

2018

WILLOW MARINE MONITORING PROGRAM REPORT

November 2018

(This page intentionally blank.)

FINAL REPORT

2018 WILLOW MARINE MONITORING PROGRAM

November 2018

Prepared for:

P.O. Box 100360 Anchorage, AK 99510-0360 Prepared by:

704 West 2nd Ave. Anchorage, AK 99501 (This page intentionally blank.)

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Program Description	1
	1.2	Program Objectives	1
2.0	PRC	OGRAM DESIGN	2
	2.1	Sampling Locations	2
	2.2	Sediment Sampling and Analysis	4
	2.3	Biological Sampling	7
	2.4	Oceanography and Water Quality	7
3.0	FIEI	LD METHODS	8
	3.1	Sediment Chemistry and Benthic Infauna Sampling	8
	3.2	Trawl Sampling	9
	3.3	Hydrographic and Water Quality Sampling	9
	3.4	Decontamination and Waste Stream Disposal	.10
	3.5	Sampling Handling	.10
	3.6	Vessel Positioning And Navigation	.11
	3.7	Documentation and Chain of Custody Procedures	.12
4.0	ANA	ALYTICAL METHODS	.14
	4.1	Sediment Analyses	.14
		4.1.1 Particle Grain Size	14
		4.1.2 Carbons in Sediment	.14
		4.1.3 Metals in Sediment	.14
	12	4.1.4 Hydrocardon Analyses	.10
	4.2 1 3	Taxonomia Analyses	.10
	4.5	Ovality Control	20
5.0	4.4 OU/	Quality Control	20
5.0	QUF	ALITY ASSURANCE	
	5.1	Data Quality Objectives	
	5.2	Data Review and Quality Assessment.	23
< 0	5.3 DEC	Quality Assurance/Quality Control Evaluation	.24
6.0	RES		.25
	6.1	Sediment Quality Results	25
		6.1.2 Sediment Metals	.23
		6.1.3 Sediment Hydrocarbons	
	6.2	Benthic Infaunal Results	
		6.2.1 Species Abundance and Density	.39
		6.2.2 Numbers of Taxa and Species	50
		6.2.3 Community Indices	
		6.2.5 Comparison with Previous Studies	.51
	6.3	Trawling Results.	
		6.3.1 Fish	.57
		6.3.2 Invertebrates	.59
	<i>.</i> .	6.3.3 Algae	.63
	6.4	Hydrographic and Water Quality Results	.64
7.0	REF	ERENCES	.74

LIST OF FIGURES

Figure 2-1.	Willow MMP Sediment and Trawl Sampling Sites	. 3
Figure 2-2.	Willow MMP Water Quality and Oceanographic Sampling Sites.	. 5
Figure 6-1.	Comparison of Sediment TVS, TOC, and % Fines by Station	26
Figure 6-2.	Regressions of % Fines vs. TVS and TVS vs. TOC.	27
Figure 6-3.	Comparison of Arsenic, Chromium, Copper, Lead, Nickel, Vanadium, and Zinc	29
Figure 6-4.	Comparison of Antimony, Barium, Cadmium, Mercury, Selenium, and Silver.	29
Figure 6-5.	Regressions of Select Metals to Aluminum and Conventional Parameters	30
Figure 6-6.	Comparison of AHC Parameters by Station.	33
Figure 6-7.	AHC vs. TOC Regressions	33
Figure 6-8.	AHC Distribution for Station S2 and Reference Crude Oil	34
Figure 6-9.	Comparison of TPAH Concentration by Station.	35
Figure 6-10.	Scatter Plots and Regressions of TPAH vs. TVS and % Fines	36
Figure 6-11.	Sediment PAH Distribution from Station S2.	36
Figure 6-12.	Colville River Sediment PAH Distribution, ANIMIDA Study (Exponent 2010)	37
Figure 6-13.	Double Ratio Source Plot C2D/C2P vs. C3D/C3P for Willow MMP Sediments	in
C	Comparison to BSMP and ANIMIDA Results from Exponent (2010).	38
Figure 6-14.	Summary of Biomarker Concentrations by Station.	38
Figure 6-15.	Major Taxon Proportion of Individuals and Taxa at All Stations.	43
Figure 6-16.	Abundance of Major Taxon Groups Arranged by Transect and Station.	45
Figure 6-17.	Number of Taxa for Major Taxon Groups Arranged by Transect and Station	45
Figure 6-18.	Total Abundance and Number of Taxa Arranged by Transect and Station	46
Figure 6-19.	Top Five Most Abundant Taxa Arranged by Transect.	47
Figure 6-20.	Top Five Most Frequently Occurring Taxa Arranged by Transect.	47
Figure 6-21.	AggHC Cluster Analysis Dendrogram of Station Classes	52
Figure 6-22.	AggHC Cluster Analysis Profile Plot of Class Centroids by Taxa	53
Figure 6-23.	AggHC Cluster Analysis Heat Map of Station Classes.	54
Figure 6-24.	Map of AggHC Cluster Classes and Dominant Taxa.	55
Figure 6-25.	Arctic Cod and Fourhorn Sculpin.	58
Figure 6-26.	Major Epibenthic Invertebrate Taxonomic Groupings in Trawls	60
Figure 6-27.	Trawl Catch Showing a Predominance of Saduria spp.	62
Figure 6-28.	Observed Water Level Fluctuations at West Dock Prudhoe STP	64
Figure 6-29.	Salinity Cross Section Extending from Nearshore (W19) to Offshore (W27)	65
Figure 6-30.	Hydrographic Profiles from MTI (W22) and a Deeper Offshore Location (W27)	68
Figure 6-31.	Bottom Salinity in Western Harrison Bay, 8-9 August 2018.	69
Figure 6-32.	Bottom Temperature in Western Harrison Bay, 8-9 August 2018.	69
Figure 6-33.	DO Cross Section Extending from Nearshore (W19) to Offshore (W27)	70
Figure 6-34.	Temperature Cross Section Extending from Nearshore (W19) to Offshore (W27)	70
Figure 6-35.	OBS Turbidity Cross Section Extending from Nearshore (W19) to Offshore (W27)	72
Figure 6-36.	TSS and OBS vs. Turbidity Regressions.	72

LIST OF TABLES

Table 2-1.	Willow MMP Sediment Station Information	2
Table 2-2.	Trawl Station Information	4
Table 2-3.	Water Quality and Oceanographic Station Information.	6
Table 3-1.	Container Types, Holding Times, and Preservation of Samples.	11
Table 4-1.	Methods Used for Sediment and Water Analyses.	15
Table 4-2.	Trace Metals Target Analytes and Method Detection Limits	16
Table 4-3.	AHC Target Analytes and Method Detection Limits.	18
Table 4-4.	PAH Target Analytes and Method Detection Limits	19
Table 5-1.	Precision and Accuracy Data Quality Objectives.	22
Table 6-1.	Summary of Sediment Grain Size and Conventional Parameters.	26
Table 6-2.	Sediment Metals Concentrations in Willow MMP Area.	28
Table 6-3.	Sediment Hydrocarbon Concentrations in the Willow MMP Area.	32
Table 6-4.	Species and Taxa Abundance by Station and Overall Totals.	40
Table 6-5.	Percent Frequency of Occurrence and Ranking by Total Abundance for all Taxa	41
Table 6-6.	Ranking of Species and Taxa by Overall Density.	42
Table 6-7.	Abundance and Number of Taxa Summary Statistics for Major Taxon Groups	43
Table 6-8.	Summary Statistics of Community and Related Diversity Indices by Transect	44
Table 6-9.	Fish Catch Abundance and Catch by Area (per 100 m ²)	58
Table 6-10.	Invertebrate Catch Abundance and Catch by Area (per 100 m ²)	61
Table 6-11.	Hydrographic CTD Summary of Surface and Bottom Measurements.	66
Table 6-12.	TSS, Turbidity, and OBS Results.	71

LIST OF APPENDICES

- Appendix A. Sediment Results
- Appendix B. Benthic Infaunal Results
- Appendix C. Bottom Trawl Results
- Appendix D. Hydrographic and Water Quality Results
- Appendix E. QA/QC Evaluation

ACRONYMS AND ABBREVIATIONS

1-D	Simpson's measure of evenness (complement of Simpson's Index)
#/m ²	Degrees
#/111 %	Percent
% Fines	Percent fines (silt + clay)
% Rec	Percent recovery
ua/ka	Micrograms per kilogram
ua/mL	Micrograms per milliliter
um	Micron
ADEC	Alaska Department of Environmental Conservation
ADF&G	Alaska Department of Fish and Game
ADNR	Alaska Department of Natural Resources
AggHC	Agglomerative hierarchical clustering
AHC/AHCs	Aliphatic hydrocarbons
AK LNG	Alaska LNG Project
ANIMIDA	Arctic Nearshore Impact Monitoring in the Development Area
APDES	Alaska Pollutant Discharge Elimination System
APHA	American Public Health Association
APP	Alaska Pipeline Project
ARC	Archival samples
ASTM	American Society for Testing and Materials
B&BL	B&B Laboratories
BC	Bray-Curtis dissimilarity index
BOEM	Bureau of Ocean Energy Management
BSMP	Beaufort Sea Monitoring Program
C	Celsius
C2D/C2P	C2-Dibenzothiophene/C2-Phenanthrene-Anthracene
C3D/C3P	C3-Dibenzothiophene/C3-Phenanthrene-Anthracene
C-T-AAS	Combustion-trapping-atomic absorption spectroscopy
cANIMIDA	Continuation of ANIMIDA
CCB	Calibration check blanks
CCV	Continuing calibration verification
ct.	Comparable to (Latin, <i>conter/conteratur)</i>
cm	Centimeter(s)
COC	Chain of custody
CPAI	Conoco Phillips Alaska Inc.
	Certified reference material
	Coefficient of variation
	Conductivity, temperature, and depth recorder
	Simpson's Index (Deminance)
	Simpson's index (Dominance)
	Dinerential global positioning system
DOT	U.S. Department of Transportation
	Data quality objective
	Duplicate
FIS	Environmental impact statement
ENAP	Environmental Monitoring and Assessment Program
FOM	Extractable organic matter
FPA	United States Environmental Protection Agency
FRI	Effects range low
ERM	Effects range median
FAAS	Flame atomic absorption spectrometry
FID	Flame ionization detection
ft	Feet (or foot)
a	Gram(s)
ĞC	Gas chromatography
GC/FID	Gas chromatography/flame ionization detection
GC/MS	Gas chromatography/mass spectrometry
GIS	Geographic Information System

000	Olahal positioning evotors
GPS	Global positioning system
Н	Shannon Diversity Index
HDPE	High density polyethylene
hr	Hour(s)
IATA	International Ait Transport Association
ICP-MS	Inductively coupled plasma-mass spectrometry
ICP-OES	Inductively coupled plasma-ontical emission spectroscopy
	Kinnetic Laboratories Inc.
	Kilometer(a)
km	Kilometer(S)
	Liter(s)
LCS/LCSD	Laboratory control spike/laboratory control spike duplicate
LSR	Local subsistence representative
m ²	Meters squared
m	Meter(s)
MB	Method blank
ml	Milliliter(s)
mm	Millimeter(s)
MDI	Method detection limit
	Milligrome per kilogrom
nig/kg	
mg/L	Milligrams per liter
MMP	2018 Willow Marine Monitoring Program
MRL	Method reporting limit
MS	Mass spectrometry
MS/MSD	Matrix spike/matrix spike duplicate
MTI	Module transfer island
n	Number of individuals
NIST	National Institute of Standards and Technology
NOAA	National Oceanic and Atmospheric Administration
NOAA	National Status and Trands
	Nanhalamatria turbiditu unita
OBS	Optical backscatter
OEPI	Odd-even preference index
PAH/PAHs	Polycyclic aromatic hydrocarbons
PAM	PAH, AHC. and metals samples
PCBs	Polychlorinated biphenyls
PGS	Particle grain size
PSEP	Puget Sound Estuary Program
DSU	Practical salinity units
	Quality assurance
	Quality assurance/quality control
	Quality control
R ²	Coefficient of determination ("R squared")
RF	Response factor
RPD	Relative percent difference
RRF	Relative response factor
S	Species richness
S/T	Steranes and triterpanes
SAP	Sampling and Analysis Plan
SD	Standard deviation
SE	Standard error
SIM	Selective ion monitoring
SI	Screening level
SL	Standard Mathada
	Standard Methods
SOP	Standard operating procedure
sp. or spp.	Species (unidentified)
SQG	Sediment quality guideline
SRM	Standard reference material
SW	Solid waste
TAHC	Total aliphatic hydrocarbons
TC	Total carbon
TDI-BI	TDI Brooks, Inc.
TERI	Trace Environmental Research Lab (Texas A&M University)
TOC	Total organic carbon
толн	

TPAH ^{16P}	Subset of 16 PAHs on EPA's priority pollutant list
TPH	Total petroleum hydrocarbons
TRHC	Total resolved hydrocarbons
TS	Total solids, in percent
TSS	Total suspended solids
TTT	TOC/TVS/TS samples
TVS	Total volatile solids
UCM	Unresolved complex mixture
UI	Unidentified
Unid.	Unidentified
UPGA	Unweighted pair-group average
US	United States
USACE	U.S. Army Corps of Engineers
WAAS	Wide area augmentation system
WGS	World geodetic system
WMG	Wide-mouth glass
wt.	Weight
х	Multiplied by (or times)

1.0 INTRODUCTION

1.1 PROGRAM DESCRIPTION

ConocoPhillips Alaska, Inc. (CPAI) is in the process of planning the marine components of the Willow Development Project located near Atigaru Point along the western shore of Harrison Bay. The 2018 Willow Marine Monitoring Program (MMP) performed by Kinnetic Laboratories, Inc. (KLI) was designed to 1) support the preparation of an environmental impact statement (EIS) and 2) provide information required for any other marine permitting that might be required (e.g., United States Army Corps of Engineers {USACE} or Alaska Pollutant Discharge Elimination System {APDES} permits).

1.2 PROGRAM OBJECTIVES

The Willow MMP was intended to support the preparation of the EIS by providing baseline marine monitoring data from Harrison Bay for the following parameters:

- Sediment quality data sediment characterization including conventional parameters and some contaminant analyses (metals and hydrocarbons);
- Biological data benthic infauna and epibenthic organism collection and analyses; and
- Water quality data water column profiling and total suspended solids/turbidity analyses.

The overall objective of the program was to obtain representative chemical, physical, and biological data for the proposed development area to characterize the existing environment. Chemical parameters chosen for analysis focused on potential oil industry-related contaminants (e.g., hydrocarbons and metals); pesticides, polychlorinated biphenyls (PCBs), and other environmental contaminants not typically associated with oil development that were not expected to be elevated in the study area were not included. Physical parameters included particle grain size (PGS) and other conventional parameters as called for by the *Dredged Material Evaluation and Disposal Procedures – User Manual* (USACE 2016) for the Seattle District. Program components are more fully described in the sections below.

2.0 PROGRAM DESIGN

Collection of sediment, benthos, and water samples was performed during open-water conditions in August 2018 using the R/V *Ukpik* at select stations in Harrison Bay. Sediment was subsampled for the different parameters as required at each station, including the conventional parameters of PGS, total organic carbon (TOC), total volatile solids (TVS), and Total Solids (TS) along with benthic infaunal collection at each of 12 sediment stations. Sediments were also collected for analysis of total metals and hydrocarbons at six prioritized stations. Trawling to collect epibenthic and demersal fish and other organisms was also performed at 13 locations near the sediment sites. In addition to the 12 sediment stations, hydrographic conductivity, temperature, and depth (CTD) profiling was performed at 43 locations over a wider area of Harrison Bay to reflect the local oceanographic conditions, and water samples were collected at 20 of those stations for analysis of total suspended solids (TSS) and turbidity.

2.1 SAMPLING LOCATIONS

Twelve sediment sampling stations (denoted by "S" followed by a number; Table 2-1 and Figure 2-1) were pre-selected based on the proposed location of the module transfer island (MTI) to be constructed in the southwestern portion of Harrison Bay, approximately 1.7 miles off Atigaru Point in a water depth of approximately 8 to 10 feet (ft; 2.4-3 meters {m}). Sediment station selections were located along three transects based on bathymetry data of the area, including the 2018 bathymetric survey data results, and adjusted in the field according to the survey vessel's fathometer readings, with the intention of obtaining data from sampling depths ranging from about 6 to 23 ft (2-7 m). Sediment Station S3 was located at the proposed MTI site which was on the middle transect. These sediment stations were used as the basis for the overall sampling design and included trawling and water quality sampling, as described further below.

		Station	Тур	e of Sample	Collection	า			
Station	Date	De	pth	Latitudo	Longitude	PGS/TOC/	PAH/AHC/	Infauna	стр
Station	Dale	ft	m	Latitude	Longitude	TVS/TS	Metals	iniauna	
S1	8/6/18	6.9	2.1	70 34.142	-151 46.683	~		~	✓
S2	8/6/18	10.4	3.2	70 35.399	-151 45.880	~	✓	~	✓
S3	8/6/18	10.4	3.2	70 36.396	-151 45.302	✓	✓	~	✓
S4	8/6/18	12.5	3.8	70 37.396	-151 44.550	✓	✓	✓	✓
S 5	8/6/18	16.3	5.0	70 38.471	-151 44.049	✓		✓	✓
S6	8/6/18	22.9	7.0	70 39.989	-151 43.116	✓	✓	✓	✓
S7	8/6/18	9.4	2.9	70 35.642	-151 51.418	✓		✓	✓
S8	8/6/18	8.5	2.6	70 37.008	-151 50.776	✓	✓	✓	✓
S9	8/6/18	9.4	2.9	70 37.991	-151 50.258	✓		✓	✓
S10	8/6/18	6.3	1.9	70 33.546	-151 41.940	✓		✓	✓
S11	8/6/18	11.0	3.4	70 34.552	-151 40.989	✓	✓	✓	✓
S12	8/6/18	16.5	5.0	70 36.145	-151 39.348	✓		✓	✓

 Table 2-1.
 Willow MMP Sediment Station Information.

ConocoPhillips Alaska's Oil & Gas Company

Figure 2-1. Willow MMP Sediment and Trawl Sampling Sites.

Trawling was performed at trawl stations (designated "T" and corresponding numerically to the sediment "S" stations) located in the vicinity of each of the 12 sediment stations as well as at one additional shallow station (T0) inshore of the MTI middle transect (Table 2-2 and as shown in Figure 2-1). Water quality stations as shown in Figure 2-2 (denoted with "W" and a sequential number) and provided in Table 2-3 were located along transects in a wider area to provide synoptic measurements throughout Harrison Bay rather than being confined to the potential construction area.

				Start			End	
Station	Date	Depth		Latituda	I an aite da	Latituda		Trawl Distance
		ft	m	Latitude	Longitude	Latitude	Longitude	(m)
T0	8/8/18	5.1	1.6	70 33.267	-151 47.601	70 33.696	-151 47.137	848
T1	8/7/18	7.0	2.1	70 34.157	-151 46.274	70 34.110	-151 47.570	807
T2	8/7/18	10.0	3.0	70 35.393	-151 46.155	70 35.387	-151 44.556	989
T3	8/7/18	9.8	3.0	70 36.298	-151 44.842	70 36.535	-151 46.003	842
T3-2	8/7/18	9.6	2.9	70 36.529	-151 46.082	70 36.244	-151 44.669	1021
T4	8/7/18	12.1	3.7	70 37.267	-151 44.131	70 37.557	-151 45.284	893
T5	8/8/18	16.2	4.9	70 38.587	-151 44.412	70 38.393	-151 43.160	852
T6	8/8/18	22.5	6.9	70 39.829	-151 42.644	70 40.265	-151 43.472	958
T7	8/8/18	9.7	3.0	70 35.624	-151 52.138	70 35.647	-151 50.597	954
T8	8/8/18	8.3	2.5	70 36.927	-151 50.008	70 37.076	-151 51.432	922
Т9	8/8/18	9.4	2.9	70 38.188	-151 50.887	70 37.889	-151 49.894	827
T10	8/8/18	6.5	2.0	70 33.361	-151 41.444	70 33.685	-151 42.273	792
T11	8/8/18	11.3	3.4	70 34.443	-151 40.277	70 34.595	-151 41.533	827
T12	8/8/18	15.0	4.6	70 36.255	-151 40.122	70 36.098	-151 38.824	854

Table 2-2.	Trawl	Station	Information.
	1101	otation	million mation.

2.2 SEDIMENT SAMPLING AND ANALYSIS

Sediment characterization and chemistry samples that were collected and analyzed for the Willow MMP included the following:

- Conventional parameters (all 12 sediment stations):
 - PGS;
 - TOC; and
 - TVS.
- Chemical parameters (six sediment stations: S2, S3, S4, S6, S8, and S11):
 - Total metals (aluminum, antimony, arsenic, barium, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, silver, vanadium, and zinc);
 - Aliphatic hydrocarbons (AHC); and
 - Polycyclic aromatic hydrocarbons (PAH) and select biomarkers.

Table 2-1 indicates which stations were targeted for each type of analysis. All sediment sampling and analyses followed accepted protocols and techniques (e.g., Puget Sound Estuary Program {PSEP}, National Status and Trends, or U.S. Environmental Protection Agency {EPA} methods) as appropriate. For example, low level hydrocarbons in sediments were analyzed as described in proprietary laboratory standard operating procedures (SOPs) using essentially the same methods that have been successfully used for the National Oceanic and Atmospheric Administration's (NOAA's) Mussel Watch and National Status and Trends (NS&T) Programs, other Environmental Monitoring and Assessment Program (EMAP)

Figure 2-2. Willow MMP Water Quality and Oceanographic Sampling Sites.

		Туре о	f Sample	Collection				
Station	Date	Depth Latitude Longitur				СТД	Turbidity	
		ft	m				100	Turbiaity
W1	8/8/18	18.3	5.6	70 34.142	-151 46.683	v	~	~
W2	8/8/18	12.0	3.7	70 35.399	-151 45.880	✓		
VV3	8/8/18	8.9	2.7	70 36.396	-151 45.302	✓	~	~
VV4	8/8/18	7.5	2.3	70 37.396	-151 44.550	✓ ✓		
W5	8/8/18	7.0	2.1	70 38.471	-151 44.049	✓	~	~
W6	8/8/18	6.2	1.9	70 39.989	-151 43.116	✓ ✓		
W7	8/8/18	7.7	2.3	70 35.642	-151 51.418	✓ ✓	✓	✓ ✓
W8	8/9/18	4.9	1.5	70 37.008	-151 50.776	✓	~	✓
W9	8/9/18	7.9	2.4	70 37.991	-151 50.258	✓		
W10	8/9/18	8.5	2.6	70 33.546	-151 41.940	~	~	~
W11	8/9/18	8.9	2.7	70 34.552	-151 40.989	✓		
W12	8/9/18	9.5	2.9	70 36.145	-151 39.348	✓	✓	~
W13	8/9/18	9.8	3.0	70 39.765	-151 58.526	✓		
W14	8/9/18	4.9	1.5	70 40.702	-151 58.030	✓		
W15	8/9/18	9.8	3.0	70 37.994	-151 50.155	\checkmark		
W16	8/9/18	8.9	2.7	70 36.983	-151 50.741	\checkmark	✓	✓
W17	8/9/18	9.5	2.9	70 35.625	-151 51.380	✓		
W18	8/9/18	7.9	2.5	70 34.480	-151 51.407	✓	✓	✓
W19	8/9/18	5.6	1.7	70 33.490	-151 47.091	✓	✓	✓
W20	8/9/18	7.2	2.2	70 34.148	-151 46.729	✓	~	✓
W21	8/9/18	10.5	3.2	70 35.434	-151 45.819	✓	~	✓
W22	8/9/18	10.2	3.1	70 36.394	-151 45.335	✓	✓	✓
W23	8/9/18	12.8	3.9	70 37.437	-151 44.600	✓	~	✓
W24	8/9/18	16.7	5.1	70 38.539	-151 44.045	✓		
W25	8/9/18	23.3	7.1	70 40.087	-151 43.043	✓		
W26	8/9/18	28.2	8.6	70 41.214	-151 40.047	✓		
W27	8/9/18	34.8	10.6	70 42.352	-151 37.063	✓		
W28	8/9/18	20.3	6.2	70 37.588	-151 37.753	✓		
W29	8/9/18	15.4	4.7	70 36.136	-151 39.095	✓	✓	✓
W30	8/9/18	11.2	3.4	70 34.490	-151 40.934	✓	✓	~
W31	8/9/18	6.6	2.0	70 33.567	-151 41.915	✓	✓	✓
W32	8/9/18	7.0	2.1	70 32.432	-151 37.872	✓	✓	~
W33	8/9/18	9.4	2.9	70 34.041	-151 36.253	✓	✓	✓
W34	8/9/18	15.7	4.8	70 34.996	-151 35.376	✓		
W35	8/9/18	19.5	5.9	70 36.351	-151 34.018	✓		
W36	8/9/18	26.2	8.0	70 37.803	-151 32.723	✓		
W37	8/9/18	40.8	12.4	70 39.177	-151 15.538	✓		
W38	8/9/18	34.7	10.6	70 37.031	-151 16.881	✓		
W39	8/9/18	26.8	82	70 34 926	-151 17 956	✓		
W40	8/9/18	20.0	6.1	70 33 186	-151 18.980	✓		
W41	8/9/18	13.0	4.0	70 31.630	-151 19 726	✓		
W42	8/9/18	6.8	21	70 29 961	-151 20 537	✓		
W43	8/9/18	5.6	1 7	70 28 905	-151 21 237	✓	✓	✓

Table 2-3.Water Quality and Oceanographic Station Information.

studies, the Bureau of Ocean Energy Management's (BOEM's) Arctic Nearshore Impact Monitoring in the Development Area (ANIMIDA) and Beaufort Sea Monitoring Programs (BSMP), and other nationally recognized programs. Sampling and analytical methods are further described in the Sections 3.0 and 4.0 below.

A single sample of each sediment and benthic infauna sample type was targeted for collection at each station; no replication was included in the program as it was designed to provide an overview of sediment characteristics in the study area. Field duplicate quality control (QC) samples were collected for all chemical and conventional sediment parameters from the same grab at one station during the field survey.

2.3 BIOLOGICAL SAMPLING

Biological samples that were collected and analyzed for the MMP included the following:

- Benthic infauna all 12 sediment stations; sediment grabs were processed through a 1.0millimeter (mm) sieve, sorted, and identified to the lowest practicable taxon; and
- Fish and epifauna trawling 14 otter trawls were performed in total, 13 in the vicinity of the 12 sediment stations (with a replicate trawl at the MTI location, T3) and at one additional inshore shallow station (T0).

All biological sampling and analysis followed accepted methods as described in Sections 3.0 and 4.3. Sorting of samples to remove the infauna from the substrate was performed by KLI personnel in Santa Cruz, CA. Biological specimens were identified to the lowest practicable taxonomic grouping. Infaunal crustaceans were identified by Gary Gillingham of KLI; other infaunal groups were referred to outside taxonomists for identification (see Section 4.3). Trawl specimens were largely identified in the field; any trawl specimens that were retained were identified in the laboratory.

2.4 OCEANOGRAPHY AND WATER QUALITY

Water measurements included hydrographic profiling using a conductivity, temperature, and depth (CTD) profiler to characterize the vertical structure of the water column along with collection of turbidity and TSS samples, as these latter parameters are those that would most likely be affected by construction activities. Oceanographic and water quality data that were collected and analyzed for the MMP included the following:

- Hydrographic profiles 56 vertical profiles (+ QC) of pressure (depth), temperature, conductivity (salinity), pH, dissolved oxygen (DO), and optical backscatter (OBS) turbidity; and
- TSS and nephelometric turbidity samples 20 stations x 2 depths/station (+ QC).

Hydrographic CTD casts were collected at all water quality stations (as well as the sediment stations). Water samples for the analysis of TSS and turbidity were collected from the surface and bottom at 20 of the water quality stations. All water sampling and analyses followed accepted protocols and techniques as described in Sections 3.3 and 4.2.

3.0 FIELD METHODS

This section provides an overview of the field methods used for the MMP. Original program methods were outlined in the program's *Draft Sampling and Analysis Plan* (SAP, dated 7/18/2018); station locations and some methods were subject to modification just prior to performance of the field effort.

All field sampling was performed using a chartered 50-foot work vessel, the *R/V Ukpik*. Benthic infauna and trawling was performed as permitted by a State of Alaska Department of Fish and Game (ADF&G) Aquatic Resource Permit CF-18-102 obtained by KLI for this MMP. In addition to the survey boat captain and scientific crew, a Local Subsistence Representative (LSR) from Nuiqsut, Bryan Nukapigak, was aboard to observe sampling, watch for protected species such as marine mammals and other species of concern, and represent local interests regarding Harrison Bay and subsistence use of the area.

3.1 SEDIMENT CHEMISTRY AND BENTHIC INFAUNA SAMPLING

Sediment samples for conventional parameters, chemistry, and benthic infaunal analyses were collected using a 0.1-meter squared (m²) stainless steel/Kynar coated van Veen grab sampler. Van Veen grabs were considered acceptable for sampling if the following parameters were met:

- The sampler was not overfilled;
- Overlying water was present;
- The sediment surface appeared to be relatively undisturbed; and
- The desired target sample depth had been achieved.

Unacceptable grabs were rejected. Once a grab was deemed acceptable, sediment was subsampled for conventional parameters and chemistry (at select stations) or benthic biology, as described below. Two drops of the grab were required at each station to obtain all samples; i.e., physical and chemical parameters were sampled from one grab, and benthic infauna from another collected at the same station.

Samples were collected for conventional sediment parameters, chemistry, and an archival sample (for potential later analysis) by removing sediment representing the top two centimeters (cm) from each acceptable grab. These subsamples were removed from the grab with a decontaminated utensil (see Section 3.4) without including material in contact with the grab surfaces. Sediment was placed in a decontaminated stainless steel mixing bowl for homogenization prior to subsampling for the various analytical parameters. Subsamples were placed in pre-labeled sample containers and immediately chilled on deck. The vessel's engine was shut down whenever possible so that chemistry samples could be collected and processed in an area that was free of vessel exhaust. Clean nitrile gloves were worn during sampling to prevent any contamination of the samples.

For benthic infauna, the full sediment depth within half of the grab was collected; a standard surface area of collection was maintained as required for benthic infauna. Sediment designated for infaunal collection was initially stored in internally and externally labelled 5-gallon buckets with seawater; these were later processed through a 1-mm sieve to collect macrofauna. Retained material was placed in pre-labeled plastic sample jars, dosed with propylene phenoxetol to relax the infauna (to facilitate identification), and preserved in a 10 percent (%) buffered formalin/seawater solution.

Duplicate sediment samples for conventional parameters and chemistry were collected from within the same grab at the S3 (MTI) station for QC purposes. Due to the inherent variability of benthic infauna, no

field duplication or other field QC collection was required or appropriate as it was determined that replication was unnecessary for characterizing the general area in the vicinity of the proposed MTI.

3.2 TRAWL SAMPLING

An 8-ft (2.5-m) otter trawl was used to collect demersal fish and epibenthic macrofauna. Trawl samples were collected in 10-minute tows parallel to site bathymetry at a speed of approximately 3 knots (~925 m in length). Global positioning system (GPS) coordinates were recorded as the net initially contacted the bottom and at the end of the tow when the net was hauled back.

Once the net was retrieved at the completion of each trawl, the catch was released into an appropriately sized bucket or tote, sorted, and the biota identified and enumerated. All fish and most invertebrates were identified in the field and released unharmed whenever possible, while representative samples of smaller invertebrates were preserved in buffered 10% formalin and returned to the laboratory for taxonomic confirmation and identification. All fish were measured for fork length prior to release. Fish references used for field identifications included Johnson et al. (2015) and Mecklenburg et al. (2002).

Trawl catch was standardized to catch per 100-m² of bottom fished, assuming the width of the trawl while fishing was 2.5 m and calculating the length of the trawl track assuming a straight path between the trawl start and end GPS coordinates. No QC samples were collected in association with trawling, although voucher specimens were retained (as allowed by the collection permit) as necessary.

3.3 HYDROGRAPHIC AND WATER QUALITY SAMPLING

Hydrographic profiles were obtained along seven transects located perpendicular to the local bathymetry using a high-precision SeaBird SBE-19plus V2 SeaCAT CTD equipped with pressure (depth), conductivity (salinity), temperature, pH, DO, and optical backscatter (OBS, another measure of turbidity) sensors. Electronic probe measurements are described by Standard Methods (SM; American Public Health Association {APHA} 2017) procedures as appropriate as indicated in the SAP. Four to nine water quality stations were located along each of the seven transects, for a total of 43 water sampling stations. For QC purposes, one triplicate CTD cast was performed to provide a measure of field and sampling variability.

In addition to CTD casts, discrete water samples were collected at 20 stations for laboratory analysis of TSS and field analysis of turbidity at two depths (surface and bottom). A 1.7-liter (L) Niskin water bottle was used to collect these samples; as contaminant chemistry analyses were not performed, no decontamination of the Niskin bottle was required. The appropriate pre-labeled sample containers for TSS/turbidity were triple-rinsed with sample water from each Niskin prior to filling. TSS samples were collected in pre-labeled high density polyethylene (HDPE) containers and chilled at <4 degrees Celsius ($^{\circ}$ C) $\pm 2^{\circ}$ C until shipment to the laboratory. Turbidity samples were subsampled from the Niskins into marked sample containers or cuvettes for immediate analysis in the field using a portable Hach 2100Q nephelometric turbidity meter following Standard Method 2130B (APHA 2017). Analysis of TSS and turbidity on corresponding field samples allowed direct 1:1 comparison of turbidity versus TSS. QC sampling included the collection of field duplicate water samples for laboratory analysis of TSS and infield analysis of turbidity (from within the same Niskin bottle); field turbidity analytical ("laboratory") duplication was performed on a minimum of 10% of the samples.

In addition to the in-situ profiling using the CTD, a YSI 556 multi-parameter instrument was used as an in-field check to verify electronic sampling. The YSI was utilized to directly measure temperature, pH, and DO by lowering the YSI probe into the water column.

Due to its high precision and accuracy, the SeaBird CTD requires factory calibration with the exception of the pH probe. Field checks of the CTD were made by comparing against the YSI 556 data. In addition, following the completion of the survey, the CTD was sent to SeaBird's facility for post-survey calibration to further verify sensor measurements and obtain calibration adjustments.

The YSI 556 and HACH 2100Q were calibrated daily when in use or if erroneous measurements were suspected. Field instrumentation for this program included the SeaBird CTD, the YSI 556 multi-probe instrument, and the HACH 2100Q turbidity meter. A copy of the manufacturers' calibration instructions was available for each field instrument. Calibration of pH sensors utilized a three-point calibration with pH 4, 7, and 10 buffer solutions. The DO parameter required calibration in percent saturation, and values were recorded in the field as milligrams per liter (mg/L). Conductivity was calibrated with a manufacturer-prepared solution using the specific conductance scale. Fresh calibration solutions were utilized for each calibration procedure. Temperature was compared against a field thermometer. For the turbidity meter, sealed formazin turbidity calibration solutions (20, 100, and 800 nephelometric turbidity units [NTU]) were used for calibration with confirmation against a secondary Gelex standard. All calibrations performed in the field were recorded on project-specific log forms.

3.4 DECONTAMINATION AND WASTE STREAM DISPOSAL

The van Veen grab and other non-disposable sampling equipment (e.g., scoops and spoons) were scrubbed with dedicated non-metallic bristle brushes and flushed with a deck hose or site-water rinsed to remove large sediment particles. Equipment was then cleaned with an Alconox rinsate solution, rinsed with clean ambient seawater, and triple-rinsed with deionized water as recommended by the *Dredged Material Evaluation and Disposal Procedures User Manual* (DMMP), prepared by the Dredged Material Management Program, US Army Corps of Engineers (USACE 2016). As per this protocol, all sediment sampling equipment was decontaminated using this procedure prior to sampling. No solvents or other cleaning agents were used since no significant sediment contamination was expected. All decontaminated equipment was stored in an environment free of hydrocarbons (exhaust) or metallic surfaces to prevent contamination. Any sampling equipment suspected of contamination was decontaminated again before reuse.

Any sediment or used equipment rinsate solutions that had exhibited any suspected contaminants (i.e., visible sheen or odor) would have been collected for landside disposal, although this did not occur. All residual sediment remaining after sampling activities and equipment rinsate solutions (including seawater mixed with Alconox detergent) were disposed of as close as possible to the sampling locations. Alconox is a water soluble, biodegradable detergent approved by the U.S. Department of Agriculture. All solutions used for calibration of water quality instrumentation were non-hazardous wastes and were discharged after suitable dilution with tap or site water.

The trawl and associated sampling equipment did not require decontamination between trawls or stations, but were rinsed free of sediment and biological residues as much as possible between sets. All trawl components were thoroughly cleaned and inspected prior to shipment to Prudhoe to eliminate the possibility of introducing any nonindigenous invasive species to the area.

3.5 SAMPLING HANDLING

All samples were handled and preserved according to accepted protocols, as shown in Table 3-1, with samples requiring chilling placed on gel ice in coolers on deck. Air temperatures during the survey hovered around 2°C. All sample containers used for the program were pre-cleaned and pre-labelled.

PGS samples were placed in 500-milliliter (mL) wide-mouth glass (WMG) jars. Sediment chemistry samples for TOC/TVS/TS analyses (designated "TTT") were placed in 125-mL WMG containers, while hydrocarbons (PAH/AHC) and metals samples (designated "PAM") and the extra archival samples ("ARC") were placed in 250-mL WMG jars. Most sediment samples were chilled onboard; PAM samples were subject to immediate freezing in the vessel's freezer and remained frozen during shipment to the analytical laboratory. None of the sediment samples required chemical preservatives.

TSS samples were placed in 0.5-L HDPE jars. The short 7-day holding time for these samples necessitated sampling of water quality stations at the end of the survey so samples could be shipped to the analytical laboratory in time to meet the specified holding time. As noted above, turbidity samples were immediately analyzed in the field and did not require storage or shipment.

Benthic samples were placed in externally labelled HDPE containers (typically 500-mL) with redundant internal rag paper labels, relaxed with propylene phenoxetol, and preserved with 10% formalin before being shipped to the laboratory. No chilling was required for these samples.

Type of Analysis Matrix		Container Type	Volume	Holding Time to Extraction	Preservation				
Sediment Conventionals and Chemistry Samples									
PGS	Sediment	Glass	500-mL	Not applicable	Ice, 4°C ±2°C				
			125-mL;	None if frozen					
TOC, TVS, TS	Sediment	Glass	allow space if	14 days from	Frozen, ice, <0°C				
(111)			sample to be frozen	collection date if refrigerated	Ice, 4°C ±2°C				
				None if frozen					
PAH, AHC, Metals (PAM)	Sediment	Glass, w/Teflon liner	250-mL; allow space if sample to be frozen	14 days from collection date if refrigerated for PAH/AHC; 28 days from collection for metals if refrigerated	Frozen, ice, <0°C Ice, 4°C ±2°C				
		Biolo	gical Samples						
Benthic Infauna and Epifauna	Sediment and Trawl	HDPE	500 mL	Not applicable	10% formalin				
Water Samples									
TSS	Water	HDPE	0.5 -L	7 days from collection date if refrigerated	Cool, ice, 4°C ±2°C				

 Table 3-1.
 Container Types, Holding Times, and Preservation of Samples.

3.6 VESSEL POSITIONING AND NAVIGATION

Station locations were determined by differentially-corrected GPS navigation utilizing a wide area augmentation system (WAAS) capable GPS. Horizontal positioning accuracy of approximately 10 to 15 feet (3 to 5 m) was utilized for this program.

For sediment grab sampling, the sampling vessel was typically anchored; grabbing was only performed during live-boating operations at the deep Station S6. The sediment station coordinates were determined

by taking a GPS fix for each successful sediment sample as the grab contacted the bottom, but the coordinates assigned to each sediment station and reported here reflect the first successful grab's coordinates taken at that station. Positional data from unsuccessful grabs was not reported. Location of all water quality sampling was based on initial deployment of the CTD and/or Niskin bottles; water quality stations were typically collected during live-boat operations. For the trawling efforts, coordinates were taken at the beginning and end of each trawl. Coordinates of each sampling station were recorded on the appropriate log form as described in Section 3.7.

3.7 DOCUMENTATION AND CHAIN OF CUSTODY PROCEDURES

All sampling, sample identification, and sample shipment activities were performed under strict documentation and chain of custody (COC) procedures to maintain sample identification and data integrity, as outlined in the SAP. Customized field sampling log forms, sample labels, and COC forms were used. Field notes including station and navigational information, dates and times, sample identification numbers, general and weather observations, field measurements (e.g., nephelometric turbidity), and other pertinent information as appropriate were recorded on MMP field logs.

Navigational information, including location of grab stations, locations of each CTD cast and water sample, and beginning and end point of each trawl, was recorded on a Garmin[©] GPSmap 76Cx unit utilizing the latest revision of the World Geodetic System (WGS84) and WAAS. Although station coordinates were manually recorded on field logs at time of sampling to provide redundancy, GPS data used for the MMP were downloaded from the Garmin GPS in the GPS exchange format (.gpx) and loaded into Excel and geographic information system (GIS) software for processing for this report.

External sample labels consisted of self-adhesive, waterproof labels that were preprinted to include program-specific sampling information; additional information was hand entered in waterproof ink by the sampling team. For biological samples (infauna & fish), a second internal waterproof label (cotton paper completed in pencil) was included so a label always remained with the sample during processing.

In addition, digital photographs were taken in the field to document general sampling activities, provide examples of representative sediment grabs and infauna samples, document trawl catches, show site conditions, and record other program conditions as appropriate.

All samples were handled, transferred, and shipped following strict COC procedures; COC forms accompanied all samples from the field to the laboratory to document the transferral of samples from one custodian to another until final receipt. COC forms included all necessary sample identification information, including personnel signatures and date and time of each sample transaction.

Samples were packaged, sealed in coolers with signed COC forms and custody seals, and shipped following procedures outlined in the SAP and in accordance with U.S. Department of Transportation (DOT) and International Air Transport Association (IATA) regulations. No hazardous materials declarations were required as sediment and water samples were shipped chilled or frozen with gel ice and biological samples were preserved with dilute formalin that did not require a hazardous declaration. However, extra care was taken with samples containing formalin, which were sealed with electrical tape, placed in Ziploc plastic bags, surrounded with vermiculite in a double plastic bag over-pack.

Sediment, biological, and water samples were shipped from the Deadhorse Airport to the laboratories via Alaska Airlines Gold Streak or taken off-Slope as personal baggage and later shipped via Anchorage using FedEx priority service. Archival samples were driven down the Haul Road to Anchorage with KLI personnel.

Sample receipt and condition (including temperature, where appropriate) was noted upon receipt at the laboratories by the sample custodians, and internal laboratory tracking procedures were implemented at that time. Completed COC forms were included in the analytical data reports, with any exceptions in handling or sample integrity clearly noted.

4.0 ANALYTICAL METHODS

All sample analyses followed accepted and recommended protocols and techniques (e.g., PSEP or EPA methods). Information on analytical methods used for the Willow MMP is provided in Table 4-1 and summarized briefly below. All analytical results were reported in Excel and submitted in hardcopy data packages.

4.1 SEDIMENT ANALYSES

PGS and TOC/TVS/TS analyses were performed by ALS Environmental in Kelso, WA. All hydrocarbon (PAH/AHC) analyses were performed by B&B Laboratories (B&BL) in College Station, TX, the analytical component of TDI Brooks, Inc. (TDI-BI). B&BL provided dried sediment aliquots to Texas A&M University's Trace Environmental Research Lab (TERL) for trace metals analyses. Additional TS analyses were performed by each individual laboratory if required to report other sediment results on a dry weight basis. All analytical procedures followed the MMP requirements and were fully documented in the method and each laboratory's internal SOPs; these methods were typically referenced in the analytical results packages (Appendix A). Brief descriptions of analytical procedures are provided in the following subsections.

4.1.1 Particle Grain Size

PGS determinations were made following procedures described by the American Society for Testing and Materials (ASTM) Method D422 which is recommended by the PSEP. The determination of PGS (or particle size distribution) is a cumulative frequency distribution of relative amounts of particles in a sample within specified size ranges. Marine sediments have a wide range of particle sizes, and both sieving of the coarse fraction and gravimetric pipetting of the fine fraction are required to obtain accurate grain size distribution data.

For this program, sediment samples were analyzed for 20 different size fractions ranging from < -6 phi for cobble down to > +9.5 corresponding to fine clay particles. The four major size classes for the sediments based on the Wentworth particle distribution scale are shown below:

- gravel (-1 to -6 phi);
- sand (+4 to -1 phi);
- silt (+4 to +8 phi); and
- clay (greater than +8 phi).

4.1.2 Carbons in Sediment

Total organic carbon (TOC) content was measured in oven-dried sediments following EPA's Method 9060A. Percent TOC was determined by analyzing a dried sediment sample after all inorganic carbon had been removed by acidification.

Total Volatile Solids (TVS) provided another measure of the carbon/detritus in the sediments. TVS was analyzed following EPA Method 160.4 Modified and reported in percent.

4.1.3 Metals in Sediment

Trace metals in sediment samples were analyzed following EPA methods with the specific objective of providing low-level method detection limits (MDLs) for the target analytes, as provided in Table 4-2. Samples were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES; EPA

Parameter	Method	Reference						
SEDIMENT								
Conventional Parameters								
Particle Grain Size (PGS; full phi)	ASTM ¹ D422	ASTM (2007)						
Total Organic Carbon (TOC)	SW ² 9060A	SW 846 (IIIB)						
Total Solids (TS)	PSEP3/SM4 2540B	PSEP/SM 2012						
Total Volatile Solids (TVS)	EPA ⁵ 160.4 Modified	EPA 600 (1983)						
Chemical Parameters								
Metals								
Aluminum (Al)	SW 6010D	SW 846 (V)						
Antimony (Sb)	SW 6020B	SW 846 (V)						
Arsenic (As)	SW 6020B	SW 846 (V)						
Barium (Ba)	SW 6010D	SW 846 (V)						
Cadmium (Cd)	SW 6020B	SW 846 (V)						
Chromium (Cr)	SW 6010D	SW 846 (V)						
Copper (Cu)	SW 6010D	SW 846 (V)						
Iron (Fe)	SW 6010D	SW 846 (V)						
Lead (Pb)	SW 6020B	SW 846 (V)						
Mercury (Hg)	SW 7473	SW 846 (III)						
Nickel (Ni)	SW 6010D	SW 846 (V)						
Selenium (Se)	SW 6020B	SW 846 (V)						
Silver (Ag)	SW 6020B	SW 846 (V)						
Vanadium (V)	SW 6010D	SW 846 (V)						
Zinc (Zn)	SW 6010D	SW 846 (V)						
Hydrocarbons								
Aliphatic Hydrocarbons (AHC)	Modified EPA 8015C GC/FID	SW 846 (IV)						
Polycyclic Aromatic Hydrocarbons (PAH)	Modified EPA 8270D GC/MS SIM	SW 846 (V)						
WA	TER							
Total Suspended Solids (TSS)	SM 2540D	SM 2012						
Turbidity (performed in field)	SM 2130B	SM 2012						

Table 4-1. Methods Used for Sediment and Water Analyses.

¹ASTM American Society for Testing and Materials (ASTM). 2007. Annual Book of Standards – Soil and Rock I: (D40-D5876), ASTM Volume 04.08, Philadelphia, PA.

²SW United States Environmental Protection Agency (EPA). 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA Publication SW-846, Third Edition; with subsequent revisions as Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015) shown in parentheses.

³PSEP Puget Sound Estuary Program (PSEP). 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Final Report. Prepared for U.S. Environmental Protection Agency, Seattle, WA.

⁴SM American Public Health Association (APHA). 2017. Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association.

⁵EPA United States Environmental Protection Agency (EPA). 1983. Methods for Chemical Analysis of Water and Wastes. 600/4-79-020. Washington, D.C.

Target Analyte	MDL (mg/kg dry)	Target Analyte	MDL (mg/kg dry)
Aluminum	0.00986	Lead	0.0493
Antimony	0.00493	Mercury	0.00005
Arsenic	0.0246	Nickel	0.246
Barium	0.049	Selenium	0.00493
Cadmium	0.00986	Silver	0.00986
Chromium	0.099	Vanadium	0.099
Copper	0.197	Zinc	0.099
Iron	0.246		

Table 4-2.	Trace Metals Target Analytes and	Method Detection Limits.
	That is the fair of the second s	

6010D), inductively coupled plasma-mass spectrometry (ICP-MS; EPA 6020B), and combustiontrapping-atomic absorption spectrometry (C-T-AAS for Mercury {Hg}; EPA 7473). Sediment metals data were reported in dry weight. Additional analytical method information, including quality assurance/quality control (QA/QC) information, is provided in the data package provided in Appendix A.

Prior to analysis, sediment samples were digested in polypropylene vessels in a block digester with ultrapure nitric acid, hydrochloric acid, and hydrofluoric acid. The latter acid was necessary in order to solubilize the alumino-silicate mineral lattice in order to achieve a "true total" analysis rather than a "total recoverable" measurement. Following digestion, samples were diluted to volume with deionized water and stored in screw cap HDPE bottles until analysis.

Most analytes were determined using multi-element ICP instruments. Digested samples were diluted as necessary and analyzed using external calibration and internal standards to compensate for slight matrix differences. Off-peak baseline correction and inter-element corrections were utilized in ICP-OES, while reaction cell technology was used to remove molecular ion interferences in ICP-MS. Mercury was determined by direct analysis (C-T-AAS) via sample combustion in a stream of oxygen, trapping of Hg⁰ on gold, and measurement of Hg vapor by AAS following heating of the gold trap.

All instrumental methods utilized calibration with a blank and at least three standards that bracketed the sample concentrations. Continuing calibration verification (CCV) and calibration check blanks (CCBs) were analyzed immediately after calibration and following every 10 samples in order to evaluate instrument performance throughout the run.

4.1.4 Hydrocarbon Analyses

The analytical strategy for the analysis of hydrocarbons included the use of compound-specific measurements of organic parameters such as AHC, and select biomarkers to assess hydrocarbon concentrations in sediments. Sample preparation and extraction followed EPA procedures described in B&BL SOP 1003, summarized as follows:

Sediment Preparation and Extraction Procedures

This procedure is an accurate and precise method for the extraction, isolation, and concentration of selected organic compounds from sediment samples. It achieves analyte recoveries equivalent to those from Soxhlet extraction, using less solvent and taking significantly less time. Final extracts can be used in the quantitative determination of PAHs, AHCs, total petroleum hydrocarbons (TPH), and chlorinated

hydrocarbons (including planar PCBs) by chromatographic procedures. This procedure is also used to extract sediment samples for gravimetric determination of extractable organic material (EOM).

An automated extraction apparatus (Dionex ASE200 Accelerated Solvent Extractor) was used to extract various organics from 1 to 15 grams (g; usually 15 g if adequate material is present) of pre-dried sediment. The extractions were performed using 100% dichloromethane inside stainless steel extraction cells held at elevated temperature and solvent pressure. The extracted compounds dissolved in the hot solvent were collected in 60-mL glass vials. Extracts were concentrated to a volume of 1 - 3 mL, using an evaporative solvent reduction apparatus (Zymark TurboVap II or water bath), and if necessary, processed through a clean-up column in order to minimize matrix interference. This may have included alumina, silica gel, or sulfur cleanup following EPA accepted protocols (e.g., EPA SW 846 Methods 3610B, 3630C, 3660B).

AHC Determination

The quantitative method utilized for the determination AHCs and TPH in extracts of sediment as described in SOP 1016 and EPA Method 8015C.

Quantitation was performed by high resolution, capillary gas chromatography (GC) with flame ionization detection (FID). Normal alkanes with 9 to 40 carbons (C9 to C40), and the isoprenoids including pristane and phytane were determined with this procedure. The gas chromatograph was temperature-programmed and operated in split mode. The capillary column used was a Restek Scientific RTX-1 (30 m long by 0.25 mm inner diameter and 0.25 micron { μ m} film thickness). Carrier flow was regulated by electronic pressure control. The autosampler was capable of making 1 to 5 mL injections. Dual columns and FIDs were used. The data acquisition system utilized was by HP Chemstation software, capable of acquiring and processing GC data.

A calibration curve was established by analyzing each of six calibration standards (1.25, 10, 25, 40, 50 and 100 micrograms/milliliter { μ g/mL}) and fitting the data to a straight line using the least square technique. For each analyte of interest, a response factor (RF) was determined for each calibration level. All six response factors were then averaged to produce a mean relative response factor (RRF) for each analyte. If an individual aliphatic hydrocarbon was not in the calibration solutions, an RF was estimated from the average RF of the hydrocarbon eluting immediately before the compound. In addition, appropriate surrogate solutions were added to every sample (including QC samples), and the data corrected based on surrogate recovery up to 100%.

AHC data were reported in dry weight. Target analytes and their MDLs are provided in Table 4-3. Additional analytical method information, including QA/QC information, is provided in the data package provided in Appendix A.

PAH Determination

The laboratory employed a quantitative method as described by B&BL's SOP 1006 for the determination of PAHs in extracts of sediment for this program. This method is a modification of EPA Method 8270D and has been used extensively on the NS&T and other programs. Target PAH analytes and MDLs reported by B&BL for parent molecules and their homologues are listed in Table 4-4. PAH data were reported in in dry weight. Additional analytical method information, including QA/QC information, is provided in the data package provided in Appendix A.

Target Analyte	MDL (mg/kg dry)	Target Analyte	MDL (mg/kg dry)
n-C9	0.012	n-C25	0.007
n-C10	0.021	n-C26	0.008
n-C11	0.016	n-C27	0.011
n-C12	0.019	n-C28	0.011
n-C13	0.045	n-C29	0.021
i-c15	0.016	n-C30	0.013
n-C14	0.013	n-C31	0.015
i-c16	0.004	n-C32	0.012
n-C15	0.016	n-C33	0.021
n-C16	0.004	n-C34	0.016
i-c18	0.004	n-C35	0.015
n-C17	0.003	n-C36	0.016
Pristane	0.003	n-C37	0.017
n-C18	0.004	n-C38	0.019
Phytane	0.006	n-C39	0.019
n-C19	0.005	n-C40	0.019
n-C20	0.012		
n-C21	0.004	Total Petroleum Hydrocarbons	1.40
n-C22	0.003	Total Resolved Hydrocarbons	1.40
n-C23	0.008	Unresolved Complex Mixture	1.40
n-C24	0.005	Extractable Organic Matter	100

 Table 4-3.
 AHC Target Analytes and Method Detection Limits.

