50+28	11.2	11.3	11.0	11.2	Grade Break	
	50+33	9.0	8.9	9.0	9.1	Grade Break	
	50+36	10.6	10.6	10.7	10.8	Grade Break	
	51+00	10.7	10.9	10.9	10.9	Ground Shot	
	51+30	10.5	10.7	11.0	11.0	Grade Break	
	51+34	9.2	9.3	9.4	9.4	Grade Break	
	51+44	10.1	10.0	10.1	10.1	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 19 of 22

Calc'd By: SZ Date: 8/17/2018 RPT-CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	13.2	13.2	13.1	13.1	Ground Shot	=
	1+00	13.5	13.7	13.6	13.8	Ground Shot	
	1+65	15.7	15.6	15.5	15.5	Ground Shot	-
	2+00	16.7	16.7	16.6	16.8	Ground Shot	
	3+00	18.8	18.8	18.8	18.9	Ground Shot	
	3+67	20.0	20.0	20.0	20.1	Grade Break	
	4+00	19.2	19.3	19.4	19.4	Ground Shot	
	4+76	19.3	19.3	19.2	19.5	Top of Bank	-
	5+19	12.2	12.2	12.2	12.4	Toe of Bank	
	6+00	9.6	9.5	9.4	9.3	Edge of Vegetation	
	7+00	6.1	6.2	6.1	6.2	Edge of Vegetation	
	8+00	3.3	4.0	3.7	3.7	Sand Bar	_
	9+00	2.8	2.4	2.4	2.5	Sand Bar	_
	10+00	1.7	-	1.8	1.9	Sand Bar	
	11+00	0.5	-	0.5	-	Sand Bar	-
	Varies	-0.1	1.7	1.8	1.5	Edge of Water	_
	13+87	-2.6	-1.2	-2.2	-1.6	River Bottom	_
	14+03	-2.7 -3.2	-0.5	-2.2	-1.9	River Bottom River Bottom	-
	14+20 14+36	-3.2	-1.0	-2.0	-1.0	River Bottom	-
	14+50	-2.4	-1.1	-1.9	-1.7	River Bottom	-
	14+32	-3.0	-0.7	-1.7	-2.0	River Bottom	-
	14+88	-2.4	-0.6	-2.2	-2.0	River Bottom	-
	15+04	-3.1	-0.6	-2.2	-2.1	River Bottom	-
	15+24	-2.9	-0.6	-1.6	-1.2	River Bottom	-
	15+36	-2.9	-0.6	-1.3	-1.0	River Bottom	-
	15+53	-2.3	-0.5	-0.9	-1.0	River Bottom	-
	15+66	-2.4	-0.3	-0.6	-0.9	River Bottom	-
	15+76	-2.7	-0.1	-0.3	-0.3	River Bottom	-
	15+89	-3.4	0.2	-0.4	0.2	River Bottom	-
	16+05	-3.5	0.5	-0.8	0.3	River Bottom	
	16+18	-3.8	0.7	-1.0	0.4	River Bottom	-
	16+38	-3.9	1.0	0.7	0.4	River Bottom	
	16+54	-3.4	1.7	1.6	0.9	River Bottom	7
	Varies	-0.4	1.7	2.1	1.4	Edge of Water	
	17+31	2.0	2.2	2.2	2.2	Sand Bar	
	18+00	2.4	2.6	2.3	2.3	Sand Bar	
	19+00	2.2	2.8	2.7	2.7	Sand Bar	
	20+00	2.2	2.7	2.7	2.9	Sand Bar	
	21+01	2.2	3.1	2.8	2.9	Sand Bar	
	22+00	2.0	2.5	2.6	2.7	Sand Bar	_
	23+00	0.8	2.8	2.6	2.5	Sand Bar	
	24+00	0.2	1.9	1.8	2.1	Sand Bar	_
	Varies	-1.3	1.6	1.6	1.4	Edge of Water	
	24+48	-2.7	-4.3	-0.5	-1.9	River Bottom	_
	24+64	-5.5	-6.5	-1.3	-4.6	River Bottom	-
	24+87	-9.0	-9.8	-2.5	-8.5	River Bottom	
	25+10 25+33	-9.6 -9.9	-12.3	-3.6	-10.1	River Bottom	-
	25+55	-9.9	-13.0	-4.8	-12.1 -11.4	River Bottom River Bottom	-1
	25+82	-10.2	-14.0	-10.5	-11.4	River Bottom	-
	26+01	-10.2	-14.7	-10.5	-12.1	River Bottom	-
	26+24	-10.0	-15.2	-12.2	-12.8	River Bottom	-
	26+50	-10.0	-16.5	-11.5	-13.5	River Bottom	-
	26+70	-10.6	-15.4	-11.6	-12.5	River Bottom	
			10 1000 D.D.D. 3				

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 20 of 22

Transect_14

ConocoPhillips Alaska INTERNATIONAL

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

CD-5 Michael Baker Bridge Transects

Calc'd By: SZ Date: 8/17/2018 RPT-CE-CD-114 REV6

STA	2013	2016	2017	2018	Description
26+89	-11.6	-15.1	-11.8	-12.5	River Bottom
27+15	-11.1	-15.8	-11.5	-17.4	River Bottom
27+35	-10.8	-15.2	-13.0	-14.5	River Bottom
Varies	0.3	1.6	0.6	1.3	Edge of Water
27+87	9.0	-	-	-	Top of Bank (2013)
27+95		8.7	-	2	Top of Bank (2016)
27+98		2	8.8		Top of Bank
28+00	9.8	9.3	9.1		Ground Shot
28+03	-	-	-	9.4	Top of Bank (2018)
28+44	10.0	9.6	9.6	9.5	Ground Shot
29+00	9.6	9.5	9.3	9.5	Ground Shot
29+94	9.7	9.4	9.1	9.4	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 21 of 22

Transect_14

Calc'd By: SZ Date: 08/17/2018 RPT-CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
F	0+00	13.8	13.6	13.6	13.7	Ground Shot	-
	1+00	15.3	15.4	15.5	15.6	Ground Shot	
	1+50	16.7	16.4	16.6	15.6	Ground Shot	
	1+88		16.2	16.3	16.4	Top of Bank	
	1+95	15.1		-	-	Top of Bank (2013)	
	2+11	3.3	3.0	2.4	2.1	Toe of Bank	
	Varies	0.9	1.9	1.5	1.2	Edge of Water	
	2+88	-2.9	-5.4	-2.4	-2.3	River Bottom	
	3+09	-3.3	-7.3	-3.0	-3.1	River Bottom	
	3+30	-3.8	-7.6	-3.2	-4.4	River Bottom	
	3+50	-4.0	-8.1	-4.0	-4.2	River Bottom	
	3+71	-4.1	-8.3	-4.8	-4.7	River Bottom	
	3+91	-4.4	-8.7	-4.5	-5.5	River Bottom	
	4+12	-4.4	-9.0	-4.8	-6.9	River Bottom	
	4+36	-4.2	-9.8	-4.8	-4.8	River Bottom	
	4+57	-4.7	-9.5	-4.9	-5.4	River Bottom	
	4+81	-3.9	-9.0	-4.3	-5.3	River Bottom	
	5+01	-3.2	-7.6	-3.8	-5.0	River Bottom	
	11+47	-2.4	-6.8	-2.7	-2.8	River Bottom	
	11+64	-2.4	-7.1	-3.4	-3.0	River Bottom	
	11+81	-2.5	-7.3	-4.0	-3.9	River Bottom	
	11+98	-3.3	-7.8	-4.3	-4.6	River Bottom	
	12+16	-3.6	-8.7	-4.6	-4.9	River Bottom	
	12+36	-4.0	-8.8	-4.5	-5.2	River Bottom	
	12+57	-4.6	-9.0	-5.7	-6.0	River Bottom	
	12+77	-4.7	-9.1	-6.2	-6.8	River Bottom	
	13+01	-4.9	-10.1	-6.7	-7.2	River Bottom	
	13+29	-5.6	-10.2	-7.4	-8.5	River Bottom	_
	13+56	-5.8	-11.3	-8.1	-9.1	River Bottom	
	13+80	-6.4	-11.5	-8.0	-8.9	River Bottom	
	14+08	-6.5	-12.4	-8.3	-9.5	River Bottom	
L L	14+35	-6.8	-11.8	-7.9	-9.8	River Bottom	
	14+59	-6.5	-11.6	-7.9	-9.3	River Bottom	
	14+87	-6.2	-12.2	-8.1	-10.0	River Bottom	
	15+14	-5.2	-11.3	-8.0	-10.0	River Bottom	
	15+42	-5.4	-10.4	-8.4	-9.5	River Bottom	
	15+66	-5.1	-10.6	-7.0	-7.1	River Bottom	
F	15+93	-6.1	-10.0	-6.2	-6.5	River Bottom	
-	16+24	-8.3	-10.9	-6.6	-3.7	River Bottom	
	16+52	-8.3	-11.7	-6.7	-5.0	River Bottom	
	16+79	-5.1	-9.6	-5.5	-4.0	River Bottom	
ŀ	17+03	-2.8	-7.3	-3.0	-3.0	River Bottom	-
ŀ	Varies	0.8	2.0	1.6	1.2	Edge of Water	
	17+79	1.9	2.8	2.1	1.5	Sand Bar	-
ŀ	17+97	4.4	4.9	3.0	2.5	Sand Bar	
ŀ	18+19	5.6	5.6	5.6	5.6	Toe of Bank	
ŀ	18+35	11.9	11.8	11.8	12.0	Top of Bank	-
ŀ	18+91	12.6	12.3	12.4	12.5	Ground Shot	-
L	19+41	12.5	12.2	12.3	12.4	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 22 of 22

Transect_15

ConocoPhillips Alaska INTERNATIONAL

NIGLIAGVIK CHANNEL & BRIDGE TABULATED DATA (TRANSECTS 16 - 35) E.3.3

alc'd By: SZ ate: 8/20/2018 PT-CE-CD-114 REV6		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6					
Г	STA	2013	2016	2017	2018	Description	
Ē	0+00	10.0	9.7	9.6	9.8	Ground Shot	
	0+50	9.4	8.9	9.0	8.7	Ground Shot	
	1+00	8.4	8.6	8.4	8.2	Top of Bank	
	Varies	0.8	0.3	0.2	0.8	Edge of Water	
	1+28	-3.1	-3.4	-3.5	-3.5	River Bottom	
	1+37	-4.2	-5.7	-3.8	-7.2	River Bottom	
	1+46	-7.0	-6.8	-6.1	-7.4	River Bottom	
	1+58	-6.5	-6.4	-6.8	-7.0	River Bottom	
	1+70	-7.5	-8.2	-8.1	-8.8	River Bottom	
	1+81	-10.7	-10.2	-9.6	-10.0	River Bottom	
	1+91	-12.3	-12.2	-12.6	-13.0	River Bottom	
	2+06	-8.3	-9.8	-10.1	-10.7	River Bottom	
	2+17	-6.6	-8.1	-8.1	-8.9	River Bottom	
Γ	2+27	-5.0	-6.8	-4.9	-4.0	River Bottom	
Ī	2+37	-2.1	-3.3	-1.8	-0.9	River Bottom	
	Varies	0.8	0.6	0.9	0.7	Edge of Water	
	2+68	3.4	3.6	2.0	3.5	Sand Bar	
	3+10	4.7	4.8	4.9	5.0	Edge of Vegetation	
Γ	3+59	6.7	6.9	6.9	6.8	Edge of Vegetation	
	4+00	7.9	8.0	7.8	7.8	Ground Shot	
	4+18	8.9	8.6	8.5	8.6	Ground Shot	
Г	4+68	9.2	8.9	9.0	9.1	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 1 of 20 Transect_16

CD-5 Michael Baker **Bridge Transects**

STA	2013	2016	2017	2018	Description
0+00	8.6	8.2	8.1	8.3	Ground Shot
0+50	8.5	8.1	7.9	7.9	Ground Shot
1+16	8.0	8.1	8.1	8.0	Top of Bank
1+47	3.7	3.9	3.7	3.8	Edge of Vegetation
Varies	0.9	1.0	1.3	0.8	Edge of Water
1+93	-2.1	-1.9	-0.8	-2.0	River Bottom
2+08	-2.2	-1.9	-1.4	-2.3	River Bottom
2+19	-2.6	-2.3	-1.9	-2.4	River Bottom
2+29	-2.9	-2.9	-2.3	-2.5	River Bottom
2+39	-3.1	-3.3	-2.7	-3.0	River Bottom
2+49	-3.2	-3.4	-3.1	-3.6	River Bottom
2+66	-3.5	-3.6	-3.6	-3.8	River Bottom
2+83	-3.5	-3.4	-3.5	-4.0	River Bottom
2+91	-3.3	-3.3	-3.5	-4.0	River Bottom
3+08	-3.1	-3.3	-3.3	-3.9	River Bottom
3+27	-2.4	-2.9	-2.4	-3.1	River Bottom
Varies	0.7	1.0	1.2	0.6	Edge of Water
3+82	6.3	6.5	6.3	6.1	Top of Bank
4+29	8.6	8.3	8.3	8.4	Ground Shot
4+79	8.5	8.2	8.1	8.4	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 2 of 20 Transect_17