Quantitation was performed by capillary gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). The gas chromatograph was temperature-programmed and operated in splitless mode. The capillary column used was an Agilent Technologies HP-5MS (60 m long by 0.25 mm inner diameter and 0.25 μ m film thickness). Carrier flow was by electronic pressure control. The autosampler was capable of making 1 to 5 microliter (μ L) injections. The mass spectrometer was capable of scanning from 35 to 500 atomic mass units every second or less, utilizing 70 volts electron energy in electron impact ionization mode. The data acquisition system allowed continuous acquisition and storage of all data during analysis and was capable of displaying ion abundance versus time or scan number.

For PAHs, calibration solutions were prepared at six concentrations ranging from 0.02 to 5 μ g/mL by diluting a commercially available solution containing the analytes of interest. For each analyte of interest, an RF was determined for each calibration level. The six response factors were then averaged to produce a mean RRF for each analyte. In addition, appropriate surrogate solutions were added to every sample (including QC samples), and the data corrected based on surrogate recovery up to 100%.

4.2 WATER ANALYSES

Laboratory analyses for TSS were performed by ALS Environmental in Kelso, WA following procedures described by SM 2540D. Nephelometric turbidity samples that were analyzed by KLI personnel on the vessel followed procedures described by SM 2130B. Analytical methods are referenced in Table 4-1.

Table 4-4.	PAH Target Analytes and Method Detection Limits.
------------	--

Target Analyte	MDL (µg/kg dry)	Target Analyte	MDL (µg/kg dry)
cis/trans Decalin	0.132	C4-Naphthobenzothiophenes	0.256
C1-Decalins	0.263	Benz(a)anthracene	0.192
C2-Decalins	0.263	Chrysene/Triphenylene	0.116
C3-Decalins	0.263	C1-Chrysenes	0.232
C4-Decalins	0.263	C2-Chrysenes	0.232
Naphthalene	0.342	C3-Chrysenes	0.232
C1-Naphthalenes	1.03	C4-Chrysenes	0.232
C2-Naphthalenes	0.684	Benzo(b)fluoranthene	0.203
C3-Naphthalenes	0.684	Benzo(k,j)fluoranthene	0.098
C4-Naphthalenes	0.684	Benzo(a)fluoranthene	0.098
Benzothiophene	0.090	Benzo(e)pyrene	0.177
C1-Benzothiophenes	0.180	Benzo(a)pyrene	0.101
C2-Benzothiophenes	0.180	Perylene	1.27
C3-Benzothiophenes	0.180	Indeno(1,2,3-c,d)pyrene	0.050
C4-Benzothiophenes	0.180	Dibenzo(a,h)anthracene	0.064
Biphenyl	0.294	Benzo(g,h,i)perylene	0.088
Acenaphthylene	0.041	Individual Alkyl Isomers and Hopanes	
Acenaphthene	0.103	2-Methylnaphthalene	1.30
Dibenzofuran	0.204	1-Methylnaphthalene	0.546
Fluorene	0.183	2,6-DimethyInaphthalene	0.261
C1-Fluorenes	0.367	1,6,7-Trimethylnaphthalene	0.127
C2-Fluorenes	0.367	1-Methylfluorene	0.191
C3-Fluorenes	0.367	4-Methyldibenzothiophene	0.091
Carbazole	0.150	2/3-Methyldibenzothiophene	0.091
Anthracene	0.115	1-Methyldibenzothiophene	0.091
Phenanthrene	0.208	3-Methylphenanthrene	0.097
C1-Phenanthrenes/Anthracenes	0.077	2/4-Methylphenanthrene	0.097
C2-Phenanthrenes/Anthracenes	0.285	2-Methylanthracene	0.097
C3-Phenanthrenes/Anthracenes	0.285	9-Methylphenanthrene	0.097
C4-Phenanthrenes/Anthracenes	0.285	1-Methylphenanthrene	0.097
Dibenzothiophene	0.116	3,6-Dimethylphenanthrene	0.110
C1-Dibenzothiophenes	0.064	Retene	0.231
C2-Dibenzothiophenes	0.232	2-Methylfluoranthene	0.223
C3-Dibenzothiophenes	0.232	Benzo(b)fluorene	0.125
C4-Dibenzothiophenes	0.232	C29-Hopane	0.575
Fluoranthene	0.333	18a-Oleanane	0.575
Pyrene	0.136	C30-Hopane	0.575
C1-Fluoranthenes/Pyrenes	0.469	C20-TAS	0.575
C2-Fluoranthenes/Pyrenes	0.469	C21-TAS	0.575
C3-Fluoranthenes/Pyrenes	0.469	C26(20S)-TAS	0.575
C4-Fluoranthenes/Pyrenes	0.469	C26(20R)/C27(20S)-TAS	0.575
Naphthobenzothiophene	0.128	C28(20S)-TAS	0.575
C1-Naphthobenzothiophenes	0.256	C27(20R)-TAS	0.575
C2-Naphthobenzothiophenes	0.256	C28(20R)-TAS	0.575
C3-Naphthobenzothiophenes	0.256		

4.3 **TAXONOMIC ANALYSES**

All sorting, taxonomic identification, and enumeration of benthic infauna samples were performed following standard protocols as recommended by PSEP. Infauna samples were processed by KLI Santa Cruz for transferral to 70% alcohol within seven days of receipt at the laboratory. Samples were sorted under a stereo microscope to remove all organisms from the residual sediment and detritus in each sample. Organisms were placed into five major taxonomic categories or groups: Annelida, Crustacea, Mollusca, Echinodermata, and remaining phyla referred to as the "Miscellaneous" group; each of these groupings was enumerated by the sorter. Sorted organisms were placed into labelled vials with 70% alcohol.

QC for benthics included the resorting of a minimum of 30% by volume of each sample sorted; these samples were resorted by a different individual than the original sorter. Any samples showing more than 5% of the total number of organisms "missed" failed this sorting check, resulting in a 100% resort of that particular sample which was also checked against the 5% resort criteria.

Taxonomic identifications were made to the lowest practicable taxon (typically, to genus or species) by experienced taxonomists with extensive Arctic experience as well as proven successful track records on past or current KLI projects. Taxonomic identification was overseen by Gary Gillingham of KLI, who also performed crustacean taxonomy for the program. Molluscs were forwarded to Allan Fukuyama for identification. Polychaete identification was performed by Leslie Harris, while other "Miscellaneous" taxa were identified by taxonomist Steve Hulsman.

All taxonomic data for the Willow MMP were entered directly into Microsoft Excel[©] 2016 spreadsheets, which were also used for data storage and manipulation. Summary tables and basic statistics as well as all plots were also produced using Excel. The Excel add-in XLSTAT[©] 2018.6 was used to calculate most measures of variance and also to perform the Agglomerative Hierarchical Clustering (AggHC) analysis used to define benthic invertebrate grouping patterns among the three transects of 12 stations (S1 to S12) sampled (Addinsoft 2018). The Bray-Curtis dissimilarity distance index (BC) was used to calculate the dissimilarity between station pairs. The Unweighted pair-group average (UPGA) linkage agglomeration method was used to form classes or station groups from the station pair distances that were calculated by BC. The software program PAST 3.21 was used to calculate community-based indices as described in Section 6.2.3; PAST is free software that includes functions for ecological analysis that is available from the University of Oslo in Norway for scientific data analysis (Hammer et al. 2001).

4.4 QUALITY CONTROL

Internal QA/QC was achieved by collecting and/or analyzing a series of field duplicates (DUPs), laboratory duplicates, method blanks (MBs), or laboratory control spike/spike duplicate (LCS/LCSD) samples to ensure that the analytical results were within the limits specified by each method. Each type of physical or chemical analysis required specific types of QC samples or checks. Field QC samples (in this case, field duplicates) were collected in the field and sent to the laboratory for analysis with other environmental samples, or, in the case of turbidity, analyzed in the field. Laboratory QC samples as required by each method were initiated at the laboratory, carried through the analytical process with the field samples, and reported with the analytical results. All QA/QC variances were noted in the laboratory's narrative that accompanied each laboratory report (see appendices). See Section 5.1 for additional information concerning data validation and data quality objectives (DQOs) for this program.

5.0 QUALITY ASSURANCE

The overall quality assurance (QA) objective of the Willow MMP was to provide environmental data of known and documented quality that satisfied the program requirements and that met the prescribed data quality objectives (DQOs). Data review and quality assessment was performed prior to final reporting of sediment and water data to ensure acceptability and applicability of the data.

5.1 DATA QUALITY OBJECTIVES

The DQOs selected for the Willow MMP for precision, accuracy, representativeness, completeness, comparability, and sensitivity are briefly outlined below, with numerical objectives provided where appropriate. These DQOs were selected to ensure that the program data are verifiable and valid. All DQOs were met for the program; should any DQOs have failed to have been met, data would be appropriately flagged and documented as anomalous in this report.

Precision is strictly defined as the degree of mutual agreement among independent measurements as the result of repeated application of the same process under similar conditions; it pertains mostly to chemical and physical data rather than to biological measurements, which preclude repeatability. Precision is often determined for chemical analyses by the analysis of laboratory sample splits (e.g., lab duplicates or matrix spike/matrix spike duplicates {MS/MSDs}) and reported as the relative percent difference (RPD) between duplicates. Analytical precision goals for each parameter are met if RPDs between duplicated measurements conformed to requirements in Table 5-1. RPDs outside specified criteria, if any, would indicate that the analytical system was out of control and would require samples to be reanalyzed, if possible, or the data flagged with the appropriate qualifiers.

Accuracy is a statistical measurement of correctness and includes components of random error (variability due to imprecision) and systematic error (bias). An analytical measurement is accurate when the value reported does not differ from the true value. In chemical analyses, accuracy is typically measured by determining the percent recovery (% Rec) of known concentrations of target analytes that are spiked into a field sample or a blank or laboratory control matrix prior to extraction and analysis. Accuracy goals for the program are provided in Table 5-1. Accuracy goals are considered to be met if individual spiked sample recoveries are within laboratory-listed criteria; any falling outside acceptance criteria would be reanalyzed or appropriately flagged.

Representativeness is a qualitative measure of the degree to which data represent the true environmental conditions for a parameter. Representativeness is a qualitative parameter that is evaluated to determine that measurements are made (e.g., samples are collected and observations are recorded) at locations and in a manner which results in the accurate characterization of the existing conditions. The objective for representativeness for the Willow MMP is largely a function of study design and overall program objectives as described above. Representativeness was achieved in part through use of the standard sampling and analytical techniques and procedures.

Field completeness is a measurement, expressed as a percentage, of the number of valid samples collected divided by the number of those planned for collection. Although the intended completeness of all field efforts is always 100%, an actual DQO of 95% more clearly reflects the fact that the number of samples actually collected may differ from that projected due to variable conditions encountered in the field, including weather and safety considerations.

Parameter	Sample Types	Frequency	Precision (RPD)	Accuracy (% Recovery)
	- ·	Sediment Analyse	S	
PGS	Lab Duplicate	1 per batch/20 field samples	N/A	N/A
Total Calida	Lab Duplicate	1 per batch/every 20	<10	N/A
Total Solids	Lab Triplicate	field samples	<10	N/A
	Method Blank		N/A	< 2 x MRL
TOC	Lab Duplicate	1 per batch/every 20	<20	N/A
100	MS/MSD	field samples	<20	70-122
	LCS		N/A	72-122
TVS	Method Blank	1 per batch/20 field samples	(RPD)(% Recovery) BS N/AN/A<10	
	Lab Duplicate	1 per batch/10 field samples	<20	N/A
	Method Blank		N/A	< 2 x MRL
Metals	Lab Duplicate	1 per batch/every 20	<30 where concentrations are >3 x MDL	N/A
	Matrix Spike/Blank Spike	field samples		80-120
	SRM		Where concentrations are >3 x MDL	Accuracy (% Recovery)N/AN/AN/AN/AN/AN/AN/AN/A2 x MRLN/A70-12272-1222 x MRLN/A2 x MRLN/AN/A2 x MRLN/A80-120ations are >3 L ± 20 certifiedanalytes to unless not ssociatedN/A $2 x MRL$ analytes to unless not ssociatedN/A $2 analytes to$ can exceedN/A $40-120$ target analytes; average of $60-120$ for valid
АНС	Method Blank		No more than 2 analytes to exceed 3xMDL unless not detected in associated samples or if conc. >10x blank value	N/A
	Lab Duplicate	1 per batch/every 20 field samples	< 30 if analyte is > 3xMDL; ≤ 2 analyte RPDs with conc. > 3 x MDL can exceed 35	N/A
	MS/MSD or BLK Spike/Dup		<30, no more than 2 analytes >35	40-120 target analytes; average of 60-120 for valid spikes; no more than
				2 analytes may
	SRM – Reference Oil		$\pm 3\sigma$ of laboratory mean	
	Surrogates; all samples	All field and QC samples	N/A	40-120
	Method Blank		No more than 2 analytes to exceed 3xMDL unless not detected in associated samples or if conc. >10x blank value	N/A
	Lab Duplicate	1 per batch/every 20	< 30 if analyte is > 3xMDL; ≤ 2 analyte RPDs with conc. > 3 x MDL can exceed 35	N/A
РАН	MS/MSD or BLK Spike/Dup	field samples	<30, no more than 2 analytes >35 RPD	40-120 for target, except biphenyl (40-140), decalin (25-120), perylene (10-120). No more than 2 analytes $>$ 40- 120
	SRM - Sediment		No more than 2 analytes may	± 30 certified
	SRM – Reference Oil	All field and OC	exceed criteria	± 20 certified
	Surrogates; all samples	samples	N/A	perylene (10-120)

Table 5-1.	Precision and	Accuracy I	Data Qualit [,]	v Objectives.
				,,

Parameter	Sample Types	Frequency	Precision (RPD)	Accuracy (% Recovery)						
	Water Analyses									
TSS	Method Blank	1 per batch/every 10 field samples	N/A	< 2 x MRL						
	LCS	1 per batch		85-115						
	LCS Duplicate	1 total	<5	85-115						
	Lab Duplicate	Every 10 field samples	<20	N/A						
Turbidity (in field)	Instrument Calibration MB & SRMs	Daily	<2	N/A						
	Field triplicate cast	Once per survey	<5 Coefficient of variation	N/A						
CTD	Instrument Calibration	Field check and post- field factory calibration	<2	N/A						

Table 5-1.	Precision and Accuracy	y Data Quality	Objectives.	(Continued)

N/A Not applicable

Analytical completeness is a measurement of the number of samples producing valid results compared to the number of collected samples, expressed as a percentage. The completeness goal for analytical data for this program is 95%. For completeness requirements, valid results are all reported results that are not rejected during the data validation process. Valid results used to meet completeness objectives are those results that provide defensible estimates of the true concentration of an analyte in a sample. These valid results include data that are not qualified ("flagged"), and data that are qualified but can still be used to meet program objectives. Invalid data are those results which must be excluded from the dataset (e.g., where there is an indication that the prescribed sampling or analytical protocol was not followed, sample results are outside of the control limits established for the method, or lost/contaminated/spilled samples). If analytical data are determined to be invalid or unusable, another sample aliquot may be analyzed as soon as possible (if adequate sample material exists and is within holding time for the method). For this program, the archival (ARC) samples were intended to provide redundancy and allow analysis if samples were lost or rendered unusable.

Comparability is the confidence with which one dataset can be compared to other datasets where appropriate. The objective for the Willow MMP was to produce data with the greatest degree of comparability possible that could be compared to other data as appropriate, although local historical data for some parameters are admittedly sparse. Comparability is achieved by using standard methods for sampling, and physical, chemical, and taxonomic analyses; reporting data in standard units; documentation and assessment of all DQOs; and using standard and comprehensive data handling and validation procedures along with reporting formats.

Sensitivity is the capability of a method or instrument to discriminate between measurement responses representing different levels of the variable of interest. Analytical sensitivity is quantified by determining the minimum concentration or attribute that can be measured at the MDL (see Table 4-3 and Table 4-4) and/or the method reporting limit (MRL).

5.2 DATA REVIEW AND QUALITY ASSESSMENT

All program data were reviewed and evaluated prior to reporting. The data review incorporated field sampling documentation and field measurements as well as all analytical laboratory results. DQOs as provided above were assessed as appropriate. A QA narrative summary was included with each laboratory's final data package; these are also provided in the appendices of this report.

The primary goal of the review and assessment process was to document that applicable method, procedural, and contractual requirements were met during performance of the program, including during field sampling and all laboratory analyses. Verification checks were performed to determine if the data were complete, if sampling and analysis met the program requirements, if DQOs were met, and if procedures outlined in the SAP were followed. Information concerning any conditions encountered in the field or the laboratories that may have affected data quality or overall program requirements or objectives has been noted.

5.3 QUALITY ASSURANCE/QUALITY CONTROL EVALUATION

All sediment and water analytical data for the program underwent QA/QC evaluation according to EPA National Functional Guidelines for inorganic and organic data review (EPA 2017a and 2017b). A brief summary of the evaluation results is presented here; refer to the appendices of the report for analytical laboratory reports and case narratives for detailed QC results and to Appendix E for the QA/QC evaluation.

All sediment, water, and biological environmental samples and associated QC samples (i.e., field duplicates) were collected as required, resulting in a field completeness value of 100%. With the exception of one sediment sample, all samples were received intact under proper COC procedures at the analytical laboratories within the proper temperature ranges and were analyzed within acceptable EPA holding times. One PAM sediment sample arrived at the laboratory with a cracked jar, but since the sample was still frozen, it was deemed acceptable for analysis after discussions between KLI and the laboratory. All biological samples were received intact under proper COC at the biological facilities. In addition, no sample results were deemed invalid during the review and assessment of program data. The analytical completeness for all samples collected was therefore assessed at 100%. For the hydrographic data, 15 pH values were rejected due to anomalous readings on the CTD (<2% of all CTD pH points); all other hydrographic data were deemed acceptable for use on the program. Post-field factory calibrations of the CTD were assessed and utilized where applicable during data processing as described in Appendix E.

The overall quality of the 2018 Willow MMP dataset was assessed and determined to be well within the DQOs as described above and initially outlined in the program SAP. Overall evaluation of the analytical QA/QC data indicates that the chemical and physical data, with few exceptions, were within the established performance criteria and can be used for characterization of sediments and waters as required by program objectives. The full QA/QC evaluation is provided in Appendix E.

6.0 RESULTS

6.1 SEDIMENT QUALITY RESULTS

Sediment quality information collected at each of the twelve study sites included PGS, organic content (TOC and TVS), and TS (total solids as percent solids). In addition, detailed sediment chemistry was obtained at six of the twelve stations (S2, S3, S4, S6, S8, and S11) and analyzed for a suite of metals and hydrocarbons. Sediment sampling information is provided in Table 2-1.

6.1.1 Conventional Parameters

The physical characteristics of sediment can have significant effects on the distribution and bioavailability of contaminants in sediments and also on the distribution and abundance of benthic organisms. For the purpose of discussion in this section, the primary concern is the effects of sediment characteristics on potential contaminants, with biological concerns addressed in other sections of this report. Measurements of PGS included the principle fractions of gravel, sand, silt, and clay, which were categorized according to the Wentworth scale for particle size distribution as well as a detailed breakdown by phi size to aid in any engineering evaluations. PGS measurements of percent fines (% Fines) are also presented, which is defined as the summation of the silt and clay fractions. Measurements of carbon content included TOC and TVS, with TOC being the primary measurement of interest.

In most marine sediments, PGS and organic content have been shown to be highly correlated with one another. Sediments that have a higher percentage of fines tend to also have proportionally greater organic content than do coarse-grained sediments due to a higher surface-to-volume ratio of the sediment particles. The higher surface-to-volume ratio in fine-grain sediments also provides a greater surface area on sediment particles for the sorption of chemical contaminants. For purposes of normalizing inorganic (metals) pollutant parameters, the primary conventional parameter utilized is % Fines (silt + clay fractions). For the purposes of normalizing organic pollutant parameters, the two main measurements that are utilized here are % Fines and TOC.

Results of sediment PGS, TOC, TVS, and percent solids (% solids) are presented in Table 6-1 for each of the twelve sediment sites in addition to the field duplicate (S3-2) results from the proposed MTI location. Detailed laboratory results that include case narratives along with QA/QC results are provided in Appendix A. Fairly large differences were seen between locations with a few of the nearshore sites (Station S1, S2, and S7) and the deeper offshore sites (Stations S6, S11, and S12) having much higher % Fines when compared to the other six sites (Figure 6-1). Overall, the fine fraction ranged from 14.55% at Station S4 to 92.99% at Station S11. This high degree of variability in grain size distribution is typical of the Beaufort nearshore area with primary sources being riverine with lesser amounts due to coastal erosion.

A similar pattern was seen in both TOC and TVS, with higher concentrations associated with fine grain sediments. TOC ranged from 0.26% at Station S4 to 3.88% at Station S11, and TVS ranged from 2.9% at Stations S9 and S10 to 12.9% at Station S11. As expected, TS had an inverse relationship to % Fines with the highest TS concentrations found at locations with higher sand content. This parameter is primarily used to determine dry weight concentrations of metals and hydrocarbons and is highly correlated with grain size.

Station	S1	S2	S3	S3-2	S4	S5	S6	S 7	S8	S9	S10	S11	S12
Grain Size Soil Classification													
% Gravel	0.17	0.10	0.01	0.03	0.07	0.04	0.06	0.01	0.01	0.02	0.16	0.06	0.28
% Sand	24.64	36.72	80.83	78.01	85.38	76.47	31.71	32.10	74.05	81.65	82.99	6.95	13.10
% Silt	63.35	47.91	16.86	19.29	12.70	18.64	41.15	54.38	23.30	16.60	9.82	67.84	58.95
% Clay	11.85	15.27	2.29	2.67	1.85	4.85	27.09	13.52	2.64	1.73	7.03	25.15	27.66
% Fines	75.20	63.18	19.16	21.96	14.55	23.49	68.23	67.89	25.94	18.33	16.85	92.99	86.62
				С	onventi	ional Pa	aramete	ers					
TOC (%)	1.51	3.25	0.43	0.45	0.26	1.04	1.34	1.97	0.62	0.27	0.66	3.88	2.98
TVS (%)	6.4	9.8	3.4	3.5	3.1	4.4	8.1	7.1	3.6	2.9	2.9	12.9	11.5
% Solids	65.8	57.3	72.9	73.4	73.2	69.3	52.3	58.3	74.2	75.6	74.5	41.7	46.3

 Table 6-1.
 Summary of Sediment Grain Size and Conventional Parameters.

Figure 6-1. Comparison of Sediment TVS, TOC, and % Fines by Station.

Scatter plots with linear regressions of % Fines versus TVS and TVS versus TOC in Figure 6-2 clearly show high correlations between these three parameters with coefficients of determination (R²) of 0.87 and 0.93, respectively. A high correlation between TVS and TOC is typical since both measurements are examining the organic content in sediments, whereas % Fines do not necessarily have to correlate with organic material but often do as a result of wave and current activity that tend to deposit finer-grained sediment and organic material in more quiescent areas.

Figure 6-2. Regressions of % Fines vs. TVS and TVS vs. TOC.

6.1.2 Sediment Metals

Analytical results for total metals from the six MMP stations that were examined for contaminant concentrations are summarized in Table 6-2. Where applicable, the data have been compared to the USACE's 2016 DMMP screening levels (SLs; USACE 2016), and NOAA's recommended sediment quality guidelines (SQGs) based on the effects range low (ERL) and effects range median (ERM; Buchman 2008 and O'Connor 2004). The ERL represents the concentration below which adverse effects are expected to rarely occur; the ERM represents the concentration above which adverse effects are frequently expected.

Background ranges provided for the Beaufort Sea are from summarized data from the BOEM's ANIMIDA studies that examined a large number of sites in the Beaufort Sea nearshore and continental shelf area (Exponent 2010; Kasper et al. 2017; and Trefry and Neff 2018).

Station comparisons of select metals are depicted in Figure 6-3 and Figure 6-4; fairly large differences were seen between locations with the highest concentrations generally found at Stations S2, S6, and S11 that all exhibited the highest concentrations of % Fines, TOC, and TVS (Table 6-2). Trefry et al. (2003) found that trace metals in the Beaufort coastal area also correlated well with both aluminum and iron; most metals are generally low in quartz sand or carbonate shell material and high in the fine-grained metal-bearing alumino-silicates contained in silt and clay. Based on these relationships, Trefry developed a technique for examining Beaufort Sea metals concentrations normalized to aluminum or % Fines rather than looking at absolute concentrations in order to highlight any contaminated areas. This same technique is utilized here and presented as scatter plots with regression lines and correlations; these clearly show that differences in metals concentrations between stations can be ascribed to differences in conventional parameters as well as aluminum concentrations.

	Station Sediment Screening Values											es	
Parameter	S2	S 3	S3-2	S4	S6	S8	S11	Mean ¹		Beauf Backg	ort Sea jround ³	NO	AA ⁴
									SLS ²	Lower	Upper	ERL	ERM
				Co	onventio	nal Para	meters						
Silt + Clay (%)	63.18	19.16	21.96	14.55	68.23	25.94	92.99	43.71	-	0.1	99.9	-	-
TOC (%)	3.25	0.43	0.45	0.26	1.34	0.62	3.88	1.46	-	0.02	7.36	-	-
TVS (%)	9.8	3.4	3.5	3.1	8.1	3.6	12.9	6.34	-	-	-	-	-
		Ν	/letals (m	g/kg dry	wt.) exc	ept Alun	ninum &	Iron (%	dry wt.)				
Aluminum (%)	4.54	2.92	2.91	2.72	4.97	2.93	6.32	4.07	-	1.06	7.78	-	-
Antimony	1.08	0.467	0.477	0.403	0.535	0.474	0.722	0.614	150	0.14	1.17	-	-
Arsenic ⁵	37.8	15.1	13.0	11.2	15.7	14.2	17.4	18.6	57	1.0	116	8.2	70
Barium	900	692	683	697	572	668	733	710	-	142	2210	-	-
Cadmium	0.209	0.0617	<0.0906	<0.0917	0.16	0.0711	0.211	0.134	5.1	0.03	0.75	1.2	9.6
Chromium⁵	63.9	39.1	38	38.9	65.5	38.2	83.5	54.9	260	12.7	106	81	370
Copper	27.3	8.39	8.37	6.59	24.3	9.22	42.0	19.6	390	3.6	45.8	70	270
Iron (%)	3.69	2.36	2.24	2.05	3.24	2.29	4.09	2.95	-	0.72	6.94	-	-
Lead	19.8	7.89	7.36	6.24	13.1	9.21	17.1	12.2	450	2.8	22.3	46.7	218
Mercury	0.0844	0.0152	0.0173	0.0119	0.0497	0.0202	0.0980	0.0466	0.41	0.003	0.113	0.15	0.71
Nickel ⁵	37.4	22.2	22.3	20.9	30.5	23.7	45.1	30.0	-	6.0	48.2	20.9	51.6
Selenium	0.394	<0.103	<0.181	<0.183	0.365	<0.134	0.340	0.253	3	0.38	1.88	-	-
Silver	0.188	0.084J+	0.0997	0.101	0.144	0.084J+	0.238	0.140	6.1	0.01	0.42	1.0	3.7
Vanadium	113	66.3	66.8	62.3	121	68.7	148	96.6	-	25.2	174	-	-
Zinc	91.2	58.9	68.8	52.8	90.9	59.8	119	78.8	410	1.8	136	150	410

Table 6-2. Sediment Metals Concentrations in Willow MMP Area.

Station mean concentrations exclude field duplicate (S3-2) and utilize the MDL where concentrations were not detected. DMMP Sediment Screening Levels (SLs; USACE 2016). SLs are concentrations at which there are no adverse effects expected. 1

2 3

Range of sediment concentrations in Beaufort Sea coastal area 1999-2015. Source is Exponent (2010), Kasper et al. (2017), and Trefry and Neff (2018) which summarizes data from a large number of locations from BOEM's ANIMIDA, cANIMIDA, and ANIMIDA III studies. 4 ERLs and ERMs from Buchman (2008) and copper ERL is from O'Connor (2004).

5 ERL is lower than the natural concentrations of arsenic, chromium, and nickel in the coastal Beaufort Sea (Trefry and Neff 2018).

Not detected at the MDL shown. <

Not available.

J+ Data flagged as potentially biased high.

Figure 6-3. Comparison of Arsenic, Chromium, Copper, Lead, Nickel, Vanadium, and Zinc.

Figure 6-4. Comparison of Antimony, Barium, Cadmium, Mercury, Selenium, and Silver.

Regressions of select metals with % Fines, aluminum, and TOC are presented in Figure 6-5; these clearly show very high correlations with R^2 values well over 0.9. With the exception of arsenic, antimony, and barium, calculated Pearson correlation coefficients between metals and aluminum or conventional parameters were all over 0.9 for one or more concomitant parameters. Arsenic, antimony, and barium were found to be more highly correlated with TOC (0.66 for arsenic, 0.83 for antimony, and 0.58 for barium) than with aluminum, or other conventional parameters. The reason for the lower correlations seen in these three metals is unclear; however, concentrations were within the background range found for Beaufort Sea sediments.

Barium was found to range from a low of 572 milligrams/kilogram (mg/kg) to a high of 900 mg/kg with a survey mean of 710 mg/kg compared to a Beaufort Sea background range of 142 to 2210 mg/kg. Even though the ranges were within background concentrations, the low correlation of barium to both % Fines and aluminum and the anomalously high barium/aluminum ratios in some samples indicated that there might have been some enrichment of barium in the study area sediments. This enrichment could be the result of either diagenetic remobilization of barium from deeper sediments or historic offshore drilling activity, or a combination of the two sources. During the 2005 and 2006 ANIMIDA studies, barium anomalies were found in both Harrison and Camden Bays with concentrations and ratios similar to that seen in this study (Exponent 2010). Trefry speculated that the barium anomalies might be due to diagenetic remobilization of barium as reported by numerous authors or from barite inputs from offshore drilling, and that further research was needed (Exponent 2010 and Kasper et al. 2017). A number of authors have documented barium diagenetic remobilization, diffusion, and reprecipitation in marine sediments that might explain the anomalies (McManus et al. 1994; Torres et al. 1996; van Os et al. 1991; Liguori et al. 2016; etc.). Other researchers in Alaska have also noted elevated barium levels in various lakes on the North Slope (Michael Baker 2018), and Guay and Falkner (1998) noted higher barium levels in North American rivers and adjacent estuarine areas when compared to Eurasian Arctic rivers.

In terms of historic drilling activity, there were six exploratory drilling efforts (Antares, Fireweed, Mars, Mukluk, Orion, and Phoenix) that discharged drilling muds and cuttings to either water or sea ice between 1983 and 1990 that were immediately offshore of Harrison Bay in Federal waters, as well as additional inshore drilling in State lease blocks during 1985 and 1986 (Exponent 2010 and Neff 2010). A 2008 study that examined the area in Camden Bay where the 1985 Hammerhead drilling took place found barium concentrations in sediment ranging from 477 to 69,700 mg/kg, but only found elevated barium levels to be statistically significant within 250 m of the drill site (Trefry et al. 2013). Based on this Camden Bay study, it seems unlikely that the MMP sediments would have been affected to any significant extent by historic drilling mud discharges.

In all instances, metals from the Willow MMP were found to be below both the DMMP SLs and NOAA's established ERMs. ERLs were exceeded for some metals at some stations: all seven arsenic, one chromium, and all seven nickel concentrations; however, these three metals have been shown to be naturally high in Beaufort Sea sediments (Exponent 2010 and Trefry et al. 2003). Also, concentrations of chromium and nickel in Beaufort Sea sediments have generally been found to be low when compared to the average for continental crust material (Wedepohl 1995).

The highest arsenic concentration was found at Station S2 at 37.8 mg/kg, compared an ERL of 8.2 mg/kg and a Beaufort Sea background of up to 116 mg/kg. The highest chromium concentration was at Station S11 at 83.5 mg/kg, compared an ERL of 81 mg/kg, a value of 126 mg/kg for average continental crust material (Wedepohl 1995), and Beaufort background concentrations ranging up to 106 mg/kg. Nickel was highest at Station S11 at 45.1 mg/kg compared to an ERL of 20.9 mg/kg, continental crust of 56 mg/kg, and Beaufort background ranging up to 48.2 mg/kg. No other metals exceeded ERL levels, and all were well within typical concentrations for Beaufort Sea sediments. Also, Exponent (2010) found that nearby riverine suspended sediments from the Colville River had similar concentrations (Trefry et al. 2009).

In summary, with the possible exception of potential barium enrichment as explained above, there was no evidence that indicated Willow MMP sediments were contaminated, which is consistent with the regional long-term studies conducted by BOEM. All metals concentrations were within the natural ranges found in the Beaufort Sea nearshore area. For the three metals that did exceed the ERL sediment guideline levels,

it was shown that these are typical natural background concentrations for the Beaufort Sea and that concentrations are consistent with erosion of continental crust material.

6.1.3 Sediment Hydrocarbons

Surficial sediment analyses of hydrocarbons included AHC, PAH, and select biomarkers to allow comparison with Beaufort Sea background data collected by BOEM as part of BSMP and ANIMIDA.

AHCs included the saturated n-alkanes (n-C9 through n-C40) plus isoprenoids, where the summation is defined as total AHC (TAHC); total resolved hydrocarbons (TRHC) that includes TAHC analytes plus other resolved but unidentified compounds like plant waxes and lipids; the unresolved complex mixture (UCM); extractable organic matter (EOM); and total petroleum hydrocarbons (TPH) which is the summation of the TRHC and UCM. A summary of AHC parameters by location is presented in Table 6-3 and Figure 6-6. The odd-even preference index (OEPI), a diagnostic indicator that is the ratio of a group of odd-numbered n-alkanes to a group of even-numbered n-alkanes, is also presented. Concentrations of individual AHC for each sample along with QA/QC information are provided in the appendices.

Parameter				S	tation				Beaufort Ba	ackground ²
Farameter	S2	S 3	S3-2	S4	S6	S8	S11	Mean ¹	Lower	Upper
			Ali	phatic H	ydrocarbo	ons (mg/	kg dry wt.)		
TAHC	21.2	2.6	2.7	1.0	12.8	2.9	30.7	11.9	0.6	100
EOM	751	62	60	38	648	74	1958	588	-	-
TRHC	91.7	11.3	10.6	14.4	56.2	10.8	169.5	59.0	-	-
UCM	92.1	35.6	33.3	20.8	58.5	39.0	105.5	58.6	-	-
ТРН	183.8	46.9	44.0	35.2	114.7	49.8	275.0	117.6	-	-
OEPI	4.72	4.63	5.14	5.44	5.11	4.63	5.64	5.03	-	-
			Polycyc	lic Arom	atic Hydro	ocarbon	s (ug/kg d	ry wt.)		
ТРАН	2114	364	377	203	1513	392	2652	1206	12	2950
TPAH (16P)	318	51	53	29	223	56	380	176	-	-
C2D/C2P	0.27	0.28	0.28	0.27	0.25	0.28	0.25	0.27	-	-
C3D/C3P	0.19	0.34	0.31	0.39	0.24	0.30	0.24	0.28	-	-
				Select E	Biomarkers	s (ug/kg	dry wt.)			
C29-Hopane	29.5	5.0	5.1	3.6	14.3	5.8	41.2	16.6	-	-
C30-Hopane	59.0	9.7	9.3	5.4	26.8	10.2	47.1	26.4	-	-
Total S/T10	176.4	29.7	29.3	17.2	88.6	32.8	156.1	83.5	1.5	212

 Table 6-3.
 Sediment Hydrocarbon Concentrations in the Willow MMP Area.

Station mean concentrations exclude field duplicate (S3-2).

² Range of sediment concentrations in Beaufort Sea coastal area including Colville River inputs 1999-2015. Sources are Exponent (2010), Kasper et al. (2017), and Neff (2010), which summarize data from a large number of locations from BOEM's ANIMIDA, cANIMIDA, and ANIMIDA III studies.

Not available or not calculated.

TPAH^(16P) Subset of 16 EPA priority pollutants.

Figure 6-6. Comparison of AHC Parameters by Station.

Concentrations of TAHC in surficial sediments ranged from a low of 1.0 mg/kg at Station S4 to a high of 30.7 mg/kg at Station S11, with a study mean of 11.9 mg/kg compared to a range of 0.6 to 100 mg/kg found in Beaufort Sea background measurements Table 6-3. Data collected during the ANIMIDA studies found TAHC concentrations of 37 mg/kg in Colville River sediments and 47 mg/kg in Colville River peat samples (Neff 2010). As seen with metals, the highest TAHC concentrations were found at Stations S2 and S11, which also exhibited the highest % Fines and organic content as measured by TOC, TVS, and

EOM. Similar patterns were seen in the other AHC parameters, with TRHC ranging from 10.6 mg/kg at Station S3-2 to a high of 169.5 mg/kg at Station S11, with a study mean of 59.0 mg/kg. UCM ranged from 20.8 to 105.5 mg/kg with a study mean of 58.6 mg/kg, while TPH ranged from 35.2 to 275 mg/kg with a mean of 117.6 mg/kg. Regressions of AHC parameters versus TOC clearly show a very high degree of correlation between organic content and hydrocarbon concentrations with coefficients of determination (R^2) ranging from 0.92 for TRHC to a high of 0.98 for UCM (Figure 6-7). Pearson correlation coefficients between AHC parameters versus TOC, TVS, EOM, % Fines, and aluminum were all very high and all over 0.9, a clear indication of the need to account for sediment type in any interpretation of absolute hydrocarbon concentrations.

Figure 6-7. AHC vs. TOC Regressions

In examining historic Beaufort Sea data and accompanying interpretative analysis, it is clear that one of the primary sources of saturated aliphatic hydrocarbons is from riverine and coastal peat inputs that are dominated by terrestrial biogenic hydrocarbons with smaller contributions from naturally occurring

petroleum hydrocarbons from source rock/shale formations (Neff 2010). One measure of the amount of biogenic inputs is to look at either the carbon preference index or the OEPI, which is defined in this report as the following:

 $OEPI = (C_{23} + C_{25} + C_{27} + C_{29} + C_{31} + C_{33})/(C_{24} + C_{26} + C_{28} + C_{30} + C_{32} + C_{34})$

Since odd- and even-numbered alkanes are equally abundant in petroleum, an OEPI close to one is indicated in petroleum sourced-material, whereas biological materials have an odd-numbered preference indicative of biogenic inputs. OEPI's for the Willow MMP surficial sediments ranged from 4.63 to 5.64, which is very similar to that seen in suspended sediment and peat being discharged by the Colville River as documented by Neff (2010); this is indicative of terrestrial biogenic inputs.

The overall distribution of individual alkanes/isoprenoids was found to be very similar between the six MMP sampling sites; the primary difference in overall concentration was a result of differences in organic content. An AHC distribution profile from Station S2 is depicted in Figure 6-8; this shows a clear odd-to-even preference in the n-alkanes with the most abundant being in the C19 to C33 range, similar to that reported for the Colville River by Neff (2010). For comparison, a reference crude oil analyzed by the laboratory for QC, also shown in Figure 6-8, shows a typical dominance in the lower molecular-weight alkanes (n-C9 through n-C20) and an OEPI in the higher molecular-weight alkanes that is closer to one.

Figure 6-8. AHC Distribution for Station S2 and Reference Crude Oil.

Analysis of PAHs included a suite of 44 individual PAH analytes. Concentrations of total PAH (TPAH) ranged from 203 micrograms/kilogram (μ g/kg) at Station S4 to a high of 2652 μ g/kg at Station S11, with a study mean of 1206 μ g/kg, and a Beaufort Sea background range of 12 to 2950 μ g/kg (Table 6-3 and Figure 6-9). A summary of BSMP and ANIMIDA data compiled by Neff (2010) found the riverine inputs of TPAH varied substantially between the Canning, Colville, Kuparuk, and Sagavanirktok Rivers, both among rivers and between years; some of the highest concentrations were found in the Colville River sediments which ranged from a low of 140 μ g/kg to a high of 2634 μ g/kg, which is very similar to the highest concentrations seen during the Willow MMP. Note that for summation purposes in this report, two biogenic PAHs, retene and perylene, have been excluded from TPAH to be consistent with and to allow direct comparison with BSMP and ANIMIDA study results.

Figure 6-9. Comparison of TPAH Concentration by Station.

A subset of 16 PAHs that are on EPA's priority pollutant list were also summed (TPAH^{16P}) and found to range from 29 to 380 μ g/kg, with a study mean of 176 μ g/kg, which is over an order of magnitude lower than NOAA's ERL level of 4022 μ g/kg (Figure 6-9). As seen with metals and AHCs, PAHs were found to be highly correlated with the concomitant sediment parameters of TVS and % Fines as shown by the regressions in Figure 6-10. Similar high correlations were also found for TOC and aluminum, with Pearson correlation coefficients of 0.97 and 0.96, respectively.

The overall fingerprint of individual PAHs between stations was found to be very similar with differences in concentrations directly related to sediment conventional parameters. A PAH distribution from Station S2 is shown in Figure 6-11, with pyrogenic combustion-related PAHs highlighted in red, biogenic perylene shown in green, and other major groupings (e.g., naphthalenes, phenanthrene/anthracenes, etc.) highlighted by different colors to aid interpretation. A nearly identical PAH pattern in both concentration and distribution was documented in Colville River sediments by Exponent (2010), which further confirms the source of hydrocarbons found during the 2018 MMP (Figure 6-12).

Figure 6-10. Scatter Plots and Regressions of TPAH vs. TVS and % Fines.

Figure 6-11. Sediment PAH Distribution from Station S2.

Figure 6-12. Colville River Sediment PAH Distribution, ANIMIDA Study (Exponent 2010).

A technique that is utilized for source identification is to examine double ratio plots of various hydrocarbon parameters to tease out differences when overall concentrations levels are similar. One comparison often used is the double ratio of C2-Dibenzothiophene/C2-Phenanthrene-Anthracene (C2D/C2P) versus C3-Dibenzothiophene/C3-Phenanthrene-Anthracene (C3D/C3P). When these ratios for MMP sediments are overlaid on ANIMIDA results (Figure 6-13), it can clearly be seen that the MMP sediments from Western Harrison Bay plot with the general Beaufort Sea background and are very similar to historic sediment samples from the Colville River. Also, ratios for North Slope crude oils are much higher and clearly fall well outside the range of that seen for Beaufort Sea sediments and other regional riverine and peat input sources.

In addition to the AHCs and PAHs, surficial sediments were analyzed for select biomarkers that included 10 steranes and triterpanes (S/T). Two prominent biomarkers, C29-hopane and C30-hopane, and Total S/T show a similar pattern to other hydrocarbon parameters, with the highest concentrations found at Stations S2 and S11 (Figure 6-14). As with other sediment hydrocarbon concentrations, biomarkers were found to be highly correlated with % Fines, TOC, and TVS.

With few exceptions, past studies conducted by BOEM have shown that Beaufort Sea sediments are free from any anthropogenic sources of hydrocarbon contamination and that the AHC, PAH, and biomarker distributions are naturally occurring and highly correlated with riverine and coastal erosion inputs. BOEM found a strong link between natural sources of hydrocarbon inputs from the Colville River, mostly shales, coal, and peat, to that seen in regional sediments. The hydrocarbon distributions found in the MMP sediments were found to be very similar to that reported by BOEM studies that reflect the natural background from regional sources such as the Colville River, with no evidence of petroleum contamination.

Figure 6-13. Double Ratio Source Plot C2D/C2P vs. C3D/C3P for Willow MMP Sediments in Comparison to BSMP and ANIMIDA Results from Exponent (2010).

6.2 BENTHIC INFAUNAL RESULTS

Benthic sampling station information is provided in Table 2-1. The arrangement of the MMP benthic stations as depicted on Figure 2-1 included station placement forming three transects with increasing distance (and to some degree, depth contours) from the shoreline outward towards the north. Stations S7, S8, and S9 (Transect 1) are farthest west, while Stations S10, S11, and S12 (Transect 3) are farthest east, with the remaining six stations along the middle Transect 2. Transect 2 includes the proposed MTI location at Station S3, which is basically in the middle of all 12 benthic stations. Benthic data are presented here in three different ways, depending on the intent and type of analysis used. They have been arranged either by numeric station sequence, by transect, or by cluster classes or groupings. In some cases, station depths as well as % Fines and TOC are addressed as possible explanatory parameters for patterns that were observed in the data.

The benthic invertebrate species and taxa that were found were divided into four major taxonomic categories or groups: Annelida, Crustacea (Arthropoda), Mollusca, and Miscellaneous Phyla. As is standard and for comparative purposes with other studies, counts of the number of individuals for each taxa by station totals were converted to number per square meter ($\#/m^2$) units. As each benthic infaunal sample equalled 0.05 m² in surface area, all totals were multiplied by 20 to provide the community structure measure referred to here as density.

Abundance (number of individuals) and number of taxa seen at each station by major taxon groups are presented in Table 6-4. Data for ranked abundances, relative frequency, and relative abundance by station for each taxa are provided in Table 6-5. Relative frequency is defined as the percentage of occurrence that a given taxa has among stations, while relative abundance is the percentage of the total abundance of an individual taxa. Ranked data for calculated density by taxa are in Table 6-6, and summary statistics for the major taxon groups, community, and diversity related indices are in Table 6-7 and Table 6-8, respectively.

The proportion of major taxon abundance and numbers of taxa for all stations are presented in Figure 6-15. The abundance and number of taxa for the major taxon groups arranged by transect and station are presented in Figure 6-16 and Figure 6-17 and for abundances and taxa overall in Figure 6-18. Figure 6-19 and Figure 6-20 show the top five most abundant and frequently occurring taxa by transect and station.

6.2.1 Species Abundance and Density

A total of 1640 benthic organisms were enumerated at all 12 of the benthic infauna stations sampled during the Willow MMP (Table 6-4 and Table 6-7, Figure 6-15). In terms of total counts, ~58% (n=950) of all the benthic organisms for the combined stations were annelids. The molluscs were the second most abundant group, accounting for ~30% (n=493) of all individuals recorded. Crustaceans were the third most abundant group, accounting for ~9% (n=148) overall, followed by the remaining miscellaneous taxa which comprised ~3% (n=49) of the overall organism count. Summary abundance statistics for the four major taxon groups are presented in Table 6-7. The variation in abundance among stations is clearly shown and is due to the wide range in differences seen among each major taxon.

The abundance of the annelids among stations varied greatly (Table 6-4 and Figure 6-16). Annelid abundance ranged from a high of 178 individuals at Station S7, to a low of only 4 individuals at Stations S6 and S12. Transects 1 and 3 showed annelid abundances that trended downward with distance from shore, while Transect 2 varied with distance due to increased abundances at Stations S4 and S5. Annelid

Moior			Tron) /M: d			Trana		(Maat)	Trong	ant 2 (
Major Taxon Group	Таха	61	1 rans	Sect		aie)	86	Irans		west)	Trans	ect 3 (East)	Sum
Taxon Group	laxa	21	52	53	54	30	30	51	38	28	510	511	512	Total
Annenda	Oligophanta I II	20	2						2		1	2		20
Dilyochaeta	Amostigos on Resultort 1	20	3						2		1	3		29
Polychaeta	Ampharata ap Requirert 1	3	57	0	60	150		100	50	10	25			510
Polychaeta	Arigidae (Arigidae) ap Regulart 1	17	57	9	02	152		100	59	19	35			210
Polychaeta	Ripshopophtys corputa					1		2 1						3
Polychaeta	Conitollo conitato Comply	2	1			1							1	Z 1
Polychaeta	Chaetozone ruffi	2		12	5	3		23	20	12			1	78
Polychaeta	Chone sp. Beaufort 1	5		12	5	5		23	20	12			1	1
Polychaeta	Eteone longa-flava Cmply	1	5		1	1							'	8
Polychaeta	Euclymeninae		5		1	1								1
Polychaeta						1								1
Polychaeta	Marenzelleria arctia		2	2		1	3	17	3	1		2	2	33
Polychaeta	Orbinia spp		-	1			0		2	4		-	-	7
Polychaeta	Prionospio cirrifera		11		1	7	1		-	1				. 21
Polychaeta	Prionospio spp. *				•				1					1
Polychaeta	Pygospio elegans								2	2				4
Polychaeta	Scoloplos armiger Cmplx								-	7				7
Polychaeta	Sphaerodoridium sp. Beaufort 1				1			2						3
Polychaeta	Sphaerodoridium sp. Beaufort 2					3		_						3
Polychaeta	Terebellides sp. Beaufort 1	2						2						4
Polychaeta	Tharvx alaskensis	88	10					23	2		59	29		211
Polvchaeta	Travisia cf forbesi				2	1		-		2				5
	Annelid Number of Taxa	8	7	4	6	11	2	8	9	8	3	3	3	22
	Annelid Number of Individuals	136	89	24	72	172	4	178	94	48	95	34	4	950
Crustacea														
Amphipoda	Crassicorophium cf clarencense					1								1
Amphipoda	Monoculopsis longicornis							1		1				2
Amphipoda	Monoporeia affinis										1			1
Amphipoda	Onisimus affinis	1												1
Amphipoda	Pontoporeia femorata	14						1			2	3		20
Amphipoda	Priscillina armata				2				2					4
Cumacea	Diastylis sulcata	49	5			1	1	7	3		4	25	2	97
Euphausiacea	Thysanoessa raschi							1						1
Isopoda	Saduria entomon					1	1				2		1	5
Mysidacea	Mysis nordenskioldi	1												1
Ostracoda	Podocopids UI *	1	4		2	1		6					1	15
	Crustacea Number of Taxa	5	2	0	2	4	2	5	2	1	4	2	3	11
	Crustacea Number of Individuals	66	9	0	4	4	2	16	5	1	9	28	4	148
Mollusca														
Bivalvia	Axinopsida serricata						1							1
Bivalvia	Boreacola maltzani	2	11	40	65	22		15	124	139			10	428
Bivalvia	Cyrtodaria kurriana	1						1	15	9	3			29
Bivalvia	Liocyma fluctuosa					3	2							5
Bivalvia	Macoma balthica		L	<u> </u>		L					2			2
Bivalvia	Portlandia intermedia			1	3	5	8	1	1		1		1	21
Gastropoda	Cylichna attonsa			1										1
Gastropoda	Retusa spp.		4		1	-		1		_			_	6
	Mollusca Number of Taxa	2	2	3	3	3	3	4	3	2	3	0	2	8
	Mollusca Number of Individuals	3	15	42	69	30	11	18	140	148	6	0	11	493
Miscellaneous					L	L					<u> </u>			
Nemertea	Carinoma mutabilis	2	2								1			5
Nemertea	Nemertea UI *			1	L	L					1			2
Nemertea	Tetrastemma spp.		1	-					_		_		_	1
Priapulida	Halicryptus spinulosus	12	1	2	1	3		4	3		6	2	3	37
Priapulida	Priapulus caudatus			 		1		1						2
Priapulida	Priapulids UI *	-	-	-		2		•		•	_			2
	Miscellaneous Number of Taxa	2	3	2	1	3	0	2	1	0	3	1	1	6
	Miscellaneous Number of Individuals	14	4	3	1	6	0	5	3	0	8	2	3	49
	Total Number of Taxa	17	14	9	12	21	7	19	15	11	13	6	9	47
	Total Number of Individuals	219	117	69	146	212	17	217	242	197	118	64	22	1640
* Taxa not used ir	n calculation of diversity-related indices.													

Table 6-4. Species and Taxa Abundance by Station and Overall Totals.