Kuukpik/LCMF

Alpine Survey Office

DOC LCMF-156 REV6

CD-5 Michael Baker **Bridge Transects**

STA	2013	2016	2017	2018	Description
0+00	8.6	8.5	8.7	8.6	Ground Shot
0+50	8.6	8.6	8.0	8.4	Ground Shot
1+00	7.9	8.2	8.0	8.0	Ground Shot
1+58	7.1	7.2	7.0	6.9	Top of Bank
1+76	6.3	6.2	6.0	6.0	Edge of Vegetation
2+14	3.7	3.8	3.6	3.6	Edge of Vegetation
Varies	1.0	1.2	1.4	1.1	Edge of Water
3+17	-2.6	-1.8	-1.2	-1.8	River Bottom
3+26	-2.8	-1.8	-1.4	-2.4	River Bottom
3+38	-3.2	-2.7	-1.8	-2.5	River Bottom
3+52	-2.1	-3.4	-2.7	-3.2	River Bottom
3+68	-3.6	-3.9	-3.6	-4.5	River Bottom
3+80	-4.0	-3.6	-3.6	-4.7	River Bottom
3+93	-3.9	-3.2	-3.1	-4.6	River Bottom
4+01	-3.5	-2.8	-2.7	-4.1	River Bottom
4+14	-3.0	-1.9	-2.1	-3.6	River Bottom
4+22	-3.0	-1.6	-1.7	-3.0	River Bottom
Varies	0.9	1.2	1.4	0.8	Edge of Water
4+68		1.8	1.3	1.2	Toe of Bank
4+76	7.1	7.0	6.8	6.7	Top of Bank
5+33	7.8	7.6	7.1	7.3	Ground Shot
5+83	8.0	7.8	7.6	7.7	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 3 of 20

Transect_18

Kuukpik/LCMF

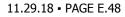
Alpine Survey Office

DOC LCMF-156 REV6

ConocoPhillips

Michael Baker Alaska INTERNATIONAL

CD-5 Michael Baker Bridge Transects Kuukpik/LCMF


Alpine Survey Office DOC LCMF-156 REV6

STA	2013	2016	2017	2018	Description
0+00	8.6	8.5	8.36	8.7	Ground Shot
0+50	8.5	8.7	8.6	8.8	Ground Shot
0+95	7.9	8.1	8.0	8.3	Top of Bank
1+15	3.3	3.9	3.6	3.7	Edge of Vegetation
Varies	0.7	1.2	1.3	0.7	Edge of Water
1+88	-1.9	-1.3	-2.0	-2.3	River Bottom
1+99	-2.2	-1.9	-2.4	-2.8	River Bottom
2+19	-2.3	-2.4	-2.9	-3.3	River Bottom
2+29	-2.5	-2.4	-3.1	-3.4	River Bottom
2+40	-2.5	-2.4	-3.1	-3.5	River Bottom
2+61	-2.4	-2.0	-2.8	-2.8	River Bottom
2+75	-4.5	-2.0	-2.5	-5.5	River Bottom
2+88	-4.1	-2.0	-2.3	-2.5	River Bottom
2+96	-2.7	-1.3	-2.1	-2.5	River Bottom
Varies	0.7	1.2	1.3	0.8	Edge of Water
3+69	7.0	7.3	7.4	7.0	Top of Bank
4+20	8.5	8.6	8.3	8.3	Ground Shot
4+70	8.1	8.0	7.9	8.2	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 4 of 20

Transect_19

ConocoPhillips Alaska INTERNATIONAL

CD-5 Michael Baker **Bridge Transects**

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

STA	2013	2016	2017	2018	Description
0+00	13.8	13.8	13.8	13.7	Ground Shot
0+15	16.8	16.9	16.6	16.8	Grade Break
0+50	15.5	15.5	15.3	15.5	Ground Shot
1+13	11.4	11.7	11.7	11.5	Top of Bank
1+35		0.7	-	-	Toe of Bank
Varies	0.5	0.0	1.0	0.9	Edge of Water
1+63	-0.7	-0.8	-1.0	-	River Bottom
1+99	-0.6	-1.3	-1.5	-1.0	River Bottom
2+30	-0.8	-1.5	-1.6	-1.4	River Bottom
2+50	-0.9	-1.3	-1.8	-1.2	River Bottom
2+99	-1.3	-1.4	-1.6	-1.5	River Bottom
3+30	-1.3	-1.1	-1.1	-0.8	River Bottom
Varies	0.6	0.1	1.0	0.9	Edge of Water
3+64		1.1	1.08	0.9	Toe of Bank
3+93	6.6	6.9	6.9	6.7	Top of Bank
4+53	7.4	7.5	7.3	7.6	Ground Shot
5+03	7.5	7.6	7.3	7.6	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 5 of 20 Transect_20

ConocoPhillips Michael Baker Alaska INTERNATIONAL

Edge of Water

Grade Break

Toe of Bank

Top of Bank

Grade Break

Ground Shot

Ground Shot

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6

STA

0+00

0+50

1+02

1+24

1+34

Varies

1+46

1+58

1+75

2+00

2+24

2+50

Varies

3+41

3+64

3+79

4+04

4+58

5+08

2013

24.6

20.8

9.5

7.2

0.5

-1.0

-2.1

-2.1

-1.8

-1.6

-1.1

0.5

3.3

4.2

8.6

9.7

9.1

8.7

2.9

4.7

8.7

9.9

9.0

8.7

2.5

4.7

8.7

9.9

8.9

8.6

CD-5 Michael Baker **Bridge Transects**

DOC LCMF-156 REV6 2016 2017 2018 Description 24.6 24.54 24.5 Ground Shot 20.7 20.8 20.7 Ground Shot 9.4 9.4 9.4 Ground Shot 7.3 7.3 7.2 Top of Bank 1.8 1.5 1.2 Toe of Bank 1.2 1.0 1.1 Edge of Water -1.3 -1.5 -1.3 River Bottom -2.4 -2.4 -2.3 River Bottom -2.7 -2.7 -2.7 River Bottom -2.3 -2.3 -2.3 River Bottom -2.0 -2.0 -1.8 River Bottom -1.0 -1.1 -0.8 River Bottom 1.2 1.1 1.1

2.3

4.7

8.7

9.9

9.1

8.8

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 6 of 20 Kuukpik/LCMF

Alpine Survey Office

ConocoPhillips

Michael Baker Alaska INTERNATIONAL

CD-5 Michael Baker Bridge Transects Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

STA	2013	2016	2017	2018	Description
0+00	26.0	26.0	26.07	26.1	Ground Shot
0+07	23.0	23.2	23.3	23.1	Ground Shot
0+60	24.0	24.1	23.9	24.0	Ground Shot
1+10	23.1	23.1	23.0	23.0	Top of Bank
1+36	2.6	2.5	2.1	2.2	Toe of Bank
Varies	0.6	0.3	1.2	1.1	Edge of Water
1+67	-1.1	-0.8	-1.1	-0.3	River Bottom
2+00	-1.1	-1.5	-1.7	-1.9	River Bottom
2+24	-1.6	-1.9	-2.0	-1.9	River Bottom
2+50	-1.6	-1.8	-2.0	-1.2	River Bottom
2+75	-1.4	-1.6	-1.5	-1.4	River Bottom
3+01	-0.7	-1.2	-1.4	-1.2	River Bottom
Varies	0.6	0.2	1.2	1.1	Edge of Water
3+61	4.4	4.3	4.3	5.3	Toe of Bank
3+68	8.6	8.7	8.7	8.7	Top of Bank
3+88	10.5	10.7	10.6	10.7	Ground Shot
4+27	9.1	9.1	9.2	8.8	Ground Shot
4+77	8.6	8.6	8.7	8.7	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 7 of 20

Transect_22

CD-5 Michael Baker Bridge Transects Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

STA	2013	2016	2017	2018	Description
0+00	25.2	25.2	25.3	25.2	Ground Shot
0+50	25.1	25.1	25.2	25.1	Ground Shot
1+06	23.2	23.3	23.2	23.1	Top of Bank
1+34	3.2	3.4	2.8	3.1	Toe of Bank
Varies	0.5	0.5	1.4	1.2	Edge of Water
2+25	-1.1	-1.5	-1.5	-1.7	River Bottom
2+51	-1.7	-1.7	-1.7	-1.4	River Bottom
2+75	-1.7	-1.9	-1.7	-2.1	River Bottom
3+00	-1.5	-2.3	-1.5	-1.8	River Bottom
3+27	-1.2	-1.7	-1.7	-2.2	River Bottom
Varies	0.7	0.4	1.4	1.3	Edge of Water
3+44	2.2			17	Grade Break (2013)
3+53	14	1.3	0.6	1.3	Toe of Bank
3+84	6.1	6.2	6.1	6.2	Edge of Vegetation
3+95	7.7	7.7	7.8	7.8	Top of Bank
4+50	7.9	7.8	7.9	7.8	Ground Shot
5+00	10.0	10.2	10.2	10.1	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 8 of 20

Transect_23

Calc'd By: SZ Date: 8/20/201 RPT-CE-CD-1	18					hael Baker Fransects		Kuukpil Alpine Surv DOC LCMF-1	ey Office
	STA	2013	2014	2015	2016	2017	2018	Description	
	0+00	26.5	26.5	26.4	26.4	26.4	26.5	Ground Shot	
	0+50	27.0	27.0	27.0	26.9	27.0	27.0	Ground Shot	
	0+94	27.9	26.4	26.5	26.5	26.4	26.3	Ground Shot	
	1+13	25.3	23.6	23.8	23.6	23.5	23.3	Top of Bank	
1	1+45	2.6	2.7	3.2	0.5	0.8	1.4	Toe of Bank	
	Varies	0.2	0.5	1.5	0.5	1.4	1.2	Edge of Water	
	2+26	-1.7	-1.2	-1.9	-2.6	-2.7	-2.6	River Bottom	
Γ	2+39	-2.4	-1.8	-2.6	-3.3	-2.8	-2.7	River Bottom	
	2+48	-2.0	-2.2	-2.9	-2.9	-1.9	-3.2	River Bottom	
	2+61	-2.1	-2.2	-2.6	-2.2	-1.8	-2.5	River Bottom	
	2+74	-2.2	-2.3	-2.3	-2.1	-1.7	-2.5	River Bottom	
	2+90	-3.0	-1.9	-2.1	-2.0	-2.0	-2.8	River Bottom	
	3+00	-3.0	-1.9	-2.1	-2.2	-1.9	-2.4	River Bottom	
	3+17	-2.6	-2.0	-2.2	-2.1	-2.3	-2.2	River Bottom	
	Varies	0.3	0.2	1.5	0.6	1.4	1.3	Edge of Water	
	3+86	5.9	5.7	5.8	5.8	5.7	5.6	Edge of Vegetation	
2	3+96	7.1	7.2	7.2	7.0	6.9	6.9	Top of Bank	
	4+65	8.7	8.5	8.3	8.2	8.4	8.2	Ground Shot	
	5+15	9.4	9.2	9.1	9.0	9.1	8.9	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 9 of 20

Transect_24

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-11						hael Baker Transects		Kuukpik/LC Alpine Survey Of DOC LCMF-156 RE		
	STA	2013	2014	2015	2016	2017	2018	Description		
	0+00	27.5	27.4	27.3	27.3	27.3	27.3	Ground Shot		
	0+50	26.4	26.2	26.2	26.1	26.0	26.1	Ground Shot		
	0+70	26.8	26.7	26.7	26.5	26.6	26.7	Grade Break		
	0+89	21.8	21.3	21.3	21.2	21.2	21.1	Grade Break		
	1+00	25.7	22.2	22.5	22.1	22.2	22.3	Top of Bank		
	1+29					1.8	1.7	Toe of Bank		
	1+31	2.8	2.8	2.7	1.3		Ξ.	Toe of Bank (2016)		
	Varies	0.6	0.3	1.4	0.4	1.0	1.3	Edge of Water		
	2+19	-2.6	-1.2	-3.4	-3.7	-3.0	-5.2	River Bottom		
1	2+38	-2.2	-1.6	-3.5	-3.5	-3.6	-4.0	River Bottom		
	2+48	-2.2	-1.9	-3.5	-3.4	-3.2	-4.2	River Bottom		
	2+61	-2.4	-2.9	-3.2	-3.1	-2.6	-3.3	River Bottom		
	2+72	-2.8	-2.6	-2.8	-2.8	-2.1	-3.2	River Bottom		
	2+89	-2.7	-2.1	-2.3	-2.1	-1.7	-2.8	River Bottom		
	2+97	-2.6	-1.9	-2.1	-1.8	-1.7	-2.6	River Bottom		
	3+07	-2.7	-2.0	-1.8	-1.9	-1.3	-2.2	River Bottom		
	Varies	0.1	0.1	1.5	0.4	1.0	1.3	Edge of Water		
	3+51	2.5	2.5	-	(H))	-	-	Ground Shot (2014)		
	3+81	6.1	6.1	6.4	6.2	6.3	6.2	Edge of Vegetation		
	3+91	7.8	7.5	7.7	7.5	7.4	7.4	Top of Bank		
	4+53	8.5	8.3	8.1	8.2	8.2	8.3	Ground Shot		
	5+03	8.4	8.4	8.3	8.4	8.5	8.4	Ground Shot		