											<u> </u>	-						
Rank	Major Taxon Group	Таха	S1	S2	S3	S4	S5	S6	S 7	S 8	S9	S10	S11	S12	Total # Indiv	% Freq of Occur	% of All Indiv	Cum % of All Indiv
1	Annelida	Ampharete sp. Beaufort 1	17	57	9	62	152		108	59	19	35			518	75.0	32	32
2	Mollusca	Boreacola maltzani	2	11	40	65	22		15	124	139			10	428	75.0	26	58
3	Annelida	Tharyx alaskensis	88	10					23	2		59	29		211	50.0	13	71
4	Crustacea	Diastylis sulcata	49	5			1	1	7	3		4	25	2	97	75.0	5.9	76.5
5	Annelida	Chaetozone ruffi	3		12	5	3		23	20	12				78	58.3	4.8	81.2
6	Misc.	Halicryptus spinulosus	12	1	2	1	3		4	3		6	2	3	37	83.3	2.3	83.5
7	Annelida	Marenzelleria arctia		2	2		1	3	17	3	1		2	2	33	75.0	2.0	85.5
8	Mollusca	Cyrtodaria kurriana	1						1	15	9	3			29	41.7	1.8	87.3
9	Annelida	Oligochaeta UI	20	3						2		1	3		29	41.7	1.8	89.0
10	Mollusca	Portlandia intermedia			1	3	5	8	1	1		1		1	21	66.7	1.3	90.3
11	Annelida	Prionospio cirrifera		11		1	7	1			1				21	41.7	1.3	91.6
12	Crustacea	Pontoporeia femorata	14						1			2	3		20	33.3	1.2	92.8
13	Crustacea	Podocopids UI*	1	4		2	1		6					1	15	50.0	0.9	93.7
14	Annelida	Eteone longa-flava Cmplx	1	5		1	1								8	33.3	0.5	94.2
15	Annelida	Orbinia spp.			1					2	4				7	25.0	0.4	94.6
16	Annelida	Scoloplos armiger Cmplx									7				7	8.3	0.4	95.1
17	Annelida	Amastigos sp. Beaufort 1	3							3					6	16.7	0.4	95.4
18	Mollusca	Retusa spp.		4		1			1						6	25.0	0.4	95.8
19	Misc.	Carinoma mutabilis	2	2								1			5	25.0	0.3	96.1
20	Mollusca	Liocyma fluctuosa					3	2							5	16.7	0.3	96.4
21	Crustacea	Saduria entomon					1	1				2		1	5	33.3	0.3	96.7
22	Annelida	Travisia cf forbesi				2	1				2				5	25.0	0.3	97.0
23	Annelida	Capitella capitata Cmplx	2	1										1	4	25.0	0.2	97.3
24	Crustacea	Priscillina armata				2				2					4	16.7	0.2	97.5
25	Annelida	Pygospio elegans								2	2				4	16.7	0.2	97.7
26	Annelida	Terebellides sp. Beaufort 1	2						2						4	16.7	0.2	98.0
27	Annelida	Aricidea (Aricidea) sp. Beaufort 1					1		2						3	16.7	0.2	98.2
28	Annelida	Sphaerodoridium sp. Beaufort 1				1			2						3	16.7	0.2	98.4
29	Annelida	Sphaerodoridium sp. Beaufort 2					3								3	8.3	0.2	98.5
30	Annelida	Bipalponephtys cornuta					1		1						2	16.7	0.1	98.7
31	Mollusca	Macoma balthica										2			2	8.3	0.1	98.8
32	Crustacea	Monoculopsis longicornis							1		1				2	16.7	0.1	98.9
33	Misc.	Nemertea UI*			1							1			2	16.7	0.1	99.0
34	Misc.	Priapulids UI*					2								2	8.3	0.1	99.1
35	Misc.	Priapulus caudatus					1		1						2	16.7	0.1	99.3
36	Mollusca	Axinopsida serricata						1							1	8.3	0.1	99.3
37	Annelida	Chone sp. Beaufort 1												1	1	8.3	0.1	99.4
38	Crustacea	Crassicorophium cf clarencense					1								1	8.3	0.1	99.5
39	Mollusca	Cylichna attonsa			1										1	8.3	0.1	99.5
40	Annelida	Euclymeninae					1								1	8.3	0.1	99.6
41	Annelida	Leitoscoloplos spp.					1								1	8.3	0.1	99.6
42	Crustacea	Monoporeia affinis										1			1	8.3	0.1	99.7
43	Crustacea	Mysis nordenskioldi	1												1	8.3	0.1	99.8
44	Crustacea	Onisimus affinis	1												1	8.3	0.1	99.8
45	Annelida	Prionospio spp.*								1					1	8.3	0.1	99.9
46	Misc.	Tetrastemma spp.		1											1	8.3	0.1	99.9
47	Crustacea	Thysanoessa raschi							1						1	8.3	0.1	100

Table 6-5.	Percent Frequency	of Occurrence and Ra	nking by Total Abund	ance for all Taxa.

* Taxa not used in calculation of diversity-related indices.

Table 6-6.	Ranking of Species and 1	Faxa by Overall Density ¹ .
------------	--------------------------	--

Major Taxon Group	Таха	S1	S2	S 3	S4	S5	S6	S7	S 8	S9	S10	S11	S12	Average Density (#/m²)
Annelida	Ampharete sp. Beaufort 1	340	1140	180	1240	3040		2160	1180	380	700			863
Mollusca	Boreacola maltzani	40	220	800	1300	440		300	2480	2780			200	713
Annelida	Tharyx alaskensis	1760	200					460	40		1180	580		352
Crustacea	Diastylis sulcata	980	100			20	20	140	60		80	500	40	162
Annelida	Chaetozone ruffi	60		240	100	60		460	400	240				130
Misc.	Halicryptus spinulosus	240	20	40	20	60		80	60		120	40	60	62
Annelida	Marenzelleria arctia		40	40		20	60	340	60	20		40	40	55
Mollusca	Cyrtodaria kurriana	20						20	300	180	60			48
Annelida	Oligochaeta UI	400	60						40		20	60		48
Mollusca	Portlandia intermedia			20	60	100	160	20	20		20		20	35
Annelida	Prionospio cirrifera		220		20	140	20			20				35
Crustacea	Pontoporeia femorata	280						20			40	60		33
Annelida	Podocopids UI	20	80		40	20		120					20	25
Annelida	Eteone longa-flava Cmplx	20	100		20	20								13
Annelida	Orbinia spp.			20					40	80				12
Annelida	Scoloplos armiger Cmplx									140				12
Mollusca	Amastigos sp. Beaufort 1	60							60					10
Annelida	Retusa spp.		80		20			20						10
Annelida	Carinoma mutabilis	40	40								20			8
Misc.	Liocvma fluctuosa					60	40							8
Mollusca	Saduria entomon					20	20				40		20	8
Crustacea	Travisia cf forbesi				40	20				40	-		-	8
Annelida	Capitella capitata Cmplx	40	20										20	7
Crustacea	Priscillina armata				40				40					7
Annelida	Pvgospio elegans								40	40				7
Annelida	<i>Terebellides</i> sp. Beaufort 1	40						40						7
Annelida	Aricidea (Aricidea) sp. Beaufort 1	-				20		40						5
Annelida	Sphaerodoridium sp. Beaufort 1				20			40						5
Annelida	Sphaerodoridium sp. Beaufort 2					60								5
Annelida	Bipalponephtvs cornuta					20		20						3
Annelida	Macoma balthica										40			3
Annelida	Monoculopsis Ionaicornis							20		20				3
Mollusca	Nemertea UI			20							20			3
Crustacea	Priapulids UI					40								3
Misc	Priapulus caudatus					20		20						3
Mollusca	Axinopsida serricata					20	20	20						2
Crustacea	Chone sp. Beaufort 1						20						20	2
Mollusca						20							20	2
Crustacea	Cylichna attonsa			20		20								2
Crustacea	Euclymeninae			20		20								2
Misc	Leitoscolonlos spp					20								2
Crustacea	Monoporeja affinis					-0					20			2
Crustacea	Mysis nordenskioldi	20												2
Miec	Onisimus affinis	20												2
Annelida	Prionospio spp	20							20					2
Miec	Tetrastemma snn		20						20					2
Crustacea	Thysanoessa raschi		20					20						2
Crustated	Density (#/m²)	4380	2340	1380	2920	4240	340	4340	4840	3940	2360	1280	440	2733

¹ Number of individuals (n) per 0.05 m² sample. Because 1 m²/ 0.05 m² = 20; density is n per sample x 20.

Major Taxon Group	Sum	Median	Mean	Standard Deviation SD (n-1)	Standard Error of the Mean (SE)	Variation Coefficient (CV)
Total Abundance						
Annelida	950	80.5	79.2	60.0	17.3	0.73
Crustacea	148	4.5	12.3	18.6	5.4	1.44
Mollusca	493	16.5	41.1	51.8	15.0	1.21
Miscellaneous	49	3.0	4.1	3.9	1.1	0.92
All	1640	132.0	136.7	80.8	23.3	0.6
Number of Taxa						
Annelida	22	6.5	6.0	2.9	0.8	0.47
Crustacea	11	2.0	2.7	1.6	0.4	0.56
Mollusca	8	3.0	2.5	1.0	0.3	0.38
Miscellaneous	6	1.5	1.6	1.1	0.3	0.66
All	47	12.5	12.8	4.7	1.4	0.4

Table 6-7. Abundance and Number of Taxa Summary Statistics for Major Taxon Groups.

Station/ Indices	Number of Individuals (n)	Density of Individuals (#/m²) ¹	Number of Taxa or Richness (S) ²	Dominance (D) ³	Simpson (1-D)⁴ or Evenness	Shannon Diversity (H)⁵
S7	211	4340	18	0.30	0.70	1.70
S8	241	4840	14	0.33	0.67	1.48
S9	197	3940	11	0.51	0.49	1.13
S1	218	4380	16	0.23	0.77	1.81
S2	113	2340	13	0.28	0.72	1.72
S3	68	1380	8	0.39	0.61	1.23
S4	144	2920	11	0.39	0.61	1.18
S5	209	4240	19	0.54	0.46	1.15
S6	17	340	7	0.24	0.76	1.40
S10	117	2360	12	0.34	0.66	1.39
S11	64	1280	6	0.35	0.65	1.19
S12	21	440	8	0.24	0.76	1.49
All	1620	-	43	-	-	-
Minimum	17	340	6	0.23	0.46	1.13
Maximum	241	4840	19	0.54	0.77	1.81
Median	130.5	2640	11.5	0.34	0.66	1.40
Mean	135	2733.3	11.9	0.35	0.65	1.41
SD (n-1)	80.1	1615.7	4.3	0.10	0.10	0.24
SE	23.1	466.4	1.2	0.03	0.03	0.07
LCL (95%)	84.1	1706.7	9.2	0.28	0.59	1.25
UCL (95%)	185.9	3759.9	14.6	0.41	0.72	1.56
CV	0.6	0.57	0.3	0.28	0.15	0.16

Table 6-8. Summary Statistics of Community and Related Diversity Indices by Transect.

¹ Number of individuals (n) per 0.05 m² sample. Because 1 m²/ 0.05 m² = 20; density is n per sample x 20.

² S is often referred to as Species Richness and is defined here as distinct species and taxa. Four taxa out of 47 were not used in calculating the indices because they were not distinct from other species (i.e., *Prionospio* spp. is not distinct from *Prionospio* cirrifera) or poorly represented as infauna in grab samples and by the 1.0 mm screening process (i.e., Podocopids).

³ The PAST program defines Dominance (D) as the "Simpson's Index"); it ranges from 0 to 1. A value of 1 means one taxon dominates the community. The unbiased form of D is used here.

4 The PAST program defines Simpson's (1-D) as 1- Dominance (D); it ranges from 0 to 1. A value of 1 means all taxa are equally present. This index is often referred to as Simpson's Index by many authors. According to PAST, this index measures evenness of the community.⁵ The PAST program defines Shannon (H) as the Shannon Index. It is often referred to as the Shannon Diversity Index. The index values increase as both the richness and evenness of the community increase. The unbiased form of H is used here.

Figure 6-16. Abundance of Major Taxon Groups Arranged by Transect and Station.

Figure 6-17. Number of Taxa for Major Taxon Groups Arranged by Transect and Station.

Figure 6-18. Total Abundance and Number of Taxa Arranged by Transect and Station.

Figure 6-19. Top Five Most Abundant Taxa Arranged by Transect.

Figure 6-20. Top Five Most Frequently Occurring Taxa Arranged by Transect.

abundance as a group did not appear to be tied to the percentage of fine particles in the sediment. This may be because different annelid taxa are dominant at different sites and transects and cannot be easily generalized by depth and particle size as a group.

The composition of the molluscs among stations also varied greatly in abundance (Table 6-4 and Figure 6-16). Mollusc abundance ranged from a high of 148 individuals at Station S9, followed by 140 at Station S8, to a low of only three individuals at Station S1, but with none seen at Station S11. A different pattern than that observed for the annelids was seen among transects, where each transect exhibited a different trend with distance from shore. The molluscs appeared to be most abundant at sites with lower % Fines (< 30%) and lowest at sites with high % Fines and a high proportion of crustaceans and annelids present.

The composition among stations of the crustaceans, like the annelids and molluscs, varied greatly in abundance (Table 6-4 and Figure 6-16). Crustacean abundance ranged from a high of 66 individuals at Station S1, the shallowest station, to no individuals at Station S3, the proposed MTI location. The stations with the highest crustacean numbers all had % Fines greater than 65%. As suggested above, the highest abundance of crustaceans were at stations with the lowest abundances of molluscs.

The abundance of the miscellaneous taxa (those other than annelid, mollusc, and crustacea) among sites was always low and ranged from a high of 14 individuals at Station S1 to none at Stations S6 and S9 (Table 6-4 and Figure 6-16). No clear patterns with % Fines or depth were seen due to the low abundances that were found. However, the second shallowest location, Station S1, did have the most individuals along with the highest numbers of crustaceans found, very low numbers of molluscs, and relatively high numbers of annelids.

The five most abundant species and taxa are presented by descending ranked abundance order in Table 6-5 and Figure 6-19. Together, these five comprised 81.2% of all individuals at all stations sampled. Table 6-6 also expresses these rankings as density ($\#/m^2$) which includes all taxa and stations as well. Three annelids, one mollusc, and one crustacean were in these top five dominant taxa. These taxa ranked in their descending order of abundance were *Ampharete sp.* Beaufort 1, *Boreacola maltzani*, *Tharyx alaskensis*, *Diastylis sulcata*, and *Chaetozone ruffi*.

The annelid *Ampharete* sp. Beaufort 1 was the most abundant benthic organism found in this study. It comprised 32% of all individuals and was found at 75% of all stations (Table 6-4 and Table 6-5; Figure 6-19 and Figure 6-20). This provisional species of *Ampharete* made up 55% of annelid abundance; it was absent at Stations S6, S11, and S12 and showed low numbers (n=9) at Station S3. Its highest abundances were found at Stations S5 (n=152) and S7 (n=108). Neither depth nor the percentage of sediment fines and TOC explain the distribution and occurrence of this species. This species may be what other taxonomists from other studies have called *Ampharete vega*, but is likely to be a new undescribed species (see Leslie Harris' comments in Appendix B). Where this species occurred, its density ranged from 180 to 3040 individuals/m² among stations (Table 6-6). The average density of *Ampharete* sp. Beaufort 1 among all stations was 863/m².

The second most abundant species overall was the mollusc *Boreacola maltzani*. It comprised 26% of all individuals found and occurred at 75% of all the stations (Table 6-4 and Table 6-5; Figure 6-19 and Figure 6-20). *B. maltzani* made up 87% of mollusc abundance. This species was not found at Stations S6, S10, and S11 and was most abundant at Stations S9 (n=139) and S8 (n=124). This species favored Transects 1 and 2, except for the deepest location at Station S6, and had only 10 individuals representing all of Transect 3 at Station S12. The MTI site (Station S3) had 40 individuals of this species. Sediment fines may explain

its abundance patterns and distribution, as it was abundant at five of six stations having the lowest % Fines; this species was not seen at Station S10, which also has low % Fines. Where this species occurred, its density ranged from 40 to 2780 individuals/m² among stations (Table 6-6). The average density of *B. maltzani* among all stations was $713/m^2$.

The annelid *Tharyx alaskensis* was the third most abundant species. This species made up 13% of all individuals but only occurred at half of all the stations (Table 6-4 and Table 6-5; Figure 6-19). *T. alaskensis* made up 22% of annelid abundance. It was present along all three transects at those sites nearest the shoreline in relatively shallow water and was most abundant at Station S1 (n=88) followed by Stations S10, S11 and S7. No individuals of this species were see at the MTI location, Station S3. The percentage of sediment fines and TOC content did not appear to influence its distribution pattern. Where it occurred, the range in density of *T. alaskensis* among stations was 40 to 1760/m² and the average among all stations was $352/m^2$ (Table 6-6).

The fourth most abundant species was the crustacean *Diastylis sulcata*. This cumacean species made up only ~6% of all individuals but occurred at 75% of the stations (Table 6-4 and Table 6-5; Figure 6-19 and Figure 6-20). *D. sulcata* made up 66% of crustacean abundance. This species was not found at Stations S4, the MTI site S3, or at Station S9. It was most abundant at Stations S1 (n=49) and S11 (n=25). These two sites had % Fines ranging from 75% to 93%. *D. sulcata* had a density range of 20 to 980/m² among stations where it occurred; the average density among all stations was 162/m² (Table 6-6).

The fifth most abundant species was another annelid, *Chaetozone ruffi*, which comprised just ~5% of all individuals found and occurred at ~58% of all the stations (Table 6-4 and Table 6-5; Figure 6-19). *C. ruffi* made up 8% of annelid abundance. This species only occurred along Transects 1 and 2 and was most common along Transect 1, where it was the most abundant at Stations S7 (n=23) and S8 (n=20) but did not occur at all at Stations S2 and S6 along this transect. Only 12 individuals were found at Station S3. This species occurred in a wide range of depths and sediment % Fines. Where it occurred, the range in density of *C. ruffi* among stations was 60 to $460/m^2$; the average among all stations was 130/m² (Table 6-6).

Figure 6-20 also depicts abundance for two species that were not among the top five dominant taxa numerically, but they were among the five taxa most commonly occurring. These were the priapulid worm species *Halicryptus spinulosus*, in the miscellaneous taxon group, and the annelid *Marenzelleria arctia*. *H. spinulosus* was the most commonly occurring taxa overall and was found in ~83% of all samples taken. This species made up 76% of the miscellaneous taxon group abundance and accounted for a little more than 2% of all of the individuals found, making it ranked sixth in overall abundance. Never more than 12 (Station S1) individuals were found at any station. Where it occurred, the range in density of *H. spinulosus* among stations was 20 to $240/m^2$ and the average among all stations was $62/m^2$ (Table 6-6). The annelid *Marenzelleria arctia* made up only 3.5% of annelid abundance. This species was most abundant at Station S7 with 17 individuals, but at all other stations, three or less occurred. Only four individuals from both species were found at the MTI location, Station S3. Where *M. arctia* occurred, the range in its density among stations was 20 to $340/m^2$ and the average among all stations was only $55/m^2$ (Table 6-6.)

Abundance among all 12 stations ranged from 17 individuals per sample (0.05 m^2) at Station S6 to 242 at Station S8 (Table 6-4), and in terms of density, ranged from 340 to 4840/m² (Table 6-6). The average number of individuals at all stations was 136.7 individuals per sample (Table 6-7), while the average density overall was 2733/m² (Table 6-6). The breakdown among the four major taxon groups per sample

was 79.2, 12.3, 41.1, and 4.1 individuals per sample for annelids, crustacean, molluscs, and miscellaneous taxa, respectively (Table 6-7), which calculates to densities of 1584, 246, 822, and 82/m², respectively.

Total abundance among transects shows a general trend of decreasing numbers of individuals from west (Transect 1) to east (Transect 3) along the coastline. As shown in Figure 6-18, this is easiest to see if the average number of individuals per transect is examined. Transect 1 average abundance was 219, Transect 2 was 130, and Transect 3 was just 68 individuals per transect. In terms of density, this equated to 4380, 2600, and 1360/m². Transect 3 was more than three times lower than Transect 1 in average abundance. Average abundance was roughly halved between Transect 1 and 2, and again between Transect 2 and 3. The physical parameters of depth, % Fines, and TOC do not assist in explaining this trend, so other factors such as exposure must be at work, as sediments at Transect 3 are likely more subject to reworking by waves and currents off Atigaru Point. Overall, the average abundance among stations was ~137 individuals per sample, expressed as a density of 2733/m². The density at Station S3 was 1380/m², or approximately half of the overall average.

6.2.2 Numbers of Taxa and Species

Table 6-4, Table 6-7, Figure 6-15 and Figure 6-17 show the number of taxa by major taxon group among all stations. Forty seven taxa were recorded over all 12 stations. The annelids comprised the largest number with 22 taxa, followed by the crustaceans with 11, the molluscs with eight, and the miscellaneous taxa with six. The proportion of annelids to the total was 47%, followed by crustaceans at 23%, the molluscs at 17%, and the miscellaneous taxa at 13%. The greatest number of annelid taxa was found Station S5 with 11, and the least number was seen at Station S6, with only two. The number of crustacean taxa ranged from none at the Station S11 to four at Station S7. Miscellaneous taxa ranged from none recorded at Stations S6 and S9 to three at Stations S2, S5, and S10.

Overall, Station S5 had the greatest number of taxa, or species richness, with 21, while Station S11 exhibited the fewest with only six taxa recorded. Four stations (S3, S6, S11, and S12) had fewer than 10 taxa, all with fewer than 70 individuals (Table 6-4 and Figure 6-18). The average number of taxa among transects, like abundance, showed a general west to east trend with declining numbers of taxa. However, this trend was much less pronounced than that seen for abundance. Transect 1 averaged 15 taxa, Transect 2 had 13, and Transect 3 averaged 9, as shown in Figure 6-18.

6.2.3 Community Indices

Table 6-8 provides summary statistics for several community and diversity related indices. Numbers of individuals (n; abundance), density (#/m²), species richness (S; number of taxa), dominance (D or Simpson's Index), Simpson's (1-D) or evenness, and Shannon's Diversity Index (H) were calculated for each station, along with averages and various measures of dispersion for all stations. The unbiased forms of D, Simpson's (1-D), and H were calculated for a finite population. Simpson's Index (D) was originally called a diversity index, but in reality it is a measure of dominance within the community. Its complement, 1-D, is often referred to a measure of diversity within a community, but only in terms of evenness. Only the 43 taxa that were determined to be uniquely identifiable out of 47 were used to calculate these indices, as noted in Table 6-4 and Table 6-5. Abundance, density, and numbers of taxa have been previously discussed, so only the three biodiversity indices will be briefly discussed here.

Dominance (D) used here is the Simpson Index, with a scale from zero (all taxa were equally present) to one (one taxon dominated the community completely). As the value of D increases, diversity typically decreases. Dominance along Transects 1 and 2 tended to increase with distance from the shoreline. One

exception was seen along Transect 2, where D dropped dramatically from Station S5 (highest D, 0.54) to the deeper Station S6 (second lowest, 0.24). Station S1 had the lowest D with 0.23. Transect 3 did not show the same trend as the other two transects, with much less change in D among stations.

Simpson's (1-D) is known as a measure of diversity in terms of community evenness (how close in number each taxa is of the different members that make up the richness of a sample) and is the mirror image or mathematical complement of D; it therefore shows exactly the opposite mathematical trends among the transects. As Simpson's (1-D) increases, diversity also tends to increase in the sense of evenness within the community.

Shannon H is a diversity index that incorporates both richness and evenness of the community. As community richness and evenness increase, so do H and diversity. This measure tended to track roughly the same as did D among transects and with distance from shore. Shannon H ranged from a low of 1.13 and 1.15 at Stations S9 and S1, respectively, to a high of 1.81 at Station S1. The MTI site, Station S3, was in mid-range in terms of D (0.39) and on the lower side in terms of Shannon H (1.23) as compared to all other stations.

6.2.4 Community Similarity and Cluster Analysis (AggHC)

Cluster analyses were performed to help examine community structure of the Willow MMP benthic dataset. An AggHC cluster analysis dendrogram of station classes that were formed using the results of the similarity analysis are provided in Figure 6-21. Figure 6-22 shows a somewhat different comparative view of the cluster analysis results using a ranked profile plot of class centroids or average class positions for each taxa. This plot also compares the resulting classes to station depth, TOC, and % Fines with overall station density and numbers of taxa to show possible influencing factors that may be contributing to the formation of the cluster classes. Figure 6-23 shows an additional view of the cluster analyses shown as a heat map in table form, with the relative importance and magnitude of each taxa color coded for each class. Figure 6-24 depicts a map of the stations and classes that were formed along with the dominant taxa comprising them.

The Bray Curtis (BC) dissimilarity measure (distance) and unweighted pair-group average (UPGA) linkage method (cluster dendrogram) were used to define classes from 32 of the possible 43 taxa that were found. The same dataset used to calculate the community indices was used. Eleven taxa from that dataset with only a single occurrence (singletons) were not used in this analysis so that the dimensionality of the data was reduced and to improve the presentation quality of the analysis results. The single occurrence of each of the eleven taxa appear to have had no noticeable effect on the outcome of the analysis classes that were formed, so they were not included in the analysis presented in this report.

Five station classes or cluster groups were formed by the analysis. These classes formed around the cooccurring dominant taxa found at each site. Where the same taxon was dominant at multiple sites and species richness was relatively high, the analysis tended to form a single class with multiple stations. Where abundances and species richness were low, the analysis tended to form single-station classes. The classes are presented in the order displayed by the resulting cluster dendrogram.

Figure 6-21. AggHC Cluster Analysis Dendrogram of Station Classes.

Figure 6-22. AggHC Cluster Analysis Profile Plot of Class Centroids by Taxa.

		Stations	s by Cluster	Classes	
			S8		
	S10	S7	S9		
(Values are class centroids)	51 511	52 \$5	53 54	S12	S6
Таха	Class 1	Class 2	Class 3	Class 4	Class 5
Ampharete sp. Beaufort 1	17.3	105.7	37.3	0.0	0.0
Boreacola maltzani	0.7	16.0	92.0	10.0	0.0
Tharyx alaskensis	58.7	11.0	0.5	0.0	0.0
Diastylis sulcata	26.0	4.3	0.8	2.0	1.0
Chaetozone ruffi	1.0	8.7	12.3	0.0	0.0
Halicryptus spinulosus	6.7	2.7	1.5	3.0	0.0
Marenzelleria arctia	0.7	6.7	1.5	2.0	3.0
Oligochaeta UI	8.0	1.0	0.5	0.0	0.0
Cyrtodaria kurriana	1.3	0.3	6.0	0.0	0.0
Prionospio cirrifera	0.0	6.0	0.5	0.0	1.0
Portlandia intermedia	0.3	2.0	1.3	1.0	8.0
Pontoporeia femorata	6.3	0.3	0.0	0.0	0.0
Eteone longa-flava Cmplx	0.3	2.0	0.3	0.0	0.0
Orbinia spp.	0.0	0.0	1.8	0.0	0.0
Scoloplos armiger Cmplx	0.0	0.0	1.8	0.0	0.0
Amastigos sp. Beaufort 1	1.0	0.0	0.8	0.0	0.0
Retusa spp.	0.0	1.7	0.3	0.0	0.0
Travisia cf forbesi	0.0	0.3	1.0	0.0	0.0
Saduria entomon	0.7	0.3	0.0	1.0	1.0
Liocyma fluctuosa	0.0	1.0	0.0	0.0	2.0
Carinoma mutabilis	1.0	0.7	0.0	0.0	0.0
Capitella capitata Cmplx	0.7	0.3	0.0	1.0	0.0
Pygospio elegans	0.0	0.0	1.0	0.0	0.0
Terebellides sp. Beaufort 1	0.7	0.7	0.0	0.0	0.0
Priscillina armata	0.0	0.0	1.0	0.0	0.0
Aricidea (Aricidea) sp. Beaufort 1	0.0	1.0	0.0	0.0	0.0
Sphaerodoridium sp. Beaufort 1	0.0	0.7	0.3	0.0	0.0
Sphaerodoridium sp. Beaufort 2	0.0	1.0	0.0	0.0	0.0
Bipalponephtys cornuta	0.0	0.7	0.0	0.0	0.0
Monoculopsis longicornis	0.0	0.3	0.3	0.0	0.0
Macoma balthica	0.7	0.0	0.0	0.0	0.0
Priapulus caudatus	0.0	0.7	0.0	0.0	0.0

Figure 6-23. AggHC Cluster Analysis Heat Map of Station Classes.

Figure 6-24. Map of AggHC Cluster Classes and Dominant Taxa.

Class 1 included Stations S10, S1, and S11, all of which were dominated primarily by the annelid *Tharyx alaskensis* and the crustacean *Diastylis sulcata*. Class 2 included Stations S7, S2, and S5; the annelid *Ampharete* sp. Beaufort 1 heavily dominated these sites along with, but to a lesser degree, the mollusc *Boreacola maltzani*. This class had the highest species richness. Class 3 included Stations S8, S9, S3, and S4, which was dominated by *Boreacola maltzani* and *Ampharete* sp. Beaufort 1. This class includes the area of the proposed MTI (Station S3). Percent fines for Class 3 were generally on the coarse side and ranged from 14.5 to 25.9%. Class 4 and 5 both included just a single station each, Stations S12 and S6, respectively. Class 4 was dominated, in low numbers, by *Boreacola maltzani* and the miscellaneous taxon priapulid worm *Halicryptus spinulosus*, while Class 5 was dominated by the mollusc *Portlandia intermedia* (ranked 10th among stations overall in abundance) and the annelid *Marenzelleria arctia*, also in low numbers. Both of these classes were in the deepest water of all of the stations, especially Class 5, and exhibited sediment fines greater than 68%.

6.2.5 Comparison with Previous Studies

Data from the BOEM ANIMIDA study was used for comparison purposes. Station 6F is the closest recently sampled site to the Willow MMP that has benthic infaunal data available (sampled in August 2014; Kasper, et al. 2017). This station was located within central Harrison Bay, approximately 12 miles east of the current MMP Station S6. Three replicate benthic samples were taken in 13-14 m of water, approximately twice the depth of deepest Willow MMP station (S6). Sediment at ANIMIDA Station 6F exhibited % Fines at 8.5% and a TOC of 1.95%, as compared to the MMP Station S6 that had much finer grained sediments (68% Fines) and a TOC content of 1.34%. The surface area sampled for benthics at Station 6F was twice the size of that sampled for the Willow MMP ($0.1 \text{ m}^2 \text{ vs } 0.05 \text{ m}^2$).

Nineteen taxa overall were recorded at ANIMIDA Station 6F. Reported data included ten annelid taxa, seven crustacean taxa, and two molluscan taxa, with no miscellaneous phyla reported. For each of the three samples from Station 6F, the number of taxa ranged from six to ten, with an average of about seven. MMP Station S6 had seven taxa total, with no miscellaneous phyla recorded. In terms of species richness, the Willow MMP Station S6 and ANIMIDA Station 6F samples are roughly comparable, even with potential surface area differences. The density of the three major taxonomic groups (annelids, molluscs, and crustaceans) listed at ANIMIDA Station 6F was low and ranged from 110 to 210/m² for the three samples, with an average of 150/m². The MMP Station S6 exhibited the lowest density of all 12 MMP samples at 340/m². This indicates the general density of organisms at ANIMIDA Station 6F was somewhat less than half that seen at Willow Station S6. In contrast, the average density of the three major taxon groups for all 12 MMP stations sampled during 2018 was calculated at 2652/m².

Only eight genera of taxa were found to be in common between ANIMIDA Station 6F and all 12 Willow MMP stations. This included four annelids, three crustaceans, and one mollusc. Between ANIMIDA Station 6F and MMP Station S6, only four genera were in common: two annelids, one crustacean, and one mollusc. Due to the inherent diversity in benthic communities, seemingly large differences in the taxa present among relatively close geographic areas is not unusual and should, in fact, be expected. The MMP certainly exhibited high variability among taxa across the 12 stations that were sampled. High variability in the number of individuals in these communities is also common, and should always be expected in these types of environments.

Benthic infauna seen at the MTI site, MMP Station S3, appeared to consist of a typical benthic assemblage that was dominated by the bivalve *Boreacola maltzani* (n=40) and, to a lesser extent, the polychaetes *Chaetozone ruffi* (n=12) and *Ampharete* sp. Beaufort 1 (n=9). Overall abundance at Station S3 was recorded at 69 organisms, in the mid- to low range compared to all stations (n=17 – 242). Species richness was also low (S=7) compared to the range of 7 to 19 taxa seen over all stations. Clustering analyses indicated that Station S3 was more closely grouped with nearby Stations S4, S6, and S9 than with other stations sampled; this grouping contained more stations than any other AggHC cluster class, indicative of the relative similarity of this four-station group as opposed to the other AggHC groups that all contained fewer stations. These stations tended to have coarser grain size and a higher abundance of bivalves than most other stations.

In summary, benthic infauna data collected during the 2018 Willow MMP showed large differences in overall abundance and diversity among the 12 sampling sites, some of which could be explained by depth and/or sediment characteristics. Overall, the area covered by the Willow MMP appears to be a typical soft-bottom benthic environment with high variability as seen elsewhere along the Beaufort Sea coast. No evidence of any type of hard bottom or boulder patch environment was seen during the sampling effort.

6.3 TRAWLING RESULTS

Trawling to collect epibenthic and demersal fish and other organisms was performed at 13 locations near the sediment sites, including two replicate trawls at the proposed MTI location, Station T3, and one inshore shallow location, Station T0 (Figure 2-1 and Table 2-2). All trawls performed had a bottom contact duration of 10 minutes.

6.3.1 Fish

All fish identifications were made in the field, and no unidentified fish were collected, nor were any specimens retained for vouchers. Fish were released alive at the sampling sites whenever possible after identification, measurement, and recording. Trawl data are provided in Appendix C.

Overall fish catch was low, with only 84 fish recorded in total for the 14 trawls performed (Table 6-9). Abundance represents number of specimens caught, while total catch per bottom area is abundance normalized by unit surface area of the bottom fished to eliminate differences caused by varying tow speeds or length of tows. Catches were normalized to a 100 meters-squared (m²) area assuming a trawl width of 2.5 m and a straight trawl track between start and end GPS coordinates.

Trawling at the shallow-most inshore location, Station T0, yielded the most fish, accounting for ~45% of the total catch, with 1.79 fish collected/100 m². Overall, the three shallowest trawls (Stations T0, T10, and T1) closest to Atigaru Point accounted for about two-thirds of the overall fish catch, yielding 38, 10, and 8 fish, respectively, with the highest total catch per bottom area as well. Higher abundances at these inshore stations compared to those offshore were expected, as many Arctic fish species, especially the Arctic cod and cisco, were expected to be found in the brackish warmer plume nearer shore during summer months. For example, Cannon et al. (1991), studying juvenile Arctic cod in habitats ranging from very shallow nearshore areas in Prudhoe Bay to areas farther out on the continental shelf between mid-July and mid-August, found that Arctic cod were concentrated in warmer, lower salinity waters closer to shore, in depths between 3 and 7 ft. Earlier studies by Craig (1984) indicated that dominant marine species such as Arctic cod and fourhorn sculpin move to nearshore waters later in summer as salinities increase in these areas, to feed on the abundant epibenthic crustaceans found there.

Station T3, the proposed MTI site, included collection of two replicate trawls performed in opposing directions, and each yielded only three juvenile Arctic cod specimens at around 0.13 fish/100 m². Other stations with bottom depths of ~3 m (or 9 ft) similar to the Station T3 (MTI site) ranged from no fish at Stations T2 and T11 to five collected at Station T9. Offshore deeper stations of >3.7 m (12 ft) in depth (Stations T4, T5, T6, and T12) had fish catch that ranged from 2 - 5 fish, with normalized catch data showing some variability (0.08 - 0.22 fish/100 m²). Trawls performed at Stations T2 and T11 yielded no fish at all.

Station	TO	T1	T2	Т3	T3-2	T4	T5	T6	T7	T8	Т9	, T10	T11	T12	Total
				Abun	dance	(Numb	ber Ca	uaht)							
<i>Boreogadus saida</i> (Arctic cod)	23	5		3	3	5	2	2	1	3	4	2		2	55
<i>Coregonus autumnalis</i> (Arctic cisco)	4											1			5
Liparis tunicatus (Kelp snailfish)							1				1			1	3
Myoxocephalus quadricornis (Fourhorn sculpin)	9	3										7			19
Osmerus mordax (Rainbow smelt)	1														1
Pleuronectes glacialis (Arctic flounder)	1														1
Total	38	8	0	3	3	5	3	2	1	3	5	10	0	3	84
		Тс	otal Ca	tch pe	r 100 n	n ² of B	ottom	Area F	ished						
<i>Boreogadus saida</i> (Arctic cod)	1.08	0.25		0.14	0.12	0.22	0.09	0.08	0.04	0.13	0.19	0.10		0.09	2.55
<i>Coregonus autumnalis</i> (Arctic cisco)	0.19											0.05			0.24
<i>Liparis tunicatus</i> (Kelp snailfish)							0.05				0.05			0.05	0.14
Myoxocephalus quadricornis (Fourhorn sculpin)	0.42	0.15										0.35			0.93
Os <i>merus mordax</i> (Rainbow smelt)	0.05														0.05
Pleuronectes glacialis (Arctic flounder)	0.05														0.05
Total	1.79	0.40	0	0.14	0.12	0.22	0.14	0.08	0.04	0.13	0.24	0.51	0	0.14	3.96

 Table 6-9.
 Fish Catch Abundance and Catch by Area (per 100 m²).

Figure 6-25. Arctic Cod and Fourhorn Sculpin.

Diversity of fish catch was quite low, with only six species of fish collected in total. Arctic cod (Boreogadus saida) was the most abundant species overall (n=55, or 65% of catch), followed by fourhorn sculpin (Myoxocephalus quadricornis), of which 19 (23%) were collected (Figure 6-25); these two species together accounted for 88% of the overall catch. Arctic cisco (Coregonus autumnalis) was the third most-abundant species collected, with only five specimens recorded, four of which were collected at Station T0, and the fifth seen at Station T10. Three kelp snailfish (Liparis *tunicatus*) were collected at three of the offshore locations (Stations T5, T9, and T12) where cold marine water was found at the bottom (see Section 6.4). The other two fish species

identified included one Arctic flounder (*Pleuronectes glacialis*) and one rainbow smelt (*Osmerus mordax*), both of which were collected at Station T0.

Although not showing a high degree of diversity, this assemblage is in general agreement with prior fish studies, including long-term monitoring of fish in the nearshore Beaufort Sea performed over the last ~35 years in conjunction with oil industry activities (e.g., McCain et al. 2014). Moulton and Tarbox (1987) trawled both near- and offshore locations near Prudhoe Bay and documented the dominance of Arctic cod (98% of catch), with minor catches of kelp snailfish, fourhorn sculpin, and rainbow smelt, along with Pacific sand lance (*Ammodytes hexapterus*), capelin (*Mallotus villosus*), and least cisco (*Coregonus sardinella*). Craig (1984) identified Arctic cod and fourhorn sculpin as the dominant species, along with Arctic and least cisco and Dolly Varden char (*Salvelinus malma*); together, these five dominant species accounted for about 90% of all fish captured along the Alaska and western Yukon coastlines.

Distribution over all trawl samples collected for the MMP was quite varied, ranging from zero fish collected to the high of 38 fish caught at Station T0. Of all species, Arctic cod were the most widely distributed, being seen in all 12 trawls that retained fish; this was the only fish species recorded in six of the 12 trawls that exhibited fish. Fourhorn sculpin were found in three of the shallower trawls (Stations T0, T1, and T10), and kelp snailfish were caught at three locations (Stations T5, T9, and T12). Arctic cisco were found at only two locations (Station T0 and T10), and the single Arctic flounder was caught at the shallow Station T0.

The majority of the fish captured in the trawls were small and recorded as juveniles (< 150 mm in length). Arctic cod specimens ranged from ~60 to 102 mm in fork length, with a median of 79 mm. About 96% of the Arctic cod measured <100 mm in length. Fourhorn sculpin observed in the trawls ranged from 63 to 152 mm in length, with a median of ~92 mm overall. About 63% of the fourhorn sculpin were <100 mm in length, and only one was considered adult at 152 mm in length. Arctic cisco specimens ranged from 116 to 168 mm in length, quite large compared to most other fish caught during the survey. The kelp snailfish that were collected ranged from 54 – 82 mm, while the Rainbow smelt measured 94 mm in length. The single specimen of Arctic flounder caught at Station T0 dwarfed most of the other fish collected, measuring 186 mm.

Normalized fish catch ranged from 0 (Stations T2 and T11) to high of 1.79 at the shallow Station T0, with an overall mean catch of $0.28/100 \text{ m}^2$ at all stations, but most fell within the 0.04 to $0.24/100 \text{ m}^2$ range. In reference, without taking seasonality or depths into account, these normalized catches compare favorably with studies performed using the same type of equipment near or in Prudhoe Bay in support of the Alaska LNG Project, which exhibited similar catches of 0.07 to 0.29/100 m² (AK LNG 2015), 0.11 to 0.39/100 m² (APP 2012), and 0.28 to 1.42/100 m² (AK LNG 2014).

It should be noted that seasonal timing of any Arctic fish sampling effort can result in a high degree of variability between results. This is the result of large differences in water mass properties with varying weather conditions; these change the oceanographic conditions, resulting in more marine species being caught when waters are more saline, or fewer marine species (more anadromous or amphidromous fish) being seen in warmer and less saline (brackish) estuarine conditions. See Section 6.4.

6.3.2 Invertebrates

Some invertebrate identifications were made in the field, with a small representative sample of as few organisms as possible collected and retained for identification in the laboratory. Unless retained, invertebrates were released alive at the sampling sites as soon as possible after recording. Trawl data are provided in Appendix C.

Invertebrates were much more abundant in the trawls than fish, with an overall catch of 1006 specimens recorded over all 14 trawls. Abundance of major taxonomic groupings, including isopods, other crustacea, and molluscs, are depicted graphically in Figure 6-26, and tabular data are provided in Table 6-10. For some taxa that were colonial in nature, such as Hydrozoa, only presence ("P") was noted as these cannot be enumerated. Some species noted were pelagic rather than epibenthic in nature, but these specimens were also recorded as part of the trawl catch.

Figure 6-26. Major Epibenthic Invertebrate Taxonomic Groupings in Trawls.

		venter	Jiale	Cate		inuai					ca (p		,		
Station	т0	T1	T2	Т3	T3-2	Т4	Т5	Т6	T7	Т8	Т9	T10	T11	T12	Total
CRUSTACEA															
Amphipoda															
Acanthostepheia behringiensis								2							2
Atylus carinatus								1							1
Gammarida, unidentified												1	1	3	5
Gammaracanthus Ioricatus				1			1								2
Gammarus setosus	1														1
Onisimus affinis								2							2
Euphausiidae															
Pelagic euphausiid					11										11
Mysida (Mysid Shrimp)															
Mysidae, unidentified		7		15		36	12	14		1	19		2	2	108
Mysis segerstralei				1	4										5
Neomysis rayii	2			1											3
Isopoda															
Saduria spp.		5	6	45	31	61	295	116	125	10	13	1	49	47	804
Saduria entomon									1						1
Crustacea Total	3	12	6	63	46	97	308	135	126	11	32	2	52	52	945
Crustacea/100 m ²	0.14	0.59	0.24	2.99	1.80	4.34	14.5	5.64	5.28	0.48	1.55	0.10	2.52	2.44	42.6
MOLLUSCA															
Cryptonatia affinis (Arctic moon snail)			2	2	2	1		1		4	3		1	1	17
Portlandia spp. (clam)						1									1
Volutopsius castaneus?								1							1
Mollusca Total	0	0	2	2	2	2	0	2	0	4	3	0	1	1	19
Mollusca/100 m ²	0	0	0.08	0.10	0.08	0.09	0	0.08	0	0.17	0.15	0	0.05	0.05	0.84
POLYCHAETA															
Phyllodocida, unid.							1								1
Polychaeta Total	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Polychaeta/100 m ²	0	0	0	0	0	0	0.05	0	0	0	0	0	0	0	0.05
MISCELLANEOUS TAXA															
CNIDARIA/HYDROZOA															
Tubularia indivisa	Р								Р						Р
Cnidaria (pelagic jelly)			1	4		1			22	7			5		40
ASCIDIACEA															
Rhizomolgula globularis (sea grape)	1														1
Group Total	1	0	1	4	0	1	0	0	22	7	0	0	5	0	41
Miscellaneous/100 m ²	0.05	0	0.04	0.19	0	0.04	0	0	0.92	0.30	0	0	0.24	0	1.79
Overall Abundance	4	12	9	69	48	100	309	137	148	22	35	2	58	53	1006
Overall/100 m ²	0.19	0.59	0.36	3.28	1.88	4.48	14.5	5.72	6.21	0.95	1.69	0.10	2.81	2.48	45.2

Table 6-10. Invertebrate Catch Abundance and Catch by Area (per 100 m²).

Crustaceans comprised ~94% of the overall invertebrate catch. The benthic isopod *Saduria* spp. was the most abundant crustacean recorded (n=805; Figure 6-27), accounting for ~85% of the overall crustacean

of the overall catch and ~80% invertebrate catch. Most specimens were likely to be Saduria entomon, but only specimen was retained one for laboratory identification; both S. sabini and S. sibirica had also been identified in samples during 2011 or 2014 (APP 2012; AK LNG 2014). Saduria were caught in all trawls except the shallowmost Station T0, but several of the other shallow stations (T1 and T10) exhibited much lower abundances and catch/100 m^2 than some of the deeper stations. Only one specimen was seen at Station T10, while Stations T1 and T2 had only 5 and 6 specimens, respectively. Saduria spp. were most abundant at Stations T5 $(n=295 \text{ or } 13.85/100 \text{ m}^2)$, T7 (n=125), and T6 (n=116). These organisms are

Figure 6-27. Trawl Catch Showing a Predominance of *Saduria* spp.

generally ubiquitous in nearshore waters of the North Slope, as was seen during nearshore AK LNG studies in 2014, when they were recorded in 11 out of 12 trawls performed (AK LNG 2014).

The benthopelagic mysid shrimp (Mysida, all species combined) accounted for an additional 12% of the overall crustacean catch across all sites, while the remainder included both amphipods and pelagic euphausiids, each accounting for a little over 1% of the catch. These reported abundances are likely underestimated of the true number present at the time of sampling because these semi-pelagic organisms are smaller than the mesh size of the trawl net and poorly sampled using this technique, but this type of sampling does provide some information on species presence and diversity. Both *Mysis segerstralei* (formerly *M. relicta*) and *Neomysis rayii* were identified in the laboratory voucher specimens; other mysid species remained unidentified in the larger taxonomic grouping of Mysida. Five species of amphipods were identified in the laboratory samples (*Acanthostepheia behringiensis, Atylus carinatus, Gammaracanthus loricatus, Gammarus setosus*, and *Onisimus affinis*); other amphipods belonging to the infraorder Gammarida were released rather than being retained for laboratory identification.

Molluscs comprised less than 2% of the total invertebrate catch. The Arctic moon snail (*Cryptonatia affinis*) was the dominant mollusc collected, with n=17 recorded overall (0.75/100 m²). These moon snails were seen in nine of the 14 trawls performed, and whole or fragmented egg cases assumed to belong to this species were also noted at Stations T6, T9, and T12. One clam (*Portlandia* spp.) and one gastropod whelk (*Volutopsius castaneus?*) were also identified in the voucher specimens.

Miscellaneous taxa comprised about 4% $(1.79/100 \text{ m}^2)$ of the overall invertebrate catch, excluding nonenumerated organisms. Unidentified planktonic Cnidaria medusoid forms (Hydroid medusa or "jellies") were also noted in some of the trawl samples, particularly at Station T7 where 22 specimens were recorded. Like some crustaceans, these pelagic organisms are only opportunistically collected by the trawl, as many pass through the mesh. Though expected to be under-sampled by the trawl, these organisms are individual in nature and were subject to enumeration.

Other miscellaneous taxa included a stalked hydroid attached to the telson of the isopod *Saduria* spp. at Station T7 and adhering to a dead bivalve shell at Station T0; this organism has been identified as *Tubularia indivisa* and has been found in the past in the Prudhoe Bay nearshore area on small pebble substrates (AK LNG 2015). Although these organisms have individual polyps, they tend to form sessile colonies and may be fused together, so while their presence has been noted, they have not been enumerated.

In addition, a solitary tunicate commonly referred to as a "sea grape" and identified as *Rhizomolgula globularis* was collected in one trawl at Station T0; this species was a predominant organism seen during nearshore sampling in conjunction with the AK LNG project in 2015 (AK LNG 2015).

A single polychaete of the order Phyllodocida was collected at Station T5 with the voucher specimens, although identification was not made to the species level. Numerous empty polychaete worm tubes were collected by the trawl (wrapped around the net's mesh), including at Stations T3, T4, T5, T7, and T8. While these were noted, no live polychaetes were collected other than in the single voucher sample at Station T5, and this taxon is likely underestimated by trawling. For additional information on polychaetes found in the Willow MMP area, please refer to Section 6.2 for benthic sampling results.

6.3.3 Algae

General observations were made of the macroalgae opportunistically collected during the trawling effort. The limited algal specimens seen in the MMP trawls included only dead drift material, including pieces of detrital algae and unattached pieces of finely branched or filamentous algae entangled in the trawl net upon retrieval. Peat and other terrestrial detritus were also retained in the trawls, especially at the shallow stations. No trawls returned substrate (pebbles or cobble) with attached live algal specimens with intact holdfasts, nor was there any indication of the presence of an enriched boulder patch-type of environment at any of the stations that were either grab-sampled or trawled during the MMP.

6.4 HYDROGRAPHIC AND WATER QUALITY RESULTS

Water quality information was collected from each sediment/benthic and water quality station and included in situ measurements of conductivity, temperature, salinity, pH, DO, and OBS as well as discrete samples taken at a subset of stations for analysis of TSS and nephelometric turbidity. Sampling was performed at all 12 of the sediment/benthic stations concurrent with sediment grabs as well as at during a larger scale synoptic survey that included 43 water quality stations in western Harrison Bay (Table 2-3).

Hydrographic measurements at the sediment Stations S1 through S12 were all obtained on 6 August 2018 during a period of light (1-10 knot) variable winds that were primarily from a northeasterly direction. The area-wide hydrographic survey measurements (Stations W1 through W43) were obtained two days later and spanned a 25-hr period that began in the late afternoon on 8 August and continued through most of the next day. Meteorological conditions during this period were also relatively calm with wind speeds ranging from 2 to 12 knots, beginning as northeasterly on 8 August and swinging around to northwesterly and increasing in speed on 9 August. Overall, winds would be considered fairly light with small waves and minimal wave-induced mixing and resuspension of bottom sediments.

As a result of shifting winds and tidal fluctuations, the corresponding water levels varied throughout the sampling as depicted in Figure 6-28. Semidiurnal tidal fluctuations of 0.5 to 0.75 ft can be seen superimposed on small wind-induced storm surge fluctuations that were also in the 0.5 ft range. Astronomical tides in the Beaufort Sea are mixed, semi-diurnal (having two unequal highs and lows per cycle), and approach the continental shelf orthogonally from the north with little phase change and similar amplitude along the entire coastline (Kowalik and Matthews 1982; Okkonen 2016). Therefore, tidal measurements made at West Dock would be expected to be representative of conditions in Harrison Bay, although wind-induced fluctuations could vary 1–2 ft along the coast due to differences between locations in wind speed and direction, bathymetry, and orientation of the coastline. Along the Beaufort Sea coastline, easterly winds typically result in falling water levels, and westerly winds result in rising water levels. This phenomenon is caused by the Coriolis effect that forces moving water to the right in the Northern Hemisphere; westerly winds produce a positive onshore surge (increase in water level) and easterly winds produce a negative offshore surge (decrease in water level). Since winds were relatively calm during the sampling effort, wind-induced fluctuations were found to be small with a slight increase during sampling as the winds shifted from a northeasterly to a northwesterly direction.

Summary hydrographic data are presented in Table 6-11 for near-surface (0.5 m depth) and near-bottom measurements at each site. Refer to Appendix D for complete hydrographic CTD profiles that include data listings and profile plots for each location. Since measurements within the study area were performed on different days and are synoptic in nature, the results are a reflection of the prevailing oceanographic and meteorological conditions on the day that the measurements were made. Therefore, care should be taken in trying to compare measurements between days, since conditions at a specific site can change substantially over the course of a short time-span due to the influence and proximity of the Colville and Kogru Rivers and changing wind, wave, and current conditions.

At the deeper locations, a two-layer vertical structure was found, with warmer brackish water overlying a colder marine layer with a fairly sharp pycnocline at approximately the 4-5 m depth. A pool of fresher water was also seen offshore at the surface, which is probably the result of recent ice melt (Figure 6-29). At shallower (< 4 m depth) locations, including the proposed MTI, the vertical structure was found to be fairly well mixed (Figure 6-30). Water temperatures that were measured at all sites and depths for all CTD profiles obtained during the monitoring effort ranged from a low of -1.41°C in the deeper offshore marine layer to 7.24°C with warmer conditions found at the surface and closer to the coast. A similar vertical structure was found in salinity, with values ranging from 9.82 psu at the surface in ice-melt water offshore to a high of 31.44 psu within the deeper marine layer. In general, the oceanographic conditions were typical of the early summer regime, with relatively warm brackish water dominating the nearshore environment and extending offshore in the top 3-4 m of the surface. This onshore-offshore difference can clearly be seen in Figure 6-31 and Figure 6-32 that depict planar views of bottom salinity and bottom temperature, respectively. The warmer brackish band of water can clearly be seen extending along the coast and into the southern portion of Harrison Bay.

Figure 6-29. Salinity Cross Section Extending from Nearshore (W19) to Offshore (W27).