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 10 of 20 Transect_25

Kuukpik/LCl		terse mengese.	CD-5 Mich				SZ
Alpine Survey Of		ransects	Bridge T				2018
DOC LCMF-156 RE							D-114 REV6
Description	2018	2017	2016	2015	2014	2013	STA
Ground Shot	27.3	27.3	27.3	27.3	27.5	24.0	0+00
Ground Shot	27.2	27.4	27.5	27.6	27.7	24.1	0+60
Ground Shot	27.2	27.2	27.3	27.5	27.3	24.0	0+85
Top of Bank	24.9	25.0	25.0	25.0	24.9	21.5	1+03
Toe of Bank	1.9	1.9	1.8	3.1	2.4	2.7	1+36
Edge of Water	1.4	1.0	0.5	1.5	0.2	0.4	Varies
River Bottom	-3.0	-4.0	-3.5	-3.5	0.2	-2.5	2+19
River Bottom	-5.4	-4.4	-3.0	-3.5	-1.2	-2.6	2+32
River Bottom	-4.0	-3.0	-1.7	-3.6	-2.1	-2.5	2+43
River Bottom	-3.9	-2.6	-1.7	-3.6	-2.4	-2.4	2+53
River Bottom	-4.2	-3.0	-2.1	-3.6	-2.6	-2.4	2+63
River Bottom	-4.1	-2.6	-3.3	-2.8	-2.9	-2.3	2+80
River Bottom	-3.9	-2.8	-4.0	-2.6	-2.9	-2.0	2+91
River Bottom	-2.5	-1.7	-3.2	-2.2	-2.3	-2.2	3+08
Edge of Water	1.4	0.9	0.5	1.4	0.0	0.2	Varies
Ground Shot	-	1.0	1.2		3.3	3.2	3+57
Edge of Vegetation	6.5	6.6	6.6	7.0	6.6	6.1	3+89
Top of Bank	7.5	7.6	7.2	7.7	7.5	7.1	3+97
Ground Shot	8.1	9.9	10.0	9.9	9.3	8.3	4+79
Ground Shot	9.4	9.4	9.4	9.5	9.8	9.8	5+29

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 11 of 20

Transect_26

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: S Date: 8/20/2					CD-5 Micl Bridge T	hael Baker Transects		Kuukpi Alpine Surv		
RPT-CE-CD					Dridge I	Tanseets		DOC LCMF-156 F		
	STA	2013	2014	2015	2016	2017	2018	Description		
	0+00	27.0	27.0	26.8	26.5	26.8	26.6	Ground Shot		
	0+50	27.1	27.1	27.0	27.0	27.1	26.7	Ground Shot		
	0+74	24.3	24.5	24.3	24.1	24.0	24.1	Grade Break		
	0+82	26.6	26.6	26.7	26.7	26.5	26.5	Grade Break		
	0+98	26.0	25.9	25.9	26.0	26.0	25.9	Top of Bank		
	1+30	2.5	2.1	2.5	2.2	2.3	2.3	Toe of Bank		
	Varies	0.1	0.3	1.5	0.5	1.0	1.3	Edge of Water		
	2+20	-2.4	-0.8	-1.4	-2.2	-1.6	-3.1	River Bottom		
	2+31	-2.3	-1.0	-1.5	-1.6	-1.6	-3.3	River Bottom		
	2+41	-3.3	-1.6	-2.1	-1.9	-1.8	-3.3	River Bottom		
	2+48	-2.0	-1.7	-2.5	-2.3	-2.2	-3.3	River Bottom		
	2+58	-2.7	-2.7	-3.0	-2.9	-2.7	-3.3	River Bottom		
	2+65	-2.9	-2.7	-3.0	-3.2	-2.9	-3.0	River Bottom		
	2+72	-3.1	-2.8	-3.0	-3.4	-2.8	-3.0	River Bottom		
	2+78	-2.9	-2.8	-2.9	-3.3	-2.6	-3.0	River Bottom		
	2+85	-2.5	-3.0	-2.9	-2.8	-2.3	-3.0	River Bottom		
	2+92	-2.1	-2.6	-2.4	-2.5	-2.0	-3.0	River Bottom		
	Varies	-0.1	0.2	1.5	0.6	0.9	1.5	Edge of Water		
	3+39	1.9	2.0		1.3	1.4	2	Ground Shot		
	3+52	4.7	4.9	4.7	4.6	4.4	4.5	Ground Shot		
	3+76	5.9	6.1	6.2	6.3	6.2	6.2	Edge of Vegetation		
	3+89	7.0	7.2	7.2	7.1	7.0	7.2	Top of Bank		
	4+10	8.0	8.1	8.0	8.1	8.0	8.0	Ground Shot		
	4+71	8.0	8.0	7.8	7.7	7.4	7.3	Ground Shot		
	5+21	9.7	9.7	9.2	9.0	9.1	8.8	Ground Shot		

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 12 of 20

Transect_27

River Bottom

Edge of Water

Ground Shot

Edge of Vegetation

Top of Bank

Ground Shot

Ground Shot

Ground Shot

d By: SZ : 8/20/2018 :CE-CD-114 REV6					hael Baker Fransects	
	STA	2013	2016	2017	2018	Description
	0+00	21.0	20.8	21.0	20.9	Ground Shot
	0+50	21.3	21.2	21.2	21.0	Ground Shot
	0+83	21.5	21.4	21.4	21.4	Ground Shot
	1+06	20.7	19.8	19.6	19.6	Top of Bank
	1+31	1.0	0.6	0.8	2.0	Toe of Bank
	Varies	0.0	0.8	0.9	1.2	Edge of Water
	1+37	-3.0	-2.2	-3.1	-1.0	River Bottom
	1+44	-4.2	-4.2	-4.3	-6.1	River Bottom

-4.0

-3.5

-3.1

-3.2

-3.0

-3.1

-4.8

-5.0

0.9

2.6

5.8

8.0

8.5

8.4

8.7

-4.5

-3.9

-3.5

-3.4

-3.3

-3.2

-4.6

-4.9

1.0

2.6

5.7

7.7

8.3

8.6

9.1

-6.1

-6.1

-4.8

-4.7

-4.5

-4.6

-6.4

-6.7

1.3

2.7

5.8

7.9

8.4

8.4

9.1

Calc'd Date: RPT-C

1+51

1+61

1+75

1+89

1+99

2+16

2+33

2+44

Varies

3+40

3+65

3+81

4+26

4 + 81

5+31

-4.4

-4.0

-3.6

-3.4

-3.0

-3.2

-3.2

-2.6

0.1

2.5

5.7

7.6

8.2

8.4

9.2

Kuukpik/LCMF Alpine Survey Office

DOC LCMF-156 REV6

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 13 of 20

Michael Baker Alaska INTERNATIONAL

CD-5 Michael Baker **Bridge Transects**

STA	2013	2016	2017	2018	Description
0+00	24.3	24.1	24.3	24.2	Ground Shot
0+50	23.6	23.7	23.7	23.7	Ground Shot
1+01	23.0	22.7	22.7	22.5	Top of Bank
1+27		0.7	0.9	2.2	Toe of Bank
Varies	0.2	0.1	0.9	1.4	Edge of Water
1+43	-8.1	-9.7	-9.4	-11.4	River Bottom
1+89	-7.9	-8.5	-8.1	-8.7	River Bottom
2+09	-5.2	-4.6	-4.4	-5.2	River Bottom
2+24	-2.5	-2.7	-2.7	-2.9	River Bottom
Varies	0.1	0.2	1.0	1.3	Edge of Water
2+82	2.6	2.8	2.8	3.0	Ground Shot
3+30	2.9	3.3	3.4	3.5	Ground Shot
3+88	5.8	6.0	6.0	6.0	Edge of Vegetation
4+01	8.0	8.4	8.2	8.2	Top of Bank
4+47	7.7	7.9	8.0	8.2	Ground Shot
4+85	8.4	8.6	8.8	8.5	Ground Shot
5+36	9.5	9.6	9.9	9.8	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 14 of 20

Transect_29

Kuukpik/LCMF

Alpine Survey Office

DOC LCMF-156 REV6

ConocoPhillips Michael Baker Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6					hael Baker Transects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
1	STA	2013	2016	2017	2018	Description	
	0+00	23.7	23.3	23.69	23.6	Ground Shot	7
	0+50		23.2	23.2	23.2	Ground Shot	
	0+69	21.7	21.5	21.4	21.6	Top of Bank	7
	0+79	19.3	19.1	19.0	13.4	Grade Break	
	1+00	6.0	6.0	6.1	5.3	Toe of Bank	
	1+16	4.4	4.3	4.3	4.3	Top of Bank	
	1+17	3.3	2.7	2.8	4.3	Toe of Bank	7
	Varies	0.2	0.3	1.0	1.0	Edge of Water	
	1+63	-2.9	-1.2	-2.5	-4.3	River Bottom	
	1+75	-4.0	-2.8	-3.4	-4.3	River Bottom	-
	1+87	-5.9	-4.3	-4.6	-5.7	River Bottom	
	1+99	-5.8	-5.5	-5.0	-6.8	River Bottom	-
	2+12	-6.4	-5.2	-5.5	-7.0	River Bottom	
	2+26	-5.7	-4.5	-5.5	-6.8	River Bottom	7
	2+36	-5.3	-4.6	-5.4	-6.7	River Bottom	1
	2+48	-3.4	-4.0	-4.5	-5.4	River Bottom	7
	2+61	-2.7	-3.1	-4.2	-4.5	River Bottom	
	2+73	-2.1	-2.2	-3.5	-3.0	River Bottom	
	2+81	-2.8	-2.2	-2.5	-2.1	River Bottom	7
	Varies	-0.5	0.3	1.0	1.2	Edge of Water	
	3+84	4.3	4.3	4.3	5.1	Sand Bar	7
	3+94	5.9	5.8	5.8	5.9	Grade Break	
	4+30	6.1	6.0	6.0	6.1	Edge of Vegetation	7
	4+67	8.8	8.8	8.8	8.9	Grade Break	
	5+22	8.1	7.9	7.7	7.8	Grade Break	7
	5+58	9.4	9.3	9.4	9.4	Grade Break/Edge of Veg	
	5+77	9.6	9.5	9.6	9.3	Ground Shot	

15 of 20 Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx

ConocoPhillips Alaska INTERNATIONAL

6+27

10.1

9.6

10.1

9.7

Ground Shot

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6					hael Baker Fransects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	٦
	0+00	8.6	8.3	8.6	8.4	Ground Shot	
	0+50	9.6	9.6	9.6	9.6	Ground Shot	
	1+06	8.1	8.3	8.2	8.3	Edge of Vegetation	7
	1+29	8.4	8.3	8.2	8.3	Top of Bank	
	1+40	5.7	5.7	5.9	5.9	Toe of Bank	
	1+85	5.7	6.0	5.7	6.2	Ground Shot	7
	2+37	6.0	6.2	6.0	6.2	Ground Shot	7
	2+89	6.9	6.8	6.7	6.8	Ground Shot	7
	3+16	7.7	7.8	7.7	7.8	Ground Shot	
	3+70	8.0	8.1	8.1	8.1	Top of Bank	
	3+80	6.7	6.8	6.6	6.8	Grade Break/Edge of Veg	1
	4+06	3.8	3.9	3.8	3.9	Sand Bar	7
	4+43	1.4	0.9	1.0	1.2	Grade Break	
	Vaies	-0.2	1.1	1.4	1.1	Edge of Water	7
	4+71	-2.6	-1.3	-1.1	-0.9	River Bottom	
	4+81	-2.8	-1.9	-1.9	-2.8	River Bottom	
	4+92	-2.1	-2.0	-2.3	-3.0	River Bottom	
	5+02	-2.1	-2.2	-2.5	-3.1	River Bottom	
	5+10	-2.6	-2.3	-2.5	-3.8	River Bottom	7
	5+20	-2.3	-2.4	-2.4	-3.5	River Bottom	
	5+29	-2.2	-1.8	-2.3	-3.3	River Bottom	
	5+39	-2.1	-1.8	-1.8	-3.2	River Bottom	
	5+50	-2.2	-1.6	-2.0	-3.3	River Bottom	
	5+60	-2.1	-1.7	-2.0	-3.4	River Bottom	
	5+70	-2.5	-1.7	-1.7	-3.1	River Bottom	
	5+79	-2.2	-1.5	-0.9	-3.1	River Bottom	
	Vaies	0.0	1.1	1.4	0.9	Edge of Water	
	6+20	2.6	2.6	2.4	2.4	Toe of Bank	
	6+32	8.4	8.3	8.2	8.2	Top of Bank	
	6+83	9.2	9.1	9.1	9.2	Grade Break	
	7+31	10.9	11.0	10.9	11.1	Edge of Vegetation	
	7+54	11.2	11.2	11.3	11.2	Ground Shot	

16 of 20 Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx

8+04

10.7

10.3

10.7

10.5

Ground Shot

Ground Shot

Edge of Water

River Bottom

Edge of Water

Top of Bank

Ground Shot

Ground Shot

Ground Shot

Ground Shot

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV	6				hael Baker Fransects	
	STA	2013	2016	2017	2018	Description
	0+00	8.4	8.1	8.1	8.3	Ground Shot
	0+50	7.8	7.8	7.9	7.6	Ground Shot
	0+96	7.0	6.7	6.9	7.1	Ground Shot
	1+50	7.2	7.3	7.1	7.1	Ground Shot
	2+00	7.4	7.4	7.4	7.5	Ground Shot
	2+50	8.0	8.0	8.0	8.0	Ground Shot
	3+12	6.8	6.8	6.7	6.6	Edge of Vegetation
	3+32	6.4	6.4	6.3	6.3	Top of Bank
	3+54		3.1	2.2	2.2	Ground Shot