Station	Date	Depth	Depth (m)	Cond (S/m)	Temp (°C)	Salinity (psu)	OBS (NTU)	рН	DO (mg/L)
C1	0/6/40	surface	0.50	1.53	6.02	14.44	7.98	8.08	10.48
51	8/6/18	bottom	1.75	2.35	2.70	25.45	5.94	7.88	11.02
00	0/0/4.0	surface	0.50	2.31	3.72	24.19	4.13	8.00	10.83
S2	8/6/18	bottom	2.50	2.38	2.43	26.00	1.64	7.97	11.19
		surface	0.50	2.30	3.64	24.11	2.21	7.99	10.80
S3	8/6/18	bottom	2.50	2.37	2.32	25.96	2.21	7.98	11.19
		surface	0.50	2.20	2.89	23.54	0.81	8.02	11.29
S4	8/6/18	bottom	3 25	2.37	2 10	26.14	1.96	7.98	11.26
		surface	0.50	2.00	3 20	21.02	0.90	8.04	11.23
S5	8/6/18	bottom	4 25	2 35	1 84	26.15	0.00	7.96	11.55
		surface	0.50	1.98	3.01	20.92	0.98	8.04	11.32
S6	8/6/18	bottom	6.00	2 37	1.09	26.92	0.65	7.96	11.02
		surface	0.00	1.89	5.26	18 55	5.63	8.07	10.51
S7	8/6/18	bottom	2.25	2.40	2 31	26.33	3.46	7 94	11 14
		surface	2.25	2.40	4.24	20.55	3.40	8.02	10.97
S8	8/6/18	bottom	2.00	2.20	3.03	24.05	2.19	7.00	11.07
		Duttom	2.00	2.33	3.03	24.95	1 42	0.02	11.07
S9	8/6/18	Sullace	0.50	2.20	3.50	23.00	1.42	0.02	11.02
		DOLLOIN	2.20	2.30	2.90	24.09	1.42	0.00	10.45
S10	8/6/18	sunace	0.50	1.04	0.46	15.31	9.54	0.10	10.45
		bottom	1.50	2.34	3.11	25.04	21.69	7.94	11.05
S11	8/6/18	surface	0.50	2.29	3.66	24.06	5.73	7.99	11.12
		bottom	2.75	2.43	1.73	27.22	4.88	7.97	11.37
S12	8/6/18	surface	0.50	2.27	2.28	24.76	0.70	8.01	11.57
		bottom	4.25	2.38	2.09	26.29	1.86	7.99	11.33
W1	8/8/18	surface	0.50	1.51	3.81	15.23	0.90	8.15	11.15
	0,0,10	bottom	5.00	2.54	0.63	29.54	2.39	7.90	11.08
W2	8/8/18	surface	0.50	1.60	4.03	16.05	0.78	8.12	11.11
	0,0,10	bottom	3.25	2.08	4.37	21.13	1.67	8.01	10.83
W/3	8/8/18	surface	0.50	1.79	4.53	17.88	1.23	8.06	10.88
115	0/0/10	bottom	2.25	1.80	4.53	17.94	1.14	8.06	10.88
\ <i>\\\</i>	8/8/18	surface	0.50	1.81	5.98	17.28	3.22	8.05	10.31
VV4	0/0/10	bottom	2.00	1.84	6.05	17.57	3.52	8.05	10.27
W 5	9/9/19	surface	0.50	1.79	6.52	16.87	4.76	8.04	10.11
VV5	0/0/10	bottom	1.75	1.79	6.52	16.87	4.68	8.05	10.12
Me	0/0/10	surface	0.50	1.69	6.89	15.70	11.02	8.03	9.92
000	0/0/10	bottom	1.50	1.69	6.89	15.70	8.69	8.03	9.95
14/7	0/0/10	surface	0.50	1.68	7.24	15.36	5.78	8.03	9.83
VV /	0/0/10	bottom	1.75	1.68	7.24	15.36	5.65	8.04	9.88
14/0	0/0/4.0	surface	0.50	1.47	6.94	13.47	6.43	8.02	9.85
VV8	8/9/18	surface	0.50	1.67	6.55	15.63	5.96	8.05	9.95
14/0	0/0/4.0	bottom	2.00	1.70	6.44	15.95	6.01	8.05	9.74
VV9	8/9/18	surface	0.50	1.82	5.90	17.43	3.37	8.05	10.13
14/4.0	0/0/40	bottom	2.00	1.92	5.54	18.73	2.62	8.03	10.32
W10	8/9/18	surface	0.50	1.89	4.28	19.16	0.86	8.06	10.88
		bottom	2.25	1.93	4.25	19.51	0.95	8.05	10.83
W11	8/9/18	surface	0.50	1.83	4.23	18.50	0.92	8.07	10.94
		surface	0.50	1.83	4.23	18.50	0.92	8.07	10.94
W12	8/9/18	bottom	2.50	1.92	4.31	19.40	0.73	8.06	10.90
		surface	0.50	1.85	4.15	18.69	0.82	8.09	10.94
W13	8/9/18	bottom	2.50	2.24	4.07	23.18	1.13	8.00	11.26
		surface	0.50	1.79	4.15	18.08	0.81	8.08	10.98
W14	8/9/18	hottom	1 25	1 79	4 15	18.08	0.84	8.08	10.00
		surface	0.50	1 05	3 05	10.00	0.04	8.06	10.00
W15	8/9/18	hottom	2 50	2.23	3.95	23.10	2.00	8.00	10.32
		surface	0.50	2.25	4.40	20.13	1 17	8.05	10.73
W16	8/9/18	bottom	2.50	2.00	4.40	20.00	1.17	8.05	10.71
		ourfooo	2.20	2.00	4.40 6.40	20.93	1.07	0.00	10.72
W17	8/9/18	bottom	2.50	2.10	5.10	20.67	4.00	8.00	10.03
1			2.00	Z. 10	0.40	20.07	M I	0.00	10.40

Table 6-11. Hydrographic CTD Summary of Surface and Bottom Measurements.

Station	Date	Depth	Depth (m)	Cond (S/m)	Temp (°C)	Salinity (psu)	OBS (NTU)	рН	DO (mg/L)
10/10	0/0/10	surface	0.50	1.64	6.38	15.38	5.81	8.06	10.14
VVIO	0/9/10	bottom	2.00	1.66	6.36	15.59	5.85	8.07	10.08
W/10	9/0/19	surface	0.50	1.57	6.26	14.69	8.47	8.08	10.24
VV 19	0/9/10	bottom	1.25	1.57	6.25	14.71	8.40	8.08	10.26
W/20	8/0/18	surface	0.50	1.66	6.24	15.69	4.84	8.07	10.19
VV20	0/9/10	bottom	1.75	1.76	6.10	16.73	4.29	8.05	10.13
W/21	8/9/18	surface	0.50	2.07	4.54	20.94	2.01	8.04	10.68
VVZ1	0/3/10	bottom	2.75	2.10	4.62	21.22	1.67	8.03	10.56
10/22	8/0/18	surface	0.50	2.00	4.74	19.98	1.78	8.05	10.74
VV22	0/3/10	bottom	2.75	2.24	4.01	23.21	2.38	8.00	10.28
W/23	8/9/18	surface	0.50	1.69	3.78	17.13	0.75	8.11	11.14
1120	0/0/10	bottom	3.50	2.36	3.42	25.01	1.90	7.95	10.74
W24	8/9/18	surface	0.50	1.81	3.87	18.43	2.29	8.07	11.02
112-1	0/0/10	bottom	4.50	2.31	3.39	24.46	1.56	7.97	10.64
W25	8/9/18	surface	0.50	1.45	3.57	14.60	0.86	8.19	11.39
1120	0/0/10	bottom	6.25	2.48	-0.56	29.92	0.77	7.94	12.30
W26	8/9/18	surface	0.50	1.40	3.45	14.18	2.70	-	11.17
1120	0/0/10	bottom	7.75	2.48	-1.14	30.48	1.24	7.95	12.13
W/27	8/9/18	surface	0.50	1.24	3.31	12.43	1.33	-	11.57
1121	0/0/10	bottom	9.50	2.49	-1.30	30.83	1.16	7.95	12.28
W/28	8/9/18	surface	0.50	1.46	3.77	14.64	0.98	8.17	11.39
1120	0/0/10	bottom	5.50	2.40	2.77	26.03	1.81	7.93	10.95
W29	8/9/18	surface	0.50	1.63	3.94	16.46	0.92	8.12	11.25
1120	0/0/10	bottom	4.00	2.28	3.66	23.89	2.13	7.96	10.73
W30	8/9/18	surface	0.50	1.84	5.88	17.65	3.68	8.05	10.19
	0/0/10	bottom	2.75	1.86	5.80	17.89	3.50	8.05	10.22
W31	8/9/18	surface	0.50	1.63	6.24	15.37	15.85	8.07	10.24
		bottom	1.50	1.78	6.05	16.94	13.47	8.04	10.23
W32	8/9/18	surface	0.50	1.73	6.22	16.32	5.23	8.07	10.20
		bottom	1.75	1.77	6.03	16.87	6.14	8.07	10.24
W33	8/9/18	surface	0.50	1.89	5.82	18.27	3.20	8.07	10.16
		bottom	2.25	2.43	4.02	25.35	6.43	7.95	10.59
W34	8/9/18	surface	0.50	1.85	5.19	18.12	2.00	8.06	10.56
		bottom	4.00	2.19	4.35	22.39	2.12	7.99	10.68
W35	8/9/18	surface	0.50	1.51	3.85	15.21	1.17	8.17	11.38
		bottom	5.50	2.38	2.64	25.87	1.80	7.96	11.03
W36	8/9/18	surface	0.50	1.26	3.42	12.58	1.22	-	11.57
		bottom	7.50	2.49	-0.92	30.43	1.32	7.93	12.27
W37	8/9/18	surface	0.50	0.99	3.17	9.82	1.51	-	11.84
		bottom	11.25	2.53	-1.40	31.44	0.48	7.91	12.76
W38	8/9/18	surface	0.50	1.38	3.25	13.98	1.26	-	11.52
		bottom	9.50	2.52	-1.15	31.14	1.40	7.93	12.48
W39	8/9/18	surface	0.50	1.48	3.38	15.02	4.87	-	11.43
		bottom	7.25	2.49	-0.27	29.82	0.69	7.95	12.19
W40	8/9/18	surrace	0.50	1.60	3.76	16.16	1.08	ö.13	11.33
		bottom	5.25	2.28	3.16	24.31	0.61	7.98	11.29
W41	8/9/18	surrace	0.50	1.74	3.96	17.61	1.62	8.08	11.18
		DOTTOM	3.25	2.02	3.88	20.79	1.06	8.02	11.23
W42	8/9/18	surface	0.50	2.19	5.04	21.97	2.97	8.03	10.46
		Dottom	1.50	2.19	5.04	21.97	3.14	8.03	10.48
W43	8/9/18	surrace	0.50	2.04	5.56	20.01	5.34	8.04	10.32
		pottom	1.25	2.04	5.56	20.00	5.81	8.04	10.37

Table 6-11. Hydrographic CTD Summary of Surface and Bottom Measurements. (cont.)

- Data not available.

Figure 6-30. Hydrographic Profiles from MTI (W22) and a Deeper Offshore Location (W27).

Figure 6-31. Bottom Salinity in Western Harrison Bay, 8-9 August 2018.

Figure 6-32. Bottom Temperature in Western Harrison Bay, 8-9 August 2018.

DO levels were found to be high and either at or near 100% saturation, ranging from a low of 9.74 mg/L to a high of 12.97 mg/L (Figure 6-33). Variations in DO were primarily related to temperature, with colder marine water having a higher saturation level than the warmer brackish surface waters (Figure 6-34).

Figure 6-33. DO Cross Section Extending from Nearshore (W19) to Offshore (W27).

Figure 6-34. Temperature Cross Section Extending from Nearshore (W19) to Offshore (W27).

Measurements of pH ranged from a low of 7.88 to a high of 8.19 with higher values generally found in the warmer brackish water, although some of the differences seen were probably related to large vertical temperature variations and the slower response of the pH sensor relative to temperature.

Measurements of suspended sediment and turbidity were examined by three different methods at some of the water quality stations. Table 6-12 presents results of discrete water sample analyses of TSS and nephelometric turbidity as well as a comparison to OBS measurements that were obtained with the SeaBird CTD. TSS measurements ranged from 6.0 to 27.6 mg/L at the surface and from 6.6 to 32.8 mg/L at the bottom. The highest measurement was recorded at Station W31 located in shallow water off Atigaru Point due to wave-induced resuspension of bottom sediments during the sampling effort. A similar trend was seen for both field-analyzed turbidity and CTD OBS measurements, where levels ranged from 1.74 to 21.4 NTU for turbidity and from 0.73 to 15.85 NTU for OBS, with the highest levels for both also found at Station W31. In general, both TSS and turbidity were found to be slightly higher at nearshore locations, although overall levels of both were low as a result of the relatively quiescent wind and wave climate during the survey effort.

OBS measurements across all sites and depths for all CTD profiles ranged from a low of 0.01 NTU found in the deeper marine waters to 27.37 NTU nearshore at Station S10. CTD cross-section plots of OBS clearly show a nearshore band of turbid water that extended along the coastline (Figure 6-35). Since the wind and waves were minimal during much of the survey effort, it is believed that this coastal band was the result of riverine influences and it appears to correlate with warm brackish water seen in the same area.

Sito	Sample	TSS (mg/L)	Turbidit	ty (NTU)	OBS Turbidity (NTU)		
Sile	Date	Surface	Bottom	Surface	Bottom	Surface	Bottom	
W1	8/8/2018	6.0	12.4	1.89	3.00	0.90	2.39	
W3	8/8/2018	6.0	6.6	2.29	2.51	1.23	1.14	
W5	8/8/2018	9.4	9.2	6.80	6.62	4.76	4.68	
W7	8/8/2018	10.0	10.6	8.13	8.02	5.78	5.65	
W8	8/9/2018	19.4	22.6	8.51	8.15	6.43	7.70	
W10	8/9/2018	10.2	8.6	5.37	5.17	3.37	2.62	
W12	8/9/2018	6.2	6.6	2.36	1.74	0.92	0.73	
W16	8/9/2018	7.2	6.8	2.08	2.19	1.17	1.07	
W18	8/9/2018	10.2	12.8	8.58	8.58	5.81	5.85	
W19	8/9/2018	16.4	12.8	12.40	11.70	8.47	8.40	
W20	8/9/2018	11.8	9.6	6.92	6.21	4.84	4.29	
W21	8/9/2018	7.2	9.0	2.81	2.45	2.01	1.67	
W22	8/9/2018	8.6	7.8	2.75	3.10	1.78	2.38	
W23	8/9/2018	6.8	7.8	2.11	3.58	0.75	1.90	
W29	8/9/2018	6.8	8.8	2.07	3.48	0.92	2.13	
W30	8/9/2018	9.2	9.0	5.53	5.59	3.68	3.50	
W31	8/9/2018	27.6	32.8	19.90	21.40	15.85	13.47	
W32	8/9/2018	12.2	11.2	7.81	7.44	5.23	6.14	
W33	8/9/2018	8.2	11.6	4.58	6.77	3.20	6.43	
W43	8/9/2018	13.8	13.8	7.18	7.19	5.34	5.81	

 Table 6-12.
 TSS, Turbidity, and OBS Results.

Figure 6-35. OBS Turbidity Cross Section Extending from Nearshore (W19) to Offshore (W27).

A regression of TSS versus turbidity indicated a high degree of correlation with an R^2 value of 0.80 as depicted in Figure 6-36, although as already mentioned, the levels of both were much lower than would typically be seen during higher wind and wave events. Similarly, a regression of OBS to turbidity showed an even higher degree of correlation, with an R^2 value of 0.96, although turbidity measurements obtained

Figure 6-36. TSS and OBS vs. Turbidity Regressions.

by OBS methodology were slightly lower than the nephelometric measurements. These differences are probably related to measurement technology differences since OBS measures a 180° reflection from the particles in the water column, whereas the nephelometric methodology measures a 90° deflection as a result of particles.

As has been reported in numerous other oceanographic studies that were conducted in the nearshore region of the Beaufort Sea over the past 40 years, the hydrographic and water quality conditions that were seen in 2018 reflect current meteorological and oceanographic conditions at the actual time of sampling. Water quality conditions such as temperature and salinity are dependent on seasonal timing, riverine influences, air temperature, and recent wind activity. The dominant forcing mechanism in driving the circulation on the inner continental shelf (<50 m depth) and in nearshore waters is wind stress, with water level variations and density gradients having a lesser influence. Nearshore currents generally run in an east-west direction, parallel to the local bathymetry and in the same direction as the prevailing wind stress. Water properties are then advected along the coast and redistributed by the regional circulation patterns. These same oceanographic processes affect transport of suspended sediment and sediment quality conditions in the Beaufort nearshore region. These influences, along with regional oceanographic processes such as upwelling, have been found to be very important in affecting onshore-offshore exchange of water mass properties. Easterly winds tend to upwell cooler marine water onto the continental shelf, whereas westerly winds result in surface water piling against the coast and downwelling of marine waters. Similarly, suspended sediment and turbidity are strongly influenced by wind and wave conditions, which result in the resuspension of bottom sediment as a result of high wind and storm events. In addition, riverine plumes that discharge into the nearshore environment tend to have higher turbidity levels compared to marine waters.

Hydrographic (temperature and salinity) conditions recorded during the 2018 survey effort were representative of the early open-water season where a two-layer structure still existed, a result of the spring freshet and ice melt forming a warm brackish layer nearshore, and extending offshore at the surface, and a cold marine layer at deeper locations (3-4 m depths). At the time of sampling in early August, no major storm events had occurred, so the warm brackish coastal boundary layer was still a very prominent feature with a very well-defined pycnocline. Turbidity and TSS conditions found during 2018 were generally much lower than those typically seen because of the relatively quiescent wind and wave climate during the monitoring effort. However, a coastal band of higher TSS and turbidity was documented; this was probably associated with river discharge from the Colville River with a lesser influence from the Kogru River located within the study area.

7.0 REFERENCES

Addinsoft. 2018. XLSTAT Statistical and Data Analysis Solution. Boston, USA. https://www.xlstat.com.

- Alaska LNG. 2014. Alaska LNG 2014 Marine Sampling Program Evaluation of Test Trench Dredging and Disposal Reuse. Document No. USAG-EX-SRZZZ-00-0011.
- Alaska LNG. 2015. Alaska LNG 2015 Marine Sampling Program Evaluation of Potential Disposal Reuse Sites. Document No. USAG-EX-SRZZZ-00-000004-000.
- APHA. 2017. American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association.
- APP. 2012. Alaska Pipeline Project. 2011 West Dock Marine Sampling Program Marine Sediment, Water Quality, and Biological Sampling. USAG-UR-SRWDF-000010.
- ASTM. 1993. American Society for Testing and Materials (ASTM). Annual Book of Standards Soil and Rock I: (D40-D5876), ASTM Volume 04.08, Philadelphia, PA.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp.
- Cannon, T.C., D.R. Glass, and C.M. Prewitt. 1991. Habitat Use Patterns of Juvenile Arctic Cod in the Coastal Beaufort Sea near Prudhoe Bay, Alaska. American Fisheries Society Symposium 11:157-162.
- Craig, P.C. 1984. Fish Use of Coastal Waters of the Alaskan Beaufort Sea: A Review. Transactions of the American Fisheries Society, 113:265-282.
- EPA. 1983. Methods for Chemical Analysis of Water and Wastes. 600/4-79-020. Washington, D.C.
- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA Publication SW-846, Third Edition; with subsequent Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015).
- EPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 540-R-2017-001. January 2017.
- EPA. 2017. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-2017-002. January 2017.
- Exponent. 2010. cANIMIDA Task 2 Hydrocarbon and Metal Characterization of Sediments in the cANIMIDA Study Area. Final Report. Prepared by Exponent. Submitted to U.S. Dept. of Interior, Minerals Management Service. OCS Study MMS 2010-004.
- Guay, C.K. and K.K. Falkner. 1998. A Survey of Dissolved Barium in the Estuaries of Major Arctic Rivers and Adjacent Seas. *Continental Shelf Research*. Vol. 18, pp 859-882.
- Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaeontologia Electronica* 4(1): 9 pp. http://palaeoelectronica.org/2001_1/past/issue1_01.htm
- Johnson, S.W., A.D. Neff, and M.R. Lindeberg. 2015. A Handy Field Guide to the Nearshore Marine Fishes of Alaska. NOAA Technical Memorandum NMFS-AFSC-293.

- Kasper, J., K.H. Dunton, S.V. Schonberg, J. Trefry, B. Bluhm, G. Durell, S. Wisdom, and J. Blank. 2017. Arctic Nearshore Impact Monitoring in Development Area (ANIMIDA) III: Contaminants, Sources, and Bioaccumulation. U.S. Dept. of the Interior, Bureau of Ocean Energy Mgt., Alaska OCS Region, Anchorage, AK. OCS Study BOEM 2013-032. 280 pp.
- Kowalik, Z. and J.B. Matthews. 1982. The M2 Tide in the Beaufort and Chukchi Seas. *Journal of Physical Oceanography* 12:743-746.
- KLI. 2018. Draft 2018 Harrison Bay Marine Monitoring Program Sampling and Analysis Plan. Prepared by Kinnetic Laboratories for ConocoPhillips Alaska. July 18, 2018.
- Liguori, B.T.P., M.G. De Almeida, and C.E. De Rezende. 2016. Barium and its Importance as an Indicator of (Paleo)Productivity. *Annals of the Brazilian Academy of Sciences*. 88(4): 2093-2103.
- McCain, K.A., S.W. Raborn, R.G. Fechhelm. 2014. Draft Report. Year 31 of the Long-Term Monitoring of Nearshore Beaufort Sea Fishes in the Prudhoe Bay Region: 2013 Annual Report. Report for BP Exploration (Alaska) Inc. by LGL Alaska Research Associates, Inc., Anchorage, Alaska. 77 pp.
- McManus, J., W.M. Berelson, G.P. Klinkhammer, T.E. Kilgore, and D.E. Hammond. 1994. Remobilization of Barium in Continental Marine Sediments. *Geochimica et Cosmochimica Acta*. 58(22):4899-4907.
- Mecklenburg, C.W., T.A. Mecklenburg, and L.K Thorsteinson. 2002. Fishes of Alaska. Published by American Fisheries Society, Bethesda, MD.
- Michael Baker International. 2018. Alpine Satellite Development Plan (ASDP) Water Quality Monitoring. Prepared for ConocoPhillips Alaska.
- Moulton, L.L. and K.E. Tarbox. 1987. Analysis of Arctic Cod Movements in the Beaufort Sea Nearshore Region, 1978-79. *Arctic*. 40(1):43-49.
- Neff, J.M. 2010. Continuation of the Arctic Nearshore Impact Monitoring in the Development Area (cANIMIDA): Synthesis, 1999-2007. Final Report, OCS Study BOEM 2010-032.
- O'Connor, T.P. 2004. The Sediment Quality Guideline, ERL is Not a Chemical Concentration at the Threshold of Sediment Toxicity. *Marine Pollution Bulletin*. Volume 49, 383-385.
- Okkonen, S. 2016. Sea Level Measurements along the Alaskan Chukchi and Beaufort Coasts. Final Report, OCS Study BOEM 2016-075. Coastal Marine Institute, University of Alaska, Fairbanks.
- PSEP. 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Final Report. Prepared for U.S. Environmental Protection Agency, Seattle, WA.
- Torres, M.E., H.J. Brunsack, G.Bohrmann, and K.C. Emeis. 1996. Barite Fronts in Continental Margin Sediments; A New Look at Bariuim Remobilization in the Zone of Sulfate Reduction and Formation of Heavy Barites in Diagenetic Fronts. *Chemical Geology*. 127:125-139.
- Trefry, J.H., R.D. Rember, R.P. Trocine, and J.S. Brown. 2003. Trace Metals in Sediments Near Offshore Oil Exploration and Production Sites in the Alaskan Arctic. *Environmental Geology*, Volume 45, September 2003: pp 149-160.
- Trefry J.H., T.P. Trocine, M.B. Alkire, C.M. Semmler, M.A. Savoie, and R.D. Rember. 2009. Sources, Concentrations, Composition, Partitioning and Dispersion Pathways for Suspended Sediments and Potential Metal Contaminants in the Coastal Beaufort Sea. OCS Study MMS 2009-014. US Department of Interior, Anchorage.

- Trefry, J.H., K.H. Dunton, R.P. Trocine, S.V. Schonberg, N.D. McTigue, E.S. Hersh, and T.J. McDonald. 2013. Chemical and Biological Assessment of Two Offshore Drilling Sites in the Alaskan Arctic. *Marine Environmental Research*, 86:35-45.
- Trefry, J.H. and J.M. Neff. 2018. Effects of Offshore Oil Exploration and Development in the Alaskan Beaufort Sea: A Three-Decade Record for Sediment Metals. Integrated Environmental Assessment and Management, Volume 9999, 1-15.
- USACE. Dredged Material Management Program. 2016. Dredged Material Evaluation and Disposal Procedures (User Manual). August 2016.
- van Os, B.J.H, J.J. Middelburg, and G.J. de Lange. 1991. Possible Diagenetic Mobilization of Barium in Sapropelic Sediment from the Eastern Mediterranean. *Maine Geology*, Vol. 100, Issues 1-4, pp 125-136.
- Wedepohl, K.H. 1995. The Composition of the Continental Crust. *Geochimica et Cosmochimica Acta*, 59:1217-1232.

FINAL REPORT

2018 WILLOW MARINE MONITORING PROGRAM

November 2018

APPENDICES

Prepared for:

Alaska's Oil & Gas Company

P.O. Box 100360 Anchorage, AK 99510-0360 Prepared by:

704 West 2nd Ave. Anchorage, AK 99501 (This page intentionally blank.)

Appendix A

Willow Marine Monitoring Program Sediment Results

November 2018

(This Page Left Intentionally Blank)

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, A 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

November 02, 2018

Analytical Report for Service Request No: K1807591 Revised Service Request No: K1807591.01

Mark Savoie Kinnetic Laboratories, Incorporated 704 . 2nd Ave Anchorage, AK 99501

RE: 2018 Harrison Bay MMP / 5089.03

Dear Mark,

Enclosed is the revised report for the sample(s) submitted to our laboratory August 11, 2018 For your reference, these analyses have been assigned our service request number **K1807591**.

A Case Narrative was added to this report.

Analyses were performed according to our laboratory s NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and e cept as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

e apologize for any inconvenience this may have created.

Please contact me if you have any questions. My e tension is 3364. ou may also contact me via email at howard.holmes alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, A 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Total Solids

General Chemistry

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 37

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Web Site	Number
http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
http://www.azdhs.gov/lab/license/env.htm	AZ0339
http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
http://health.hawaii.gov/	-
http://www.pjlabs.com/	L16-57
http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
http://www.maine.gov/dhhs/	WA01276
http://www.health.state.mn.us/accreditation	053-999-457
http://ndep.nv.gov/bsdw/labservice.htm	WA01276
http://www.nj.gov/dep/enforcement/oqa.html	WA005
https://www.wadsworth.org/regulatory/elap	12060
https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
www.alsglobal.com	NA
	Web Site http://dec.alaska.gov/eh/lab/cs/csapproval.htm http://www.azdhs.gov/lab/license/env.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.depi.ca.gov/certlic/labs/Pages/ELAP.aspx http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm http://health.hawaii.gov/ http://www.pilabs.com/ http://www.maine.gov/dhks/ http://www.maine.gov/dhks/ http://www.health.state.mn.us/accreditation http://www.ng.gov/dep/enforcement/oqa.html http://www.ng.gov/dep/enforcement/oqa.html http://www.adsworth.org/regulatory/elap http://www.adsworth.org/regulatory/certification-branch/non-field-lab-certification http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/cSDnew/labcert.htm http://www.scdhec.gov/environment/EnvironmentalLabCertification/ http://www.scdhec.gov/programs/eap/labs/lab-accreditation.html http://www.keq.state.ok.us/cSDnew/labcert.htm

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 37

Client: Kinnetic Laboratories, Incorporated

Project:2018 Harrison Bay MMPSample Matrix:Sediment

Service Request: K1807591 Date Received: 08/11/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt:

Twenty six sediment samples were received for analysis at ALS Environmental on 08/11/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry:

No significant anomalies were noted with this analysis.

Hundellun

Approved by

Date 11/02/2018

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 37

K1807591

			Chain of	Custody R	lecord			1	`	Page of	
To: ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 (360) 577-7222 1-800-695-7222 Contact: Howard Holmes	(Howard.Holmes	@alsglobal.com)	KLI PO Quote #: 9 Lab #:	0 #: A 1641	K18-1019	From: Kinnetic Laboratories, Inc 704 West 2nd Ave. Anchorage, AK 99501 (907) 276-6178 Contact: Mark Savoie					
Project:	2018 HARRISO	N BAY MMP			Matrix	x: Sediment			Project #: 5089.03		
Complete by: Standard	TAT										
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabID	Condition Upon Receipt	
HB18-TTT-S1-1	SI-1	8618	11.38	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S2-1	\$2-1		1036	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S3-1	\$3-1		0929	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S3-2	<u>\$3-2</u>		0929	Grab	TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S4-1	S4-1		1207	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1	,		
HB18-TTT-S5-1	<u>\$5-1</u>		1336	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S6-1	S6-1		1358	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	_4° C	1			
HB18-TTT-S7-1	<u>\$7-1</u>		1552	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S8-1	S8-1		1515	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S9-1	<u>\$9-1</u>		1436	Grab	TVS/160.4; TOC/9060: TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S10-1	S10-1		1238	Grab	TVS/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	1			
HB18-TTT-S11-1	S11-1		1709	Grab	1 v 5/160.4; TOC/9060; TS/PSEP	125-mL WMGJ	4° C	<u> </u>			
HB18-TTT-S12-1	S12-1	V	1754	Grab	TS/PSEP	125-mL WMGJ	4° C	1			
Data Report MUST include	the following: Sar	nple ID, Analytics	al Method, Det	ection Limit, D	Pate of Extraction if applicable	e, Date of Analysis,	Analytica	Results, an	nd Signature of QA Re	viewer. All times	
Special Instructions/Com	ments: See qu	ote list of analy	tes and detect	tion limits.	2019 to msayor winnetter	apping, EDD RE	VUINE			<u></u>	
ampled and Reinquished a	ly:		Date/Line:		ransporter	Received By:	4			Date/Time:	
Man Ar	ee-	*/10/1	8 100	5	AK Gold Stunk	I AN	< DA	WIR A	uprov 8-11-	18 1000	
Kelinquishid By:			Date/fime:		ransporter	Received By:				Date/Time:	
				:							

v20020904

VIN

1

KI	877591	
14	00101	

			Chain of	Custody I	Record				•	Page \underline{Z} of \underline{Z}
To: ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 (360) 577-7222 1-800-695-7222 Contact: Howard Holmes (Howard.Holmes@alsglobal.com)			KLI P Quote #: 9 Lab #:	8 ≭ : A 1641	From: Kinnetic Laboratories, Inc 704 West 2nd Ave. Anchorage, AK 99501 (907) 276-6178 Contact: Mark Savoie					
Complete by: Standar	A TAT					Scument			110ject #. 5002.05	
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabD	Condition Upon Receip
HB18-PGS-S1-1	SI-1	8/6/18	1138 -=	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
HB18-PGS-S2-1	S2-1		1036	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
HB18-PGS-S3-1	S3-1		0929.	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
HB18-PGS-S3-2	\$3-2		0929 '	Grab	ASTM D422M/PartSize	500-mL WMGJ	4° C	1		
HB18-PGS-S4-1	S4-1		1207	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
HB18-PGS-S5-1	\$5-1		1336	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
HB18-PGS-S6-1	S6-1		1358-	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
HB18-PGS-S7-1	S7-1		1552	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1	-	
HB18-PGS-S8-1	S8-1		1515	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	ş.		
HB18-PGS-S9-1	\$9-1		1436	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C]		
HR18-PGS-S10-1	S10-1		1638	Grah	ASTM D422M/PartSize	500-mI WMGI	4° C	1		
HR18-PGS-S11-1	S11.1	·····	1709	Grah	ASTM D422M/PartSize	500-mL WMGI	4° C	1		
HB18-PGS-S12-1	\$12-1		1754	Grab	ASTM D422M/PartSize ASTMEB	500-mL WMGJ	4° C	1		
Data Report MUST includ on this sheet are military t Special Instructions/Co	te the following: Samp time. Email sample r mments: See quot	le ID, Analytic eceipt confirm e list of analyt	al Method, Det ations, PDF r	ection Limit, I reports, and I tion limits.	Date of Extraction if applicable, EDDs to msavoie@kinneticlal	Date of Analysis, bs.net. EDD RE	Analytica QUIRE	l Results, ar D.	nd Signature of QA R	eviewer. All times
sampled and Relinquished	i By:		Date/Time:		Transporter	Received By:	- 1			Date/Time:
Wan a	An	8/10/18	- 10	o5	AK Goldstuck	A	< Ja	NIC Pa	NTAN 8-11-1	8 1000
cennquisifed By:			Date/Time:		l ransporter	Keceived By:				Date/Time:

l		\$											PC	42	
Cooler Receipt and Preservation Form															
lient	:	KINNET	TE LAR	35.				Ser	vice F	Request K	18 <u>07</u>	591			
Recei	ved:	8-11-	18 (Opened:	8-11-1	8	By:	Ast) 	Unload	ed: <u>8-11-</u>	<u>-18</u> B	y: <u> </u>	151	
l Si	Samples were received via? USPS Fod Fr UPS DHI PDY Courier Hand Delivered														
2. S	Samples were received in: (circle) Cooler Bax Envelope Other NA														
3. V	Were custody seals on coolers? NA Y (N) If yes, how many and where?														
Ĩ	If present, were custody seals intact? Y N If present, were they signed and dated? Y N														
Ra	Raw Corrected Raw Corrected Corr. Thermometer Cooler/COC ID Tracking Nu Cooler Temp Blank Temp Blank Factor ID (NA)					racking Nur	mber	N	Filed						
5	3	53	21	21	0.0	31	10								1
6.	∂	59	5.5	52	-0.1	3	ZI		<u> </u>		<u></u>				
			<u></u>		<u>+</u>		·····						<u> </u>		
4.	4. Packing material: Inserts Baggies (Bubble Wrap Gel Packs) Wet Ice Dry Ice Sleeves														
5.	5. Were custody papers properly filled out (ink, signed, etc.)? NA (Y) N														
6.	6. Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA 18 N														
7	Were 2	ull samnle l	lf aj abels comn	pplicable, ti lete (i e and	issue sample	es were	receive	:d:	Froze	n Partia	lly Thawed	Thawed	NIA	Â	N
8.	Did all	sample lat	pels and tag	s agree wit	th custody p	apers?	Indicat	e mair	or disci	renancies in	a the table on	nage I	NA	X	N
9,	Were	appropriate	e bottles/co	ntainers an	d volumes r	eceived	for the	tests i	indicat	ed?		puge 2.	NA	- X	N
10.	Were	the pH-pro	eserved bot	tles (see SM	IO GEN SOP) receiv	ed at th	ie appr	opriat	e pH? India	cate in the tab	le below	(NA)	Y	N
11,	Were	VOA vial	s received v	without hea	idspace? In	dicate i	n the ta	ble be	low.				(NA)	Y	N
12.	Was	C12/Res n	egative?										NA	Y	N
						<u> </u>							<u></u>		
-		Sample ID) on Bottle			Sampl	e ID on	000			<u> </u>	Identified by:		· · · · · · · ·	
						<u> </u>	<u> </u>	<u>-</u>							
													<u> </u>		
						lout ef	Hard								
 	مەر بىسى سەل سەق سىس	Sample	e ID	В0 В0	ottle Type	Temp	nead- space	Broke	рН	Reagen	t added	Number	.01	Initials	Time
+	~					+								,	
+-									 	<u> </u>					
╞		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						L	<u> </u>						

Notes, Discrepancies, & Resolutions:

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 12 of 37

Analytical Report

Kinnetic Laboratories, Incorporated
2018 Harrison Bay MMP/5089.03
Sediment
160.4 Modified
None

 Service Request:
 K1807591

 Date Collected:
 08/6/18

 Date Received:
 08/11/18

Units: Percent Basis: Dry, per Method

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
HB18-TTT-S1-1	K1807591-001	6.40	0.10	1	08/13/18 17:07	
HB18-TTT-S2-1	K1807591-002	9.80	0.10	1	08/13/18 17:07	
HB18-TTT-S3-1	K1807591-003	3.40	0.10	1	08/13/18 17:07	
HB18-TTT-S3-2	K1807591-004	3.50	0.10	1	08/13/18 17:07	
HB18-TTT-S4-1	K1807591-005	3.10	0.10	1	08/13/18 17:07	
HB18-TTT-S5-1	K1807591-006	4.40	0.10	1	08/13/18 17:07	
HB18-TTT-S6-1	K1807591-007	8.10	0.10	1	08/13/18 17:07	
HB18-TTT-S7-1	K1807591-008	7.10	0.10	1	08/13/18 17:07	
HB18-TTT-S8-1	K1807591-009	3.60	0.10	1	08/13/18 17:07	
HB18-TTT-S9-1	K1807591-010	2.90	0.10	1	08/13/18 17:07	
HB18-TTT-S10-1	K1807591-011	2.90	0.10	1	08/13/18 17:07	
HB18-TTT-S11-1	K1807591-012	12.9	0.10	1	08/13/18 17:07	
HB18-TTT-S12-1	K1807591-013	11.5	0.10	1	08/13/18 17:07	
Method Blank	K1807591-MB	ND U	0.10	1	08/13/18 17:07	

QA/QC Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:K1807591				
Project	2018 Harrison Bay MMP/5089.03	Date Collected:08/06/18				
Sample Matrix:	Sediment	Date Received: 08/11/18				
Analysis Method:	160.4 Modified	Units:Percent				
Prep Method:	None	Basis:Dry, per Method				
	Replicate Sample Sumn	narv				

eplicate Sample Summar Solids, Total Volatile

Sample Name:	Lab Code:	MRL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
HB18-TTT-S1-1	K1807591-001DUP	0.10	6.40	6.60	6.50	3	20	08/13/18
HB18-TTT-S11-1	K1807591-012DUP	0.10	12.9	12.9	12.9	<1	20	08/13/18

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Analytical Report

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment
Analysis Method:	PSEP TS
Prep Method:	None

Service Request: K1807591 Date Collected: 08/6/18 Date Received: 08/11/18

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q	
HB18-TTT-S1-1	K1807591-001	65.8	-	1	08/14/18 13:51		
HB18-TTT-S2-1	K1807591-002	57.3	-	1	08/14/18 13:51		
HB18-TTT-S3-1	K1807591-003	72.9	-	1	08/14/18 13:51		
HB18-TTT-S3-2	K1807591-004	73.4	-	1	08/14/18 13:51		
HB18-TTT-S4-1	K1807591-005	73.2	-	1	08/14/18 13:51		
HB18-TTT-S5-1	K1807591-006	69.3	-	1	08/14/18 13:51		
HB18-TTT-S6-1	K1807591-007	52.3	-	1	08/14/18 13:51		
HB18-TTT-S7-1	K1807591-008	58.3	-	1	08/14/18 13:51		
HB18-TTT-S8-1	K1807591-009	74.2	-	1	08/14/18 13:51		
HB18-TTT-S9-1	K1807591-010	75.6	-	1	08/14/18 13:51		
HB18-TTT-S10-1	K1807591-011	74.5	-	1	08/14/18 13:51		
HB18-TTT-S11-1	K1807591-012	41.7	-	1	08/14/18 13:51		
HB18-TTT-S12-1	K1807591-013	46.3	-	1	08/14/18 13:51		
HB18-PGS-S1-1	K1807591-014	64.1	-	1	08/14/18 13:51		
HB18-PGS-S2-1	K1807591-015	57.0	-	1	08/14/18 13:51		
HB18-PGS-S3-1	K1807591-016	72.5	-	1	08/14/18 13:51		
HB18-PGS-S3-2	K1807591-017	73.9	-	1	08/14/18 13:51		
HB18-PGS-S4-1	K1807591-018	73.2	-	1	08/14/18 13:51		
HB18-PGS-S5-1	K1807591-019	69.5	-	1	08/14/18 13:51		
HB18-PGS-S6-1	K1807591-020	51.8	-	1	08/14/18 13:51		
HB18-PGS-S7-1	K1807591-021	58.8	-	1	08/14/18 16:47		
HB18-PGS-S8-1	K1807591-022	71.8	-	1	08/14/18 16:47		
HB18-PGS-S9-1	K1807591-023	73.0	-	1	08/14/18 16:47		
HB18-PGS-S10-1	K1807591-024	76.2	-	1	08/14/18 16:47		
HB18-PGS-S11-1	K1807591-025	42.0	-	1	08/14/18 16:47		
HB18-PGS-S12-1	K1807591-026	43.2	-	1	08/14/18 16:47		

QA/QC Report

Client:	Kinnetic Laboratories, Incorporated				Service R	equest:	K1807591	
Project	2018 Harrison Bay MMP/5089.03				Date Col	llected:	08/06/18	
Sample Matrix:	Sediment				Date Re	ceived:	08/11/18	
					Date An	alyzed:	08/14/18	
		Tı	riplicate Sample	Summary				
		Ger	neral Chemistry	Parameters				
Sample Name:	HB18-TTT-S1-1					Units:	Percent	
Lab Code:	K1807591-001					Basis:	As Received	
Analysis Method:	PSEP TS							
Prep Method:	None							
Analyte Name	MRL	Sample Result	Duplicate K1807591- 001DUP	Triplicate K1807591- 001TRP	Average	RS	D RSD Limit	
Solids Total		65.8	Result	Result	66 0	~1	10	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Kinnetic Laboratories, Incorporated				Service R	equest:	K1807591	
Project	2018 Harrison B	ay MMP/5089.03			Date Col	08/06/18		
Sample Matrix:	Sediment	Sediment				Date Received: 08/11/18		
					Date An	alyzed:	08/14/18	
		Tı	riplicate Sample	Summary				
		Ger	neral Chemistry	Parameters				
Sample Name:	HB18-TTT-S10	-1				Units:	Percent	
Lab Code:	K1807591-011				Basis: As Received			
Analysis Method:	PSEP TS							
Prep Method:	None							
Annalista Nama	MD	Gaussia Day 14	Duplicate K1807591-	Triplicate K1807591-	A	DO		T
Analyte Name	MRL	Sample Result	Result	Result	Average	RS.	U RSD	Limit
Solids, Total		74.5	74.8	74.8	74.7	<1	1	0

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Project Sample Matrix:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03 Sediment				Service Ro Date Col Date Re Date An	equest: llected: ceived: alvzed:	K1807591 08/06/18 08/11/18 08/14/18
		Tı Ger	riplicate Sample neral Chemistry	Summary Parameters			
Sample Name: Lab Code: Analysis Method: Prep Method:	HB18-PGS-S7-1 K1807591-021 PSEP TS None					Units: Basis:	Percent As Received
Analyte Name	MRL	Sample Result	Duplicate K1807591- 021DUP Result	Triplicate K1807591- 021TRP Result	Average	RSI	D RSD Limit
Solids, Total	-	58.8	59.0	58.9	58.9	<1	10

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 37

Analytical Report

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment
Analysis Method:	9060
Prep Method:	Method

Service Request: K1807591 Date Collected: 08/6/18 Date Received: 08/11/18

Units: Percent Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
HB18-TTT-S1-1	K1807591-001	1.51	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S2-1	K1807591-002	3.25	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S3-1	K1807591-003	0.43	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S3-2	K1807591-004	0.45	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S4-1	K1807591-005	0.26	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S5-1	K1807591-006	1.04	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S6-1	K1807591-007	1.34	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S7-1	K1807591-008	1.97	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S8-1	K1807591-009	0.62	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S9-1	K1807591-010	0.27	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S10-1	K1807591-011	0.66	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S11-1	K1807591-012	3.88	0.10	1	08/27/18 13:39	8/27/18	
HB18-TTT-S12-1	K1807591-013	2.98	0.10	1	08/27/18 13:39	8/27/18	
Method Blank	K1807591-MB	ND U	0.10	1	08/27/18 13:39	8/27/18	

QA/QC Report

Client:	Kinnetic Lab	ooratories, Incor	porated			Service Requ	est: K1807	7591
Project	2018 Harriso	on Bay MMP/50)89.03			Date Collect	ted: 08/06/	18
Sample Matrix:	Sediment					Date Receiv	ved: 08/11/	18
						Date Analyz	zed: 08/27/	18
			Replicat	te Sample Sum	mary			
			General C	Chemistry Para	ameters			
Sample Name:	HB18-TTT-	S1-1				U	nits: Perce	nt
Lab Code:	K1807591-0	001				Ва	asis: Dry, j	per Method
					Duplicate Sample K1807591-			
Analyte Name		Analysis Method	MRL	Sample Result	001DUP Result	Average	RPD	RPD Limit
Carbon, Total Organic (TOC)	9060	0.10	1.51	1.52	1.52	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Kinnetic Laboratori	es, Incorpora	ted			Service	Request:	K180	7591	
Project:	2018 Harrison Bay	MMP/5089.0)3			Date Co	ollected:	08/06	5/18	
Sample Matrix:	Sediment					Date Re	ceived:	08/11	/18	
						Date Ar	alyzed:	08/27	//18	
						Date Ex	tracted:	08/27	//18	
		D	uplicate Matr	ix Spike S	ummary					
			Carbon, Tota	l Organic	(TOC)					
Sample Name:	HB18-TTT-S1-1						Units:	Perce	ent	
Lab Code:	K1807591-001						Basis:	Dry,	per Meth	od
Analysis Method:	9060									
Prep Method:	Method									
		K	Matrix Spike 1807591-001N	e ⁄IS	Dup K1	licate Matri 807591-001	x Spike DMS			
	Sample	е	Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organi	c (TOC) 1.51	3.90	2.41	99	3.92	2.41	100	70-122	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project:	Kinnetic Labo 2018 Harrisor	oratories, Incorporat Bay MMP/5089.0	ted 3	Service Re Date Anal	equest: yzed:	K1807591 08/27/18
Sample Matrix:	Sediment			Date Extra	acted:	08/27/18
		L. C	ab Control Sample Summary Carbon, Total Organic (TOC)			
Analysis Method:	9060			Units:		Percent
Prep Method:	Method			Basis:		Dry, per Method
				Analysis I	.ot:	604203
Sample Name		Lab Code	Result	Spike Amount	% Rec	% Rec Limits
Lab Control Sample		K1807591-LCS	0.59	0.60	98	72-122

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S1-1
Lab Code:	K1807591-014

Sand Fraction:	Dry Weight (Grams)	10.9543
Sand Fraction:	Weight Recovered (Grams)	10.9532
Sand Fraction:	Percent Recovery	99.99

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0444	0.16
Sand, Very Coarse	-1 to 0 Ø	0.0360	0.13
Sand, Coarse	0 to 1 Ø	0.0556	0.19
Sand, Medium	1 to 2 Ø	0.1115	0.39
Sand, Fine	2 to 3 Ø	0.5344	1.87
Sand, Very Fine	3 to 4 Ø	6.0154	21.10
75.0 μm	4 Ø	7.2050	25.27
31.3 µm	5 Ø	5.2400	18.38
15.6 μm	6 Ø	3.2050	11.24
7.8 μm	7 Ø	1.7100	6.00
3.9 μm	8 Ø	1.0000	3.51
1.95 μm	9 Ø	0.8000	2.81
0.98 μm	> 10 Ø	1.4450	5.07
•		27.4023	96.10

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807591
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	8/6/2018
Sample Matrix	: Sediment	Date Received:	8/11/2018
		Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S2-1
Lab Code:	K1807591-015

Sand Fraction:	Dry Weight (Grams)	11.4787
Sand Fraction:	Weight Recovered (Grams)	11.4492
Sand Fraction:	Percent Recovery	99.74

Description	DL : 0!	Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0243	0.10
Sand, Very Coarse	-1 to 0 Ø	0.1014	0.40
Sand, Coarse	0 to 1 Ø	0.2201	0.86
Sand, Medium	1 to 2 Ø	0.7413	2.90
Sand, Fine	2 to 3 Ø	3.2669	12.79
Sand, Very Fine	3 to 4 Ø	4.7477	18.59
75.0 μm	4 Ø	4.5900	17.97
31.3 µm	5 Ø	2.7150	10.63
15.6 µm	6 Ø	2.6000	10.18
7.8 μm	7 Ø	1.9400	7.59
3.9 μm	8 Ø	1.1650	4.56
1.95 µm	9 Ø	1.0450	4.09
0.98 μm	> 10 Ø	1.5650	6.13
		24.7217	96.78

Client:	Kinnetic Laboratories, Incorporated	Service Request:
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:
Sample Matrix:	Sediment	Date Received:

Date Collected: 8/6/2018 Date Received: 8/11/2018 Date Analyzed: 8/28/2018

K1807591

Particle Size Determination ASTM D422M

Sample Name:HB18-PGS-S3-1Lab Code:K1807591-016

Sand Fraction:	Dry Weight (Grams)	37.5937
Sand Fraction:	Weight Recovered (Grams)	37.4468
Sand Fraction:	Percent Recovery	99.61

Decominition	Dhi Sizo	Dry Weight	Percent of Total
Description	Pili Size	(Grains)	weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0040	0.01
Sand, Very Coarse	-1 to 0 Ø	0.0134	0.03
Sand, Coarse	0 to 1 Ø	0.0550	0.13
Sand, Medium	1 to 2 Ø	0.1707	0.39
Sand, Fine	2 to 3 Ø	15.7077	35.85
Sand, Very Fine	3 to 4 Ø	16.9399	38.66
75.0 μm	4 Ø	4.5700	10.43
31.3 µm	5 Ø	1.5300	3.49
15.6 µm	6 Ø	0.5100	1.16
7.8 μm	7 Ø	0.2550	0.58
3.9 μm	8 Ø	0.1400	0.32
1.95 μm	9 Ø	0.1800	0.41
0.98 μm	> 10 Ø	0.6150	1.40
		40.6907	92.86

Client:	Kinnetic Laboratories, Incorporated	Service Request
Project:	2018 Harrison Bay MMP/5089.03	Date Collected
Sample Mat	trix: Sediment	Date Received

 Service Request:
 K1807591

 Date Collected:
 8/6/2018

 Date Received:
 8/11/2018

 Date Analyzed:
 8/28/2018

Particle Size Determination ASTM D422M

Sample Name: HB18-PGS-S3-2 Lab Code: K1807591-017

Sand Fraction:	Dry Weight (Grams)	41.4481
Sand Fraction:	Weight Recovered (Grams)	41.3734
Sand Fraction:	Percent Recovery	99.82

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0161	0.03
Sand, Very Coarse	-1 to 0 Ø	0.0395	0.08
Sand, Coarse	0 to 1 Ø	0.0934	0.19
Sand, Medium	1 to 2 Ø	0.2521	0.51
Sand, Fine	2 to 3 Ø	22.8074	46.03
Sand, Very Fine	3 to 4 Ø	14.1399	28.54
75.0 μm	4 Ø	6.2950	12.71
31.3 μm	5 Ø	1.8850	3.80
15.6 μm	6 Ø	0.6450	1.30
7.8 μm	7 Ø	0.4050	0.82
3.9 μm	8 Ø	0.2850	0.58
1.95 μm	9 Ø	0.2150	0.43
0.98 µm	> 10 Ø	0.7800	1.57
		47.8584	96.60

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807591
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	8/6/2018
Sample Matrix	: Sediment	Date Received:	8/11/2018
		Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S4-1
Lab Code:	K1807591-018

Sand Fraction:	Dry Weight (Grams)	43.7150
Sand Fraction:	Weight Recovered (Grams)	43.7005
Sand Fraction:	Percent Recovery	99.97

Description		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0333	0.07
Sand, Very Coarse	-1 to 0 Ø	0.0923	0.19
Sand, Coarse	0 to 1 Ø	0.0551	0.11
Sand, Medium	1 to 2 Ø	0.1141	0.23
Sand, Fine	2 to 3 Ø	25.8152	52.66
Sand, Very Fine	3 to 4 Ø	14.0638	28.69
75.0 μm	4 Ø	4.9050	10.00
31.3 µm	5 Ø	0.6750	1.38
15.6 µm	6 Ø	0.2150	0.44
7.8 μm	7 Ø	0.1750	0.36
3.9 μm	8 Ø	0.0850	0.17
1.95 μm	9 Ø	0.0550	0.11
0.98 μm	> 10 Ø	0.7300	1.49
•		47.0138	95.90

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S5-1
Lab Code:	K1807591-019

Sand Fraction:	Dry Weight (Grams)	38.1448
Sand Fraction:	Weight Recovered (Grams)	38.1250
Sand Fraction:	Percent Recovery	99.95

Description		Dry Weight	Percent of Total
Description	Pili Size	(Grains)	weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0188	0.04
Sand, Very Coarse	-1 to 0 Ø	0.1078	0.23
Sand, Coarse	0 to 1 Ø	0.1100	0.23
Sand, Medium	1 to 2 Ø	0.1875	0.40
Sand, Fine	2 to 3 Ø	25.7649	54.44
Sand, Very Fine	3 to 4 Ø	8.8267	18.65
75.0 μm	4 Ø	5.1450	10.87
31.3 µm	5 Ø	1.5300	3.23
15.6 µm	6 Ø	1.0100	2.13
7.8 μm	7 Ø	0.8500	1.80
3.9 μm	8 Ø	0.6400	1.35
1.95 µm	9 Ø	0.6050	1.28
0.98 µm	> 10 Ø	0.9750	2.06
		45.7707	96.71

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Particle Size Determination ASTM D422M

Sample Name:HB18-PGS-S6-1Lab Code:K1807591-020

Sand Fraction:	Dry Weight (Grams)	5.7069
Sand Fraction:	Weight Recovered (Grams)	5.6895
Sand Fraction:	Percent Recovery	99.70

Description	DL: Since	Dry Weight	Percent of Total
Description	Phi Size	(Grams)	weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0108	0.06
Sand, Very Coarse	-1 to 0 Ø	0.0947	0.55
Sand, Coarse	0 to 1 Ø	0.1047	0.61
Sand, Medium	1 to 2 Ø	0.0542	0.32
Sand, Fine	2 to 3 Ø	2.8498	16.65
Sand, Very Fine	3 to 4 Ø	2.3094	13.50
75.0 μm	4 Ø	0.8800	5.14
31.3 µm	5 Ø	1.3750	8.04
15.6 µm	6 Ø	2.2250	13.00
7.8 μm	7 Ø	2.5450	14.87
3.9 μm	8 Ø	1.5800	9.23
1.95 μm	9 Ø	1.2750	7.45
0.98 µm	> 10 Ø	1.7700	10.34
· · · · ·		17.0736	99.78

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

 Service Request:
 K1807591

 Date Collected:
 8/6/2018

 Date Received:
 8/11/2018

 Date Analyzed:
 8/28/2018

Particle Size Determination ASTM D422M

Sample Name:HB18-PGS-S7-1Lab Code:K1807591-021

Sand Fraction:	Dry Weight (Grams)	7.8414
Sand Fraction:	Weight Recovered (Grams)	7.8000
Sand Fraction:	Percent Recovery	99.47

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0029	0.01
Sand, Very Coarse	-1 to 0 Ø	0.0316	0.15
Sand, Coarse	0 to 1 Ø	0.1180	0.57
Sand, Medium	1 to 2 Ø	0.4824	2.33
Sand, Fine	2 to 3 Ø	4.1912	20.22
Sand, Very Fine	3 to 4 Ø	1.8360	8.86
75.0 μm	4 Ø	5.7800	27.89
31.3 μm	5 Ø	2.4950	12.04
15.6 µm	6 Ø	1.6150	7.79
7.8 μm	7 Ø	1.3900	6.71
3.9 μm	8 Ø	0.8750	4.22
1.95 μm	9 Ø	0.6800	3.28
0.98 µm	> 10 Ø	1.2500	6.03
		20.7471	100.10

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Particle Size Determination ASTM D422M

Sample Name:HB18-PGS-S8-1Lab Code:K1807591-022

Sand Fraction:	Dry Weight (Grams)	41.0573
Sand Fraction:	Weight Recovered (Grams)	40.9840
Sand Fraction:	Percent Recovery	99.82

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0058	0.01
Sand, Very Coarse	-1 to 0 Ø	0.0664	0.14
Sand, Coarse	0 to 1 Ø	0.0846	0.18
Sand, Medium	1 to 2 Ø	0.1723	0.36
Sand, Fine	2 to 3 Ø	16.2621	33.64
Sand, Very Fine	3 to 4 Ø	18.3155	37.89
75.0 μm	4 Ø	8.4600	17.50
31.3 µm	5 Ø	1.6750	3.46
15.6 μm	6 Ø	0.5100	1.05
7.8 μm	7 Ø	0.3450	0.71
3.9 μm	8 Ø	0.3400	0.70
1.95 μm	9 Ø	0.2150	0.44
0.98 μm	> 10 Ø	0.6900	1.43
		47.1417	97.52

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Particle Size Determination ASTM D422M

Sample Name: HB18-PGS-S9-1 Lab Code: K1807591-023

Sand Fraction:	Dry Weight (Grams)	43.3498
Sand Fraction:	Weight Recovered (Grams)	43.2880
Sand Fraction:	Percent Recovery	99.86

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0117	0.02
Sand, Very Coarse	-1 to 0 Ø	0.0444	0.09
Sand, Coarse	0 to 1 Ø	0.0354	0.07
Sand, Medium	1 to 2 Ø	0.1511	0.31
Sand, Fine	2 to 3 Ø	25.2261	51.78
Sand, Very Fine	3 to 4 Ø	13.2737	27.24
75.0 μm	4 Ø	6.7950	13.95
31.3 µm	5 Ø	0.7550	1.55
15.6 µm	6 Ø	0.2350	0.48
7.8 μm	7 Ø	0.0900	0.18
3.9 μm	8 Ø	0.1550	0.32
1.95 µm	9 Ø	0.0850	0.17
0.98 μm	> 10 Ø	0.5800	1.19
		47.4374	97.36

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S10-1
Lab Code:	K1807591-024

Sand Fraction:	Dry Weight (Grams)	26.1246
Sand Fraction:	Weight Recovered (Grams)	26.0809
Sand Fraction:	Percent Recovery	99.83

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0213	0.07
Gravel, Fine	-2 Ø to -1 Ø	0.0287	0.09
Sand, Very Coarse	-1 to 0 Ø	0.0971	0.31
Sand, Coarse	0 to 1 Ø	1.0508	3.37
Sand, Medium	1 to 2 Ø	8.2900	26.56
Sand, Fine	2 to 3 Ø	15.7488	50.46
Sand, Very Fine	3 to 4 Ø	0.6125	1.96
75.0 μm	4 Ø	0.8400	2.69
31.3 µm	5 Ø	0.6000	1.92
15.6 µm	6 Ø	0.6400	2.05
7.8 μm	7 Ø	0.9750	3.12
3.9 μm	8 Ø	0.7200	2.31
1.95 µm	9 Ø	0.5750	1.84
0.98 µm	> 10 Ø	0.8900	2.85
		31.0892	99.61

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S11-1
Lab Code:	K1807591-025

Sand Fraction:	Dry Weight (Grams)	1.3981
Sand Fraction:	Weight Recovered (Grams)	1.3366
Sand Fraction:	Percent Recovery	95.60

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0075	0.06
Sand, Very Coarse	-1 to 0 Ø	0.0261	0.19
Sand, Coarse	0 to 1 Ø	0.0569	0.42
Sand, Medium	1 to 2 Ø	0.1437	1.06
Sand, Fine	2 to 3 Ø	0.4444	3.29
Sand, Very Fine	3 to 4 Ø	0.2700	2.00
75.0 μm	4 Ø	1.4650	10.84
31.3 μm	5 Ø	3.1300	23.16
15.6 µm	6 Ø	2.7900	20.65
7.8 μm	7 Ø	1.8000	13.32
3.9 μm	8 Ø	1.0400	7.70
1.95 μm	9 Ø	0.9450	6.99
0.98 µm	> 10 Ø	1.4200	10.51
-		13.5386	100.19

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S12-1
Lab Code:	K1807591-026

Sand Fraction:	Dry Weight (Grams)	2.3601
Sand Fraction:	Weight Recovered (Grams)	2.3135
Sand Fraction:	Percent Recovery	98.03

Description		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0370	0.28
Sand, Very Coarse	-1 to 0 Ø	0.0226	0.17
Sand, Coarse	0 to 1 Ø	0.0388	0.29
Sand, Medium	1 to 2 Ø	0.0527	0.40
Sand, Fine	2 to 3 Ø	0.7454	5.60
Sand, Very Fine	3 to 4 Ø	0.8854	6.65
75.0 μm	4 Ø	1.9650	14.76
31.3 µm	5 Ø	1.5700	11.79
15.6 µm	6 Ø	2.1200	15.92
7.8 μm	7 Ø	2.2000	16.52
3.9 μm	8 Ø	1.1050	8.30
1.95 μm	9 Ø	1.0000	7.51
0.98 µm	> 10 Ø	1.5800	11.87
		13.3219	100.04

Client:	Kinnetic Laboratories, Incorporated
Project:	2018 Harrison Bay MMP/5089.03
Sample Matrix:	Sediment

Service Request:	K1807591
Date Collected:	8/6/2018
Date Received:	8/11/2018
Date Analyzed:	8/28/2018

Sample Name:	HB18-PGS-S12-1
Lab Code:	K1807591-026DUP

Sand Fraction:	Dry Weight (Grams)	2.3633
Sand Fraction:	Weight Recovered (Grams)	2.2902
Sand Fraction:	Percent Recovery	96.91

Description	Dhi Sizo	Dry Weight	Percent of Total
Description	r in Size	(Grains)	weight Kecovereu
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0076	0.06
Sand, Very Coarse	-1 to 0 Ø	0.0200	0.15
Sand, Coarse	0 to 1 Ø	0.0270	0.20
Sand, Medium	1 to 2 Ø	0.0429	0.32
Sand, Fine	2 to 3 Ø	0.7014	5.28
Sand, Very Fine	3 to 4 Ø	0.9269	6.97
75.0 μm	4 Ø	1.6150	12.15
31.3 µm	5 Ø	1.8650	14.03
15.6 µm	6 Ø	2.1600	16.24
7.8 μm	7 Ø	2.1150	15.91
3.9 μm	8 Ø	1.2300	9.25
1.95 μm	9 Ø	1.1800	8.87
0.98 µm	> 10 Ø	1.5100	11.36
		13.4008	100.78

Proprietary Information

B&B Client Number: J18346

Client Address: Kinnetic Laboratories Inc. 704 West 2nd Avenue Anchorage, AK 99501

Contact Juan Ramirez for questions concerning these data.

Page 1 of 97

Proprietary Information

Kinnetic Laboratories, Inc. Project #5089.03

Determination of:

Aliphatic Hydrocarbons (ALI), Total Petroleum Hydrocarbons (TPH), and Polycyclic Aromatic Hydrocarbons (PAHs) in Sediment Samples

September 14, 2018

Technical Report 18-3808

Please take a moment and answer a quick <u>survey</u>. We would like to know how we can improve our services.

Narrative

Case Narrative

Sample Receipt and Storage

B&B Laboratories received a shipment of one (1) ice chest on August 14, 2018 in College Station, Texas. The ice chest arrived sealed and in good condition.

Cooler Number	Temperature	Samples Received	Sample Custody Corrective Action Report (SCCAR)
1	2.7 °C 2.1°C Temperature Blank	Seven (7) sediment samples in 250 mL jars.	109

The sediment samples were logged in according to B&B Laboratories standard operating procedure (B&B 1009) and stored in an access-controlled freezer (<-16.0°C) prior to analysis. See Supporting Documents for the information related to the sample received broken during shipping.

The sediment samples were analyzed for Total Petroleum Hydrocarbons (TPH) and C_9 to C_{40} Aliphatic Hydrocarbons (ALI) by GC/FID, Polycyclic Aromatic Hydrocarbons (PAH) by GC/MS-SIM and selected biological markers by GC/MS-SIM.

The analytical results for ALI, TPHs, PAH, selected hopane's, and TAS compounds in the sediment samples are included in this report.

Sample Preparation and Extraction

Extraction of Sediments for Aliphatic, Aromatic and Chlorinated Hydrocarbons and Total Petroleum Hydrocarbons (Synopsis of SOP 1003)

This standard operating procedure provides an accurate and precise method for extraction, isolation, and concentration of selected organic compounds from soil and sediment samples. It achieves analyte recoveries equivalent to those from Soxhlet extraction, using less solvent and taking significantly less time. Final extracts can be used in the quantitative determination of polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, total petroleum hydrocarbon (TPH), and chlorinated hydrocarbons (including planar PCBs) by chromatographic procedures. This procedure is also used to extract soil and sediment samples for gravimetric determination of extractable organic material (EOM).

An automated extraction apparatus (Dionex ASE200 Accelerated Solvent Extractor) is used to extract various organics from 1 to 15 g (usually 15 g if adequate material is present) of pre-dried sample. The extractions are performed using 100% dichloromethane inside stainless-steel extraction cells held at elevated temperature and solvent pressure. The extracted compounds dissolved in the hot solvent are collected in 60-mL glass vials. Extracts are concentrated to a volume of 1 - 3 mL, using an evaporative solvent reduction apparatus (Zymark TurboVap II or water bath), and if necessary, processed through a clean-up column in order to minimize matrix interference.

Determination of Percent Moisture in Tissues, Soils and Sediment

Percent moisture (weight/weight basis) is determined in samples by measuring the loss in mass of the sample due to drying at 104 °C to a constant weight. Typically, between one and two grams of sample are used for the determination. Wet and dried samples are weighed to the nearest milligram. This procedure is documented in B&B SOP 1012, *Preparation of Tissue, Water, Soils, and Sediment for Extraction*.

Analytical Methods

Aliphatic and Total Petroleum Hydrocarbon Determination by Gas Chromatography/Flame Ionization Detection (Synopsis of SOP 1016)

The quantitative method described in this document is for the determination of aliphatic hydrocarbons and total petroleum hydrocarbons in extracts of water, sediment, and biological tissue. Quantitation is performed by high resolution, capillary gas chromatography with flame ionization detection (GC/FID). Normal alkanes with 9 to 40 carbons (C_8 to C_{40}), and the isoprenoids pristane and phytane are determined with this procedure. The gas chromatograph is temperature-programmed and operated in split mode. The capillary column is a Restek Scientific RTX-1 (30 m long by 0.25 mm ID and 0.25 mm film thickness). Carrier flow is regulated by electronic pressure control. The autosampler is capable of making 1 to 5 ml injections. Dual columns and FIDs are used. The data acquisition system is by HP Chemstation software, capable of acquiring and processing GC data.

A calibration curve is established by analyzing each of 6 calibration standards (1.25, 10, 25, 40, 50 and 100 μ g/ml), and fitting the data to a straight line using the least square technique. For each analyte of interest, a response factor (RF) is determined for each calibration level. All 6 response factors are then averaged to produce a mean relative response factor for each analyte. If an individual aliphatic hydrocarbon is not in the calibration solutions, a RF is estimated from the average RF of the hydrocarbon eluting immediately before the compound.

Aromatic Hydrocarbon Determination by Selected Ion Monitoring – Gas Chromatography/Mass Spectrometry (Synopsis of SOP 1006)

This quantitative method is for the determination of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues in extracts of water, sediment, and biological tissue. Quantitation is performed by capillary gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). The gas chromatograph is temperature-programmed and operated in splitless mode. The capillary column is a Agilent Technologies HP-5MS (60 m long by 0.25 mm ID and 0.25 μ m film thickness). Carrier flow is by electronic pressure control. The autosampler is capable of making 1 to 5 μ L injections. The mass spectrometer is capable of scanning from 35 to 500 AMU every second or less, utilizing 70 volts electron energy in electron impact ionization mode. The data acquisition system allows continuous acquisition and storage of all data during analysis and is capable of displaying ion abundance versus time or scan number.

Calibration solutions are prepared at six concentrations ranging from 0.02 to 5 μ g/mL by diluting a commercially available solution containing the analytes of interest. For each analyte of interest, a relative response factor (RRF) is determined for each calibration level. The 6 response factors are then averaged to produce a mean relative response factor for each analyte.

The analytical methods employed for PAH, n-alkanes and biomarkers are listed in Table 1.

Matrix	Extraction	PAH	n-alkanes
Sediment	B&B 1003	B&B 1006	B&B 1016

Table 1. Standard Operating Procedures for each analytical test.

Data Reporting

The reporting units for each analyte are listed in Table 2. Data Qualifier Definitions are listed in Table 3. The method detection limits (MDL) for each analyte are listed in Tables 4.

Table 2. Analytical reporting units.

Matrix	PAH	n-alkanes
Sediment	ng/dry g	μg/dry g

Table 3. Data Qualifier Definitions.

Qualifier	Definition
В	Analyte detected in the method blank greater than 3X MDL
D	Diluted Value
E	Analyte concentration exceeds the calibration range of the GC/MS for that specific analysis.
I	Analytical interference
J	Analyte detected below the method detection limit
L	Loss due to matrix effect
NA	Not Applicable
U	Analyte not detected
х	Analyte <3X MDL
Y	Spiked level of analyte <50% of the native concentration
*	Outside QA limits, refer to narrative

Aliphatics	Sediment MDLs	
Unit of measure	μg/dry g	
n C0	0.010	
n-09	0.012	
	0.021	
	0.016	
n-012	0.019	
	0.045	
1-015	0.016	
n-C14	0.013	
I-C16	0.004	
n-C15	0.016	
n-C16	0.004	
i-c18	0.004	
n-C17	0.003	
Pristane	0.003	
n-C18	0.004	
Phytane	0.006	
n-C19	0.005	
n-C20	0.012	
n-C21	0.004	
n-C22	0.003	
n-C23	0.008	
n-C24	0.005	
n-C25	0.007	
n-C26	0.008	
n-C27	0.011	
n-C28	0.011	
n-C29	0.021	
n-C30	0.013	
n-C31	0.015	
n-C32	0.012	
n-C33	0.012	
n-C34	0.016	
n-C35	0.015	
n-C36	0.015	
n C37	0.017	
n-C38	0.017	
n-030	0.019	
n-039	0.019	
11-040	0.019	
Total Petroleum Hydrocarbons	1.40	
Total Resolved Hydrocarbons	1.40	
Unresolved Complex Mixture	1.40	
Extractable Organic Matter	100	

Table 4. Method Detection Limits

PAH	Sediment MDLs	
Unit of measure	ng/dry g	
cis/trans Decalin	0.132	
C1-Decalins	0.263	
C2-Decalins	0.263	
C3-Decalins	0.263	
C4-Decalins	0.263	
Naphthalene	0.342	
C1-Naphthalenes	1.03	
C2-Naphthalenes	0.684	
C3-Naphthalenes	0.684	
C4-Naphthalenes	0.684	
Benzothiophene	0.090	
C1-Benzothiophenes	0.180	
C2-Benzothiophenes	0.180	
C3-Benzothiophenes	0.180	
C4-Benzothiophenes	0.180	
Biphenyl	0.294	
Acenaphthylene	0.041	
Acenaphthene	0.103	
Dibenzofuran	0.204	
Fluorene	0.183	
C1-Fluorenes	0.367	
C2-Fluorenes	0.367	
C3-Fluorenes	0.367	
Carbazole	0.150	
Anthracene	0.115	
Phenanthrene	0.208	
C1-Phenanthrenes/Anthracenes	0.077	
C2-Phenanthrenes/Anthracenes	0.285	
C3-Phenanthrenes/Anthracenes	0.285	
C4-Phenanthrenes/Anthracenes	0.285	
Dibenzothiophene	0.116	
C1-Dibenzothiophenes	0.064	
C2-Dibenzothiophenes	0.232	
C3-Dibenzothiophenes	0.232	
C4-Dibenzothiophenes	0.232	
Fluoranthene	0.333	
Pyrene	0.136	
C1-Fluoranthenes/Pyrenes	0.469	
C2-Fluoranthenes/Pyrenes	0.469	
C3-Fluoranthenes/Pyrenes	0.469	
C4-Fluoranthenes/Pyrenes	0.469	
Naphthobenzothiophene	0.128	
C1-Naphthobenzothiophenes	0.256	
C2-Naphthobenzothiophenes	0.256	
C3-Naphthobenzothiophenes	0.256	
C4-Naphthobenzothiophenes	0.256	
· ·		

Table 4 (continued). Detection Limits

Table 4 (continued). Detection Limits

PAH	Sediment MDLs	
Unit of measure	ng/dry g	
Benz(a)anthracene	0.192	
Chrysene/Triphenylene	0.116	
C1-Chrysenes	0.232	
C2-Chrysenes	0.232	
C3-Chrysenes	0.232	
C4-Chrysenes	0.232	
Benzo(b)fluoranthene	0.203	
Benzo(k,j)fluoranthene	0.098	
Benzo(a)fluoranthene	0.098	
Benzo(e)pyrene	0.177	
Benzo(a)pyrene	0.101	
Perylene	1.27	
Indeno(1,2,3-c,d)pyrene	0.050	
Dibenzo(a,h)anthracene	0.064	
C1-Dibenzo(a,h)anthracenes	0.129	
C2-Dibenzo(a,h)anthracenes	0.129	
C3-Dibenzo(a,h)anthracenes	0.129	
Benzo(g,h,i)perylene	0.088	
2-Methylnaphthalene	1.30	
1-Methylnaphthalene	0.546	
2,6-Dimethylnaphthalene	0.261	
1,6,7-Trimethylnaphthalene	0.127	
1-Methylfluorene	0.191	
4-Methyldibenzothiophene	0.091	
2/3-Methyldibenzothiophene	0.091	
1-Methyldibenzothiophene	0.091	
3-Methylphenanthrene	0.097	
2-Methylphenanthrene	0.097	
2-Methylanthracene	0.097	
4/9-Methylphenanthrene	0.097	
1-Methylphenanthrene	0.097	
3,6-Dimethylphenanthrene	0.110	
Retene	0.231	
2-Methylfluoranthene	0.223	
Benzo(b)fluorene	0.125	
C29-Hopane	0.575	
18a-Oleanane	0.575	
C30-Hopane	0.575	
C20-TAS	0.575	
C21-TAS	0.575	
C26(20S)-TAS	0.575	
C26(20R)/C27(20S)-TAS	0.575	
C28(20S)-TAS	0.575	
C27(20R)-TAS	0.575	
C28(20R)-TAS	0.575	

Quality Assurance/Quality Control – Sediment

Total Petroleum Hydrocarbons (TPH) and Aliphatic Hydrocarbons (ALI)

The quality assurance/quality control procedure for this program included the analyses of a method blank, a blank spike, a matrix spike/matrix spike duplicate, and laboratory duplicate of no more than 19 samples. The SRM is a petroleum sample (NIST SRM 2779) that is analyzed with each TPH/ALI run and for which controls are established based on performance. Method blanks are used to determine that sample preparation and analyses are free of contaminants. The matrix spike/matrix spike duplicate are used to measure accuracy and precision of the analysis. The laboratory duplicate sample is used to determine the precision of the analysis.

The appropriate surrogate solution is added to every sample including quality control samples. The data are corrected based on surrogate recovery up to 100%. Refer to Table 5 for Method Performance Criteria for Aliphatic Hydrocarbons and TPH.

Polycyclic Aromatic Hydrocarbons (PAH)

The quality assurance/quality control procedure for this program included the analyses of a method blank, a blank spike, a matrix spike/matrix spike duplicate, laboratory duplicate and a sediment SRM (NIST SRM 1944) of no more than 19 samples. A standard reference oil (NIST 2779) was analyzed with this data set. Method blanks are used to determine that sample preparation and analyses are free of contaminants. The matrix spike/matrix spike duplicate is used to measure accuracy and precision of the analysis. The laboratory duplicate sample is used to determine the precision of the analysis. A SRM is a material for which a mean and confidence interval are certified for specific analytes. SRMs are selected based on matrix similarities as well as type and level of certified analytes. All SRMs are traceable to NIST. SRMs are used to verify analytical accuracy.

The appropriate surrogate solution is added to every sample including quality control samples. The data are corrected based on surrogate recovery up to 100%. Refer to Table 6 for Method Performance Criteria for PAH.

Quality Assurance/Quality Control Variances – Sediment

Total Petroleum Hydrocarbons (TPH)

Initial Calibration (Six-point)

Observation

• No variances were observed.

Initial Calibration Verification and Continuing Calibration Verification (The ICV is prepared from a second source.)

Observation

• No variances were observed.

Surrogate Recoveries

Observation

• No variances were observed.

Method Blank

Observation

• No variances were observed.

Blank Spike

Observation

• No variances were observed.

Matrix Spike/Matrix Spike Duplicate

Observation

• No variances were observed.

Laboratory Duplicate

Observation

• No variances were observed.

Additional QC Batch Information

Observation

• i-C16 exceeded the QC criteria for ALI-SRM2779-20-04 Reference Oil.

Comment

• It is unknown why this analyte did not meet the QC criteria; however, this variance does not impact the overall data quality.

Polycyclic Aromatic Hydrocarbons (PAH)

Initial Calibration (Six-Point)

Observation

• No variances were observed.

Initial Calibration Verification and Continuing Calibration Verification (The ICV is prepared from a second source.)

Observation

• No variances were observed.

Surrogate Recoveries

Observation

• No variances were observed.

Method Blank

Observation

• No variances were observed.

Blank Spike

Observation

• 1-Methylphenanthrene exceeded the QC criteria for ENV3865C Blank Spike.

Comment

• It is unknown why this analyte did not meet the QC criteria; however, this variance does not impact the overall data quality.

Matrix Spike/Matrix Spike Duplicate

Observation

• No variances were observed.

Laboratory Duplicate

Observation

• No variances were observed.

Standard Reference Materials

Observation

• No variances were observed.

	•	•	5
Element or Sample Type	Minimum Frequency	Measurement Quality Objective/ Acceptance Criteria	Corrective Action
Initial Calibration (all target analytes, except i-C13, i-C14, i-C15 and i-C18)	Prior to every sequence, or as needed based on continuing calibration/verification check.	6-point calibration curve %RSD ≤ 15%	Resolve before proceeding.
Continuing Calibration Verification (CCV)	Every 12 hours or every 10 field samples, whichever is more frequent	%R target analytes 80-120%	Perform Instrument Maintenance. Re-analyze affected samples.
Initial Calibration Verification (Second Source or can be met if CCV is second source)	Per initial calibration	%R target analytes 80-120%	Resolve before proceeding.
SRM 2779 Reference Oil (Instrument SRM)	One per batch per GC sequence	Baseline resolution of n-C17 from pristine, and analytes must be $\pm 3\sigma$ of laboratory derived mean	Resolve before proceeding.
Performance Evaluation Mixture (PEM)	One per batch per GC sequence	%R 75-125%	Resolve before proceeding.
Matrix Spike/Matrix Spike Duplicate (Sediments, Soils, Tissues only)	One per batch/every 20 field samples	%R 40% - 120% for target analytes; average %R 60-120% for valid spikes, RPD ≤30%. No more than 2 analytes may exceed 40-120%	Evaluate impact to data, discuss with manager, determine if corrective action is needed.
Blank Spike/Blank Spike Duplicate	One per batch/every 20 field samples	%R 40% - 120% for target analytes; RPD ≤30%. No more than 2 analytes may exceed 40-120%	Evaluate impact to data, discuss with lab manager, determine if corrective action is needed.
Method Blank	One per batch/every 20 field samples	No more than 2 analytes to exceed 3x MDL unless analyte not detected in associated sample(s) or analyte concentration >10x blank value	Resolve before proceeding. QA coordinator may be contacted to resolve issues surrounding 'minor exceedances'.
Laboratory Duplicate (not required for aqueous samples)	One per batch/every 20 field samples	RPD \leq 30% if analyte concentration is 3x greater than the MDL, no more than 2 individual analyte RPDs with conc. 3x MDL can exceed 35%.	Evaluate impact to data, discuss with lab manager, determine if corrective action is needed.
Mass Discrimination	Initial calibration and CCVs (mid-level)	Ratio for the raw areas of n-C36 / n-C20 ≥0.70	Resolve before proceeding.
Internal Standard (IS)	Every sample	50% - 200% of the area of the IS in the associated calibration standard	Resolve before proceeding.
Surrogates	Every sample	%R 40-120%	Re-extract affected samples. Evaluate impact to data, discuss with lab manager, determine if corrective action is needed.

TABLE 5. Method Performance Criteria for Alkanes/Isoprenoids Compounds and Total Petroleum Hydrocarbons

Table 6.	Method Performance	e Criteria for	Extended PAH	(Parent	and Alkyl	Homologs)	and Relat	ed Compou	unds.

Element or Sample Type	Minimum Frequency	Measurement Quality Objective/	Corrective Action	
		Acceptance Criteria		
Tuning	Prior to every sequence	Tune as specified in laboratory SOP	Resolve before proceeding.	
Initial Calibration (All parent PAH and selected alkyl homologue PAH)	Prior to every sequence, or as needed based on continuing calibration/verification check.	6-point calibration curve over two orders of magnitude RPD ≤ 20%	Resolve before proceeding.	
Continuing Calibration Verification (CCV)	Every 12 hours or 6-9 field samples	%R target analytes 80-120%	Perform instrument maintenance. Re-analyze affected samples.	
Initial Calibration Verification (Second Source or can be met if CCV is second source)	Per initial calibration	%R target analytes 80-120%	Resolve before proceeding.	
SRM 1941b for sediment; SRM 1974c for tissue If available use SRMs for appropriate matrices	One per batch/every 20 field samples	Within ±30% of NIST 95% uncertainty range for analytes within the quantitation range. No more than 2 analytes may exceed this criterion.	Resolve before proceeding.	
SRM 2779 Reference Oil	One per batch/every 20 field samples	Peak resolution >80% of 4/9- methylphenanthrene from 1- methylphenanthrene (m/z 192). Within ±20% of NIST 95% uncertainty range for analytes within the quantitation range. No more than 2 analytes may exceed this criterion.	Resolve before proceeding.	
Matrix Spike/Matrix Spike Duplicate (Sediments, Soils, Tissues only)	One per batch/every 20 field samples	%R 40% - 120% for target analytes, except biphenyl (40-140%), decalin (25-120%) and perylene (10-120%); RPD ≤30%, average %R 60-120% for valid spikes. No more than 2 analytes may exceed 40-120% recovery or >35% RPD.	Evaluate impact to data, discuss with lab manager to determine if corrective action is needed.	
Blank Spike/Blank Spike Duplicate	One per batch/every 20 field samples	See MS/MSD criteria above.	Evaluate impact to data, discuss with lab manager to determine if corrective action is needed.	
Method Blank	One per batch/every 20 field samples	No more than 2 analytes to exceed 3x target MDL unless analyte not detected in associated sample(s) or analyte concentration >10x blank value	Resolve before proceeding. Lab manager may be contacted to resolve issues.	
Laboratory Duplicate (not required for aqueous samples)	One per batch/every 20 field samples	RPD ≤ 30% if analyte concentration is 3x greater than the MDL, no more than 2 individual analyte RPDs with conc. 3x MDL can exceed 35%.	Evaluate impact to data, discuss with lab manager, and determine if corrective action is needed.	

Table 6.	Continued.	Method Performance	Criteria for	Extended P	AH (Parent	t and Alky	I Homologs) and Related	Compounds.
					•				

Element or Sample Type	Minimum Frequency	Measurement Quality Objective/ Acceptance Criteria	Corrective Action
Mass Discrimination	Initial calibration and CCVs (mid- level)	Ratio for the concentration of Benzo[g,h,i]perylene to phenanthrene ≥0.70	Resolve before proceeding.
Internal Standard (IS)	Every sample	50% - 200% of the area of the IS in the associated calibration standard	Resolve before proceeding.
Surrogates	Every sample	%R 40-120% except d12-perylene which is 10-120%	Re-extract affected samples. Evaluate impact to data, discuss with lab manager, if corrective action is needed.

B&B Laboratories makes no representation or certifications as to the method of sample collection, sample identification, or transporting/handling procedure used prior to the receipt of samples by B&B Laboratories. To the best of my knowledge, the information contained in this report in accurate and complete.

We appreciate the opportunity to serve your analytical needs and please do not hesitate to contact us should you have any questions.

9/19/2018 Date Juan A. Ramirez Laboratory Manager

Sediment Samples

Sample/Analyses Description
Kinnetic Labs - Harrison Bay Sample Inventory

#	Laboratory ID	Sample ID	Collection Date	Received Date	Analysis	Matrix	Comments	B&B SDG	Client Project #
1	RCA1041	HB18-PAM-S2-1	08/06/18	08/14/18	PAH, ALI	Sediment		18081401	5089.03
2	RCA1042	HB18-PAM-S3-1	08/06/18	08/14/18	PAH, ALI	Sediment		18081401	5089.03
3	RCA1043	HB18-PAM-S3-2	08/06/18	08/14/18	PAH, ALI	Sediment	received broken	18081401	5089.03
4	RCA1044	HB18-PAM-S6-1	08/06/18	08/14/18	PAH, ALI	Sediment		18081401	5089.03
5	RCA1045	HB18-PAM-S8-1	08/06/18	08/14/18	PAH, ALI	Sediment		18081401	5089.03
6	RCA1046	HB18-PAM-S11-1	08/06/18	08/14/18	PAH, ALI	Sediment		18081401	5089.03
7	RCA1047	HB18-PAM-S4-1	08/06/18	08/14/18	PAH, ALI	Sediment		18081401	5089.03

Total Petroleum Hydrocarbons/ Aliphatic Hydrocarbons/ Extractable Organic Matter Concentrations

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1041.D HB18-PAM-S2-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 00:55:35 B&B SOP1016 15.05 27.12 55 45 NA NA NA 1X	RCA1042.D HB18-PAM-S3-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 03:16:19 B&B SOP1016 15.01 20.56 73 27 NA NA NA 1X	RCA1043.D HB18-PAM-S3-2 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 04:26:55 B&B SOP1016 15.02 19.86 76 24 NA NA NA 1X	RCA1044.D HB18-PAM-S6-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 05:37:13 B&B SOP1016 15.01 29.51 51 49 NA NA NA 1X
Target Compounds	Su. Corrected Q Conc. (µa/dry a)	Su. Corrected Q Conc. (µa/dry a)	Su. Corrected Q Conc. (µa/dry a)	Su. Corrected Q Conc. (µa/dry a)
n-C9 n-C10 n-C11 n-C12 n-C13 i-C15 n-C14 i-C16 n-C15 n-C16 i-C18 n-C17 Pristane n-C17 Pristane n-C17 Pristane n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C26 n-C27 n-C28 n-C26 n-C27 n-C28 n-C27 n-C28 n-C30 n-C31 n-C32 n-C31 n-C32 n-C31 n-C32 n-C34 n-C35 n-C36 n-C37 n-C36 n-C37 n-C38 n-C37 n-C38 n-C39 n-C40 Total Alkanes Complex Mixture	$\begin{array}{c} 0.056\\ 0.081\\ 0.116\\ 0.123\\ 0.251\\ 0.072\\ 0.251\\ 0.088\\ 0.254\\ 0.262\\ 0.086\\ 0.281\\ 0.272\\ 0.319\\ 0.153\\ 0.685\\ 0.468\\ 0.849\\ 0.917\\ 1.925\\ 0.616\\ 2.178\\ 0.793\\ 2.834\\ 0.509\\ 2.581\\ 0.302\\ 1.672\\ 0.235\\ 1.179\\ 0.167\\ 0.347\\ 0.065\\ 0.114\\ 0.094\\ 0.052\\ < 0.019 \ U \end{array}$	 <0.012 U <0.021 U <0.016 U <0.019 U <0.067 0.059 0.054 <0.004 U 0.046 0.056 <0.004 U 0.056 <0.006 U <0.080 <0.097 <0.091 <0.098 <0.209 <0.073 <0.228 <0.092 <0.336 <0.59 <0.297 <0.336 <0.209 <0.336 <0.201 <0.012 <0.117 <0.019 <0.016 U <0.017 U <0.019 U <0.	<0.012 U <0.021 U <0.016 U <0.019 U 0.040 J 0.043 <0.004 U 0.047 0.047 0.047 0.047 0.047 0.056 0.042 0.055 <0.006 U 0.081 0.082 0.092 0.095 0.200 0.076 0.239 0.069 0.432 0.071 0.239 0.069 0.432 0.071 0.312 0.038 0.201 0.026 0.168 0.022 0.151 <0.016 U <0.017 U <0.019 U	$\begin{array}{c} 0.044\\ 0.061\\ 0.073\\ 0.081\\ 0.239\\ 0.088\\ 0.170\\ 0.032\\ 0.128\\ 0.123\\ 0.049\\ 0.201\\ 0.124\\ 0.229\\ 0.084\\ 0.549\\ 0.212\\ 0.698\\ 0.420\\ 1.028\\ 0.367\\ 1.017\\ 0.295\\ 1.861\\ 0.308\\ 1.737\\ 0.234\\ 1.344\\ 0.132\\ 0.503\\ 0.131\\ 0.241\\ <0.016\ U\\ <0.017\ U\\ <0.019\ U\\ <0.010\ U\\ $
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
n-dodecane-d26 n-eicosane-d42 n-triacontane-d62	88 101 97	84 108 107	84 107 106	93 110 100

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1045.D HB18-PAM-S8-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 06:47:25 B&B SOP1016 15.02 20.75 72 28 NA NA NA 1X		RCA1046.D HB18-PAM-S11-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 07:58:04 B&B SOP1016 15.00 29.13 51 49 NA NA NA 1X		RCA1047.D HB18-PAM-S4-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 09:08:16 B&B SOP1016 15.01 21.60 69 31 NA NA NA 1X	
Target Compounds	Su. Corrected Conc. (µg/dry g)	Q	Su. Corrected Conc. (µg/dry g)	Q	Su. Corrected Conc. (µg/dry g)	Q
n-C9 n-C10 n-C11 n-C12 n-C13 i-C15 n-C14 i-C16 n-C15 n-C16 i-C18 n-C17 Pristane n-C17 Pristane n-C17 Pristane n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C26 n-C27 n-C28 n-C26 n-C27 n-C28 n-C29 n-C31 n-C31 n-C32 n-C31 n-C32 n-C31 n-C35 n-C36 n-C37 n-C36 n-C37 n-C38 n-C39 n-C40 Total Alkanes Total Petroleum Hydrocarbons Unresolved Complex Mixture	<0.012 <0.021 <0.016 <0.016 <0.043 0.043 0.044 <0.004 <0.004 <0.004 <0.004 <0.004 0.044 <0.004 0.044 0.004 0.051 0.070 0.051 0.075 0.075 0.075 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0	2 U U 3 0 U 3 3 4 U 7 4 5 1 0 3 3 4 U 7 4 5 1 0 2 0 2 0 2 0 3 3 4 U 7 4 5 1 0 2 0 2 0 2 0 3 2 4 5 7 0 U 3 0 0 U 3 0 0 0 U 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.07 0.12 0.12 0.13 0.28 0.08 0.07 0.05 0.21 0.18 0.07 0.33 0.22 0.37 0.14 0.89 0.41 1.67 1.00 2.72 0.86 2.69 0.65 5.15 0.70 4.32 0.48 2.95 0.38 1.50 0.34 0.72 0.33 0.22 0.37 1.00 2.72 0.86 2.69 0.65 5.15 0.70 0.43 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	26682340293106237445194795147724880999 7 505 8	 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.01 <0.01 <0.02 <0.02 <0.03 <0.05 <0.09 <0.04 <0.01 <0.05 <0.09 <0.04 <0.01 <0.03 <0.15 <0.03 <0.01 <	216968346143376821554384493921650UUUUU 541 J
Surrogate (Su)	Su Recovery (%)		Su Recovery (%)		Su Recovery (%)	
n-dodecane-d26 n-eicosane-d42 n-triacontane-d62	79 109 105		95 111 100		82 103 102	

Laboratory ID	ENV3865A.D				
Sample ID	Method Blank				
Matrix	Sediment				
Collection Date	NA				
Received Date	NA 09/20/19				
Extraction Batch	U0/30/10				
Date Acquired	05-Sen-2018 17:53:15				
Method	B&B SOP1016				
Sample Dry Weight (g)	15.04				
Sample Wet Weight (g)	NA				
% Dry	NA				
% Moisture	NA				
% Lipid (dry)	NA				
% Lipid (wet)	NA				
Dilution	1X				
Target Compounds	Su. Corrected Conc. (µg/dry g)	Q	Q	3X MDL Conc. (μg/dry g)	Actual MDL Conc. (μg/dry g)
n-C9	<0.012	่วม		0.037	0.012
n-C10	< 0.02	1 Ū		0.064	0.021
n-C11	<0.010	5 U		0.049	0.016
n-C12	<0.019	θU		0.056	0.019
n-C13	< 0.04	5 U		0.134	0.045
I-C15	<0.010	5 U		0.049	0.016
n-014	<0.01	30		0.039	0.013
n-C15	<0.004	+ U		0.013	0.004
n-C16	<0.004	1 U		0.013	0.004
i-C18	< 0.004	4 U		0.011	0.004
n-C17	<0.003	3 U		0.010	0.003
Pristane	< 0.003	3 U		0.008	0.003
n-C18	< 0.004	4 U		0.011	0.004
Phytane	<0.000			0.018	0.006
n-C20	<0.00	> U		0.013	0.003
n-C21	< 0.004	4 U		0.012	0.004
n-C22	<0.003	3 U		0.010	0.003
n-C23	<0.008	3 U		0.024	0.008
n-C24	<0.00	5 U		0.016	0.005
n-C25	<0.00			0.021	0.007
n-C27	<0.000	1 11		0.023	0.008
n-C28	<0.01	1 U		0.033	0.011
n-C29	< 0.02	1 U		0.064	0.021
n-C30	<0.013	3 U		0.038	0.013
n-C31	<0.01	5 U		0.044	0.015
n-C32	<0.012	2 U		0.035	0.012
n-C33	<0.02			0.064	0.021
n-C35	<0.010	5 0		0.049	0.016
n-C36	<0.010	5 U		0.047	0.016
n-C37	< 0.01	7 U		0.052	0.017
n-C38	<0.019	θU		0.057	0.019
n-C39	< 0.019	θU		0.056	0.019
n-C40	<0.019	90		0.056	0.019
Total Alkanes					
Total Petroleum Hydrocarbons	<1.4	4 U		4.20	1.40
I otal Resolved Hydrocarbons	<1.4	4 U 4 I I		4.20	1.40
Omesoived Complex Mixture	<1.4	+ U		4.20	1.40
EOM (µg/dry g)	NA	Ą		300	100
Surrogate (Su)	Su Recovery (%)				
n-dodecane-d26	81				
n-eicosane-d42	108				
n-triacontane-d62	108				

Laboratory ID	ENV3865C.D	
Sample ID	Blank Spike	
Matrix	Sediment	
Collection Date	NA	
Received Date	NA	
Extraction Date	08/30/18	
Extraction Batch	ENV3865	
Date Acquired	05-Sep-2018, 20:14:09	
Method	B&B SOP1016	
Sample Dry Weight (g)	1.00	
Sample Wet Weight (g)	NA	
% Dry	NA	
% Moisture	NA	
% Lipid (dry)	NA	
% Lipid (wet)	NA	
Dilution	1X	

Target Compounds	Su. Corrected	Recovery	Q	Spike Amount
	Conc. (µg/ury g)	(70)		(P9)
n-C9	6.61	66		10.0
n-C10	7.61	76		10.0
n-C11	8.33	83		10.0
n-C12	8.48	86		9.84
n-C13	9.42	94		10.1
n-C14	9.25	94		9.84
n-C15	9.27	93		10.0
n-C16	9.54	95		10.0
n-C17	9.69	98		9.92
Pristane	9.78	98		9.94
n-C18	9.89	99		10.0
Phytane	9.62	98		9.82
n-C19	9.73	98		10.0
n-C20	9.94	99		10.0
n-C21	9.92	99		10.0
n-C22	10.4	103		10.0
n-C23	10.1	102		9.94
n-C24	9.81	99		9.90
n-C25	9.90	99		10.0
n-C26	9.93	99		10.0
n-C27	10.0	100		10.0
n-C28	10.3	104		9.95
n-C29	10.5	104		10.1
n-C30	10.2	101		10.1
n-C31	10.0	100		10.0
n-C32	10.3	104		9.89
n-C33	10.2	102		10.1
n-C34	10.1	101		10.0
n-C35	9.96	100		9.94
n-C36	10.3	102		10.0
n-C37	9.85	98		10.1
n-C38	9.54	95		10.1
n-C39	9.69	98		9.92
n-C40	9.06	91		10.0
Average %Recovery		96		
Surrogate (Su)	Su Recovery (%)			
n-dodecane-d26	87			
n-eicosane-d42	104			
n-triacontane-d62	106			

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Matrix Spike Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1041.D HB18-PAM-S2-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 06-Sep-2018, 00:55:35 B&B SOP1016 15.05 27.12 55 45 NA NA NA 1X	Matrix 05	ENV3865D.D Spike (HB18-PAM-S Sediment 08/06/18 08/14/18 08/30/18 ENV3865 -Sep-2018, 21:24:1 B&B SOP1016 15.05 27.12 55 45 NA NA NA 1X	7		Matrix S	ENV3865E.D Spike Duplicate (HB18-PAN Sediment 08/06/18 08/14/18 08/30/18 ENV3865 05-Sep-2018, 22:34:55 B&B SOP1016 15.02 27.07 55 45 NA NA NA 1X	M-S2-1)			
Target Compounds	Su. Corrected Conc. (µg/dry g)	Q	Su. Corrected Conc. (µg/dry g)	Q	Recovery (%)	QQ	Su. Corrected Conc. (µg/dry g)	Q Recovery ((%)	QQ	RPD (%)	Q Spike Amount (µg)
n-C9	0.056	3	0.41	8	55		0.393	51		6	10.0
n-C10	0.081		0.56	i4	72		0.537	68		5	10.0
n-C11	0.116	6	0.64	3	79		0.629	77		2	10.0
n-C12	0.123	3	0.67	'1	84		0.668	83		0	9.8
n-C13	0.251		0.83	8	88		0.832	87		1	10.1
i-C15	0.072	2	N	A			NA				
n-C14	0.251		0.84	5	91		0.857	92		1	9.8
i-C16	0.088	3	N	A			NA				
n-C15	0.254	1	0.85	0	90		0.857	90		1	10.0
n-C16	0.262	2	0.87	'1	92		0.874	92		0	10.0
i-C18	0.086	6	N	A			NA				
n-C17	0.281		0.91	6	96		0.910	95		1	9.9
Pristane	0.272	2	0.91	1	97		0.936	100		3	9.94
n-C18	0.319	9	0.96	64	97		0.956	96		1	10.0
Phytane	0.153	3	0.77	9	96		0.748	91		4	9.8
n-C19	0.685	5	1.32	:6	97		1.317	95		1	10.0
n-C20	0.468	3	1.11	2	97		1.109	96		0	10.0
n-C21	0.849	,	1.47	8	95		1.480	94		0	10.0
n-C22	0.917	-	1.58	6	101	v	1.5/1	98		1	10.02
n-023	1.925)	2.55	9	96	Ŷ	2.538	92	Ŷ	1	9.94
n-C24	0.616)	1.24	5	96	V	1.237	94	v	1	9.90
n-C25	2.170))	2.01	1	95	T	2.794	92	T	1	10.0
n-C20	0.793	1	1.42	5	94 102	v	1.404	91	v	2	10.0
n-C28	2.034	+ 1	3.51	3	96	1	1 124	93	1	2	10.0
n-C29	2 581		3.28	3	105	v	3 225	95	v	2	10.06
n-C30	0.302	>	0.20	1	96	•	0.927	93	•	1	10.00
n-C31	1.672	2	2.22	1	82	Y	2.341	100	Y	5	10.0
n-C32	0.235	5	0.75	2	79		0.769	81		2	9.89
n-C33	1.179	9	1.91	2	110		1.896	107		1	10.1
n-C34	0.167	7	0.88	8	108		0.868	105		2	10.0
n-C35	0.347	7	1.06	7	109		1.052	106		1	9.9
n-C36	0.065	5	0.75	8	104		0.778	107		3	10.0
n-C37	0.114	1	0.73	6	93		0.743	94		1	10.1
n-C38	0.094	1	0.60)1	76		0.596	75		1	10.1
n-C39	0.052	2	0.70	6	99		0.697	98		1	9.9
n-C40	<0.019) U	0.59	5	90		0.601	90		1	10.0
Average %Recovery					93			92			
Surrogate (Su)	Su Recovery (%)		Su Recovery (%)				Su Recovery (%)				
n-dodecane-d26	88		91				86				
n-eicosane-d42	101		105				110				
n-triacontane-d62	97		99				99				

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Laboratory Duplicate Report

Laboratory ID	RCA1042.D		ENV3865F.D					
Sample ID Matrix	HB18-PAM-53-1 Sodimont		Duplicate (HB18-PAM-53-1)					
Collection Date	08/06/18		08/06/18					
Received Date	08/14/18		08/14/18					
Extraction Date	08/30/18		08/30/18					
Extraction Batch	ENV3865		ENV3865					
Date Acquired	06-Sep-2018_03-16-19		05-Sep-2018 23:45:04					
Method	B&B SOP1016		B&B SOP1016					
Sample Dry Weight (g)	15.01		15.02					
Sample Wet Weight (g)	20.56		20.57					
% Dry	73		73					
% Moisture	27		27					
% Lipid (dry)	NA		NA					
% Lipid (wet)	NA		NA					
Dilution	1X		1X					
Target Compounds	Su. Corrected	Q	Su. Corrected	Q	RPD	QQ	MDL	3X MDL
	Conc. (µg/dry g)		Conc. (µg/dry g)		(%)		(µg/dry g)	(µg/dry g)
n-C9	<0.012	U	<0.012	2 U	0		0.012	0.037
n-C11	<0.021 ~0.016	U U	<0.021 ~0.016	5 5 U	0		0.021	0.004
n-C12	<0.019	U	<0.019	Ū	õ		0.019	0.056
n-C13	0.067	-	0.067	,	0	Х	0.045	0.134
i-C15	0.059		0.056	5	5		0.016	0.049
n-C14	0.054		0.055	5	2		0.013	0.039
i-C16	<0.004	U	< 0.004	U	0	V	0.004	0.013
n-C15	0.046		0.044	ł	4	X	0.016	0.049
i-C18	<0.002	U	0.000	,	0		0.004	0.013
n-C17	0.056	U	0.056	;	õ		0.003	0.010
Pristane	0.044		0.047	,	7		0.003	0.008
n-C18	0.050		0.057	,	13		0.004	0.011
Phytane	<0.006	U	<0.006	5 U	0		0.006	0.018
n-C19	0.080		0.080)	0		0.005	0.015
n-C20	0.097		0.103) :	6 5		0.012	0.037
n-C22	0.091		0.090	,	1		0.004	0.012
n-C23	0.209		0.203	5	3		0.008	0.024
n-C24	0.073		0.075	5	3		0.005	0.016
n-C25	0.228		0.233	5	2		0.007	0.021
n-C26	0.092		0.096	5	4		0.008	0.023
n-C27	0.336		0.334	ł	1		0.011	0.032
n-C28	0.059		0.059)	0		0.011	0.033
n-C30	0.297		0.300) :	4	x	0.021	0.004
n-C31	0.000		0.033		5	~	0.015	0.044
n-C32	0.021		0.023	5	9	Х	0.012	0.035
n-C33	0.117		0.110)	6		0.021	0.064
n-C34	0.019		0.018	5	5	Х	0.016	0.049
n-C35	0.105		0.101		4		0.015	0.044
n-C36	<0.016	U	<0.016	5 U	0		0.016	0.047
n-C38	<0.017		<0.017		0		0.017	0.052
n-C39	<0.019	ŭ	<0.019) U	0		0.019	0.056
n-C40	<0.019	U	<0.019	Ŭ	0		0.019	0.056
Total Alkanes	2.6		2.6	5	2			
Total Petroleum Hvdrocarbons	47		50)	6		1.40	4.20
Total Resolved Hydrocarbons	11		10)	9		1.40	4.20
Unresolved Complex Mixture	36		40)	10		1.40	4.20
EOM (µg/dry g)	62	J	60) J	3			
Surrogate (Su)	Su Recovery (%)		Su Recovery (%)					
n-dodecane-d26	84		84					
n-eicosane-d42	108		104					
n-triacontane-d62	107		105					

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Standard Reference Material Report

Laboratory ID	FID30463F.D	
Sample ID	ALI-SRM2779-20-04	
Matrix	Reference Oil	
Collection Date	NA	
Received Date	NA	
Extraction Date	NA	
Extraction Batch	ENV3865	
Date Acquired	06-Sep-2018, 10:18:33	
Method	B&B SOP1016	
Sample Weight (mg)	20.0	
Dilution	1X	

Target Compounds	Su. Corrected Conc. (µg/mg)	Q	Q	Dev. (%)	B&B Average	-3σ Conc.	+3σ Conc.
22	10.0			_		(µg/mg)	(µg/mg)
n-C9	10.9				11.8	9.72	13.9
n-C10	10.9			1	10.8	8.96	12.7
n-C11	9.6			1	9.72	8.17	11.3
n-C12	8.44			1	8.35	6.96	9.74
n-C13	8.98			19	7.56	5.75	9.38
I-C15	1.33			15	1.56	1.08	2.05
n-C14	6.44			4	6.70	5.60	7.80
I-C16	1.24		î	51	2.50	2.01	2.99
n-C15	6.06			4	6.29	5.29	7.30
n-C16	5.13			3	5.29	4.35	6.23
I-C18	1.50			5	1.57	1.22	1.93
n-C17	4.52			1	4.47	3.70	5.23
Pristane	2.40			1	2.42	1.99	2.84
n-C18	3.77			4	3.61	3.14	4.08
Phytane	1.68			10	1.53	1.24	1.82
n-C19	3.75			14	3.28	2.66	3.90
n-C20	2.87			2	2.81	2.37	3.25
n-C21	2.23			4	2.33	1.95	2.72
n-C22	1.97			4	2.04	1.70	2.39
n-C23	1.81			1	1.83	1.53	2.13
n-C24	1.56			5	1.64	1.35	1.92
n-C25	1.56			14	1.37	1.17	1.57
n-C26	1.08			6	1.15	0.967	1.33
n-C27	1.05			14	0.918	0.772	1.06
n-C28	0.770			1	0.780	0.635	0.925
n-C29	0.740			2	0.753	0.643	0.863
n-C30	0.605			8	0.658	0.547	0.769
n-C31	0.540			1	0.547	0.457	0.638
n-C32	0.490			1	0.486	0.407	0.565
n-C33	0.439			6	0.467	0.375	0.559
n-C34	0.455			8	0.422	0.350	0.493
n-C35	0.389			14	0.342	0.278	0.407
n-C36	0.206	J		2	0.201	0.156	0.246
n-C37	0.229	J		11	0.207	0.158	0.256
n-C38	0.195	J		15	0.169	0.129	0.208
n-C39	0.148	J		7	0.160	0.124	0.196
n-C40	0.122	J		21	0.154	0.118	0.190
Total Petroleum Hydrocarbons	548			5	574	452	695
Surrogate (Su)	Su Recovery (%)						
n-dodecane-d26	102						
n-eicosane-d42	101						
n-triacontane-d62	95						

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data ICV Report

Laboratory ID	FID30461H.D	
Sample ID	ALI-WKICV-25-003	
Matrix	Solution	
Collection Date	NA	
Received Date	NA	
Extraction Date	NA	
Extraction Batch	ENV	
Date Acquired	03-Sep-2018, 22:58	
Method	B&B SOP1016	
Sample Volume (mL)	1.00	

Target Compounds	Concentration	Recovery	LCM Certified Conc
	(µg/me)	(70)	(ug/mL)
n-C9	24.16	96	25.04
n-C10	24.71	99	25.01
n-C11	24.88	99	25.02
n-C12	24.43	98	25.04
n-C13	24.42	98	25.01
n-C14	24.58	98	25.02
n-C15	24.21	97	25.01
n-C16	24.02	96	25.01
n-C17	24.71	99	25.04
Pristane	23.49	94	25.01
n-C18	24.73	99	25.02
Phytane	26.06	104	25.04
n-C19	24.52	98	25.03
n-C20	24.51	98	25.02
n-C21	24.99	100	25.03
n-C22	24.61	98	25.02
n-C23	24.95	100	25.03
n-C24	24.62	98	25.01
n-C25	24.89	100	25.02
n-C26	24.96	100	25.02
n-C27	25.34	101	25.01
n-C28	24.01	96	25.01
n-C29	25.78	103	25.03
n-C30	25.00	100	25.03
n-C31	24.96	100	25.01
n-C32	25.60	102	25.02
n-C33	23.98	96	25.02
n-C34	25.26	101	25.03
n-C35	23.61	94	25.02
n-C36	23.60	94	25.02
n-C37	25.51	102	25.04
n-C38	23.89	95	25.03
n-C39	24.38	97	25.02
n-C40	24.71	99	25.02
Surrogate (Su)	Concentration (µg/mL)		
n-dodecane-d26	24 71	99	25.00
n-eicosane-d42	25.21	101	25.00
n-triacontane-d62	25.40	102	25.00
	20.70	102	20.00