-

1.4

-1.6

-3.0

-2.9

-5.1

-6.7

-6.9

-6.0

-4.5

1.4

8.3

10.4

10.2

11.5

10.8

1.0

-0.6

-1.4

-3.4

-7.1

-8.3

-7.6

-6.1

-3.3

0.9

8.3

10.4

10.3

11.4

10.5

1.1

0.9

-1.7

-1.7

-2.5

-4.1

-6.3

-6.9

-7.0

-5.8

0.9

8.4

10.3

10.2

11.5

10.5

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 17 of 20 Transect_32

3+68

Varies

4+07

4+16

4+26

4+36

4+47

4+57

4+68

4+79

Varies

5 + 10

5 + 40

5+79

6+21

6+71

0.1

-0.8

-2.7

-2.5

-3.9

-5.4

-6.6

-7.0

-6.1

-0.4

8.5

10.4

10.2

11.5

10.8

Calc'd By: SZ CD-5 Michael Baker Date: 8/20/2018 **Bridge Transects** RPT-CE-CD-114 REV6 STA 2013 2016 2017 2018 Т

STA	2013	2016	2017	2018	Description
0+00	9.9	9.8	9.8	9.9	Ground Shot
0+50	8.6	8.6	8.6	8.5	Ground Shot
1+03	8.5	8.7	8.7	8.7	Edge of Vegetation
1+52	10.6	10.7	10.6	10.7	Grade Break
2+00	9.9	10.0	10.0	10.1	Ground Shot
2+57	7.9	7.8	7.8	7.9	Top of Bank
2+67	6.9	6.9	7.0	7.0	Edge of Vegetation
2+78	5.4	5.3	5.4	5.4	Sand Bar
2+87	3.5	3.2	3.2	3.2	Grade Break
Varies	0.0	0.5	1.5	0.7	Edge of Water
3+81	-3.2	-1.5	-1.1	-2.3	River Bottom
4+04	-2.2	-2.3	-2.4	-2.5	River Bottom
4+18	-3.5	-3.1	-3.4	-3.7	River Bottom
4+38	-4.4	-7.5	-6.9	-6.8	River Bottom
4+59	-3.1	-4.2	-2.7	-7.2	River Bottom
Varies	-0.1	0.2	1.4	0.8	Edge of Water
4+99	9.1	8.9	8.9	9.0	Top of Bank
5+53	9.7	9.8	9.7	10.0	Edge of Vegetation
6+02	10.1	10.3	10.2	10.4	Ground Shot
6+41	10.5	10.6	10.6	10.3	Ground Shot
7+11	10.7	10.3	10.4	10.7	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 18 of 20 Transect_33

Kuukpik/LCMF

Alpine Survey Office

DOC LCMF-156 REV6

Michael Baker Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV4				CD-5 Micl Bridge T	hael Baker Transects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	12.6	12.4	12.3	12.4	Ground Shot	
	0+50	12.6	12.5	12.5	12.6	Ground Shot	
	1+00	10.3	10.1	10.1	10.2	Ground Shot	_
	1+50	9.2	9.2	9.2	9.3	Ground Shot	
	2+12	8.1	8.0	7.9	7.8	Top of Bank	
	2+15	3.5	1.9	2.0	1.8	Toe of Bank	
	Varies	-0.3	0.6	1.6	0.8	Edge of Water	
	2+30	-4.6	-3.7	-4.3	-4.5	River Bottom	
	2+37	-7.2	-4.3	-5.9	-4.9	River Bottom	
	2+48	-7.3	-5.8	-6.4	-7.1	River Bottom	
	2+58	-6.9	-5.8	-6.3	-7.7	River Bottom	
	2+72	-6.7	-6.0	-5.4	-7.4	River Bottom	
	2+82	-3.2	-5.4	-5.0	-6.8	River Bottom	
	2+96	-2.2	-3.1	-2.3	-5.4	River Bottom	
	3+06	-1.9	-2.1	-0.8	-3.4	River Bottom	
	Varies	0.1	0.3	1.6	0.7	Edge of Water	
	3+66	4.5	4.6	4.7	4.6	Grade Break	
	3+94	5.6	5.6	5.6	5.6	Sand Bar	
	4+29	7.1	7.1	7.1	7.2	Edge of Vegetation	
	4+39	8.4	8.5	8.4	8.4	Top of Bank	
	4+50	8.6	8.6	8.6	8.6	Ground Shot	_
	5+00	9.0	9.0	8.9	9.0	Ground Shot	
	5+50	7.4	7.6	7.7	8.1	Ground Shot	
	6+00	9.7	9.7	9.6	9.7	Ground Shot	_
	6+30	10.1	10.2	10.2	10.3	Edge of Vegetation	
	6+64	9.9	9.7	9.7	9.7	Ground Shot	
	7+00	10.6	10.6	10.5	10.4	Ground Shot	
	7+50	10.1	9.9	9.9	9.9	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 19 of 20

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: SZ Date: 8/20/2018 RPT-CE-CD-114 REV6					hael Baker Transects		Kuukpik/LCMF Alpine Survey Office DOC LCMF-156 REV6
	STA	2013	2016	2017	2018	Description	
	0+00	12.6	12.5	12.5	12.4	Ground Shot	_
	0+50	13.0	12.9	12.9	12.9	Ground Shot	
	1+00	11.2	11.3	11.4	11.3	Ground Shot	
	1+11	11.4	11.4	11.2	11.3	Grade Break	
	1+25	9.4	9.4	9.6	9.4	Grade Break	
	1+65	10.3	10.4	10.4	10.4	Grade Break	
	1+81	8.1	8.1	8.0	8.0	Grade Break	
	2+27	9.3	9.4	9.4	9.5	Grade Break	
	2+51	10.4	10.5	10.4	10.2	Grade Break	
	2+72	8.2	8.3	8.4	8.5	Grade Break	
	3+15	8.0	7.7	7.8	8.0	Grade Break	
	3+59	6.9	6.8	6.8	6.9	Edge of Vegetation	
	3+79	6.6	6.6	6.6	6.6	Top of Bank	
	3+92	3.5	3.4	3.4	3.4	Sand Bar	
	Varies	-0.1	0.1	1.7	0.8	Edge of Water	
	4+60	-2.3	-2.2	-2.4	-2.6	River Bottom	
	4+86	-4.6	-3.9	-5.0	-4.6	River Bottom	
	5+09	-5.1	-4.2	-4.2	-6.5	River Bottom	
	5+26	-2.0	-3.3	-1.3	-4.1	River Bottom	
	Varies	-0.2	0.0	1.7	0.8	Edge of Water	
	5+47	0.2	0.2	-	1.2	Toe of Bank	
	5+58	7.6	7.4	7.4	7.3	Top of Bank	
	5+72	9.7	9.7	9.7	9.8	Grade Break	
	5+86	9.2	9.3	9.3	9.4	Edge of Vegetation	
	6+28	9.4	9.3	9.3	9.4	Ground Shot	
	100-010-010-01-	10000		1-14-1			

9.2

10.1

9.2

10.1

Ground Shot

Ground Shot

9.2

10.1

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 20 of 20

9.5

10.3

6+69

7+19

Transect_35

ConocoPhillips Alaska INTERNATIONAL

E.3.4

LAKE L9341 BRIDGE TABULATED DATA (TRANSECTS 36 - 39)