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data CCV Report

Laboratory ID FID30463B.D FID30463E.D FID30463H.D Sample ID ALI-WKCCV-25-010 ALI-WKCCV-25-010 ALI-WKCCV-25-010 Matrix Solution Solution Solution **Collection Date** NA NA NA **Received Date** NA NA NA Extraction Date NA NA NA Extraction Batch ENV ENV ENV **Date Acquired** 05-Sep-2018, 14:21:14 06-Sep-2018, 02:06:15 06-Sep-2018, 12:39:18 B&B SOP1016 **B&B SOP1016 B&B SOP1016** Method Sample Volume (mL) 1.00 1.00 1.00 ALI-WKCCV-25-010 **Target Compounds** Concentration Recovery Concentration Recovery Concentration Recovery Certified Conc $(\mu g/mL)$ (%) $(\mu g/mL)$ (%) $(\mu g/mL)$ (%) $(\mu g/mL)$ n-C9 24.98 25 41 102 25.61 103 25 44 102 n-C10 25.07 25.84 103 26.09 104 26.24 105 25.93 n-C11 25.09 103 26.28 105 26.52 106 n-C12 24.61 25.50 25.85 26.06 106 104 105 25 18 25 45 101 25.83 25 97 103 n-C13 103 n-C14 24.60 25.61 104 25.90 105 25.87 105 n-C15 25.05 25.33 25.38 101 101 25.42 101 n-C16 25.01 25.33 101 25.30 101 25.29 101 24.79 25.25 102 25.42 25.53 103 n-C17 103 Pristane 24.85 25.46 102 25.66 103 25.75 104 n-C18 24 92 25.46 102 25.53 25.58 103 102 Phytane 24.55 24.99 102 25.08 25.04 102 102 n-C19 25.30 24.92 102 25.31 102 25.36 102 n-C20 25.10 25.63 102 25.78 103 25.58 102 n-C21 25.02 25.52 25.53 102 25.52 102 102 n-C22 25.05 26.17 105 26.05 104 26.04 104 24 86 25 92 104 25.87 25.78 104 n-C23 104 n-C24 24.76 25.28 102 25.21 102 25.13 101 25.32 25.08 n-C25 24.98 101 25.16 101 100 n-C26 25.02 25.50 102 25.38 101 25.24 101 25.11 25.73 n-C27 102 25.57 102 25.42 101 n-C28 24.87 25.36 102 25.14 101 24.89 100 n-C29 25.16 26.48 105 26.22 25.83 103 104 n-C30 25.15 26.11 104 25.80 25.35 101 103 25.08 25.75 103 25.63 102 n-C31 25.73 103 n-C32 24.72 25.49 103 24.89 101 24.81 100 25.85 25.68 24.74 n-C33 25.18 103 102 98 n-C34 25.11 26.15 104 25.69 102 27.02 108 n-C35 24.85 25.52 103 25.06 101 24.76 100 n-C36 25.06 26.28 105 27.27 109 25.43 102 n-C37 25.17 25.39 101 24.93 99 24.73 98 n-C38 25.16 24.71 98 24.27 96 24.41 97 n-C39 24.80 24.83 100 24.53 99 24.32 98 n-C40 24.97 23.49 94 22.84 91 23.25 93 Surrogate (Su) Concentration Concentration Concentration (µg/mL) (µg/mL) (µg/mL) n-dodecane-d26 25.00 25.03 100 25.43 102 25.63 103 101 n-eicosane-d42 25.00 25.28 101 25.31 101 25.29 n-triacontane-d62 25.00 25.70 103 25.27 101 24.84 99

Total Petroleum Hydrocarbons Chromatograms

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\RCA1041.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 00:55 using AcqMethod ALI2012.M Sample Name: HB18-PAM-S2-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20
... 18-09-05.SC\RCA1042.D
Operator : Mike Gaskins
Instrument : HP5890
Acquired : 06-Sep-2018, 03:16 using AcqMethod ALI2012.M
Sample Name: HB18-PAM-S3-1
Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\RCA1043.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 04:26 using AcqMethod ALI2012.M Sample Name: HB18-PAM-S3-2 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\RCA1044.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 05:37 using AcqMethod ALI2012.M Sample Name: HB18-PAM-S6-1 Misc Info :

Page 33 of 97

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\RCA1045.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 06:47 using AcqMethod ALI2012.M Sample Name: HB18-PAM-S8-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\RCA1046.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 07:58 using AcqMethod ALI2012.M Sample Name: HB18-PAM-S11-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\RCA1047.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 09:08 using AcqMethod ALI2012.M Sample Name: HB18-PAM-S4-1 Misc Info :

Page 36 of 97

Aliphatic Mass Discrimination Ratio

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Mass Discrimination

Laboratory ID	Sample ID	n-C20	n-C36	n-C36/n-C20 ratio	Q
-		(Area)	(Area)		
FID30461B.D	ALI-WKC1-1.25-003	6077	5644	0.93	
FID30461C.D	ALI-WKC2-10-003	43270	42340	0.98	
FID30461D.D	ALI-WKC3-25-003	108488	106889	0.99	
FID30461E.D	ALI-WKC4-40-003	172774	167965	0.97	
FID30461F.D	ALI-WKC5-50-003	236897	230298	0.97	
FID30461G.D	ALI-WKC6-100-003	571112	554200	0.97	
FID30461H.D	ALI-WKICV-25-003	113466	106611	0.94	
FID30461J.D	ALI-WKCCV-25-010	104433	119083	1.14	
FID30463B.D	ALI-WKCCV-25-010	101293	101345	1.00	
FID30463E.D	ALI-WKCCV-25-010	101789	105067	1.03	
FID30463H.D	ALI-WKCCV-25-010	102724	99635	0.97	

Qualifiers (Q): Ratio of n-C36 to n-C20 needs to be > 0.70

Aliphatic Internal Standard Area Data

Kinnetic Labs - Harrison Bay Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Area of Internal Standards

Laboratory ID	Sample ID		Internal Standard 1			Internal Standard	2
			n-hexadecane-d34		Q	5α-androstane	Q
		Response	50%	200%	Response	50%	200%
		(Area)	(Area)	(Area)	(Area)	(Area)	(Area)
FID30461D.D	ALI-WKC3-25-003	187071	93536	374142	218105	109053	436210
FID30461H.D	ALI-WKICV-25-003	204318			237483		
FID30461J.D	ALI-WKCCV-25-010	179644			208354		
FID30463B.D	ALI-WKCCV-25-010	174484			202740		
FID30463F.D	ALI-SRM2779-20-04	251905			311097		
FID30463D.D	ALI-WKPem-004	229577			270665		
ENV3865A.D	Method Blank	171116			200240		
ENV3865C.D	Blank Spike	177149			205583		
ENV3865D.D	Matrix Spike (HB18-PAM-S2-1)	177157			201139		
ENV3865E.D	Matrix Spike Duplicate (HB18-PAM-S2-1)	179128			204108		
ENV3865F.D	Duplicate (HB18-PAM-S3-1)	169954			195253		
RCA1041.D	HB18-PAM-S2-1	179740			203750		
RCA1042.D	HB18-PAM-S3-1	164952			189658		
RCA1043.D	HB18-PAM-S3-2	169704			195354		
FID30463E.D	ALI-WKCCV-25-010	175475			202535		
RCA1044.D	HB18-PAM-S6-1	164234			182441		
RCA1045.D	HB18-PAM-S8-1	169398			194202		
RCA1046.D	HB18-PAM-S11-1	173165			193477		
RCA1047.D	HB18-PAM-S4-1	163294			187827		
FID30463H.D	ALI-WKCCV-25-010	179720			205975		

Polycyclic Aromatic Hydrocarbon Concentration

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1041.D HB18-PAM-S2-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 6:52 B&B SOP1006 15.05 27.12 55 45 NA NA NA X	RCA1042.D HB18-PAM-S3-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 9:10 B&B SOP1006 15.01 20.56 73 27 NA NA NA 1X	RCA1043.D HB18-PAM-S3-2 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 10:19 B&B SOP1006 15.02 19.86 76 24 NA NA 1X	RCA1044.D HB18-PAM-S6-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 11:29 B&B SOP1006 15.01 29.51 51 49 NA NA NA 1X	RCA1045.D HB18-PAM-S8-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 12:38 B&B SOP1006 15.02 20.75 72 28 NA NA NA 1X	RCA1046.D HB18-PAM-S11-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 13:48 B&B SOP1006 15.00 29.13 51 49 NA NA NA 1X
Target Compounds	Su. Corrected Q	Su. Corrected Q	Su. Corrected Q	Su. Corrected Q	Su. Corrected Q	Su. Corrected Q
	Conc. (ng/dry g)	Conc. (ng/dry g)	Conc. (ng/dry g)	Conc. (ng/dry g)	Conc. (ng/dry g)	Conc. (ng/dry g)
cis/trans Decalin C1-Decalins C2-Decalins C3-Decalins C4-Decalins C4-Decalins C4-Decalins C4-Decalins C4-Decalins C4-Decalins C4-Decalins C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C4-Naphtalenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes C3-Dhenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Raphthobenzothiophenes C4-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C4-Naphthobenzothiophenes C3-N	Conc. (ng/dry g) 20.1 28.9 34.9 49.8 29.2 40.9 120 186 197 122 <0.1 U <0.2 I <0.1 109 23.1 54.0 56.8 6.27 2.83 75.0 137 149 126 46.4 10.3 24.1 39.9 23.7 12.6 23.2 29.5 88.1 99.0 63.8 41.9 40.2 46.3 37.7 20.6 7.26 9.29 43.3 58.8 53.8 34.0 <0.2 U 20.7 5.08 <0.1 U 20.6 5.08 <0.1 U 20.6 5.08 5.0	Conc. (ng/dry g) 4.33 5.59 7.24 18.4 11.3 4.75 13.6 22.6 25.4 16.2 <0.1 U <0.2 U <0.367 3.01 1.68 3.01 1.68 3.01 1.2 28.3 20.2 28.7 1.80 4.35 3.92 5.08 15.5 14.2 11.9 8.67 6.01 9.01 9.42 5.78 2.29 1.30 8.35 10.8	Conc. (ng/dry g) 4.07 5.61 7.74 18.2 8.70 4.73 14.3 24.9 28.9 16.3 <0.1 U <0.2 U	Conc. (ng/dry g) 14.9 20.1 19.3 28.3 20.9 27.0 89.7 141 126 72.0 <0.1 U <0.2 U <0	Conc. (ng/dry g) 5.17 6.73 8.74 21.7 12.4 5.57 16.9 24.6 29.4 16.9 24.6 29.4 16.9 24.7 29.4 16.9 20.2 U <0.2	Conc. (ng/dry g) 28.5 34.3 35.3 43.0 22.2 61.3 188 239 219 130 <0.1 U <0.2 U <0.1 U <0.7 H <0.1 H <0.4
Perylene	229	39.9	39.2	184	46.8	256
Indeno(1.2.3-c,d)pyrene	6.95	1.12	1.11	4.45	1.18	<0.1 U
Dibenzo(a,h)anthracene	2.99	0.225	0.482	2.55	0.586	3.93
C1-Dibenzo(a,h)anthracenes	<0.1 U	<0.1 U	<0.1 U	<0.1 U	<0.1 U	<0.1 U
C2-Dibenzo(a,h)anthracenes	<0.1 U	<0.1 U	<0.1 U	<0.1 U	<0.1 U	<0.1 U
C3-Dibenzo(a,h)anthracenes	<0.1 U	<0.1 U	<0.1 U	<0.1 U	<0.1 U	<0.1 U
Benzo(g,h,i)perylene	19.5	3.39	3.54	19.3	3.56	26.4
Total PAHs	2707	493	502	1922	539	3255

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1041.D HB18-PAM-S2-1 Sediment 08/06/18 08/06/18 08/30/18 ENV3865 9/5/18 6:52 B&B SOP1006 15.05 27.12 55 45 NA NA NA 1X	RCA1042.D HB18-PAM-S3-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 9:10 B&B SOP1006 15.01 20.56 73 27 NA NA NA 1X	RCA1043.D HB18-PAM-S3-2 Sediment 08/06/18 08/30/18 ENV3865 9/5/18 10:19 B&B SOP1006 15.02 19.86 76 24 NA NA 1X	RCA1044.D HB18-PAM-S6-1 Sediment 08/06/18 08/30/18 ENV3865 9/5/18 11:29 B&B SOP1006 15.01 29.51 51 49 NA NA NA 1X	RCA1045.D HB18-PAM-S8-1 Sediment 08/06/18 08/30/18 ENV3865 9/5/18 12:38 B&B SOP1006 15.02 20.75 72 28 NA NA NA 1X	RCA1046.D HB18-PAM-S11-1 Sediment 08/06/18 08/30/18 ENV3865 9/5/18 13:48 B&B SOP1006 15.00 29.13 51 49 NA NA NA 1X
Target Compounds	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Q Conc. (ng/dry g)
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylfluorene 4-Methylfluorene 1-Methyldibenzothiophene 2/3-Methyldibenzothiophene 3-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 3,6-Dimethylphenanthrene 8,6-Dimethylphenanthrene 8a-Oleanane C29-Hopane 18a-Oleanane C20-TAS C21-TAS C26(20S)-TAS C26(20S)-TAS C26(20S)-TAS C27(20R)-TAS C28(20R)-TAS C28(20R)-TAS	101 75.9 28.1 21.8 16.0 17.0 9.40 4.65 32.8 42.8 3.47 50.8 47.7 8.67 398 11.7 14.3 29.5 <0.6 U 59.0 5.06 4.78 5.03 21.0 17.6 21.0 13.4	$\begin{array}{c} 11.5\\ 8.54\\ 3.30\\ 2.63\\ 2.43\\ 3.23\\ 1.62\\ 0.753\\ 5.01\\ 6.61\\ 0.405\\ 7.93\\ 10.9\\ 1.45\\ 40.0\\ 1.87\\ 2.66\\ 5.01\\ <0.6\\ U\\ 9.66\\ 1.12\\ 1.36\\ 0.99\\ 3.52\\ 2.86\\ 3.11\\ 2.11\end{array}$	$\begin{array}{c} 11.9\\ 9.14\\ 3.73\\ 2.97\\ 2.55\\ 3.48\\ 1.74\\ 0.831\\ 5.48\\ 7.18\\ 0.422\\ 8.68\\ 11.5\\ 1.58\\ 39.0\\ 1.96\\ 2.65\\ 5.09\\ < 0.6\\ U\\ 9.34\\ 1.11\\ 1.07\\ 1.00\\ 3.44\\ 2.97\\ 3.11\\ 2.14\end{array}$	$\begin{array}{c} 77.1\\ 55.2\\ 23.2\\ 14.4\\ 18.4\\ 13.7\\ 8.11\\ 2.93\\ 28.7\\ 35.5\\ 1.26\\ 38.6\\ 34.8\\ 6.93\\ 88.6\\ 6.82\\ 10.3\\ 14.3\\ <0.6\\ U\\ 26.8\\ 2.74\\ 2.50\\ 3.50\\ 11.5\\ 8.63\\ 12.2\\ 6.42\\ \end{array}$	$\begin{array}{c} 14.3\\ 9.30\\ 3.81\\ 3.17\\ 2.66\\ 3.56\\ 1.78\\ 0.862\\ 5.50\\ 7.26\\ 0.481\\ 8.64\\ 11.4\\ 1.59\\ 44.4\\ 2.13\\ 2.88\\ 5.81\\ < 0.6\\ U\\ 10.2\\ 1.15\\ 1.28\\ 1.14\\ 3.86\\ 3.35\\ 3.75\\ 2.37\end{array}$	$\begin{array}{c} 160\\ 96.8\\ 39.6\\ 25.5\\ 26.7\\ 21.7\\ 12.7\\ 5.06\\ 46.0\\ 57.4\\ 2.86\\ 66.2\\ 55.1\\ 11.7\\ 263\\ 12.7\\ 18.5\\ 41.2\\ <0.6\\ U\\ 47.1\\ 4.64\\ 4.04\\ 5.16\\ 19.8\\ 12.2\\ 13.1\\ 8.72\end{array}$
Surrogate Recovery (%) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	83 98 90 96 97	81 91 91 94 91	80 89 90 91 87	79 94 89 90 93	77 88 90 93 78	86 105 92 94 99

Laboratory ID Sample ID Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1047.D HB18-PAM-S4-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 14:57 B&B SOP1006 15.01 21.60 69 31 NA NA 1X
Target Compounds	Su. Corrected Q Conc. (ng/dry g)
cis/trans Decalin C1-Decalins C2-Decalins C3-Decalins C4-Decalins C4-Decalins C4-Decalins Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes C4-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Shuoranthenes/Pyrenes C3-Naphthobenzothiophenes C4-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C4-Naphthobenzothiophenes C3-Naphthobenzothiophenes C4-Naphthobenzothiophenes C3-Naphthobenzothiophenes C4	Conc. $(ng/dry g)$ 2.88 3.13 4.97 8.10 4.10 2.34 6.76 10.8 13.6 7.57 <0.1 U <0.2 U <0.207 <0.606 14.5 1.77 1.14 2.61 4.86 4.86 4.09 1.79 2.16 2.94 9.21 9.87 5.93 3.70 4.16 6.00 6.44 4.45 1.59 0.69 5.01 7.00 5.59 3.71 <0.2 U 3.54 0.505 <0.4 H
Benzo(a)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene	<0.1 U 3.15 1.34 21.9
Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene C1-Dibenzo(a,h)anthracenes	0.653 0.307 <0.1 U
C2-Dibenzo(a,h)anthracenes C3-Dibenzo(a,h)anthracenes Benzo(g,h,i)perylene	<0.1 U <0.1 U 2.04
Total PAHs	275

RCA1047.D HB18-PAM-S4-1 Sediment 08/06/18 08/30/18 ENV3865 9/5/18 14:57 B&B SOP1006 15.01 21.60 69 31 NA NA 1X		
Su. Corrected Q		
conc. (ng/dry g)		
5.82		
3.78		
1.51		
1.39		
1.37		
1.96		
0.987		
0.414		
2.77		
3.75		
0.180		
4.20		
0.802		
15.1		
1.08		
1.48		
3.55		
<0.6 U		
5.43		
0.624		
0.640		
0.415 J		
1.85		
1.57		
1.86		
1.23		
81		
89		
90		
94		
0.		

Laboratory ID	ENV3865A.D	
Sample ID	Method Blank	
Matrix	Sediment	
Collection Date	NA	
Received Date	NA	
Extraction Date	08/30/18	
Extraction Batch	ENV3865	
Date Acquired	9/4/18 23:56	
Method	B&B SOP1006	
Sample Dry Weight (g)	15.04	
Sample Wet Weight (g)	NA	
% Dry	NA	
% Moisture	NA	
% Lipid (dry)	NA	
% Lipid (wet)	NA	
Dilution	1X	

Target Compounds	Su. Corrected	Q	3X	Actual MDL
	Conc. (ng/dry g)		MDL	
cis/trans Decalin	-(1 11	0 395	0 132
C1-Decalins	<().3 U	0.790	0.263
C2-Decalins	<().3 U	0.790	0.263
C3-Decalins	<().3 U	0.790	0.263
C4-Decalins	<().3 U	0.790	0.263
Naphthalene	<().3 U	1.03	0.342
C1-Naphthalenes		<1 U	3.09	1.03
C2-Naphthalenes	<().7 U	2.05	0.684
C3-Naphthalanas	<).7 U	2.05	0.684
Benzothiophene	<() 1 U	0.270	0.084
C1-Benzothiophenes	<().2 U	0.540	0.180
C2-Benzothiophenes	<().2 U	0.540	0.180
C3-Benzothiophenes	<().2 U	0.540	0.180
C4-Benzothiophenes	<().2 U	0.540	0.180
Biphenyl	<().3 U	0.881	0.294
Acenaphthylene		<0 U	0.122	0.041
Acenaphthene	<().1 U	0.308	0.103
Eluoropo	<(J.Z U	0.613	0.204
C1-Fluorenes		0411	1 10	0.165
C2-Fluorenes	<().4 U	1.10	0.367
C3-Fluorenes	<().4 U	1.10	0.367
Carbazole	<().1 U	0.449	0.150
Anthracene	<().1 U	0.346	0.115
Phenanthrene	0.0	72 J	0.624	0.208
C1-Phenanthrenes/Anthracenes	<().1 U	0.232	0.077
C2-Phenanthrenes/Anthracenes	<().3 U	0.855	0.285
C3-Phenanthrenes/Anthracenes	<	J.3 U	0.855	0.285
Dibenzothionhene	<(0.855	0.265
C1-Dibenzothiophenes	<().1 U	0.191	0.064
C2-Dibenzothiophenes	<().2 U	0.696	0.232
C3-Dibenzothiophenes	<().2 U	0.696	0.232
C4-Dibenzothiophenes	<().2 U	0.696	0.232
Fluoranthene	<().3 U	0.998	0.333
Pyrene	<().1 U	0.408	0.136
C1-Fluoranthenes/Pyrenes	<().5 U	1.41	0.469
C2-Fluoranthenes/Pyrenes	<(J.5 U	1.41	0.469
C4-Fluoranthenes/Pyrenes) 5 II	1.41	0.409
Naphthobenzothiophene	<().1 U	0.383	0.128
C1-Naphthobenzothiophenes	<().3 U	0.767	0.256
C2-Naphthobenzothiophenes	<().3 U	0.767	0.256
C3-Naphthobenzothiophenes	<().3 U	0.767	0.256
C4-Naphthobenzothiophenes	<().3 U	0.767	0.256
Benz(a)anthracene	<().2 U	0.577	0.192
Chrysene/Tripnenylene	<).1 U	0.347	0.116
C2-Chrysenes	<(12 11	0.695	0.232
C3-Chrysenes	<().2 U	0.695	0.232
C4-Chrysenes	<().2 U	0.695	0.232
Benzo(b)fluoranthene	<().2 U	0.609	0.203
Benzo(k,j)fluoranthene	<().1 U	0.294	0.098
Benzo(a)fluoranthene	<().1 U	0.294	0.098
Benzo(e)pyrene	<().2 U	0.530	0.177
Denzo(a)pyrene	<(1.1 U	0.304	0.101
reiyielle Indeno(1.2.3-c.d)nyrene	`> ار	1.3 0	3.8U 0 151	0.050
Dibenzo(a h)anthracene	<() 1 1	0.131	0.050
C1-Dibenzo(a,h)anthracenes	<().1 U	0.386	0,129
C2-Dibenzo(a,h)anthracenes	<().1 U	0.386	0.129
C3-Dibenzo(a,h)anthracenes	<().1 U	0.386	0.129
Benzo(g,h,i)perylene	<(0.1 U	0.264	0.088
Total PAHs	0.0	72		

Laboratory ID	ENV3865A.D
Sample ID	Method Blank
Matrix	Sediment
Collection Date	NA
Received Date	NA
Extraction Date	08/30/18
Extraction Batch	ENV3865
Date Acquired	9/4/18 23:56
Method	B&B SOP1006
Sample Dry Weight (g)	15.04
Sample Wet Weight (g)	NA
% Dry	NA
% Moisture	NA
% Lipid (dry)	NA
% Lipid (wet)	NA
Dilution	1X

Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	3X MDL	Actual MDL
Individual Alkyl Isomers and Hopanes				
2-Methylnaphthalene	<1.3	U	3.89	1.30
1-Methylnaphthalene	<0.5	U	1.64	0.546
2,6-Dimethylnaphthalene	<0.3	U	0.782	0.261
1,6,7-Trimethylnaphthalene	<0.1	U	0.382	0.127
1-Methylfluorene	<0.2	U	0.574	0.191
4-Methyldibenzothiophene	<0.1	U	0.274	0.091
2/3-Methyldibenzothiophene	<0.1	U	0.274	0.091
1-Methyldibenzothiophene	<0.1	U	0.274	0.091
3-Methylphenanthrene	<0.1	U	0.291	0.097
2-Methylphenanthrene	<0.1	U	0.291	0.097
2-Methylanthracene	<0.1	U	0.291	0.097
4/9-Methylphenanthrene	<0.1	U	0.291	0.097
1-Methylphenanthrene	<0.1	U	0.291	0.097
3,6-Dimethylphenanthrene	<0.1	U	0.329	0.110
Retene	<0.2	U	0.694	0.231
2-Methylfluoranthene	<0.2	U	0.668	0.223
Benzo(b)fluorene	<0.1	U	0.374	0.125
C29-Hopane	<0.6	U	1.72	0.575
18a-Oleanane	<0.6	U	1.72	0.575
C30-Hopane	<0.6	U	1.72	0.575
C20-TAS	<0.6	U	1.72	0.575
C21-TAS	<0.6	U	1.72	0.575
C26(20S)-TAS	<0.6	U	1.72	0.575
C26(20R)/C27(20S)-TAS	<0.6	U	1.72	0.575
C28(20S)-TAS	<0.6	U	1.72	0.575
C27(20R)-TAS	<0.6	U	1.72	0.575
C28(20R)-TAS	<0.6	U	1.72	0.575
Surrogate Recovery (%)				
Naphthalene-d8	89			
Acenaphthene-d10	89			
Phenanthrene-d10	91			
Chrysene-d12	93			
Perylene-d12	101			

Laboratory ID	ENV3865C.D	
Sample ID	Blank Spike	
Matrix	Sediment	
Collection Date	NA	
Received Date	NA	
Extraction Date	08/30/18	
Extraction Batch	ENV3865	
Date Acquired	9/5/18 2:15	
Method	B&B SOP1006	
Sample Dry Weight (g)	1.00	
Sample Wet Weight (g)	NA	
% Dry	NA	
% Moisture	NA	
% Lipid (dry)	NA	
% Lipid (wet)	NA	
Dilution	1X	

Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	Recovery Q (%)	Spike amount (ng)
cis/trans Decalin C1-Decalins C2-Decalins C3-Decalins	102 NA NA NA		102	100
C4-Decains Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes	NA 94.2 NA NA NA		94	100
C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes C4-Benzothiophenes	99.0 NA NA NA		99	100
Biphenvl	138		138	100
Acenaphthylene	102		101	100
Acenaphthene	105		104	100
Dibenzofuran	103		102	100
Fluorene	104		104	100
C1-Fluorenes	NA			
C2-Fluorenes	NA			
C3-Fluorenes	NA 07.0		06	101
Anthracono	97.0		90	101
Phenanthrene	99.2 104		104	100
C1-Phenanthrenes/Anthracenes	NA		104	100
C2-Phenanthrenes/Anthracenes	NA			
C3-Phenanthrenes/Anthracenes	NA			
C4-Phenanthrenes/Anthracenes	NA			
Dibenzothiophene	95.3		95	100
C1-Dibenzothiophenes	NA			
C2-Dibenzothiophenes	NA			
C3-Dibenzothiophenes	NA			
Eluoranthene	112		112	100
Pyrene	112		112	100
C1-Fluoranthenes/Pyrenes	NA			100
C2-Fluoranthenes/Pyrenes	NA			
C3-Fluoranthenes/Pyrenes	NA			
C4-Fluoranthenes/Pyrenes	NA			
Naphthobenzothiophene	112		112	101
C1-Naphthobenzothiophenes	NA			
C2-Naphthobenzothiophones	NA NA			
C4-Naphthobenzothiophenes	NA			
Benz(a)anthracene	112		112	100
Chrysene/Triphenylene	110		109	100
C1-Chrysenes	NA			
C2-Chrysenes	NA			
C3-Chrysenes	NA			
C4-Chrysenes	NA 107		407	100
Benzo(b)iluoranthene	107		107	100
Benzo(a)fluoranthene	NA		105	100
Benzo(e)pyrene	113		113	100
Benzo(a)pyrene	118		118	100
Perylene	110		110	100
Indeno(1,2,3-c,d)pyrene	116		116	100
Dibenzo(a,h)anthracene	112		112	100
C1-Dibenzo(a,h)anthracenes	NA			
C2-Dibenzo(a,h)anthracenes	NA			
C3-Dibenzo(a,h)anthracenes	NA		110	100
Denzo(g,n,i)peryiene	119		119	100
Average Recovery (%)			110	

Laboratory ID	ENV3865C.D
Sample ID	Blank Spike
Matrix	Sediment
Collection Date	NA
Received Date	NA
Extraction Date	08/30/18
Extraction Batch	ENV3865
Date Acquired	9/5/18 2:15
Method	B&B SOP1006
Sample Dry Weight (g)	1.00
Sample Wet Weight (g)	NA
% Dry	NA
% Moisture	NA
% Lipid (dry)	NA
% Lipid (wet)	NA
Dilution	1X

Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	Recovery (%)	Q	Spike amount (ng)					
Individual Alkyl Isomers and Hopanes	Individual Alkyl Isomers and Hopanes									
2-Methylnaphthalene	99.2		99		100					
1-Methylnaphthalene	101		101		100					
2,6-DimethyInaphthalene	101		100		100					
1,6,7-TrimethyInaphthalene	108		108		100					
1-Methylfluorene	109		108		100					
4-Methyldibenzothiophene	99.3		99		101					
2/3-Methyldibenzothiophene	NA									
1-Methyldibenzothiophene	NA									
3-Methylphenanthrene	NA									
2-Methylphenanthrene	NA									
2-Methylanthracene	NA									
4/9-Methylphenanthrene	NA									
1-Methylphenanthrene	187		186	*	100					
3,6-Dimethylphenanthrene	113		112		100					
Retene	113		113		100					
2-Methylfluoranthene	114		113		100					
Benzo(b)fluorene	109		108		101					
C29-Hopane	NA									
18a-Oleanane	NA									
C30-Hopane	116		116		100					
C20-TAS	NA									
C21-TAS	NA									
C26(20S)-TAS	NA									
C26(20R)/C27(20S)-TAS	NA									
C28(20S)-TAS	NA									
C27(20R)-TAS	NA									
C28(20R)-TAS	NA									
Surrogate Recovery (%)										
Naphthalene-d8	88									
Acenaphthene-d10	91									
Phenanthrene-d10	92									
Chrysene-d12	95									
Perylene-d12	95									

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Matrix Spike Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g)	RCA1041.D HB18-PAM-S2-1 Sediment 08/06/18 08/30/18 ENV3865 9/5/18 6:52 B&B SOP1006 15.05 27 12	ENV3865D.D MS (HB18-PAM-S2-1) Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 3:24 B&B SOP1006 15.05 27.12		Ν	ENV3865E.D MSD (HB18-PAM-S2-1) Sediment 08/06/18 08/30/18 ENV3865 9/5/18 4:34 B&B SOP1006 15.02 27.07				
% Dry	55	55			55				
% Moisture	45	45			45				
% Lipid (dry)	NA	NA			NA				
% Lipid (wet)	NA	NA			NA				
	IA	14			12				
Target Compounds	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Conc. (ng/dry g)	Q Recovery (%)	Q Q1	Su. Corrected Conc. (ng/dry g)	Q Recovery (%)	Q Q1	RPD (%)	Q Spike Amount (ng)
cis/trans Decalin	20.1	26.6	98	Y	24.5	66	Y	8	100
C1-Decalins	28.9	NA			NA				
C2-Decalins	34.9	NA NA			NA NA				
C4-Decalins	49.0 29.2	NA			NA				
Naphthalene	40.9	48.1	108	Y	45.4	66	Y	6	100
C1-Naphthalenes	120	NA			NA				
C2-Naphthalenes	186	NA			NA				
C3-Naphthalenes	197	NA			NA				
C4-Naphthalenes	122	NA	00		NA	07		2	100
C1-Benzothiophenes	<0.1 U	6.6 NA	99		6.5 NA	97		2	100
C2-Benzothiophenes	<0.2 U	NA			NA				
C3-Benzothiophenes	<0.2 U	NA			NA				
C4-Benzothiophenes	<0.2 U	NA			NA				
Biphenyl	20.1	26.0	88	Y	25.4	80	Y	2	100
Acenaphthylene	1.93	0.09 7.87	105		8.7 8.0	02		2	100
Dibenzofuran	25.1	28.9	57	Y	28.7	53	Y	1	100
Fluorene	10.9	16.4	82		16.4	82		0	100
C1-Fluorenes	23.1	NA			NA				
C2-Fluorenes	54.0	NA			NA				
Carbazole	50.8 6.27	NA 13.0	100		13 0	100		0	101
Anthracene	2.83	9.26	97		9.32	97		1	100
Phenanthrene	75.0	79.2	63	Y	77.7	38	Y	2	100
C1-Phenanthrenes/Anthracenes	137	NA			NA				
C2-Phenanthrenes/Anthracenes	149	NA			NA				
C4-Phenanthrenes/Anthracenes	46.4	NA			NA				
Dibenzothiophene	10.3	16.5	93		16.1	88		2	100
C1-Dibenzothiophenes	24.1	NA			NA				
C2-Dibenzothiophenes	39.9	NA			NA				
C3-Dibenzothiophenes	23.7	NA			NA				
Fluoranthene	23.2	30.6	110	Y	30.1	102	Y	2	100
Pyrene	29.5	36.7	109	Ý	36.2	100	Ý	1	100
C1-Fluoranthenes/Pyrenes	88.1	NA			NA				
C2-Fluoranthenes/Pyrenes	99.0	NA			NA				
C3-Fluoranthenes/Pyrenes	63.8	NA			NA				
Naphthobenzothiophene	41.9	50.0	146	Y	51.1	161	Y	2	101
C1-Naphthobenzothiophenes	46.3	NA	110	•	NA		·	-	
C2-Naphthobenzothiophenes	37.7	NA			NA				
C3-Naphthobenzothiophenes	20.6	NA			NA				
C4-Naphthobenzothiophenes	7.26	NA 15.6	06		NA 15 5	02		1	100
Chrysene/Triphenylene	9.29	47.4	90 61	Y	47.0	93 55	Y	1	100
C1-Chrysenes	58.8	NA			NA				
C2-Chrysenes	53.8	NA			NA				
C3-Chrysenes	34.0	NA			NA				
C4-Chrysenes Benzo(b)fluorantheno	<0.2 U	NA 26.4	55	v	NA 2F 2	27	v	2	100
Benzo(k,i)fluoranthene	5 08	30.4 <u>9</u> 28	63	T	30.3 Q 3	63	T	0	100
Benzo(a)fluoranthene	<0.1 U	NA			NA			2	
Benzo(e)pyrene	26.5	32.0	81	Y	31.0	66	Y	3	100
Benzo(a)pyrene	12.4	18.8	96		18.1	85		4	100
Perylene	229	214	-236	Y	206	-357	Y	4	100
Dibenzo(a h)anthracene	0.90 2 QQ	13.5 Q Q1	99 104		13.1 0.27	93		3 6	100
C1-Dibenzo(a,h)anthracenes	<0.1 U	NA	104		NA	00		U	100
C2-Dibenzo(a,h)anthracenes	<0.1 U	NA			NA				
C3-Dibenzo(a,h)anthracenes	<0.1 U	NA			NA				
Benzo(g,h,i)perylene	19.5	26.0	97	Y	26.0	97	Y	0	100
Average Recovery (%)			82			67			

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Matrix Spike Report

Laboratory ID	RCA1041.D	ENV3865D.D	ENV3865E.D
Sample ID	HB18-PAM-S2-1	MS (HB18-PAM-S2-1)	MSD (HB18-PAM-S2-1)
Matrix	Sediment	Sediment	Sediment
Collection Date	08/06/18	08/06/18	08/06/18
Received Date	08/14/18	08/14/18	08/14/18
Extraction Date	08/30/18	08/30/18	08/30/18
Extraction Batch	ENV3865	ENV3865	ENV3865
Date Acquired	9/5/18 6:52	9/5/18 3:24	9/5/18 4:34
Method	B&B SOP1006	B&B SOP1006	B&B SOP1006
Sample Dry Weight (g)	15.05	15.05	15.02
Sample Wet Weight (g)	27.12	27.12	27.07
% Dry	55	55	55
% Moisture	45	45	45
% Lipid (dry)	NA	NA	NA
% Lipid (wet)	NA	NA	NA
Dilution	1X	1X	1X

Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	Su. Corrected Conc. (ng/dry g)	Q Recove (%)	ery Q Q1	Su. Corrected Conc. (ng/dry g)	Q	Recovery (%)	Q Q1	RPD (%)	Q	Spike Amount (ng)
Individual Alkyl Isomers and Hopanes	s											
2-Methylnaphthalene	101		112	169	Y	110)	124	Y	3		100
1-Methylnaphthalene	75.9		74.4	-23	Y	72.6	5	-52	Y	2		100
2,6-Dimethylnaphthalene	28.1		34.8	101	Y	34.5	5	94	Y	1		100
1,6,7-TrimethyInaphthalene	21.8		26.0	63	Y	27.0)	77	Y	4		100
1-Methylfluorene	16.0		21.4	80	Y	21.4	1	80	Y	0		100
4-Methyldibenzothiophene	17.0		23.7	100	Y	23.3	3	94	Y	2		101
2/3-Methyldibenzothiophene	9.40		NA			NA	4					
1-Methyldibenzothiophene	4.65		NA			NA	4					
3-Methylphenanthrene	32.8		NA			NA	4					
2-Methylphenanthrene	42.8		NA			NA	4					
2-Methylanthracene	3.47		NA			NA	4					
4/9-Methylphenanthrene	50.8		NA			NA	4					
1-Methylphenanthrene	50.8		NA			NA	4					
3,6-Dimethylphenanthrene	8.67		16.1	111		16.0)	110		0		100
Retene	398		403	70	Y	394	1	-70	Y	2		100
2-Methylfluoranthene	11.7		19.5	116		19.4	1	115		0		100
Benzo(b)fluorene	14.3		21.8	112	Y	22.0)	115	Y	1		101
C29-Hopane	29.5		NA			NA	4					
18a-Oleanane	<0.6	U	NA			NA	4					
C30-Hopane	59.0		NA			NA	4					
C20-TAS	5.06		NA			NA	4					
C21-TAS	4.78		NA			NA	4					
C26(20S)-TAS	5.03		NA			NA	4					
C26(20R)/C27(20S)-TAS	21.0		NA			NA	4					
C28(20S)-TAS	17.6		NA			NA	4					
C27(20R)-TAS	21.0		NA			NA	4					
C28(20R)-TAS	13.4		NA			NA	A					
Surrogate Recovery (%)												
Naphthalene-d8	83		85			86						
Acenaphthene-d10	98		99			100						
Phenanthrene-d10	90		89			90						
Chrysene-d12	96		95			97						
Pervlene-d12	97		98			99						
i oryiono-urz	31		30			33						

Total PAHs

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	RCA1042.D HB18-PAM-S3-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 9:10 B&B SOP1006 15.01 20.56 73 27 NA NA 1X	ENV3865F.D Dupl. (HB18-PAM-S3-1) Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 5:43 B&B SOP1006 15.02 20.57 73 27 NA NA NA 1X			
Target Compounds	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Conc. (ng/dry g)	Q RPD %	Q Q1 3 M	SX MDL DL
cis/trans Decalin	4 33	3.69	16	0	395 0 132
C1-Decalins	5.59	4.70	10	0.	790 0.263
C2-Decalins	7.24	6.71	8	0.	790 0.263
C3-Decalins	18.4	17.6	5	0.	790 0.263
C4-Decalins	11.3	10.9	4	0.	790 0.263
Naphthalene	4.75	4.89	3	1.	03 0.342
C1-Naphthalenes	13.6	13.8	1	3	.09 1.03
C2-Naphthalenes	22.6	23.2	3	2	05 0.684
C3-Naphthalenes	25.4	24.8	2	2	05 0.684
C4-Naphthalenes	16.2	16.1	0	2	05 0.684
Benzothiophene	<0.1 U	<0.1	U	0.:	270 0.090
C1-Benzotniophenes	<0.2 U	<0.2	0	0.	540 0.180
C2-Benzothiophenes	<0.2 U	<0.2	0	0.	540 0.180
C4-Benzothiophenes	<0.2 0	<0.2	0	0.	540 0.180
Biphenyl	3 17	3.05	4	0.	381 0.294
Acenaphthylene	0.252	0.263	4	0.	122 0.041
Acenaphthene	0.367	0.384	5	0.	308 0.103
Dibenzofuran	3.01	2.88	4	0.	613 0.204
Fluorene	1.68	1.65	2	0.	550 0.183
C1-Fluorenes	3.11	3.42	9	1.	10 0.367
C2-Fluorenes	8.98	8.59	4	1.	10 0.367
C3-Fluorenes	15.5	12.4	22	1	10 0.367
Anthracene	0.000	0.031	11	0.	346 0.150
Phenanthrene	11.2	10.5	6	0.	624 0.208
C1-Phenanthrenes/Anthracenes	23.7	23.0	3	0.3	232 0.077
C2-Phenanthrenes/Anthracenes	28.3	26.9	5	0.	355 0.285
C3-Phenanthrenes/Anthracenes	20.2	21.5	6	0.	855 0.285
C4-Phenanthrenes/Anthracenes	28.7	27.4	5	0.	855 0.285
Dibenzothiophene	1.80	1.65	9	0.3	348 0.116
C1-Dibenzothiophenes	4.35	4.07	7	0.	191 0.064
C2-Dibenzothiophenes	7.94	7.19	10	0.	696 0.232
C3-Dibenzothiophenes	6.8U 2.25	6.3Z	1	0.0	0.232
Eluoranthene	3.33	3.27	2	0.	0.232
Pvrene	5.08	5.00	2	0.	408 0.136
C1-Fluoranthenes/Pyrenes	15.5	14.7	5	1	41 0.469
C2-Fluoranthenes/Pyrenes	14.2	17.0	18	1.	41 0.469
C3-Fluoranthenes/Pyrenes	11.9	12.2	3	1.	41 0.469
C4-Fluoranthenes/Pyrenes	8.67	8.26	5	1.	41 0.469
Naphthobenzothiophene	6.01	6.30	5	0.	383 0.128
C2-Naphthobenzothiophenes	9.01 Q 42	9.16	∠ 3	0.	767 0.256
C3-Naphthobenzothiophenes	5.78	5.86	1	0.1	767 0.256
C4-Naphthobenzothiophenes	2.29	2.36	3	0.	767 0.256
Benz(a)anthracene	1.30	1.31	1	0.	577 0.192
Chrysene/Triphenylene	8.35	8.16	2	0.	347 0.116
C1-Chrysenes	10.8	12.3	12	0.	695 0.232
C2-Chrysenes	10.0	10.4	4	0.0	0.232
C4-Chrysenes	2 61	5.80 2.77	6	0.	595 0.232
Benzo(b)fluoranthene	5.65	5.64	0	0.	609 0.203
Benzo(k,j)fluoranthene	0.924	0.924	0	0.1	294 0.098
Benzo(a)fluoranthene	<0.1 U	<0.1	U	0.	294 0.098
Benzo(e)pyrene	4.98	5.00	0	0.	530 0.177
Benzo(a)pyrene	2.24	2.27	1	0.	304 0.101
Perylene	39.9	42.0	5	3	.80 1.27
Indeno(1,2,3-c,d)pyrene	1.12	1.11	1	0.	151 0.050
Dibenzo(a,h)anthracene	0.225	0.229	2	0.	193 0.064
C1-Dibenzo(a,h)anthracenes	<0.1 U	<0.1	U	0.	386 0.129
C2-Dibenzo(a,h)anthracenes	<0.1 U	<0.1	U	0.	386 0.129
Co-Dibenzo(a,h)anthracenes	<0.1 U	<0.1	U 2	0.	0.129
Denzo(g,n,n)peryrene	3.39	3.33	2	0	204 0.000

493

487

1

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g)	RCA1042.D HB18-PAM-S3-1 Sediment 08/06/18 08/14/18 08/30/18 ENV3865 9/5/18 9:10 B&B SOP1006 15.01 20.56	ENV3865F.D Dupl. (HB18-PAM-S3-1) Sediment 08/06/18 08/30/18 ENV3865 9/5/18 5:43 B&B SOP1006 15.02 20.57					
% Dry	73	73					
% Moisture	27	27					
% Lipid (dry)	NA	NA					
% Lipid (wet)	NA	NA					
Dilution	1X	1X					
Target Compounds	Su. Corrected Q	Su. Corrected	QI	RPD	Q Q1	3X	MDL
Individual Alkyl Isomers and Hopanes	Conc. (ng/dry g)	Conc. (ng/dry g)		%		MDL	
2 Mathylapahthalapa	11 5	11 7		2		2 00	1 20
2-Methylnaphthalana	11.0	11.7		2		3.09	0.546
	0.04	0.02		0		0.702	0.040
1.6.7.Trimethylpaphthalono	3.30	2.31		0		0.702	0.201
1-Methylfluoropo	2.03	2.03		1		0.502	0.127
4-Methyldibenzethienbene	2.43	2.41		7		0.374	0.191
2/2 Mothyldibenzethiophene	3.23	3.01		5		0.274	0.091
2/3-Wethyldibenzethiophone	0.752	0.601		0		0.274	0.091
2 Methylabenaathrana	0.755	0.091		9		0.274	0.091
3-Methylphenanthrene	5.01	4.64		3		0.291	0.097
2-Methylopthrocopo	0.01	0.42		3		0.291	0.097
	0.405	0.412		2		0.291	0.097
4/9-Methylphenanthrene	7.93	7.50		5		0.291	0.097
	10.9	10.6		2		0.291	0.097
3,6-Dimethylphenanthrene	1.45	1.46		1		0.329	0.110
Retene	40.0	38.7		3		0.694	0.231
2-Methylfluoranthene	1.87	1.88		1		0.668	0.223
Benzo(b)fluorene	2.66	2.68		1		0.374	0.125
C29-Hopane	5.01	5.91		16		1.72	0.575
18a-Oleanane	<0.6 U	<0.6	U			1.72	0.575
C30-Hopane	9.66	8.87		8		1.72	0.575
C20-1AS	1.12	0.965		15	X	1.72	0.575
C21-TAS	1.36	1.00		30	X	1.72	0.575
C26(20S)-TAS	0.992	1.04		5	Х	1.72	0.575
C26(20R)/C27(20S)-TAS	3.52	3.51		0		1.72	0.575
C28(20S)-TAS	2.86	2.89		1		1.72	0.575
C27(20R)-TAS	3.11	3.10		2		1.72	0.575
C28(20R)-1AS	2.11	2.01		5		1.72	0.575
Surrogate Recovery (%)							
Naphthalene-d8	81	84					
Acenaphthene-d10	91	90					
Phenanthrene-d10	91	88					
Chrysene-d12	94	92					
Perylene-d12	91	90					
Laboratory ID Sample ID Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	ENV3865B.D SRM1944 Sediment NA 08/30/18 ENV3865 9/5/18 1:06 B&B SOP1006 0.54 0.55 99 1 NA NA NA 1X						
--	---	----------	------------	-----------------------------	-------------------------	------------------------	
Target Compounds	Su. Corrected	Q Q1	RPD (%)	SRM 1944 Certified Value	-30% Certified Value	30% Certified Value	
sis/trans Dasslin	20	2		(ng/g)	(ng/g)	(ng/g)	
cis/trans Decalin	38	.2					
C1-Decalins	39	.9					
C2-Decalins	10)2					
C3-Decalins	27	76					
C4-Decalins	1.	4					
Naphthalene	100	19					
C1-Naphthalenes	100	28					
C2-Naphthalonos	04	-0					
C2-Naphthalenes	146	52					
	207	9					
C4-Naphthalenes	196	51					
Benzolniophene	29	./					
C1-Benzothiophenes	1						
C2-Benzothiophenes		04 LC					
C3-Benzotniophenes	Z [.]	16					
C4-Benzotniophenes	1	20					
	14	10					
Acenaphthene	24	10 S6					
Dibenzofuran	20	56					
Fluorene	31	25					
C1-Eluorenes	11	17					
C2-Eluorenes	100)1					
C3-Eluorenes	163	21					
Carbazole	102	74					
Anthracene	168	37					
Phenanthrene	454	11	15	5270+220	3535	7137	
C1-Phenanthrenes/Anthracenes	506	51		02102220	0000	1.01	
C2-Phenanthrenes/Anthracenes	61	78					
C3-Phenanthrenes/Anthracenes	503	39					
C4-Phenanthrenes/Anthracenes	229	97					
Dibenzothiophene	56	67					
C1-Dibenzothiophenes	109	92					
C2-Dibenzothiophenes	218	39					
C3-Dibenzothiophenes	167	70					
C4-Dibenzothiophenes	88	30					
Fluoranthene	786	62	13	8920±320	6020	12012	
Pyrene	757	79	25	9700±420	6496	13156	
C1-Fluoranthenes/Pyrenes	524	19					
C2-Fluoranthenes/Pyrenes	429	99					
C3-Fluoranthenes/Pyrenes	202	25					
C4-Fluoranthenes/Pyrenes	118	31					
Naphthobenzothiophene	216	53					
C1-Naphthobenzothiophenes	193	32					
C2-Naphthobenzothiophenes	160	00					
	108	50					
C4-Naphthobenzothiophenes	31	0		1700 110	0007	0070	
	402	14 16	10	4720±110	3227	02/9	
Chrysene/Tripnenylene	54:		8	5900±370	3871	8151	
	432	20					
C3-Chrysenes	200	76					
C4-Chrysenes	5	0					
Banzo(b)fluoranthano	C A A	37	14	3870±420	2/15	5577	
Bonzo(ki)fluoranthess	440	20	14	4200.640	2410	6520	
Bonzo(a)fluoranthona	3/2	00	10	720.420	2020	1170	
	99	24	24	100±120	402	11/0	
	333	19	20	3280±110	2219	4407 5750	
Denzo(a)pyrene Porulopo	35	0	20	4300±130	2919 6F1	1922	
r ciyidile Indono(1.2.3-c d)ourono	90	.0 .0	20	1170±240	1076	2711	
Dibonzo(a b)anthracena	25		33	424.60	2/0	6/4	
	55	6 II	33	424±09	249	041	
	<3	.0 0					
C2-Dibenzo(a,ri)an(nracenes	<3	.0 U					
Co-Dibenzo(a,n)anthracenes	<3	.0 U 0.	10	2840.04	1000	3603	
Denzo(a'n'i)hei heine	320		12	2040±0.1	1300	3032	
Total PAHs	12215	54					

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture % Lipid (dry) % Lipid (wet) Dilution	ENV3865B.D SRM1944 Sediment NA 08/30/18 ENV3865 9/5/18 1:06 B&B SOP1006 0.54 0.55 99 1 NA NA NA 1X						
Target Compounds	Su. Corrected		Q Q1	RPD (%)	SRM 1944 Certified Value	-30% Certified Val	30% ue Certified Value
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Timethylnaphthalene 1,6,7-Timethylnaphthalene 1-Methyldibenzothiophene 2/3-Methyldibenzothiophene 3-Methyldibenzothiophene 3-Methyldibenzothiophene 3-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 1-Methylphenanthrene 1-Methylphenanthrene 3,6-Dimethylphenanthrene Retene 2-Methylfluoranthene Benzo(b)fluorene C29-Hopane 18a-Oleanane C20-Hopane 18a-Oleanane C20-TAS C26(20S)-TAS C26(20S)-TAS C26(20S)-TAS C27(20R)-TAS C28(20R)-TAS C28(20R)-TAS	1 1 1 1 1 2 2 3 3	586 341 345 227 155 1557 1557 1557 1557 1557 1256 1337 603 2646 51.1 3575 21229 718 2646 51.1 117 82.5 122 489 353 363 293			(ng/g)	(ng/g)	(ng/g)
Surrogate Recovery (%) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	83 93 90 96 95						

Laboratory ID	MS70274C.D
Sample ID	PAH-WKSRM2779-4.0-012
Matrix	Gulf of Mexico Crude Oil
Collection Date	NA
Received Date	NA
Extraction Date	NA
Extraction Batch	ENV3865
Date Acquired	9/4/18 22:47
Method	B&B SOP1006
Sample Weight (mg)	4.14

charanter 880 C2-Docalins 1027 C2-Docalins 1027 C2-Docalins 633 C4-Docalins 633 C1-Naphthalence 1913 C2-Naphthalences 1913 C2-Naphthalences 2467 C3-Naphthalences 1913 C3-Naphthalences 2467 C3-Naphthalences 11.4 C3-Benzothiophenes 51.5 C3-Benzothiophenes 52.4 C3-Benzothiophene 716 C3-Benzothiophene 716 C3-Benzothiophene 718 C3-Benzothiophene 728 C3-Benzothiophene 728 C3-Benzothiophene 728 C4-Phenanthrenes/Arthracenes 729 C3-Benzothiophenes 718 C	Target Compounds	Su. Corrected Conc. (ng/mg)	Q Q1	RPD (%)	SRM 2779 Certified Value (ug/g)	-20% Certified Value (ug/g)	+20% Certified Value (ug/g)
C1-Decalins 1205 C2-Decalins 801 C3-Decalins 801 C3-Decalins 801 C3-Decalins 801 C3-Decalins 801 C3-Decalins 801 C3-Naphthalenes 2467 C3-Naphthalenes 247 C4-Naphthalenes 302 C3-Euroranis 302 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 303 C3-Euroranis 404 C3-Paramitrines/Anthacenes 248 C4-Phenanthrenes/Anthacenes 248 C4-Dehazothiophenes 152 C4-Dehazothiophenes 152 C4-Dehazothiophenes 152 C4-Dehazothiophenes 152 C4-Dehazothiophenes 152 C4-Dehazothiophenes 152 C4-Dehazothiophenes 152 C4-Euronanthenes/Pyrenes 158 C3-Euronanthenes/Pyrenes 250 C4-Euronanthenes/Pyrenes 261 C3-Euronanthenes/Pyrenes 261 C3-Euronanthenes/Pyrenes 263 C3-Euronanthenes/Pyrenes 263 C3-Euronanthenes/Pyrenes 263 C3-Euronanthenes/Pyrenes 263 C3-Chrysenes 158 C3-Chrysenes 158 C3	cis/trans Decalin	880)				
C2-Decains 1027 C2-Decains 881 C4-Decains 603 Naphthelene 844 C1-Naphthelenes 1913 C2-Naphthelenes 2467 C3-Naphthelenes 114 C3-Naphthelenes 15 C3-Naphthelenes 15 C3-Benzdinophenes 11.4 C3-Benzdinophenes 12.4 C3-Benzdinophenes 12.4 C3-Benzdinophenes 12.4 C3-Benzdinophenes 12.4 C3-Benzdinophenes 12.4 C3-Benzdinophenes 12.4 C3-Benzdinophenes 13.5 C3-Floorenes 13.5 C3-Floorenes 13.5 C3-Floorenes 13.2 C3-Floorenes 246 C3-Phenanthrenes/Anthracenes 684 C3-Phenanthrenes/Anthracenes 13.5 C3-Phenanthrenes/Anthracenes 13.5 C3-Phenanthrenes/Anthracenes 248 Dencothophene 44.7 C3-Dencathophene 13.5	C1-Decalins	1205	i				
C3-Decalins 861 C4-Decalins 603 Naphthalenes 844 C1-Naphthalenes 1913 C2-Naphthalenes 1913 C3-Naphthalenes 1913 C3-Naphthalenes 1795 C4-Naphthalenes 114 C1-Berozithiophenes 51.5 C3-Decozithiophenes 52.4 C4-Berozithiophenes 52.4 Detensorum 12.2 C4-Berozithiophenes 52.4 Detensorum 30.2 Fluorene 142 C4-Fluorenes 307 C2-Fluorenes 307 C2-Fluorenes 308 C4-Berozithiophenes 537 C4-Departmenes/Antracenes 539 C4-Departmenes/Antracenes 530 C4-Depara	C2-Decalins	1027	,				
C4-Decalains 633 C4-Decalains 643 C1-Naphthalenes 1913 C3-Naphthalenes 2467 C3-Naphthalenes 2467 C3-Naphthalenes 71795 Encodinghenes 71795 C3-Naphthalenes 71795 C4-Phenaphthenes 71795 C4-Phenaphthenes 71795 C4-Phenaphthenes 71795 C4-Phenaphthenes 71795 C4-Phenaphthalenes 71795 C4-Naphthalenes 7179795 C4-Naphthalenes 7179795 C4-Naphthalene	C3-Decalins	861					
Naphthelene 844 1 855 ± 46 647 1081 C2-Naphthalenes 1913 2 2467 1081 2467 1081 C2-Naphthalenes 1795 335 345 345 345 345 C4-Naphthalenes 835 55 56 345 </td <td>C4-Decalins</td> <td>693</td> <td>5</td> <td></td> <td></td> <td></td> <td></td>	C4-Decalins	693	5				
C1-Naphthalenes 1913 C2-Naphthalenes 2467 C3-Naphthalenes 2467 C3-Naphthalenes 355 Benzothiophenes 51.5 C3-Benzothiophenes 51.5 C3-Benzothiophenes 52.4 C4-Benzothiophenes 52.4 C4-Benzothiophenes 32.4 Bipheryl 213 Acenaphthene 13.5 Dibenzothiophenes 337 C3-Fluorene 142 C1-Fluorenes 337 C3-Fluorenes 330 C3-Fluorenes 330 C3-Fluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 247 C3-Pluorenes 248 C3-Pluorenes 248 C3-Pluorenes 557 C3-Phenanthrenes/Anthracenes 557 C3-Phenanthrenes/Anthracenes 557 C3-Phenanthrenes/Anthracenes 557 C3-Phenanthrenes/Anthracenes 557 C3-Phenanthrenes/Anthracenes 248 Dibenzothiophenes 152 C3-Dhenzothiophenes 152 C3-Dhenzothiophenes 152 C3-Dhenzothiophenes 153 C4-Dhenzothiophenes 154 C4-Dhenzothiophenes 158 C4-Huzanthenes/Prenes 158 C4-Huzanthenes/Prenes 150 C4-Dhenzothiophenes 15	Naphthalene	844	-	1	855 ± 46	647	1081
C2-Naphthalenes 2467 CA-Naphthalenes 835 CA-Naphthalenes 835 Benzothiophenes 51.5 C2-Benzothiophenes 52.4 C2-Benzothiophenes 52.4 CA-Benzothiophenes 52.4 CA-Benzothiophenes 32.4 Biphenyl 213 Acenaphthylene 7.16 Acenaphthylene 7.16 C2-Fluorenes 32.4 Elvorene 142 C2-Fluorenes 337 C2-Fluorenes 247 Cathazole 1.23 Anthracene 333 C2-Fluorenes 247 Cathazole 1.23 Anthracene 333 C2-Fluorenes 247 Catharothenes/Antracenes 537 C4-Phenanthrenes/Antracenes 547 C4-Phenanthrenes/Antracenes 124 C2-Dispractionphene 45.1 C4-Dispractionphenes 114 C4-Dispractionphenes 125 C4-Phoranthrenes/Pyrenes	C1-Naphthalenes	1913					
Ca-Naphthalenes 1785 Ca-Naphthalenes 835 Benzothiophenes 54.1 C2-Benzothiophenes 51.5 C3-Benzothiophenes 52.4 C4-Benzothiophenes 32.4 Biphenyl 213 Acenaphthylene 13.5 Dibenzothiophenes 32.4 Biphenyl 213 Acenaphthylene 13.5 Dibenzothiophenes 22.6 C3-Fluorene 142 C1-Fluorenes 230 C3-Fluorenes 247 C3-Fluorenes 247 C3-Fluorenes 247 C3-Fluorenes 247 C3-Fluorenes 247 C3-Fluorenes 247 C3-Fluorenes 248 C3-Phreanthrenes/Anthracenes 248 C3-Phreanthrenes/Anthracenes 247 C3-Dibenzothiophenes 130 C3-Dibenzothiophenes 124 C3-Dibenzothiophenes 124 C3-Dibenzothiophenes 111 C4-Dibenzothiophenes	C2-Naphthalenes	2467					
C4-Nagminateries 6.55 C1-Berzothiophenes 51.5 C2-Berzothiophenes 51.5 C3-Berzothiophenes 52.4 C4-Berzothiophenes 52.4 C4-Berzothiophenes 32.4 Biphenyl 213 Acenaphtylene 7.16 Acenaphtylene 7.16 Acenaphtylene 7.16 C3-Fluorene 142 C2-Fluorenes 30 C3-Fluorenes 247 Carbazole 1.23 Anthracene 33.9 Anthracenes 293 C3-Phonenthrenes/Anthracenes 684 C2-Phonanthrenes/Anthracenes 799 C3-Dhenzothiophene 457 C3-Dhenzothiophenes 126 C4-Dhenzothiophenes 130 C4-Dibenzothiophenes 130 C4-Pluoranthrenes/Anthracenes 288 Dhenzothiophenes 126 C4-Pluoranthrenes/Pyrenes 18 C3-Fluoranthrenes/Pyrenes 18 C3-Fluoranthrenes/Pyrenes 28.8	C3-Naphthalenes	1795					
Description of the second se	C4-Naphthalenes	835					
C2 Bernzothiophenes 51.5 C3 Berzothiophenes 52.4 C4 Berzothiophenes 52.4 C4 Berzothiophenes 52.4 Biphenyi 213 Acenaphtiylene 7.16 Acenaphtiylene 7.16 Acenaphtiylene 13.5 Diberzoturan 30.2 Fluorene 142 C2-Fluorenes 237 C2-Fluorenes 247 Cathazole 1.23 Anthracene 330 14 3.42 ± 0.59 2.26 4.81 Phenanthrenes/Anthracenes 644 20 258 ± 27 184.8 342 C1-Phenanthrenes/Anthracenes 537 2.26 4.81 22 C2-Dhenzothiophenes 162 13 51.8 ± 2.1 39.8 64.7 C1-Dhenzothiophenes 162 2.40 51.8 ± 2.1 39.8 64.7 C2-Dhenzothiophenes 124 2.5 51.8 ± 2.1 39.8 64.7 C1-Dhenzothiophenes 124 2.5 51.8 ± 2.1 39.8 64.7 C1-Dhenzothiophenes 130	C1-Benzothionhenes	54.1					
C3-Berzothiophenes 52.4 C4-Benzothiophenes 32.4 Biphenyl 213 Acemaphthylerie 716 J.Acemaphthylerie 135 Dibenzothiophenes 337 C2-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 333 C3-Fluorenes 247 Carhazole 1.23 Anthracene 333 C1-Phenanthrenes/Anthracenes 684 C2-Phenanthrenes/Anthracenes 684 C2-Phenanthrenes/Anthracenes 248 Dibenzothiophene 457 13 51.8 ± 2.1 39.8 64.7 C1-Dibenzothiophenes 162 2.3	C2-Benzothiophenes	51.5					
C4-Berzothiophenes 32.4 Bipheryd 213 Acenaphthene 13.5 Dibenzothran 30.2 Fluorene 142 C1-Fluorenes 337 C2-Fluorenes 380 C2-Fluorenes 380 C2-Fluorenes 247 Carbazole 1.23 Anthracene 383 C1-Phenanthrenes/Anthracenes 684 C2-Phorenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 54 C2-Dienzothiophene 45.7 13 51.8 ± 2.1 39.8 64.7 C1-Dienzothiophenes 130 14 4.36 ± 0.40 3.17 5.71 C4-Dienzothiophenes 130 11 14.81 ± 0.39 11.5 18.2 C1-Dienzothiophenes 130 13 4.36 ± 0.40 3.17 5.71 Pyrene 133 13 4.36 ± 0.40 3.17 5.71 Pyrene 133 13 4.36 ± 0.40 3.17 5.71 Pyrene 138 13	C3-Benzothiophenes	52.4	Ļ				
Biphenyl 213 Aceraphtylwie 7.16 Aceraphtylwie 7.16 Aceraphtylwie 7.16 Aceraphtylwie 7.16 Aceraphtylwie 7.16 Aceraphtylwie 7.16 C1-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 247 Carbazole 1.23 Anthracene 333 Phenanthrenes/Anthracenes 799 C2-Phenanthrenes/Anthracenes 799 C3-Phenanthrenes/Anthracenes 737 C4-Phenanthrenes/Anthracenes 13 C4-Phenanthrenes/Anthracenes 130 C4-Phenanthrenes/Anthracenes 130 C4-Diberazothiophenes 162 C2-Dibenzothiophenes 162 C2-Dibenzothiophenes 182 C3-Fluoranthenes/Pyrenes 18 C3-Fluoranthenes/Pyrenes 18 C3-Fluoranthenes/Pyrenes 128 C4-Fluoranthenes/Pyrenes 128 C4-Fluoranthenes/Pyrenes	C4-Benzothiophenes	32.4	Ļ				
Acenaphthylene 7.16 J Dibenzotivan 30.2 Fluorene 142 C1-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 333 14 3.42 ± 0.59 2.26 4.81 Antracene 238 13 258 ± 27 184.8 342 C1-Phenanthrenes/Anthracenes 684 22-Phenanthrenes/Anthracenes 537 7 7 7 C2-Phonanthrenes/Anthracenes 13 51.8 ± 2.1 39.8 64.7 C1-Dibenzothiophenes 152 - - - C2-Dibenzothiophenes 130 14 4.36 ± 0.40 3.17 5.71 Pyrene 133 11 14.81 ± 0.39 11.5 18.2 C1-Dibenzothiophenes 130 11 14.81 ± 0.39 11.5 18.2 C2-Dibenzothiophenes 132 11 14.81 ± 0.39 11.5 18.2 C2-Fluoranthenes/Pyrenes 186 14<	Biphenyl	213	6				
Acenaphthene13.5Dibenzofuran30.2Fluorene142C1-Fluorenes337C2-Fluorenes380C3-Fluorenes247Carbazole1.23Anthracene28313258 ± 2718.4.83.42 ± 0.592.7-Phoranthracenes684C2-Phoranthracenes799C3-Phoranthracenes793C3-Phoranthracenes737C4-Phenanthracenes737C4-Phenanthracenes737C4-Phoranthracenes737C4-Phoranthracenes737C4-Dibenzothiophene45.7C1-Dibenzothiophenes130C4-Dibenzothiophenes133134.36 ± 0.40C3-Dibenzothiophenes133C4-Dibenzothiophenes86.2Fluoranthenes/Pyrenes188C3-Fluoranthenes/Pyrenes182C4-Fluoranthenes/Pyrenes182C4-Fluoranthenes/Pyrenes182C4-Fluoranthenes/Pyrenes182C4-Fluoranthenes/Pyrenes184C3-Naphthobenzothiophenes101C3-Naphthobenzothiophenes152C4-Chysenes154C4-Napenthobenzothiophenes152C4-Naphthobenzothiophenes154C4-Naphthobenzothiophenes170C2-Naphthobenzothiophenes184C3-Naphthobenzothiophenes154C4-Naphthobenzothiophenes152C4-Napenthobenzothiophenes154C4-Napenthobenzothiophenes154C4-Napenthobenzothiophenes<	Acenaphthylene	7.16	i J				
Diberzotriophenes 30.2 Fluorenes 337 C2-Fluorenes 337 C2-Fluorenes 337 Carbazole 1.23 Anthracene 3.83 J 1.4 3.42 ± 0.59 2.26 4.81 Phenanthrenes/Anthracenes 684 644 644 644 644 644 644 644 644 644 644 644 644 644 644 644 647 644 647 644 647 644 647 644 647	Acenaphthene	13.5					
Fluorene 142 C1-Fluorenes 337 C2-Fluorenes 330 C2-Fluorenes 247 Carbazole 1.23 Anthracene 233 Phenanthrenes/Anthracenes 644 C2-Phenanthrenes/Anthracenes 644 C2-Phenanthrenes/Anthracenes 644 C2-Phenanthrenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 537 C2-Diberzothiophenes 124 C2-Diberzothiophenes 130 C3-Diberzothiophenes 130 C4-Diberzothiophenes 133 C4-Diberzothiophenes 133 C4-Diberzothiophenes 182 C3-Fluoranthenes/Pyrenes 87.4 C2-Fluoranthenes/Pyrenes 182 C4-Fluoranthenes/Pyrenes 182 C3-Fluoranthophenes 70.7 C2-Naphthobenzothiophenes 26.1 C1-Noranthenes/Pyrenes 183 C3-Fluoranthenes/Pyrenes 184 C3-Fluoranthenes/Pyrenes 114 <td>Dibenzofuran</td> <td>30.2</td> <td>2</td> <td></td> <td></td> <td></td> <td></td>	Dibenzofuran	30.2	2				
C1-Fluorenes 337 C2-Fluorenes 247 Carbazole 1.23 Anthracene 3.93 Phenanthrenes/Anthracenes 233 C1-Phonenthrenes/Anthracenes 799 C3-Phenanthrenes/Anthracenes 700 C4-Phenanthrenes/Anthracenes 700 C2-Diberzothiophenes 132 C4-Diberzothiophenes 62 Fluoranthenes/Pyrenes 133 C3-Fluoranthenes/Pyrenes 128 C3-Fluoranthenes/Pyrenes 128 C3-Naphthoberzothiophenes 269 C3-Naphthoberzothiophenes 269 C3-Naphthoberzothiophenes 269 C3-Naphthoberzothiophenes 269 <	Fluorene	142					
C2-Fluorenes 380 Carbazole 1.23 Anthracene 3.83 Phenanthrene 283 C1-Phenanthrenes/Anthracenes 684 C2-Phenanthrenes/Anthracenes 537 C3-Phenanthrenes/Anthracenes 537 C3-Phenanthrenes/Anthracenes 537 C3-Phenanthrenes/Anthracenes 537 C3-Phenanthrenes/Anthracenes 248 Diberzothiophene 45.7 13 51.8 ± 2.1 39.8 64.7 C1-Diberzothiophenes 144 53.83 J 3 4.36 ± 0.40 3.17 5.71 C3-Diberzothiophenes 130 13 4.36 ± 0.40 3.17 5.71 C3-Diberzothiophenes 130 13 4.36 ± 0.40 3.17 5.71 Pyrene 333 13 4.36 ± 0.40 3.17 5.71 Pyrene 333 13 4.36 ± 0.40 3.17 5.71 Pyrenes 138 14 1.3.2 1.5 1.5 C4-Floranthenes/Pyrenes 188<	C1-Fluorenes	337					
Carbiazole 2.47 Anthracene 3.83 J 14 3.42 ± 0.59 2.26 4.81 Anthracene 3.83 J 14 3.42 ± 0.59 2.26 4.81 Phenanthrenes/Anthracenes 684 258 ± 27 184.8 342 C2-Phenanthrenes/Anthracenes 799 7 <td>C2-Fluorenes</td> <td>30U 247</td> <td>,</td> <td></td> <td></td> <td></td> <td></td>	C2-Fluorenes	30U 247	,				
Calculation 1.0 1.4 3.42 ± 0.59 2.26 4.81 Phenanthrenes 233 13 258 ± 27 184.8 342 C1-Phenanthrenes/Anthracenes 799 23 13 258 ± 27 184.8 342 C2-Phenanthrenes/Anthracenes 799 23 51.8 ± 2.1 39.8 64.7 C2-Dhenanthrenes/Anthracenes 244 244 244 244 244 C3-Diberzothiophenes 130 51.8 ± 2.1 39.8 64.7 25.0 C2-Diberzothiophenes 214 23.0	Carbazole	1 23					
Phenanthrene 293 13 258 ± 27 184.8 342 C1-Phenanthrenes/Anthracenes 684 24 684 684 684 C2-Phenanthrenes/Anthracenes 537 644 647 647 C1-Denzothiophene 45.7 13 51.8 ± 2.1 39.8 64.7 C1-Diberzothiophenes 124 647 647 647 C1-Diberzothiophenes 130 51.8 ± 2.1 39.8 64.7 C1-Diberzothiophenes 130 51.8 ± 2.1 39.8 64.7 C2-Diberzothiophenes 130 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 7.7 7.7 7.7 7.7 C2-Fluoranthenes/Pyrenes 128 7.03 ± 0.85 4.94 9.46 C1-Naphthoberzothiophenes 26.9 9 9 9.46 C1-Naphthoberzothiophenes 25.9 9 9 65.8 9 9 C3-Naphthoberzothiophenes 26.1 7.7 7.7 7.7 7.7 7.7 7.1 C3-Naphthoberzothiophenes 26.9 <td>Anthracene</td> <td>3.93</td> <td>, j</td> <td>14</td> <td>3.42 ± 0.59</td> <td>2.26</td> <td>4.81</td>	Anthracene	3.93	, j	14	3.42 ± 0.59	2.26	4.81
C1-Phenanthrenes/Anthracenes 684 C2-Phenanthrenes/Anthracenes 799 C3-Phenanthrenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 248 Diberzothiophene 457 13 51.8 ± 2.1 39.8 64.7 C1-Diberzothiophenes 152 22 22 22 22 22 39.8 64.7 C1-Diberzothiophenes 130 13 4.36 ± 0.40 3.17 5.71 C4-Diberzothiophenes 68.2 - - - - Fluoranthenes/Pyrenes 83.3 11 4.36 ± 0.40 3.17 5.71 Pyrene 133 11.4.81 ± 0.39 11.5 18.2 C2-Fluoranthenes/Pyrenes 128 - - - C4-Eluoranthenes/Pyrenes 128 - - - C4-Fluoranthenes/Pyrenes 101 - - - - C3-Naphthoberzothiophenes 70.7 - - - - - C3-Naphthoberzothiophenes 131 7.03 ± 0.85 4.94 9.46 - - -	Phenanthrene	293	-	13	258 ± 27	184.8	342
C2-Phenanthrenes/Anthracenes 799 C3-Phenanthrenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 249 Diberzothiophene 45.7 13 51.8 ± 2.1 39.8 64.7 C1-Diberzothiophenes 152 22 22 22 22 23.8 24 C2-Diberzothiophenes 130 24 24 24 24 24 C3-Diberzothiophenes 130 4.36 ± 0.40 3.17 5.71 27 C4-Diberzothiophenes 66.2 7 7 27 24 24 24 C4-Diberzothiophenes 133 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 24 </td <td>C1-Phenanthrenes/Anthracenes</td> <td>684</td> <td>Ļ</td> <td></td> <td></td> <td></td> <td></td>	C1-Phenanthrenes/Anthracenes	684	Ļ				
C3-Phenanthrenes/Anthracenes 537 C4-Phenanthrenes/Anthracenes 248 Dibenzothiophene 152 C3-Dibenzothiophenes 152 C3-Dibenzothiophenes 130 C4-Dibenzothiophenes 130 C4-Dibenzothiophenes 68.2 Fluoranthene 383 J 13 4.36 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 C3-Fluoranthenes/Pyrenes 87.4 7.71 13 5.8 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 18.2 C3-Fluoranthenes/Pyrenes 87.4 7.7 7.7 7.7 7.7 C3-Naphthobenzothiophenes 70.7 7.7 7.7 7.7 7.3 ± 0.85 4.94 9.46 C1-Naphthobenzothiophenes 62.9 7.03 ± 0.85 4.94 9.46 7.13 7.03 ± 0.85 4.94 9.46 C1-Naphthobenzothiophenes 62.9 7.03 ± 0.85 4.94 9.46 6.9 9.46 6.9 9.46 6.9 9.	C2-Phenanthrenes/Anthracenes	799)				
C4-Phenanthrenes/Anthracenes 248 Dibenzothiophene 45.7 13 51.8 ± 2.1 39.8 64.7 C1-Dibenzothiophenes 152 214 24 24 24 C3-Dibenzothiophenes 130 4.36 ± 0.40 3.17 5.71 Q4-Dibenzothiophenes 88.3 J 13 4.36 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 7 7 7 C2-Fluoranthenes/Pyrenes 85.8 7 7 7 C3-Naphthobenzothiophenes 70.7 7 7 7 7 C2-Naphthobenzothiophenes 101 7.03 ± 0.85 4.94 9.46 Chrysene/Findersene 80.4 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Findersene 50.0 11 47.4 ± 1.7 36.6 58.9 C1-Naphthobenzothiophenes 61.1 7 7.15 5 5.62 ± 0.34 4.22 7.15 Benzo(a)anthracene 58.8 J< 5	C3-Phenanthrenes/Anthracenes	537					
Diberzothiophene 45.7 13 51.8 ± 2.1 39.8 64.7 C1-Dibenzothiophenes 130 214 24 24 C3-Dibenzothiophenes 130 214 317 5.71 C4-Dibenzothiophenes 68.2 11 14.81 ± 0.39 11.5 18.2 Fluoranthenes/Pyrenes 87.4 22.Fluoranthenes/Pyrenes 128 24.1 24.1 C3-Fluoranthenes/Pyrenes 128 24.1 24.1 24.1 24.1 24.1 C3-Fluoranthenes/Pyrenes 128 24.1 24.1 24.1 24.1 24.1 C3-Fluoranthenes/Pyrenes 128 24.1 <td>C4-Phenanthrenes/Anthracenes</td> <td>248</td> <td>6</td> <td></td> <td></td> <td></td> <td></td>	C4-Phenanthrenes/Anthracenes	248	6				
C1-Dibenzothiophenes 152 C2-Dibenzothiophenes 130 C4-Dibenzothiophenes 68.2 Fluoranthene 3.83 J 13 4.36 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 7.4 7.4 7.71 C2-Fluoranthenes/Pyrenes 118 7.4 7.4 7.4 C3-Fluoranthenes/Pyrenes 128 7.4 7.4 7.4 C3-Fluoranthenes/Pyrenes 128 7.03 ± 0.85 4.94 9.46 C1-Naphthobenzothiophenes 70.7 7.7 7.72 7.03 ± 0.85 4.94 9.46 C1-Naphthobenzothiophenes 26.9 8 8 8 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 7.03 ± 0.85 4.94 9.46 Chrysenes 158 5 5.62 ± 0.34 4.22 7.15 Benzo(b)fluoranthene 5.88 J 5 5.62 ± 0.3	Dibenzothiophene	45.7		13	51.8 ± 2.1	39.8	64.7
C2-Dibenzothiophenes 214 C3-Dibenzothiophenes 130 C4-Dibenzothiophenes 68.2 Fluoranthene 3.83 J 13 4.36 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 22-Fluoranthenes/Pyrenes 18 C3-Fluoranthenes/Pyrenes 128 24- 24- C4-Fluoranthenes/Pyrenes 128 26.1 27- C1-Naphthobenzothiophenes 70.7 22-Naphthobenzothiophenes 26.9 C4-Naphthobenzothiophenes 26.9 9.46 24- C4-Naphthobenzothiophenes 26.9 9.46 24- Chrysenes 133 7.03 ± 0.85 4.94 9.46 Chrysenes 133 7.03 ± 0.85 4.94 9.46 Chrysenes 133 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 22 7.15 24- 24- C4-Chrysenes 65.1 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 100	C1-Dibenzothiophenes	152	-				
C3-Diberizonthiphenes 130 C4-Diberizonthiphenes 68.2 Fluoranthene 3.83 J 13 4.36 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 22-Fluoranthenes/Pyrenes 18 24-Fluoranthenes/Pyrenes 18 C3-Naphthobenzothiophenes/Pyrenes 128 24-Fluoranthenes/Pyrenes 85.8 14 27.1 C3-Naphthobenzothiophenes 70.7 22.1 22.Naphthobenzothiophenes 26.9 20.6 20.7 20.6 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 </td <td>C2-Dibenzothiophenes</td> <td>214</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	C2-Dibenzothiophenes	214	-				
Or Dotation protects 0.0.2 0.0.2 0.0.2 Fluoranthene 3.3 13 4.36 ± 0.40 3.17 5.71 Pyrene 13.3 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 87.4 18 18 18 14.81 ± 0.39 11.5 18.2 C2-Fluoranthenes/Pyrenes 18 26.1 70.7	C4-Dibenzothiophenes	68.2	,				
Parene 13.3 11 14.81 ± 0.39 11.5 18.2 C1-Fluoranthenes/Pyrenes 118 C3.7 118 14.81 ± 0.39 11.5 18.2 C2-Fluoranthenes/Pyrenes 118 C3.7 128 118 14.81 ± 0.39 11.5 18.2 C3-Fluoranthenes/Pyrenes 118 C3.7 128 116 14.81 ± 0.39 11.5 18.2 C4-Fluoranthenes/Pyrenes 118 C3.7 C2.0 128 116 11.5 18.2 C4-Fluoranthenes/Pyrenes 128 70.7 C2.0 110 11.5 18.2 C1-Naphthobenzothiophenes 26.9 Benz(a) anthracene 8.04 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 12 C4-Chrysenes 133 13 C2.2 133 12 13 14.7.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 12 11 47.4 ± 1.7 36.6 58.9 12 C4-Chrysenes 131 18.8 13.7 14.22	Fluoranthene	3.83		13	4 36 + 0 40	3 17	5 71
C1-Fluoranthenes/Pyrenes 87.4 C2-Fluoranthenes/Pyrenes 118 C3-Fluoranthenes/Pyrenes 128 C4-Fluoranthenes/Pyrenes 85.8 Naphthobenzothiophene 26.1 C1-Naphthobenzothiophenes 70.7 C2-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 62.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 C2-Chrysenes 133 C2-Chrysenes 65.1 C3-Chrysenes 91.2 C4-Chrysenes 65.1 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 1.88 J 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 1.81 J 9.46 13.7 8.94 9.46 Difluoranthene 1.81 J 9.46 13.7 8.94 9.46 Benzo(a)fluoranthene 1.81 J 9.42 7.15 9.42 7.15 Benzo(a)pyrene <td>Pvrene</td> <td>13.3</td> <td></td> <td>11</td> <td>14.81 ± 0.39</td> <td>11.5</td> <td>18.2</td>	Pvrene	13.3		11	14.81 ± 0.39	11.5	18.2
C2-Fluoranthenes/Pyrenes 118 C3-Fluoranthenes/Pyrenes 128 C4-Fluoranthenes/Pyrenes 85.8 Naphthobenzothiophenes 26.1 C1-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 13 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 8.04 Salatintracene 8.04 Benz(a)anthracene 8.04 C1-Chrysenes 133 C2-Chrysenes 133 C2-Chrysenes 158 C3-Chrysenes 91.2 C4-Chrysenes 65.1 Benzo(b)fluoranthene 1.88 Benzo(c)pyrene 110 2 10.78 ± 0.60 8.144 13.7 Benzo(a)pyrene 1.81 J J Perylene Diotoci J J Indeno(1,2,3-c,d)pyrene 0.572 J Dibenzo(a,h)anthracenes <10	C1-Fluoranthenes/Pyrenes	87.4	Ļ				
C3-Fluoranthenes/Pyrenes 128 C4-Fluoranthenes/Pyrenes 85.8 Naphthobenzothiophene 26.1 C1-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 26.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 7.03 ± 0.85 4.94 9.46 C1-Chrysenes 133 7.03 ± 0.85 4.94 9.46 C1-Chrysenes 133 7.03 ± 0.85 4.94 9.46 C3-Chrysenes 133 7.03 ± 0.85 4.94 9.46 C3-Chrysenes 133 2 7.15 5.62 ± 0.34 4.22 7.15 Benzo(a)filuoranthene 1.18 J 9.46 13.7 5 5.62 ± 0.34 4.22 7.15 Benzo(a)filuoranthene 1.18 J 9.46 13.7 5 5.62 ± 0.34 1.21 1.7	C2-Fluoranthenes/Pyrenes	118	;				
C4-Fluoranthenes/Pyrenes 85.8 Naphthobenzothiophene 26.1 C1-Naphthobenzothiophenes 70.7 C2-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 26.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133	C3-Fluoranthenes/Pyrenes	128	5				
Naphthobenzothiophene 26.1 C1-Naphthobenzothiophenes 70.7 C2-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 26.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 C2-Chrysenes 158 23.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 158 C3-Chrysenes 91.2 24.0 7.15 Benzo(b)fluoranthene 5.88 J 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 1.18 J 9.46 13.7 13.7 14.14 13.7 Benzo(a)fluoranthene 5 5.62 ± 0.34 4.22 7.15 15 Benzo(a)fluoranthene 1.18 J 9.46 13.7 14.14 13.7 Benzo(a)fluoranthene <10 U	C4-Fluoranthenes/Pyrenes	85.8	5				
C1-Naphthobenzothiophenes 70.7 C2-Naphthobenzothiophenes 101 C3-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 26.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 22-Chrysenes 158 23-Chrysenes 91.2 C4-Chrysenes 91.2 24-Chrysenes 65.1 562 ± 0.34 4.22 7.15 Benzo(k)/fluoranthene 5.88 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 1.18 J 37 38 37 38 36 36 37 37 38 37 38 37 38 37 38 37 38 37 38 38 38 36 36 36 38 37 38 38 38 37 38 37 38 38 37 38 38 </td <td>Naphthobenzothiophene</td> <td>26.1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Naphthobenzothiophene	26.1					
C2-Naphthobenzothiophenes 62.4 C4-Naphthobenzothiophenes 26.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 2 2 2 2 2 C2-Chrysenes 158 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 5.88 J 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 1.18 J 3<	C1-Naphthobenzothiophenes	/0./					
Cd-Naphthobenzothiophenes 26.9 Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 22-Chrysenes 158 22-Chrysenes 26.9 C2-Chrysenes 158 22-Chrysenes 158 22-Chrysenes 26.4 C3-Chrysenes 91.2 24-Chrysenes 65.1 5.62 ± 0.34 4.22 7.15 Benzo(b)fluoranthene 5.88 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene 1.18 J 37 36.6 36.9 Benzo(a)fluoranthene 1.18 J 37 36.6 36.9 Benzo(a)fluoranthene 1.10 2 10.78 ± 0.60 8.144 13.7 Benzo(a)fluoranthene 0.506 J J J 37 Benzo(a)fluoranthene 0.5072 J J J 386 0.798 C1-Dibenzo(a,h)anthracenes <10	C2-Naphthobenzothionbenes	101					
Benz(a)anthracene 8.04 J 13 7.03 ± 0.85 4.94 9.46 Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 22-Chrysenes 158 22-Chrysenes 24-Chrysenes 55.62 ± 0.34 4.22 7.15 C4-Chrysenes 65.1 91.2 24-Chrysenes 65.1 91.2 24-Chrysenes 26-Chrysenes 11.8 J 36.6 55.62 ± 0.34 4.22 7.15 Benzo(b)fluoranthene 1.18 J 36.6 56.1 96-Chrysenes 11.0 2 10.78 ± 0.60 8.144 13.7 Benzo(a)fluoranthene 1.18 J 96-Chrysenes 96-Chrysenes 11.0 2 10.78 ± 0.60 8.144 13.7 Benzo(a)fluoranthene 1.81 J 96-Chrysenes 97-Chrysenes 97-Chrysene	C4-Naphthobenzothiophenes	26.9	-				
Chrysene/Triphenylene 53.0 11 47.4 ± 1.7 36.6 58.9 C1-Chrysenes 133 22-Chrysenes 158 22-Chrysenes 24-Chrysenes 24-Chrysenes 24-Chrysenes 24-Chrysenes 25-Chrysenes 26-Chrysenes 27-Chrysenes 27-Chrysenes 26-Chrysenes <	Benz(a)anthracene	8.04	J	13	7.03 ± 0.85	4.94	9.46
C1-Chrysenes 133 C2-Chrysenes 158 C3-Chrysenes 91.2 C4-Chrysenes 65.1 Benzo(b/fluoranthene 5.88 5 5.62 ± 0.34 4.22 7.15 Benzo(k,j)fluoranthene 1.18 J 7 5 Benzo(k)fluoranthene 1.18 J 7 5 Benzo(k)fluoranthene 1.10 2 10.78 ± 0.60 8.144 13.7 Benzo(a)fluoranthene 1.81 J 7 7 7 Benzo(a)fluoranthene 1.10 2 10.78 ± 0.60 8.144 13.7 Benzo(a)pyrene 1.81 J 7 7 7 Perylene 0.506 J 100 <td>Chrysene/Triphenylene</td> <td>53.0</td> <td>)</td> <td>11</td> <td>47.4 ± 1.7</td> <td>36.6</td> <td>58.9</td>	Chrysene/Triphenylene	53.0)	11	47.4 ± 1.7	36.6	58.9
C2-Chrysenes 158 C3-Chrysenes 91.2 C4-Chrysenes 65.1 Benzo(b)fluoranthene 5.88 5 5.62 ± 0.34 4.22 7.15 Benzo(k,j)fluoranthene 1.18 J 7 5 Benzo(a)fluoranthene 1.18 J 7 7 Benzo(a)fluoranthene 1.18 J 7 7 Benzo(a)fluoranthene 1.10 2 10.78 ± 0.60 8.144 13.7 Benzo(a)pyrene 1.81 J 7 7 7 Perylene 0.506 J 7 7 7 Indeno(1,2,3-c,d)pyrene 0.572 J 7 7 7 Dibenzo(a,h)anthracene 0.464 J 21 0.574 ± 0.091 0.386 0.798 C1-Dibenzo(a,h)anthracenes <10	C1-Chrysenes	133	5				
$ \begin{array}{cccc} C3-Chrysenes & 91.2 \\ C4-Chrysenes & 65.1 \\ Benzo(k))fluoranthene & 5.88 & J & 5 & 5.62 \pm 0.34 & 4.22 & 7.15 \\ Benzo(k))fluoranthene & 1.18 & J \\ Benzo(a)fluoranthene & <10 & U \\ Benzo(a)fluoranthene & <10 & U \\ Benzo(a)pyrene & 11.0 & 2 & 10.78 \pm 0.60 & 8.144 & 13.7 \\ Benzo(a)pyrene & 1.81 & J \\ Perylene & 0.506 & J \\ Indeno(1,2,3-c,d)pyrene & 0.572 & J \\ Dibenzo(a,h)anthracenes & <10 & U \\ C2-Dibenzo(a,h)anthracenes & <10 & U \\ C3-Dibenzo(a,h)anthracenes & <10 & U \\ C3-Dibenzo(a,h)anthracenes & <10 & U \\ Benzo(g,h,i)perylene & 2.05 & J & 3 & 2.11 \pm 0.26 & 1.48 & 2.84 \\ \hline \end{tabular}$	C2-Chrysenes	158	5				
C4-Chrysenes 65.1 Benzo(k)/fluoranthene 5.88 J 5 5.62 ± 0.34 4.22 7.15 Benzo(k)/fluoranthene 1.18 J 5 5.62 ± 0.34 4.22 7.15 Benzo(k)/fluoranthene 1.18 J 5 5.62 ± 0.34 4.22 7.15 Benzo(a)/fluoranthene 1.18 J 5 5.62 ± 0.34 4.22 7.15 Benzo(a)/fluoranthene 1.10 2 10.78 ± 0.60 8.144 13.7 Benzo(a)/pyrene 1.81 J 7 10 10 10 10 Perylene 0.506 J 1 10	C3-Chrysenes	91.2	2				
Benzo(b)fluoranthene 5.88 J 5 5.62 ± 0.34 4.22 7.15 Benzo(k,j)fluoranthene 1.18 J J 5 5.62 ± 0.34 4.22 7.15 Benzo(k,j)fluoranthene 1.18 J J 5 5.62 ± 0.34 4.22 7.15 Benzo(a)fluoranthene <10 U	C4-Chrysenes	65.1		_			
Benzo(k,))Itudratitiene 1.18 J Benzo(a)fluoranthene <10 U	Benzo(b)fluoranthene	5.88	J	5	5.62 ± 0.34	4.22	7.15
Benzo(a)nuoranterie 100 2 10.78 ± 0.60 8.144 13.7 Benzo(a)pyrene 1.81 J <td>Benzo(k,J)fluoranthene</td> <td>1.18</td> <td>i J</td> <td></td> <td></td> <td></td> <td></td>	Benzo(k,J)fluoranthene	1.18	i J				
Denzo(a)pyrene 1.83 J 10.76 ± 0.00 0.144 10.7 Perylene 0.506 J Indeno(1,2,3-c,d)pyrene 0.572 J Dibenzo(a,h)anthracene 0.464 J 21 0.574 ± 0.091 0.386 0.798 C1-Dibenzo(a,h)anthracenes <10	Benzo(a)nuoraninene	۲۱ (11 (2	10 78 + 0 60	8 144	13.7
Perylene 0.506 J Indeno(1,2,3-c,d)pyrene 0.572 J Dibenzo(a,h)anthracene 0.464 J 21 0.574 ± 0.091 0.386 0.798 C1-Dibenzo(a,h)anthracenes <10 U	Benzo(a)pyrene	1 81	J	-	10.10 ± 0.00	0.777	10.7
Indeno(1,2,3-c,d)pyrene 0.572 J Dibenzo(a,h)anthracene 0.464 J 21 0.574 ± 0.091 0.386 0.798 C1-Dibenzo(a,h)anthracenes <10	Pervlene	0.506	i J				
Dibenzo(a,h)anthracene 0.464 J 21 0.574 ± 0.091 0.386 0.798 C1-Dibenzo(a,h)anthracenes <10	Indeno(1,2,3-c,d)pyrene	0.572	J				
C1-Dibenzo(a,h)anthracenes <10	Dibenzo(a,h)anthracene	0.464	J	21	0.574 ± 0.091	0.386	0.798
C2-Dibenzo(a,h)anthracenes <10	C1-Dibenzo(a,h)anthracenes	<10	U				
C3-Dibenzo(a,h)anthracenes <10 U Benzo(g,h,i)perylene 2.05 J 3 2.11 ± 0.26 1.48 2.84 Total PAHs 18521 1 <th1< th=""> 1 1 <th1< th=""></th1<></th1<>	C2-Dibenzo(a,h)anthracenes	<10	U				
Benzo(g,h,i)perylene 2.05 J 3 2.11 ± 0.26 1.48 2.84 Total PAHs 18521 1	C3-Dibenzo(a,h)anthracenes	<10	U				
Total PAHs 18521	Benzo(g,h,i)perylene	2.05	J	3	2.11 ± 0.26	1.48	2.84
	Total PAHs	18521					

Laboratory ID	MS70274C.D
Sample ID	PAH-WKSRM2779-4.0-012
Matrix	Gulf of Mexico Crude Oil
Collection Date	NA
Received Date	NA
Extraction Date	NA
Extraction Batch	ENV3865
Date Acquired	9/4/18 22:47
Method	B&B SOP1006
Sample Weight (mg)	4.14

Target Compounds	Su. Corrected Conc. (ng/mg)	Q	RPD (%)	SRM 2779 Certified Value	-20% Certified Value	+20% Certified Value
Individual Alkyl Isomers and Hopanes				(ug/g)	(ug/g)	(ug/g)
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylfluorene 4-Methyldibenzothiophene 2/3-Methyldibenzothiophene		1712 957 535 228 229 111 50.2	5 17	1630 ± 50 1140 ± 20	1264 896	2016 1392
1-Methyldibenzothiophene		34.9	2	206 ± 32	130	286
2-Methylphenanthrene 2-Methylanthracene		238 12.6	4	200 ± 32 230 ± 14	173	293
Algo Methylphenanthrene Algo Methylphenanthrene Algo Methylphenanthrene Algo Methylphenanthrene Retene Zo-Methylfluoranthene Benzo(b)fluorene C29-Hopane Ba-Oleanane C30-Hopane C20-TAS C21-TAS C26(20R)/C27(20S)-TAS C26(20R)/C27(20S)-TAS C28(20R)-TAS C28(20R)-TAS C28(20R)-TAS C28(20R)-TAS		261 168 59.4 8.11 J 5.33 J 17.2 21.2 <10 U 52.4 28.0 26.8 18.0 64.8 45.1 36.9 36.6	12 1	232 ± 19 169 ± 10	170 127	301 215
Surrogate Recovery (%)						
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	99 115 91 94 96					
Mass Discrimination (m/z 192) 4/9-Methylphenanthrene from 1-Methylyphenanthrene	91%					

Laboratory ID	MS70273I.D
Sample ID	PAH-WKICV-250-015
Matrix	Solution
Collection Date	NA
Received Date	NA
Extraction Date	NA
Extraction Batch	ENV3865
Date Acquired	8/31/18 5:39
Method	B&B SOP1006
Sample Volume (mL)	1.00

Target Compounds	Concentration (ng/mL)	Q	Recovery (%)	LCM Certified Conc. (ng/mL)	-20% Certified Conc. (ng/mL)	+20% Certified Conc. (ng/mL)
cis/trans Decalin	252		100	250	200	300
C1-Decalins	NA					
C2-Decalins	NA					
C3-Decalins	NA					
C4-Decalins	NA					
Naphthalene	254		101	250	200	300
C1-Naphthalenes	NA					
C2-Naphthalenes	NA					
C3-Naphthalenes	NA					
C4-Naphthalenes	NA					
Benzothiophene	254		101	251	200	301
C1-Benzothiophenes	NA					
C2-Benzotniophenes	NA					
C3-Benzothiophenes	NA NA					
C4-Benzouniophenes	1NA 252		101	250	200	200
	252		101	250	200	300
	201		90	250	200	300
Dibenzofuran	249		100	250	200	300
Fluorene	246		98	250	200	300
C1-Fluorenes	NA		00	200	200	000
C2-Fluorenes	NA					
C3-Fluorenes	NA					
Carbazole	238		95	250	200	300
Anthracene	249		99	250	200	300
Phenanthrene	258		103	250	200	300
C1-Phenanthrenes/Anthracenes	NA					
C2-Phenanthrenes/Anthracenes	NA					
C3-Phenanthrenes/Anthracenes	NA					
C4-Phenanthrenes/Anthracenes	NA					
Dibenzothiophene	247		99	250	200	300
C1-Dibenzothiophenes	NA					
C2-Dibenzothiophenes	NA					
C3-Dibenzothiophenes	NA					
C4-Dibenzotniophenes	NA 242		07	250	200	200
Puropo	243		97	250	200	300
C1-Elucranthenes/Pyrenes	230 NA		100	250	200	300
C2-Fluoranthenes/Pyrenes	NA					
C3-Fluoranthenes/Pyrenes	NA					
C4-Fluoranthenes/Pyrenes	NA					
Naphthobenzothiophene	NA					
C1-Naphthobenzothiophenes	NA					
C2-Naphthobenzothiophenes	NA					
C3-Naphthobenzothiophenes	NA					
C4-Naphthobenzothiophenes	NA					
Benz(a)anthracene	236		94	250	200	300
Chrysene/Triphenylene	240		96	250	200	300
C1-Chrysenes	NA					
C2-Chrysenes	NA					
C3-Chrysenes	NA					
C4-Chrysenes	NA		00	050	000	200
Benzo(k i)fluerenthene	241		96	250	200	300
Benzo(a)fluoranthene	242		91	250	200	300
Benzo(e)nvrene	243		97	250	200	300
Benzo(a)pyrene	241		96	250	200	300
Pervlene	241		96	250	200	300
Indeno(1.2.3-c.d)pyrene	243		97	250	200	300
Dibenzo(a,h)anthracene	237		95	250	200	300
C1-Dibenzo(a,h)anthracenes	NA					
C2-Dibenzo(a,h)anthracenes	NA					
C3-Dibenzo(a,h)anthracenes	NA					
Benzo(g,h,i)perylene	260		104	250	200	300

Laboratory ID	MS70273I.D
Sample ID	PAH-WKICV-250-015
Matrix	Solution
Collection Date	NA
Received Date	NA
Extraction Date	NA
Extraction Batch	ENV3865
Date Acquired	8/31/18 5:39
Method	B&B SOP1006
Sample Volume (mL)	1.00

Target Compounds Individual Alkyl Isomers and Hopanes	Concentration (ng/mL)	Q Recovery (%)	LCM Certified Conc. (ng/mL)	-20% Certified Conc. (ng/mL)	+20% Certified Conc. (ng/mL)
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylfibenzothiophene 2/3-Methyldibenzothiophene 3-Methylphenanthrene 2-Methylphenanthrene 4/9-Methylphenanthrene 1-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene	247 250 248 244 NA NA NA NA NA NA NA NA NA	98 100 99 98 98	251 250 251 250 251	201 200 201 200 200	301 301 300 300
3,6-Dimethylphenanthrene Retene 2-Methylfluoranthene Benzo(b)fluorene C29-Hopane 18a-Oleanane C30-Hopane C20-TAS C20-TAS C21-TAS C26(208)-TAS C26(208)/C27(208)-TAS C28(208)-TAS C27(20R)-TAS C28(20R)-TAS	NA NA NA NA NA NA NA NA NA NA NA NA				
Surrogate Recovery (%) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	248 246 249 233 235	99 99 100 93 94	250 250 250 250 250 250	213 213 213 213 213 213	288 288 288 288 288 288

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Laboratory Control Material Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired		MS70274B.D PAH-WKCCV-250-048 Solution NA NA NA ENV3865 0/(/48.21-38		MS70274D.D PAH-WKCCV-250-048 Solution NA NA NA ENV3865 0/5/18 9:01		MS70274E.D PAH-WKCCV-250-048 Solution NA NA NA ENV3865 0/5/14 16:07	
Method Sample Volume (mL)		B&B SOP1006 1.00		B&B SOP1006 1.00		B&B SOP1006 1.00	
Target Compounds	PAH-WKCCV-250-048 Certified Conc. (ng/mL)	Concentration (ng/mL)	Q Recovery (%)	Concentration (ng/mL)	Q Recovery (%)	Concentration (ng/mL)	Q Recovery (%)
cis/trans Decalin C1-Decalins C2-Decalins	250	276 NA NA	110	277 NA NA	111	275 NA NA	110
C4-Decalins Naphthalene C1-Naphthalenes	250	NA 266 NA	106	NA 276 NA	110	NA 272 NA	109
C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene	251	NA NA NA 261	104	NA NA NA 273	109	NA NA NA 272	109
C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes		NA NA NA		NA NA NA		NA NA NA	
Biphenyl Acenaphthylene Acenaphthene	250 250 251	268 274 277	107 109 110	269 270 267	108 108 107	269 267 266	108 106 106
Dibenzofuran Fluorene C1-Fluorenes C2-Fluorenes	250 250	267 268 NA NA	107 107	264 262 NA NA	106 105	263 262 NA NA	105 105
C3-Fluorenes Carbazole Anthracene Phenanthrane	253 250 250	NA 239 245 250	95 98 100	NA 248 253 256	98 101 102	NA 251 257 259	99 103 103
C1-Phenanthrenes/Anthracenes C2-Phenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes	230	NA NA NA	100	NA NA NA	102	NA NA NA	100
C4-Phenanturrenes/Anturacenes Dibenzothiophene C1-Dibenzothiophenes C2-Dibenzothiophenes C3-Dibenzothiophenes	250	NA 249 NA NA NA	99	NA 255 NA NA NA	102	NA 259 NA NA NA	103
C4-Dibenzothiophenes Fluoranthene Pyrene C1-Fluoranthenes/Pyrenes C2-Eluoranthenes/Pyrenes	250 250	NA 257 257 NA	103 103	NA 261 259 NA	104 104	NA 258 261 NA	103 104
C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C4-Fluoranthenes/Pyrenes Naphthobenzothiophene	252	NA NA 265	105	NA NA NA 258	102	NA NA NA 257	102
C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes C4-Naphthobenzothiophenes		NA NA NA NA		NA NA NA NA		NA NA NA NA	
Benz(a)anthracene Chrysene/Triphenylene C1-Chrysenes C2-Chrysenes C3-Chrysenes C4-Chrysenes	250 250	262 260 NA NA NA	105 104	259 257 NA NA NA	103 103	252 253 NA NA NA NA	101 101
Benzo(b)fluoranthene Benzo(k,j)fluoranthene Benzo(a)fluoranthene	250 250	257 256 NA	103 102	259 257 NA	103 103	257 257 NA	103 103
Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene	250 250 250 250	263 258 260 268	105 103 104 107	262 256 260 267	104 102 104 107	263 258 260 269	105 103 104 108
Libenzo(a,h)anthracene C1-Dibenzo(a,h)anthracenes C2-Dibenzo(a,h)anthracenes C3-Dibenzo(a,h)anthracenes	250	267 NA NA NA	107	272 NA NA NA	109	272 NA NA NA	109
Benzo(g,h,i)perylene	250	280	112	274	109	280	112

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Laboratory Control Material Report

Laboratory ID	MS70274B.D	MS70274D.D	MS70274E.D
Sample ID	PAH-WKCCV-250-048	PAH-WKCCV-250-048	PAH-WKCCV-250-048
Matrix	Solution	Solution	Solution
Collection Date	NA	NA	NA
Received Date	NA	NA	NA
Extraction Date	NA	NA	NA
Extraction Batch	ENV3865	ENV3865	ENV3865
Date Acquired	9/4/18 21:38	9/5/18 8:01	9/5/18 16:07
Method	B&B SOP1006	B&B SOP1006	B&B SOP1006
Sample Volume (mL)	1.00	1.00	1.00

Target Compounds	PAH-WKCCV-250-048 Certified Conc.	Concentration (ng/mL)	Q Recovery (%)	Concentration (ng/mL)	Q Recovery (%)	Concentration (ng/mL)	Q Recovery (%)
Individual Alkyl Isomers and Hopa	(ng/mL)						
2-Methylnaphthalene	251	263	105	270	108	267	106
1-Methylnaphthalene	251	270	108	271	108	268	107
2,6-Dimethylnaphthalene	251	270	108	269	107	266	106
1,6,7-Trimethylnaphthalene	251	270	108	265	106	264	105
1-Methylfluorene	250	265	106	263	105	259	104
4-Methyldibenzothiophene	251	251	100	255	102	258	103
2/3-Methyldibenzothiophene		NA		NA		NA	
1-Methyldibenzothiophene		NA		NA		NA	
3-Methylphenanthrene		NA		NA		NA	
2-Methylphenanthrene		NA		NA		NA	
2-Methylanthracene		NA		NA		NA	
4/9-Methylphenanthrene		NA		NA		NA	
1-Methylphenanthrene	251	248	99	256	102	259	103
3,6-Dimethylphenanthrene	251	256	102	258	103	259	103
Retene	251	263	105	255	102	250	100
2-Methylfluoranthene	250	263	105	258	103	258	103
Benzo(b)fluorene	252	254	101	257	102	250	99
C29-Hopane		NA		NA		NA	
18a-Oleanane		NA		NA		NA	
C30-Hopane	250	280	112	283	113	283	113
C20-TAS		NA		NA		NA	
C21-TAS		NA		NA		NA	
C26(20S)-TAS		NA		NA		NA	
C26(20R)/C27(20S)-TAS		NA		NA		NA	
C28(20S)-TAS		NA		NA		NA	
C27(20R)-TAS		NA		NA		NA	
C28(20R)-TAS		NA		NA		NA	
Surrogate Standard							
Naphthalene-d8	250	266	106	275	110	270	108
Acenaphthene-d10	250	272	109	266	106	266	106
Phenanthrene-d10	250	245	98	255	102	259	104
Chrvsene-d12	250	259	104	254	101	249	100
Pervlene-d12	250	258	103	256	103	257	103
- ,						•	

Polycyclic Aromatic Hydrocarbon Total Ion Chromatograms

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1041.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 6:52 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S2-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1042.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 9:10 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S3-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1043.D Operator :ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 10:19 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S3-2 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1044.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 11:29 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S6-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1045.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 12:38 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S8-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1046.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 13:48 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S11-1 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\RCA1047.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 5 Sep 2018 14:57 using AcqMethod PAH-2018.M Sample Name: HB18-PAM-S4-1 Misc Info :

PAH Mass Discrimination Ratio

B&B Laboratories Project J18346 Report 18-3808

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data Mass Discrimination Sheet

Laboratory ID	Sample ID	Benzo(g,h,i)perylene Concentration (ng/mL)	Phenanthrene Concentration (ng/mL)	Benzo(g,h,i)perylene/ Phenanthrene ratio	Q
MS70273B.D	PAH-WKC1-020-041	20.5	19.0	1.08	
MS70273C.D	PAH-WKC2-100-041	96.3	103	0.94	
MS70273D.D	PAH-WKC3-250-041	257	275	0.93	
MS70273E.D	PAH-WKC4-500-041	490	524	0.94	
MS70273F.D	PAH-WKC5-1000-041	1011	1057	0.96	
MS70273G.D	PAH-WKC6-5000-041	4809	4618	1.04	
MS70273I.D	PAH-WKICV-250-015	260	258	1.01	
MS70274B.D	PAH-WKCCV-250-048	280	250	1.12	
MS70274D.D	PAH-WKCCV-250-048	274	256	1.07	
MS70274E.D	PAH-WKCCV-250-048	280	259	1.08	

Qualifiers (Q): Ratio of Benzo(g,h,i)perylene to Phenanthrene needs to be ≥ 0.70

PAH Internal Standard Area Data

Kinnetic Labs - Harrison Bay Polycyclic Aromatic Hydrocarbon Data The Area of the Internal Standards in the Associated Calibration Standard

		Interi Fl	nal Standa uorene-d1	ard 1 I O		Inter F	nal Standa Pyrene-d1(ırd 2)		Inter Benz	nal Standa o(a)pyrene	ard 3 e-d12	
Laboratory ID	Sample ID	Response (Area)	50% (Area)	200% (Area)	Q	Response (Area)	50% (Area)	200% (Area)	Q	Response (Area)	50% (Area)	200% (Area)	Q
MS70273D.D MS70273I.D MS70273H.D	PAH-WKC3-250-041 PAH-WKICV-250-015 PAH-WKSUIS-250-014	150870 143458 130385	75435	301740		295501 269374 258550	147751	591002		241239 218093 201216	120620	482478	
MS70274B.D MS70274C D	PAH-WKCCV-250-048 PAH-WKSRM2779-4 0-012	119785 148287				249906 307025				221710 278942			
ENV3865A.D	Method Blank	116333				233809				191340			
ENV3865B.D	SRM1944	132285				282774				251199			
ENV3865C.D	Blank Spike	126546				257747				223917			
ENV3865D.D	MS (HB18-PAM-S2-1)	129902				282914				242677			
ENV3865E.D	MSD (HB18-PAM-S2-1)	128581				282375				242608			
ENV3865F.D	Dupl. (HB18-PAM-S3-1)	119849				255049				223038			
RCA1041.D	HB18-PAM-S2-1	126024				273804				233922			
MS70274D.D	PAH-WKCCV-250-048	120828				243741				207672			
RCA1042.D	HB18-PAM-S3-1	114042				234698				202414			
RCA1043.D	HB18-PAM-S3-2	125831				258346				221846			
RCA1044.D	HB18-PAM-S6-1	125296				261302				219248			
RCA1045.D	HB18-PAM-S8-1	127624				262935				225024			
RCA1046.D	HB18-PAM-S11-1	133719				283100				234845			
RCA1047.D	HB18-PAM-S4-1	113018				235647				200928			
MS70274E.D	PAH-WKCCV-250-048	125190				246237				200978			

SRM-2779 Reference Oil Aliphatic and PAH Resolution Check

File :P:\2018\J18346 Kinnetic Harrison Bay\ALI\ENV3865\FID30463 20 ... 18-09-05.SC\FID30463F.D Operator : Mike Gaskins Instrument : HP5890 Acquired : 06-Sep-2018, 10:18 using AcqMethod ALI2012.M Sample Name: ALI-SRM2779-20-04 Misc Info :

File :P:\2018\J18346 Kinnetic Harrison Bay\PAH\ENV3865\MS70274-ENV ... 3865\MS70274C.D Operator : ECM(YMIAO) Instrument : GCMS 7 Acquired : 4 Sep 2018 10:47 pm using AcqMethod PAH-2018.M Sample Name: PAH-WKSRM2779-4.0-012 Misc Info :

Supporting Documents

Shipping, Sample Receiving, and Project Initiation Documents

SAMPLE RECEIVING/INTEGRITY REPORT

Job #: J18346	Date Received:	08/14/2018	Time Arrived:	09:33
Received by:	Amanda Brews	ster	SDG#:	18081401
Client: Kinnetic La	abs - Harrison Bay	Sender:	Kinnetics: M	Mark Savoie
Number of Shipping Contair	ners: <u>1</u> of	1		
comments:	lor			
Airbill Present: Ves	No Shinn	ing Company Edd	Ev	
Tracking Number:	IO Shipp IComn	nents:		
7729627289	19 prior	ity overnight		
Container Secured?	VYes No	Comments: ta	aped shut	
Custody Seals?	Yes No	_		
	Custody Seals in	tact on container		
	Custody Seals br	oken on container		
	Comments: Cust	ody seal on top o	of tape	
	(see Sample Custody	Corrective Action Report,		
Chain of Custody Records:	Shipped with san	nples Notes:		
	No COCs receive	ed		
Preservation Conditions:	Ice Blue	ce Dry ice	None	
	Comments:			
	Temperature on i	receipt (°C): 2.7	Thermome	ter #:
	Temperature blar	nk: 🖌 Yes (°C):	2.1 No	
	(Note: If temperature rec	eipt differs from required con	ditions, see Sample Cust	tody Corrective Action Report)
Condition of Samples:	Sample containe	rs intact		
	Sample containe	rs/lids broken/leaking	a*	
	*(see Sample Custod	y Corrective Action Repor	t)	
Sample custody seals intact	: Y	es No	✓ None	
Sample Labels:	Sample labels ag	ree with COC		
	Sample discrepa	nices (see Sample Cust	ody Corrective Action	Report)
Number of Samples Receiv	ed: 7 sediments			
Complex Charlind in hur	Amanda Browete	ar Data: 05	3/14/2018	Time: 11.10
samples Checked in by:	Allianua Diewsle		11 1 100/ / 1/111	

Cooler Description:	medium blue
Custody seal on cooler?	(Yes) No
Custody seal intact?	Yes No N/A
Cooler sealed shut?	(Yes) No
Cooler sealed with what:	tape
Ice type: Blue ice) Wet	ice Dry ice None
Thermometer used:	Ts
Cooler temperature:	2.7°C
Temperature blank:	2.1 °C

SDG:	1808	140	<u>ا</u>
Cooler	1	of _	1

Co	oler signed for by
Name:	amanda
Date:	8/14/18
Time:	9:33

7 sediments one brokenjar: HB18-PAM-53-2

transterved to new jar.