7: SZ 0/2018 -CD-114 REV6					hael Baker Transects		Kuukpik/LCN Alpine Survey Off DOC LCMF-156 RE
STA	2013	2014	2015	2016	2017	2018	Description
0+00	8.3	8.4	8.2	7.9	7.9	7.9	Ground Shot
0+50	8.0	8.2	8.0	7.9	7.8	7.8	Ground Shot
0+81	7.2	7.3	7.4	7.4	7.3	7.2	Ground Shot
1+17	7.2	7.2	7.2	7.1	7.1	6.9	Top of Bank
1+23	6.3	6.5	6.5	6.6	6.4	6.2	Edge of Vegetation
Varies	4.6	4.6	4.6	3.4	3.9	3.6	Edge of Water
1+52	4.0	2.0	4.4	3.4	3.7	3.5	River Bottom
1+89	0.8	1.5	2.1	0.7	-0.5	0.8	River Bottom
2+20	-0.9	1.0	0.0	0.1	-0.6	-3.4	River Bottom
2+48	-1.7	-0.9	-1.8	-1.0	-1.9	-4.2	River Bottom
2+95	-3.0	-2.8	-3.2	-2.9	-3.2	-3.0	River Bottom
3+49	-2.1	-1.5	-1.5	-1.2	-1.2	-4.0	River Bottom
3+78	1.7	1.5	2.5	1.7	1.0	1.3	River Bottom
3+90	2.5	2.2	4.1	3.0	2.7	2.1	River Bottom
Varies	4.8	4.7	4.8	3.5	4.0	3.7	Edge of Water
4+06	8.6	8.6	8.7	8.5	8.4	8.3	Top of Bank
5+03	9.5	9.6	9.5	9.4	9.4	9.3	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 1 of 4 Transect_36

c'd By: SZ e: 8/20/20 Γ-CE-CD-						hael Baker Transects		Kuukpik/I Alpine Survey DOC LCMF-156
Г	STA	2013	2014	2015	2016	2017	2018	Description
Ē	0+00	8.0	8.1	8.5	8.3	8.3	8.3	Ground Shot
	0+50	8.3	8.5	8.3	8.2	8.2	8.1	Ground Shot
	0+92	7.0	7.1	7.2	7.3	7.1	6.9	Top of Bank
	1+03	6.5	6.6	6.6	6.7	6.5	6.4	Edge of Vegetation
	Varies	4.6	4.5	4.6	3.5	4.0	3.6	Edge of Water
	1+59	2.2	1.7	3.1	3.0	2.2	1.9	River Bottom
	2+01	0.5	1.1	0.0	1.1	0.7	-1.4	River Bottom
	2+48	-2.4	-2.5	-1.4	-2.0	-2.8	-3.6	River Bottom
	2+99	-2.9	-2.5	-2.6	-2.6	-2.9	-3.0	River Bottom
	3+45	-1.6	-1.3	-1.3	-1.3	-1.7	-3.9	River Bottom
	3+84	2.1	1.4	3.0	2.5	1.6	1.7	River Bottom
	Varies	4.6	4.7	4.8	3.5	4.1	3.6	Edge of Water
	4+04	9.1	9.1	9.1	9.0	8.8	8.6	Top of Bank
	4+49	8.8	8.9	8.8	8.7	8.7	8.7	Ground Shot
	4+99	9.5	9.6	9.5	9.4	9.5	9.2	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 2 of 4

Transect_37

Calc'd By: SZ Date: 8/20/2013 RPT-CE-CD-1						hael Baker Fransects		Kuukpik/L Alpine Survey (DOC LCMF-156 l	Office
	STA	2013	2014	2015	2016	2017	2018	Description	
	0+00	8.1	8.4	7.8	7.7	7.1	7.5	Ground Shot	
	0+50	7.9	8.3	8.0	7.8	7.7	7.8	Ground Shot	
	0+81	7.3	7.3	7.4	7.2	7.1	6.9	Ground Shot	
	1+22	6.1	6.4	6.3	6.3	6.1	6.1	Edge of Vegetation	
1	Varies	4.6	4.5	4.6	3.5	4.0	3.6	Edge of Water	
	1+94	1.4	1.6	2.4	2.1	0.9	1.0	River Bottom	
	2+46	0.4	0.4	0.0	-0.2	-0.5	-0.5	River Bottom	
	2+96	-2.6	-2.2	-1.6	-2.4	-2.7	-2.5	River Bottom	
	3+47	-2.8	-2.5	-3.2	-3.0	-3.0	-3.0	River Bottom	
	3+95	0.8	1.5	1.0	0.8	0.4	0.4	River Bottom	
	Varies	4.7	3.7	5.0	3.6	4.0	3.7	Edge of Water	
	4+31	9.3	9.3	9.3	9.1	8.9	8.8	Top of Bank	
	4+79	9.0	9.1	9.0	8.9	8.9	8.6	Ground Shot	
	5+29	9.2	9.3	9.3	9.2	9.0	9.0	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 3 of 4

Transect_38

ConocoPhillips Alaska INTERNATIONAL

CD-5 Michael Baker

Bridge Transects

Kuukpik/LCMF

Alpine Survey Office DOC LCMF-156 REV6

Description	2018	2017	2016	2015	2014	2013	STA
Ground Shot	8.2	8.2	8.4	8.6	8.8	8.5	0+00
Ground Shot	7.3	7.1	7.5	7.7	7.8	7.6	0+50
Top of Bank	6.7	6.9	6.9	6.9	7.0	6.7	0+79
Edge of Vegetation	5.5	5.7	5.9	5.8	6.0	5.8	0+89
Edge of Water	3.8	4.0	3.4	4.5	4.5	4.4	Varies
River Bottom	1.1	0.6	1.9	2.6	1.2	1.3	1+27
River Bottom	-0.1	-0.1	0.6	0.6	0.7	0.1	1+54
River Bottom	-1.3	-1.5	-1.4	-1.1	-0.8	-1.2	2+01
River Bottom	-2.6	-2.4	-1.7	-2.0	-1.7	-1.7	2+47
River Bottom	-3.3	-3.1	-3.1	-3.2	-2.5	-3.0	3+01
River Bottom	-1.0	-0.8	-0.3	-0.4	1.5	-0.3	3+55
River Bottom	1.6	1.6	1.5	1.7	2.6	1.8	3+71
Edge of Water	3.7	3.9	3.4	4.8	4.3	4.6	Varies
Top of Bank	9.1	9.2	9.4	9.5	9.5	9.3	4+03
Ground Shot	9.1	9.1	9.2	9.5	9.5	9.4	4+43
Ground Shot	9.3	9.3	9.3	9.5	9.7	9.6	4+93

Doc LCMF-156 CD5 Bridge Transects Rev6_reformatted.xlsx 4 of 4

Transect_39

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: SZ

Date: 8/20/2018

2018 COLVILLE RIVER DELTA Spring Breakup Monitoring & Hydrological Assessment