#258164 08/13 652J1/3309/DCA5

1		
Manil		a
Å	6.	
A	ry	
	A	Aly

CUSTODY SEAL

Daterime 8/13/18

330

Amanda Brewster

From: Sent: To: Subject: TrackingUpdates@fedex.com Monday, August 13, 2018 2:49 PM amandabrewster@tdi-bi.com FedEx Shipment 772962728919 Notification

Kinnetic - MOA

This shipment is scheduled to be sent on 08/13/2018.

See "Preparing for Delivery" for helpful tips Tracking # 772962728919

3

Anticipated ship date: Mon, 8/13/2018 KINNETIC LABORATORIES, INC ANCHORAGE, AK 99501 US

Initiated

Scheduled delivery: Tue, 8/14/2018 by 10:30 am

Coming 8/14/18

Amanda Brewster B&B Laboratories 14931B South Dowling Road COLLEGE STATION, TX 77845 US

Shipment Facts

Tracking number:	772962728919
Reference:	MOA 5089
Service type:	FedEx Priority Overnight®
Packaging type:	Your Packaging
Number of pieces:	1
Weight:	20.00 lb.
Special handling/Services:	Adult Signature Required
	Deliver Weekday

Preparing for Delivery

To help ensure successful delivery of your shipment, please review the below.

Won't be in? If an adult (age and required identification vary by country) will not

To: B&B LABORATORIES, INC 14391 B South Dowling Rd. College Station, TX 77845 Phone: (979) 693-3446 Contact: Amanda Brewster	2.		KL F Quote #: Q Lab #:	20 ≇ : 4 2018-LAB0	HK 18 - 1020 72601	From: Kinnetic Laborat 704 West 2nd Av Anchorage, AK (907) 276-6178 Contact: Mark S	tories, Inc e. 99501 avoie	2		
Project:	2018 HARRISON	N BAY MMP			Matri	x: Sediment		P	roject #: 5089.03	
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabID	Condition Upon Receipt
HB18-PAM- 52-1	52	8418	1036 K	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	- 1		good
HB18-PAM- 53-1	53	1	0929 V	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1	-	good
НВ18-РАМ- 53-2 😽	53		0929	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	- 1		broken
HB18-PAM-56-1	56		13581	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1		
HB18-PAM- 58 -1	58		1515 1	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1		
HB18-PAM- SII-]	Sil		1709V	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1		
нв18-рам- 54- ј	54	\downarrow	1207.	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1		
										4
										8mz
Data Report MUST include th on this sheet are military time Special Instructions/Comm Amet M. Sa	he following: Sar e. Email sample nents: See qu	nple ID, Analytic receipt confirm tote list of analy	cal Method, Det nations, PDF r rtes and detec	ection Limit, I reports, and I tion limits.	Date of Extraction if applicab EDDs to msavoie@kinnetio Report on a dry weight ba	le, Date of Analysis, clabs.net. EDD RE asis.	Analytic: QUIRE	al Results, and D.	Signature of QA Ro	eviewer. All times
Sampled and Relinquished By	v: 0.00		Date/Time:	1000	Transporter	Received By:				Date/Time:
Antm.S	ana	813	3 2018 1	130	FED EX	amand Received By:	a B	newst	u 8/14	(18 11:10

v20020904

7

Agreement for Services

Lab Contact: Juan Ramirez, Laboratory Manager 14391B South Dowling Road College Station,TX 77845 Phone: (979) 693-3446 email: juanramirez@tdi-bi.com

Project Manager:	MARK SAVOIE
Phone:	(907) 276-6178
Street Address City, State Zip:	704 W. 2nd AVE. ANCHORAGE, AK 99501
Fax:	
Email:	MSAVDIE KINNETICLASS. NET

Payment Terms: Net 30 from date of invoice

All overdue payments are subject to an additional interest and service charge of one and one-half percent (1.5%) per month, from the due date until the date payment is received.

Billing corrections must be requested within 30 days of the invoice date.

Attention to:	BRENDA GUMMINGER
Company:	KINNETIC LABORATORIES, INC.
Street Address City, State, Zip:	FOY W. 2nd AVC. ANCHORAGE, AK 99501
Phone:	(907) 276-6178
Email:	BGUMMINGER KINNERCLAB

Sample Shipping Contact:

Amanda Brewster, Sample Custodian 14391B South Dowling Road College Station TX 77845 Phone: (979) 693-3446 email: amandabrewster@tdi-bi.com

Project Name:	HBMMP
Project Number:	5089
Requested Turn-Around (working days)	45 DAYS
Submission Date:	SHIP OFF SLOPE 8/10/18
Purchase Order #:	AK18-1020

Sample Storage and Disposal:

B&B Laboratories shall dispose of Client's samples 30 days after analytical report is issued, unless instructed to hold samples for an alternate period of time, or, request is made for samples to be returned to the Client. Longer storage periods may be requested (as space allows) for an additional charge.

If sample disposal is requested, it will be at cost to the client or, samples may be returned to client, at client's cost.

and h

8/10/18 Date/Time

Signature

*Signature indicates agreement with these terms and conditions

B&B LABORATORIES SAMPLE INITIATION FORM-ENV

Job #: J18346	Number of Samples: 7
SDG: 18081401	Matrix: sediment
Client: Kinnetic Labs - Harrison Bay	Due Date: 45 days: 9/28/18
Initiation Date: 8/14/18	Comments: aliquot for TM
Analyses Report in: dry weig	ght wet weight
PAHs OCs/PCBs	Aliphatics/TPH EOM
✓ %Dry Wt. %Lipid	Biomarkers
Short Columns Long Columns	
Blank Spike Duplicate	_
EXTRACTION STANDARDS - SEI	E BACK FOR SPECIFIC STANDARDS
Surrogate(s):	volume(s):
PAH, ALI Spike Standard(s):	Volume(s):
PAH, ALI Internal Standard(s):	Volume(s):
Final Extract Volume (ml): <u>1.0</u>	Final Solvent: DCM
Laboratory Notes: SOP:1012, 1003	
Instrument Notes: SOP:1006, 1016	0
Sample Custodian Signature:	BUEWStu Date: 8/15/18
Laboratory Manager Signature:	Date: 3/5/18
Sample Initiaiton - General Rev 6 Rev 6: 1/15/2018	cc: COC File Extraction Lab
	Pag

Job #	CLIENT NAME	LAB ID	SAMPLE ID	COL. DATE	REC DATE	Analysis	MATRIX	COMMENTS	B&B SDG	Project #
J18346	Kinnetic Labs - Harrison Bay	RCA1041	HB18-PAM-S2-1	08/06/18	08/14/18	PAH, ALI, TM	SED		18081401	5089.03
J18346	Kinnetic Labs - Harrison Bay	RCA1042	HB18-PAM-S3-1	08/06/18	08/14/18	PAH, ALI, TM	SED		18081401	5089.03
J18346	Kinnetic Labs - Harrison Bay	RCA1043	HB18-PAM-S3-2	08/06/18	08/14/18	PAH, ALI, TM	SED	received broken	18081401	5089.03
J18346	Kinnetic Labs - Harrison Bay	RCA1044	HB18-PAM-S6-1	08/06/18	08/14/18	PAH, ALI, TM	SED		18081401	5089.03
J18346	Kinnetic Labs - Harrison Bay	RCA1045	HB18-PAM-S8-1	08/06/18	08/14/18	PAH, ALI, TM	SED		18081401	5089.03
J18346	Kinnetic Labs - Harrison Bay	RCA1046	HB18-PAM-S11-1	08/06/18	08/14/18	PAH, ALI, TM	SED		18081401	5089.03
J18346	Kinnetic Labs - Harrison Bay	RCA1047	HB18-PAM-S4-1	08/06/18	08/14/18	PAH, ALI, TM	SED		18081401	5089.03

SAMPLE CUSTODY CORRECTIVE ACTION REPORT

er upon receip
er upon receip
15.10
, 15.19
acted
an or Lab Manage
me:
me: <u>15:19</u>
me:

Amanda Brewster

From: Sent: To: Subject: Amanda Brewster <amandabrewster@tdi-bi.com> Tuesday, August 14, 2018 3:19 PM 'msavoie@kinneticlabs.net' RE: samples received 8/14/18

Hi Mark,

Sorry I forgot to mention ...

Sample HB18-PAM-S3-2 arrived broken, but frozen solid. We were able to transfer this to a new jar upon receipt.

Regards, Amanda

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Tuesday, August 14, 2018 3:18 PM To: 'msavoie@kinneticlabs.net' Subject: samples received 8/14/18

Hi Mark,

We received your samples this morning in good condition. The internal temperature of the cooler was 2.7°C, and the temp blank was 2.1°C. A PDF of the signed COC is attached for your records.

Would you like the cooler and ice returned? If so, could I please have a Fed Ex acct # to use for the return shipment?

Regards, Amanda

Amanda Brewster Sample Custodian

B&B Laboratories 14391B South Dowling Road College Station, Texas 77845

Phone: (979) 693-3446 Email: amandabrewster@tdi-bi.com

Amanda Brewster

From: Sent: To: Cc: Subject: Juan Ramirez <juanramirez@tdi-bi.com> Wednesday, August 15, 2018 9:05 AM 'Amanda Brewster'; 'Donell Frank' msavoie@kinneticlabs.com RE: samples received 8/14/18

Hello Mark,

We're ok on samples since everything was frozen.

Thanks,

Juan

Juan Ramirez Environmental Laboratory Manager

TDI-Brooks International, Inc. 14391 South Dowling Rd. College Station, Texas 77845

Office: 979.693.3446 Cell: 979.777.0793

juanramirez@tdi-bi.com

http://tdi-bi.com/

Could you please take a moment and answer a quick <u>survey</u>? We would like to know how we can improve our services.

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Wednesday, August 15, 2018 8:18 AM To: 'Juan Ramirez'; 'Donell Frank' Subject: FW: samples received 8/14/18

Juan,

Do you think they need to send the backup sample for the jar that arrived broken? It was frozen solid and inside a bubble wrap envelope so the lab was able to transfer it into a new jar upon receipt.

Regards, Amanda

From: Mark Savoie [mailto:msavoie@kinneticlabs.net] On Behalf Of Mark Savoie Sent: Tuesday, August 14, 2018 5:47 PM To: 'Amanda Brewster'; msavoie@kinneticlabs.net Cc: jsavoie@kinneticlabs.net; 'Gary Lawley' Subject: RE: samples received 8/14/18

Amanda –

Thanks for the update. If you think the broken sample is an issue, let us know, as we do have a backup/archive sample that we could send as a replacement.

You can keep the cooler and ice as they aren't worth the return shipping costs to Alaska.

Regards,

Mark

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Tuesday, August 14, 2018 12:19 PM To: msavoie@kinneticlabs.net Subject: RE: samples received 8/14/18

Hi Mark,

Sorry I forgot to mention ...

Sample HB18-PAM-S3-2 arrived broken, but frozen solid. We were able to transfer this to a new jar upon receipt.

Regards, Amanda

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Tuesday, August 14, 2018 3:18 PM To: 'msavoie@kinneticlabs.net' Subject: samples received 8/14/18

Hi Mark,

We received your samples this morning in good condition. The internal temperature of the cooler was 2.7°C, and the temp blank was 2.1°C. A PDF of the signed COC is attached for your records.

Would you like the cooler and ice returned? If so, could I please have a Fed Ex acct # to use for the return shipment?

Regards, Amanda
Laboratory Bench Sheet Logs

B&B LABORATORIES ENVIRONMENTAL EXTRACTION LOG

MATRIX	Job # J18346 SDG #: 1808	1401	Lipid	s Y/D	Surrogate: 100µL	Spike: 100 µL
OTHER	client: Kinnetic Labs 2018 H	arnison Ba	m Dry V	Nt.	PAH: PAH-WKSU-2500-016 Bottleof	PAH: PAH-WISK-1000-036 Bottle_1 of 2
□ WATER	Analysis: PAH PESTS PCB		Copr	ber Ô⊘/N	Pest/PCB:	Pest/PCB:
SEDIMENT	other: TPH		EOM		Aliphatic: AL]-WKSU-200-003	Aliphatic: ALI-wksk-100-029
	Extraction Solvent: D.CM		Colu	mns (2) N	Other:	Other:
		1 mar		Long / Short	Bottle of	Bottle of
General Comments	Final Solvent : Final Volume: Pinet #	Standard	Added	Witness		Turbo vap
Report #_18-	3808	Ourrenter	8/30/2018	8-30-18	PAH: MAH- WKIS-2503-01	Bath T (C):
	Mpio	Surrogate:	Ha	En	Pest/PCB:	Pressure (>20psi).
ph < 2 three	MPIO	Spike:	8/30/2018 Ha	8-30-19	Aliphatic: 1/21- WK15-500-003	Check Water kevel:
	N PLO		9/4/2.98	9-4-18	Other:	Turbo Vap Date:
	Impro	Internal:	ita	Gn	Bottle of	9
Sample Nam	Client ID	Wet Wt. (g or L)	Dry Wt. %	Dry Wt. (g)	Defwf.) Extraction Comments	Internal Chain of Custody
1 ENU 3865	1 Method Blank	15-04	-	15.04	5.04	Extraction Prep
2 ENU3865	3 SRM 1944	Vo.54	98.75	0.540)·SS	B-30-18 8-30-18
3 ENU38650	Blank Spine	15.01	-	15.01 1	5.01	Initials: En Initials: En
4 ENU3865	Matrix Spile (RCALO41)	15.05	55.49	15.05:	27.12	Extraction
5 ENU 3865	= Matrix Spike Bup (RCALO41)	15,02	55.49	15.02 2	7.07	Date: 8-30-18 8-30-18
6 ENV 3865	Duplicate (RCA1042)	15:02	70:01	15.022	0.51	Initials: Initials:
7 RCA 1041	HB18-PAM-52-1	15:05	55.49	15:052	7.12	Concentration
8 RCA 1042	HB18-PAM-53-1	15.01	73.01	15.01	20.56	B-31-18 8-31-18
9 RCA 10 47	HB18- PAM-53-2	15.02	75.63	15:02 1	9.86	Initials:
10 RCA 1044	4 HB18-PAM- 56-1	15.01	50.86	15.012	.9.51	Short Columns
11 RCA 1045	HB18-PAM-58-1	15.02	72.38	15.022	20.75	Date: 9-31-19 Date: 31-18
12 RCR 104	0 HB18-PAM - SII-1	15.00	51.50	15.002	9.13	Initials:
	(1) \$\$30/2018 HA					ENV 3865

ENVIROLOG Rev 5: 4/17/2018

Page 1 of 2

Copied to Folders

Hydrochloric Acid:

Other:

		Equipment Used	
	ASE2 ASE4	□	HPLC1
0 %	30/2018	HA	

Renderly March 1920

ENVIROLOG Rev 5: 4/17/2018

Final Extract Transfer

9

nitials: En

B&B LABORATORIES % DKY WEIGHT LUGDUUN

	MATRIX	100 # J18346 SDG#	18081	401	General com	iments:		
	OTHER	client Kinnetic (abs _ Harr	ison Bay	1				
F	SEDIMENT					-		
	TISSUE	Lab Mananger	Date/Init:	Bal. Cal.	Beaker + Dr Date/Init:	y Smpl (g) Date/Init:	Date/Init:	AT I A A A A A A A A A A A A A A A A A A
	_ Туре		8/20/201	8 1771	8/21/18	8/22/2018	8 2.3 / 2018	
		alsin gh			Bal. Cal.	Bal. Cal.	H71	
	Sample Name	Client ID	Beaker Wt (g)	Beaker + Wet Smpl (g)	1	2	(%) Dry Weight	Comments
1	RCA1041	HB18-PAM-52-1	1.27	3.00	2.23	2.23	55.49	<i>\</i>
2	RCA1042	HB18-PAM-33-1 8/20/18	1.29	2*92	2.48	2.48	73.01	HB18-PAM-53-1
3	RCA 1043	HB18-PAM-53-2	1.30	3.27	2.80	2.79	75.63	
4	RCA 1044	HB18 - PAM - 56 - 1	1.28	3.03	2.16	2.17	50.86	
5	RCA 1045	HB18 - PAM - 58 - 1	1.29	3.10	2.59	2.60	72.38	
6	RCA1046	HB18-PAM-511-1	1.28	2.95	2.16	2.14	51.50	
7	RCA1047	HB18-PAM-54-1	1.28	3.05	2.52	2.51	69.49	
8	RCA1045 Dup	Duplicate	1.30	3.13	2.62	2.61	71.58	
9								
10								
11								
12								
13								
14								
15								
16								

DRY 1594

Y

Page 1 of 2

DRYWT LOG Rev 0

Page 93 of 97

		The states of the			<u>Beaker + D</u> Date/Init:	r <u>y Smpl (g)</u> Date/Init:		
					Bal. Cal.	Bal. Cal.		
	Sample Name	Client ID	Beaker Wt (g)	Beaker + Wet Smpl (g)	1	2	(%) Dry Weight	Comments
17				110-				
18				to	18			
19				8/201				
20								
21								
22								
23								
24								

% Dry Weight = [Beaker + Dry SMPL (g)] - [Beaker Weight (g)] x 100

[Beaker + Wet SMPL (g)] - [Beaker Weight (g)]

RPD = [Original % Dry Weight Value - Duplicate % Dry Weight Value] x 100

[Original % Dry Weight Value + Duplicate % Dry Weight Value] x 0.5

The Relative Percent Difference (RPD) between duplicates must be $\leq 25\%$.

Date / Init.	RPD
8/23/18 HA	3.0%
Sample # RCAL04	7
Duplicate # RCALO4	FT DUP
	DRY 1 Page 2 of 2

DRYWT LOG Rev 0

1594

Г	MATRIX	Job #: J18346	SDG #: 18	08140	51		General com	ments:				
	OTHER	Client: Kinnetic Labs	Harrison	Bay			Pipet #	1P2				
	SEDIMENT											
	WATER	QC Review	Transt SI21/20	ferred by Date	e/Int:	Date/Int:	Bal. Cal.	Date/Int:	Circl	e one		
		Date/Int:	8 SI/C	Toll 38	65	8-31-	18	13/208		2/g		
		913/11-4	From DRY Pg	: DRYI	594	E-	Ha		μgre			
	Sample Name	Client ID	Smpl Wt./Vol (9/L) Wet Wt. Dry Wt.>	Dry Wt. (%)	Final Extract Vol (mL)	Initial Filter Wt (mg)	Filter & Sample Wt (mg)	Wt. of 100 μl EOM Wt. (mg)	EOM (Wet Wt. Basis)	EOM (Dry Wt. Basis)	Comments	Scale #
1	ENV3865A	Method Blank	15:04	-	3	21.004	21.004	0.000		-		6
2	ENV3865B	SRM1944	0.54	98.75	3	21.195	21339	0.144	7900	8000		10
3	ENU3865C	Blank Spike	15:01	-	3	20-623	20.635	0.012	-	24		6
4	EN V38650	Matrix Spike (RCALO241)	15:05	55.49	3	20.866	208-31-1	8 0.431	471	859		10
5	ENV3865E	Matrix Spirkel Sup (RCA 1041)	15.02	55.49	3	21-15-6	21.569	0.413	458	\$25		6
6	ENV3865F	Duplicate (RCA1042)	15:02	73.01	3	20.962	20.992	0.036	44	60		10
7	RCA 1041	HB18- PAM-52-1	15:05	55.49	3	20.601	20978	0.377	417	751		6
8	RCA1042	HB18- PAM- 83-1	15:01	73.001	S	21.205	21.236	0.031	45	62		10
9	RCA1043	HB18- PAM-53-2 9/4/18	15.62	7563	3	20.610	20-640	0.036	45	60		6
10	RCA1044	HB18-PAM-56-1	15-01	50.86	3	20.707	21.031	0.324	329	648		(0)
11	RCA1045	HB18-PAM- 58-1	(5.02	72.38	3	20.839	20.87	0.037	53	74		6
12	RCA 1046	HB 18- PAM- S11-1	15.00	51.50	3	21.083	22.067	0.979	1008	1958		10

EOM 1433

Page 1 of 2

B&B LABORATORIES EOM LOGBOOK

	Sample Name	Client ID ·	Smpl@t./Vol (Q/L) Wet Wt. Ory WD	Dry Wt. (%)	Final Extract Vol (mL)	Initial Filter Wt (mg)	Filter & Sample Wt (mg)	Wt. of 100 µl EOM Wt. (mg)	EOM (Wet Wt. Basis)	EOM (Dry Wt. Basis)	Comments	Scale #
13	RCA1047	HB18-PAM- 54-1	15.01	69.49	3	20.758	201777	0.019	26	38		6
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												

	EOM =	(EOM Wt. (mg)) (Final Extract Vol. (ml))	x 1000			%RPD=	$(EOM_1 - EOM_2)$	1
		(Smpl Wt/Vol. (g/L)) (0.10 ml)				-	(EOM ₁ + EOM ₂) x 0.5	
[Thermometer #	Oven Temperature (40°C ± 2°C)	Initial	Filter &		Wt of 100 ul		
	t	41.6°C	Filter Wt (mg)	Sample Wt (mg)	Scale #	EOM Wt. (mg)	The Relative Pe Date/Int: 913125	arce
		Solvent Blank	20.667	20.662	6	0.000	Sample:	r
		Corn Oil Standard:	21.053	30-841	6	91788	Duplicate:	E
		10M-WKLC- 10-008	Standard weig	tht must be bet	ween 9.50-1	0.50 mg		

x 100%

Date/Int:		RPD	e r
913/2	J.8	3.3	45 (1
Sample:	RCAI	542	
Duplicate:	ENV3	865F	

Proprietary Information

B&B Client Number: J18346

Client Address: Kinnetic Laboratories Inc. 704 West 2nd Avenue Anchorage, AK 99501

Contact Juan Ramirez for questions concerning these data.

Proprietary Information

Kinnetic Laboratories, Inc. Project #5089.03

Determination of:

Trace Metals (TM) in Sediment Samples

November 2, 2018

Technical Report 18-3808 TM

Please take a moment and answer a quick <u>survey</u>. We would like to know how we can improve our services.

Narrative

Case Narrative

Sample Receipt and Storage

B&B Laboratories received a shipment of one (1) ice chest on August 14, 2018 in College Station, Texas. The ice chest arrived sealed and in good condition.

Cooler Number	Temperature	Samples Received	Sample Custody Corrective Action Report (SCCAR)
1	2.7 °C 2.1°C Temperature Blank	Seven (7) sediment samples in 250 mL jars.	109

The sediment samples were logged in according to B&B Laboratories standard operating procedure (B&B 1009) and stored in an access-controlled freezer (<-16.0°C) prior to analysis. See Supporting Documents for the information related to the sample received broken during shipping.

The sediment samples were analyzed for trace metals using inductively coupled plasma-optical emission spectroscopy (ICP-OES), inductively coupled plasma-mass spectroscopy (ICP-MS), and combustion-trapping-atomic absorption (C-T-AA) spectroscopy by Trace Environmental Labs (TERL, Texas A&M University), College Station, Texas.

The analytical results for trace elements in the sediment samples are included in this report.

Sample Preparation and Digestion

Digestion (TERL)

Sediment samples were digested in polypropylene vessels in a block digester with ultrapure nitric acid, hydrochloric acid, and hydrofluoric acid. The latter acid was necessary in order to solubilize the aluminosilicate mineral lattice in order to achieve a "total" sediment analysis. Following digestion, samples were diluted to volume with deionized water and stored in screw cap high density polyethylene bottles until analysis.

Determination of Percent Moisture in Tissues, Soils and Sediment (B&B Labs)

Percent moisture (weight/weight basis) is determined in samples by measuring the loss in mass of the sample due to drying at 104 °C to a constant weight. Typically, between one and two grams of sample are used for the determination. Wet and dried samples are weighed to the nearest milligram. This procedure is documented in B&B SOP 1012, *Preparation of Tissue, Water, Soils, and Sediment for Extraction*.

Analytical Methods (TERL)

Samples were analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES), inductively coupled plasma-mass spectroscopy (ICP-MS), and combustion-trapping-atomic absorption spectroscopy (C-T-AAS for Hg).

Most analytes were determined by using the multi-element inductively coupled plasma instruments. Digested samples were diluted as necessary and analyzed using external calibration and internal standards to compensate for slight matrix differences. Off-peak baseline correction and interelement corrections were utilized in ICP-OES, while reaction cell technology was used to remove molecular ion interferences in ICP-MS. Mercury was determined by direct analysis (C-T-AAS) via sample combustion in a stream of oxygen, trapping of Hg⁰ on gold, and measurement of Hg vapor by AAS following heating of the gold trap.

All instrumental methods utilized calibration with a blank and at least three standards that bracket the sample concentrations. Calibration check standards (CCVs) and calibration check blanks (CCBs) were analyzed immediately after calibration and following every 10 samples in order to evaluate instrument performance throughout the run.

Data Reporting

The reporting units for each analyte are listed in Table 1. Data Qualifier Definitions are listed in Table 2. The method detection limits (MDL) for each analyte are listed in Table 3. Refer to Table 4 for Method Performance Criteria for Trace Metals.

Table 1. Analytical reporting units.

Matrix	Trace Metals
Sediment	ug/dry g

Table 2. Data Qualifier Definitions	Table 2.	Data	Qualifier	Definitions
-------------------------------------	----------	------	-----------	-------------

Qualifier	Definition
В	Analyte detected in the method blank greater than 3X MDL
D	Diluted Value
E	Analyte concentration exceeds the calibration range of the GC/MS for that specific analysis.
I	Analytical interference
J	Analyte detected below the method detection limit
L	Loss due to matrix effect
NA	Not Applicable
U	Analyte not detected
х	Analyte <3X MDL
Y	Spiked level of analyte <50% of the native concentration
*	Outside QA limits, refer to narrative

Metals	Sediment
Sample Size (g)	1.00
Unit of Measure	Total μg
Ag	0.00986
AI	0.99
As	0.0246
Ва	0.049
Cd	0.00986
Cr	0.099
Cu	0.197
Fe	0.246
Hg	0.00005
Ni	0.246
Pb	0.0493
Sb	0.00493
Se	0.0197
V	0.099
Zn	0.099

Table 3. Method Detection Limits

Quality Assurance/Quality Control Variances – Sediment

Trace Metals

Blank

Observation

• No variances are reported.

Laboratory Control Sample (Blank Spike)

Observation

• No variances are reported.

Matrix Spike

Observation

• No variances are reported.

Laboratory Duplicate

Observation

• The %RPD for Se exceeded the QC criteria of 30% for RCA1041 (client ID HB18-PAM-S2-1) and duplicate T8038-001D.

Comments

• Results for Se were <3XMDL; this variance does not impact the overall data quality.

Standard Reference Materials

Observation

• No variances are reported.

Table 4. Method Performance Criteria for Trace Metals

Trace Metals		
Sample Type	Minimum Frequency	Acceptance Criteria
Method Blank	One per batch/every 20 samples	No analytes exceed 2X the method detection limits. Higher blank levels are acceptable as long as the observed sample concentrations are not significantly impacted by blank concentrations
Matrix Spike Blank Spike	One per batch/every 20 samples	The recovery for all analytes is between 80- 120% for valid spikes. As long as the spiking level is "valid", or at least as high as the concentration of the analyte in the unspiked sample
Laboratory Duplicate	One per batch/every 20 samples	The QC criterion for valid duplicates and spiked duplicates is \pm 30%. Where concentrations are greater than 3x the MDL
Reference Materials NIST SRM	One per batch/every 20 samples	\pm 20% the certified limit. Where concentrations are greater than 3x the MDL

B&B Laboratories makes no representation or certifications as to the method of sample collection, sample identification, or transporting/handling procedure used prior to the receipt of samples by B&B Laboratories. To the best of my knowledge, the information contained in this report in accurate and complete.

We appreciate the opportunity to serve your analytical needs and please do not hesitate to contact us should you have any questions.

Juan A. Ramirez Laboratory Manager

11/2/2018 Date

Sediment Samples

Sample/Analyses Description

Kinnetic Labs - Harrison Bay Sample Inventory

#	Laboratory ID	Sample ID	Collection Date	Receive Date	Analysis	Matrix	Comments	B&B SDG	Client Project #
1	RCA1041	HB18-PAM-S2-1	08/06/18	08/14/18	TM	Sediment		18081401	5089.03
2	RCA1042	HB18-PAM-S3-1	08/06/18	08/14/18	TM	Sediment		18081401	5089.03
3	RCA1043	HB18-PAM-S3-2	08/06/18	08/14/18	TM	Sediment	received broken	18081401	5089.03
4	RCA1044	HB18-PAM-S6-1	08/06/18	08/14/18	TM	Sediment		18081401	5089.03
5	RCA1045	HB18-PAM-S8-1	08/06/18	08/14/18	TM	Sediment		18081401	5089.03
6	RCA1046	HB18-PAM-S11-1	08/06/18	08/14/18	TM	Sediment		18081401	5089.03
7	RCA1047	HB18-PAM-S4-1	08/06/18	08/14/18	TM	Sediment		18081401	5089.03

Trace Metal Concentrations

Kinnetic Labs - Harrison Bay Trace Element Data Client Submitted Samples

SEQ								
LAB ID	T8038-001		T8038-002		T8038-00	3	T8038-004	4
SampleID	RCA1041		RCA1042		RCA104	3	RCA1044	Ļ
Site	HB18-PAM-S	2-1	HB18-PAM-S	3-1	HB18-PAM-	- S3-2	HB18-PAM-S	6-1
Collection date	08/06/18		08/06/18	•	08/06/18	3	08/06/18	
Receipt Date	08/14/18		08/14/18		08/14/18	3	08/14/18	
Matrix	Sediment		Sediment		Sedimer	, t	Sediment	
% DRY	55		73		76	it.	51	•
	35 45		27		24		/0	
	40		21		24		45	
Method	ICP		ICP		ICP		ICP	
Batch	9468		9468		9468		9468	
Prep Date	09/24/18		09/24/18		09/24/18	3	09/24/18	
Analysis Date	09/24/18		09/24/18		09/24/18	3	09/24/18	
Weight	0.103		0.188		0.109		0.112	
UNITS	maa	Q	maa	Q	maa	Q	maa	Q
AI		45400		29200		29100		49700
Ba		900		692		683		572
Cr		63.9		39.1		38		65.5
Cu		27.3		8.39		8.37		24.3
Fe		36900		23600		22400		32400
Ni		37.4		22.2		22.3		30.5
V		113		66.3		66.8		121
Zn		91.2		58.9		68.8		90.9
211		01.2		00.0		00.0		00.0
Mothod								
Retab	0449		0449		0449		0449	
Daluii Drop Doto	9440		9440		9440	b	9440	
Analyzia Data	03/24/10	7/2010	03/24/10	7/2010	09/24/10) 17/2010	03/24/10	7/2010
Mojaht	9/21/2010-10/11	/2010	0 100	/2010	9/21/2010-10/	17/2010	0 112	//2010
	0.103	0	0.100	0	0.109	0	0.112	0
00013	ppm	0 100	ррш	1 0020	ppm	0.0007	ppm	0 1 4 4
Ag		0.100	(J.UOJO		0.0997		0.144
AS		37.0	,	10.1		13		15.7
		0.209	(7.0017		0.0906		0.16
PD		19.8		7.89		7.36		13.1
Sb		1.08		0.467		0.477		0.535
Se		0.394		0.103		0.181		0.365
	0.7.1.		0.7.1		0.7.1		0.7.1	
Method	C-I-AA		C-I-AA		C-T-AA		C-I-AA	
Batch	9442		9442		9442		9442	
Prep Date	09/17/18		09/17/18		09/17/18	5	09/17/18	
	03/11/10							
Analysis Date	09/17/18		09/17/18		09/17/18	3	09/17/18	
Analysis Date Weight	09/17/18 0.036		09/17/18 0.043		09/17/18 0.063	3	09/17/18 0.037	
Analysis Date Weight UNITS	09/17/18 0.036 ppm	Q	09/17/18 0.043 ppm	Q	09/17/18 0.063 ppm	3 Q	09/17/18 0.037 ppm	Q

SEQ

Kinnetic Labs - Harrison Bay Trace Element Data Client Submitted Samples

LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	T8038-005 RCA1045 HB18-PAM-S8-1 08/06/18 08/14/18 Sediment 72 28	T8038-006 RCA1046 HB18-PAM-S1 08/06/18 08/14/18 Sediment 51 49	11-1	T8038-007 RCA1047 HB18-PAM-S 08/06/18 08/14/18 Sediment 69 31	; 4-1
Method Batch Prep Date Analysis Date Weight UNITS AI Ba Cr Cu Fe Ni V Zn	ICP 9468 09/24/18 09/24/18 0.145 ppm 29300 668 38.2 9.22 22900 23.7 68.7 59.8	ICP 9468 09/24/18 09/24/18 0.104 Q ppm	Q 63200 733 83.5 42 40900 45.1 148 119	ICP 9468 09/24/18 09/24/18 0.107 ppm	Q 27200 697 38.9 6.59 20500 20.9 62.3 52.8
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	ICP-MS 9448 09/24/18 9/27/2018- 10/17/2018 0.145 ppm 0.084 14.2 0.0711 9.21 0.474 0.134	ICP-MS 9448 09/24/18 9/27/2018- 10/17 0.104 Q ppm	2/2018 Q 0.238 17.4 0.211 17.1 0.722 0.34	ICP-MS 9448 09/24/18 9/27/2018- 10/1 [°] 0.107 ppm	7/2018 Q 0.101 11.2 0.0917 6.24 0.403 0.183
Method Batch Prep Date Analysis Date Weight UNITS Hg	C-T-AA 9442 09/17/18 09/17/18 0.053 ppm 0.0202	C-T-AA 9442 09/17/18 09/17/18 0.021 Q ppm	Q 0.098	C-T-AA 9442 09/17/18 09/17/18 0.071 ppm	Q 0.0119

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	Blank45099 Blank NA NA Sediment NA NA					
Method Batch Prep Date Analysis Date Weight UNITS AI Ba Cr Cu Fe Ni V Zn	ICP 9468 09/24/18 1 Total micrograms 0 0 0 0 0 0 0.258 0 0 0	Q U U U U U U U U U	2X MDL 1.98 0.098 0.198 0.394 0.492 0.492 0.492 0.198 0.198	Q	Actual MDL 0.99 0.049 0.099 0.197 0.246 0.246 0.099 0.099	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	NA NA NA NA NA NA NA NA NA					
Method Batch Prep Date Analysis Date Weight UNITS Hg	NA NA NA NA NA					

SEQ

LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	Blank44995 Blank NA NA Sediment NA NA			
Method Batch Prep Date Analysis Date Weight UNITS AI Ba Cr Cu Fe Ni V Zn	NA NA NA NA NA NA NA NA NA NA NA			
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	ICP-MS 9448 09/24/18 9/27/2018- 10/17/2018 1 Total micrograms Q 0.0171 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	2X MDL 0.01972 0.0492 0.01972 0.0986 0.00986 0.00986	Q Actual MDL 0.00986 0.0246 0.00986 0.0493 0.00493 0.00493 0.0197	
Method Batch Prep Date Analysis Date Weight UNITS Hg	NA NA NA NA NA NA			

SEQ						
LAB ID	Blank44966					
SampleID	Blank					
Site	NA					
Collection date	NA					
Receipt Date	NA					
Matrix	Sediment					
% DRY	NA					
% MOISTURE	NA					
Method	NA					
Batch	NA					
Prep Date	NA					
Analysis Date	NA					
Weight	NA					
UNITS	NA					
AI	NA					
Ва	NA					
Cr	NA					
Cu	NA					
Fe	NA					
Ni	NA					
V	NA					
Zn	NA					
Method	NA					
Batch	NA					
Prep Date	NA					
Analysis Date	NA					
vveignt	NA					
UNITS	NA					
Ag	NA					
As	NA					
Cd	NA					
Pb	NA					
Sb	NA					
Se	NA					
						-
Method	C-T-AA					
Batch	9442					
Prep Date	09/17/18					
Analysis Date	09/17/18					
Weight	1					
UNITS	Total micrograms	Q	2X MDL	Q	Actual MDL	
Hg	- 0	U	0.0001		0.00005	

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	LCS45100 BS-s2004 NA NA Sediment NA NA				
Method Batch Prep Date Analysis Date Weight	ICP 9468 09/24/18 09/24/18 1				
UNITS	Total micrograms	Q % REC Q	MDL SF	PIKE AMT	
AI	916	92	0.98	1000	
Ba	20.2	101	0.049	20	
Cr	5.04	101	0.098	5	
Fe	1010	101	0.190	1000	
Ni	10.1	101	0.245	10	
V	5.08	102	0.098	5	
Zn	20.9	105	0.098	20	
Method	NA				
Batch	NA				
Prep Date	NA				
Analysis Date	NA				
Weight	NA				
UNITS	NA				
Ag	NA				
AS Cd	NA NA				
Ph	NA				
Sb	NA				
Se	NA				
Method	NA				
Batch	NA				
Prep Date	NA				
Analysis Date	NA				
Weight	NA				
UNITS	NA				

NA

Hg

SEQ LAB ID SampleID	LCS44996 BS-t2004					
Site	NA					
Collection date	NA					
Receipt Date	NA Codimont					
	Sealment					
% WOISTORE	INA					
Method	NA					
Batch	NA					
Prep Date	NA					
Analysis Date	NA					
Weight	NA					
UNITS	NA					
Al	NA					
Ва	NA					
Cr	NA					
Cu	NA					
Fe	NA					
Ni	NA					
V	NA					
Zn	NA					
Mothod						
Method	ICP-MS					
Method Batch Prep Date	ICP-MS 9448 09/24/18					
Method Batch Prep Date	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201	8				
Method Batch Prep Date Analysis Date Weicht	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201	8				
Method Batch Prep Date Analysis Date Weight UNITS	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms	8	% REC. () MDI	SPIKE AMT	
Method Batch Prep Date Analysis Date Weight UNITS Ag	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0 15	8 .9	9 % REC 0	2 MDL	SPIKE AMT	
Method Batch Prep Date Analysis Date Weight UNITS Ag As	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15	8 0 9	9 % REC 0 106 104	Q MDL 0.0098 0.0245	SPIKE AMT 0.15 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51	8 9 9	9 % REC 0 106 104 103	0 MDL 0.0098 0.0245 0.0098	SPIKE AMT 0.15 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.57 0.57	8 9 9 5	9 % REC 0 106 104 103 97	0 MDL 0.0098 0.0245 0.0098 0.0489	SPIKE AMT 0.15 0.5 0.5 5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 4.8 0.52	8 9 5 3 2	9 % REC 0 106 104 103 97 104	2 MDL 0.0098 0.0245 0.0098 0.0489 0.049	SPIKE AMT 0.15 0.5 0.5 5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.57 4.8 0.52 0.47	8 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	2 MDL 0.0098 0.0245 0.0098 0.0489 0.049 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47	8 9 9 5 3 2 7	9 % REC C 106 104 103 97 104 95	2 MDL 0.0098 0.0245 0.0098 0.0489 0.049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47	8 9 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.049 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Method	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47	8 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Se Method Batch	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47	8 9 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Se Method Batch Prep Date	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47 NA NA	8 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Se Method Batch Prep Date Analysis Date	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47 NA NA NA	8 9 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Method Batch Prep Date Analysis Date Weight	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 0.51 4.8 0.52 0.47 NA NA NA NA NA	8 9 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Method Batch Prep Date Analysis Date Weight UNITS	ICP-MS 9448 09/24/18 9/27/2018- 10/17/201 1 Total micrograms 0.15 0.51 4.6 0.52 0.47 NA NA NA NA NA NA NA	8 9 9 5 3 2 7	9 % REC 0 106 104 103 97 104 95	Q MDL 0.0098 0.0245 0.0098 0.0489 0.0049 0.0196	SPIKE AMT 0.15 0.5 0.5 5 0.5 0.5	

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	T8038-007 RCA1047 HB18-PAM-S4-1 08/06/18 08/14/18 Sediment 69 31	T8038-007S RCA1047 HB18-PAM-S4-1 08/06/18 08/14/18 Sediment 69 31					
Method Batch Prep Date	ICP 9468 09/24/18	ICP 9468 09/24/18					
Weight	09/24/10	09/24/10					
UNITS	Q mag	maa	Q % REC	; Q	MDL	SPIKE AMT	
AI	27200	36600	97		9.5	9727.626	
Ва	697	876	92		0.475	194.553	
Cr	38.9	91.2	108		0.95	48.638	
Cu	6.59	55.1	100		1.9	48.638	
Fe	20500	31800	116		2.37	9727.626	
Ni	20.9	123	105		2.37	97.276	
V	62.3	113	104		0.95	48.638	
Ζn	52.8	265	109		0.95	194.553	
Method							
Method							
Batch	9448	9448					
Batch Prep Date	9448 09/24/18	9448 09/24/18					
Batch Prep Date Analvsis Date	9448 09/24/18 /27/2018- 10/17/20189/	9448 09/24/18 /27/2018- 10/17/20	18				
Batch Prep Date Analysis Date Weight	9448 09/24/18 '27/2018- 10/17/20189/ 0.107	9448 09/24/18 /27/2018- 10/17/20 0.103	18				
Batch Prep Date Analysis Date Weight UNITS	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm	18 Q % REC	; Q	MDL	SPIKE AMT	
Batch Prep Date Analysis Date Weight UNITS Ag	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5	18 Q % REC 96	Q	MDL 0.095	SPIKE AMT 1.459	
Batch Prep Date Analysis Date Weight UNITS Ag As	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5 16.1	18 Q % REC 96 101	; Q	MDL 0.095 0.237	SPIKE AMT 1.459 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18	18 Q % REC 96 101 5 105	Q	MDL 0.095 0.237 0.095	SPIKE AMT 1.459 4.864 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4	18 Q % REC 96 101 105 103	Q	MDL 0.095 0.237 0.095 0.475	SPIKE AMT 1.459 4.864 4.864 48.638	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 5.44	18 Q % REC 96 101 105 103 104	Q	MDL 0.095 0.237 0.095 0.475 0.0475	SPIKE AMT 1.459 4.864 4.864 48.638 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	9448 09/24/18 '27/2018- 10/17/20189, 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403 0.183	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 5.44 4.99	18 Q % REC 96 101 105 103 104 99	Q	MDL 0.095 0.237 0.095 0.475 0.0475 0.19	SPIKE AMT 1.459 4.864 4.864 48.638 4.864 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Method	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403 0.183	9448 09/24/18 27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 5.44 4.99	18 Q % REC 96 101 105 103 104 99	Q	MDL 0.095 0.237 0.095 0.475 0.0475 0.19	SPIKE AMT 1.459 4.864 4.864 48.638 4.864 4.864 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Method Batch	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403 0.183 NA NA	9448 09/24/18 27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 5.44 4.99 NA	18 Q % REC 96 101 105 103 104 99	; Q	MDL 0.095 0.237 0.095 0.475 0.0475 0.19	SPIKE AMT 1.459 4.864 4.864 48.638 4.864 4.864 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Se Method Batch Prep Date	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403 0.183 NA NA NA	9448 09/24/18 '27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 4.99 NA NA NA	18 Q % REC 96 101 105 103 104 99	; Q	MDL 0.095 0.237 0.095 0.475 0.0475 0.19	SPIKE AMT 1.459 4.864 4.864 48.638 4.864 4.864 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Se Method Batch Prep Date Analysis Date	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403 0.183 NA NA NA NA	9448 09/24/18 '27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 4.99 NA NA NA NA	18 Q % REC 96 101 105 103 104 99	; Q	MDL 0.095 0.237 0.095 0.475 0.0475 0.19	SPIKE AMT 1.459 4.864 4.864 48.638 4.864 4.864 4.864	
Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se Method Batch Prep Date Analysis Date Weight	9448 09/24/18 '27/2018- 10/17/20189/ 0.107 ppm Q 0.101 11.2 0.0917 6.24 0.403 0.183 NA NA NA NA NA NA	9448 09/24/18 /27/2018- 10/17/20 0.103 ppm 1.5 16.1 5.18 56.4 5.44 4.99 NA NA NA NA NA	18 Q % REC 96 101 105 103 104 99	; Q	MDL 0.095 0.237 0.095 0.475 0.0475 0.19	SPIKE AMT 1.459 4.864 4.864 48.638 4.864 4.864 4.864	

NA NA

NA NA

Hg

SEQ			
LAB ID	T8038-006	T8038-006S	
SampleID	RCA1046	RCA1046	
Site	HB18-PAM-S11-1	HB18-PAM-S11-	1
Collection date	08/06/18	08/06/18	
Receipt Date	08/14/18	08/14/18	
Matrix	Sediment	Sediment	
% DRY	51	51	
% MOISTURE	49	49	
Method	NA	NA	
Batch	NA	NA	
Prep Date	NA	NA	
Analysis Date	NA	NA	
Weight	NA	NA	
UNITS	NA	NA	
AI	NA	NA	
Ba	NA	NA	
Cr	NA	NA	
Cu	NA	NA	
Fe	NA	NA	
Ni	NA	NA	
V	NA	NA	
Zn	NA	NA	
Method	NA	NA	
Batch	NA	NA	
Prep Date	NA	NA	
Analysis Date	NA	NA	
Weight	NA	NA	
UNITS	NA	NA	
Aa	NA	NA	
As	NA	NA	
Cd	NA	NA	
Pb	NA	NA	
Sb	NA	NA	
Se	NA	NA	
Method	C-T-AA	C-T-AA	
Batch	9442	9442	
Prep Date	09/17/18	09/17/18	
Analysis Date	09/17/18	09/17/18	
Weight	0.021	0.0209	
UNIŤS	ppm Q	ppm	Q % REC Q MDL SPIKE AMT
Hg	0.098	0.368	102 0.00239 0.264
-			

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	T8038-001 RCA1041 HB18-PAM-S2-1 08/06/18 08/14/18 Sediment 55 45	T8038-001D RCA1041 HB18-PAM-S2-1 08/06/18 08/14/18 Sediment 55 45				
Method Batch Prep Date Analysis Date Weight UNITS	ICP 9468 09/24/18 09/24/18 0.103 ppm 0	ICP 9468 09/24/18 09/24/18 0.107	0	% RPD () MDI	ЗХМПІ
Al Ba Cr Cu Fe Ni	45400 900 63.9 27.3 36900 37.4	446 9 6 21 355 33	500 1.2 5.4 5.5	2 1 4 3 4 5	9.15 0.458 0.915 1.83 2.29 2.29	27.45 1.374 2.745 5.49 6.87 6.87
V Zn	113 91.2	1	11 91	2 0	0.915 0.915	2.745 2.745
Method Batch Prep Date Analysis Date	ICP-MS 9448 09/24/18 9/27/2018-10/17/2018	ICP-MS 9448 09/24/18 9/27/2018-10/17/20	18			
Weight UNITS Ag As Cd Pb Sb	0.103 ppm Q 0.188 37.8 0.209 19.8 1.08 0.204	0.107 ppm 0.1 3: 0. 19 0.9	Q 68 3.1 .21 9.8 061	% RPD 0 11 13 0 0 12	MDL 0.0915 0.229 0.0915 0.458 0.0458	3XMDL 0.2745 0.687 0.2745 1.374 0.1374
Method Batch	C-T-AA 9442	C-T-AA 9442				0.049
Prep Date Analysis Date Weight UNITS Hg	09/17/18 09/17/18 0.036 ppm Q 0.0844	09/17/18 09/17/18 0.046 ppm 0.08	Q 844	% RPD (0	0.00088	3XMDL 0.00109

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	SRM45101 MESS-3 NA NA Sediment NA NA					
Method Batch Prep Date Analysis Date	ICP 9468 09/24/18 09/24/18					
Weight	0.128	MESS-3	-20%	+20%		
	81800	Centilied Conc.	Conc.	Conc.	NDL 7.56	
Ba	999				0.378	1.13
Cr	100	105 ± 4	80.8	130.8	0.756	2.27
Cu	32.8	33.9 ± 1.6	25.84	42.6	1.51	4.53
Fe	44300				1.89	5.67
Ni	40	46.9 ± 2.2	35.8	58.9	1.89	5.67
V	240	243 ± 10	186	304	0.756	2.27
Zn	150	159 ± 8	121	200	0.756	2.27
Method	NA					
Batch	NA					
Prep Date	NA					
Analysis Date	NA					
Weight	NA					
UNITS	NA					
Ag	NA					
As	NA					
Cd	NA					
Pb	NA					
Sb	NA					
Se	NA					
Method	NA					
Batch	NA					
Prep Date	NA					
Analysis Date	NA					
Weight	NA					
UNITS	NA					

NA

Hg

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	SRM44997 MESS-3 NA NA NA Sediment NA NA						
Method Batch Prep Date Analysis Date Weight UNITS AI Ba Cr Cu Fe Ni V Zn	NA NA NA NA NA NA NA NA NA NA NA NA						
Method Batch Prep Date Analysis Date Weight UNITS Ag As Cd Pb Sb Se	ICP-MS 9448 09/24/18 9/27/2018- 10/17/2018 0.128 ppm 0.189 23 0.237 21.9 1.11 0.72	Q	MESS-3 Certified Conc. 21.2 ± 1.1 $.024 \pm 0.01$ $21.2 \pm .07$ 1.02 ± 0.09 0.72 ± 0.05	-20% Conc. 16.1 0.011 16.9 0.74 0.54	+20% Conc. 26.8 0.041 25.52 1.33 0.92	MDL 0.0756 0.189 0.0756 0.378 0.0378 0.151	3XMDL 0.227 0.567 0.227 1.13 0.113 0.453
Method Batch Prep Date Analysis Date Weight UNITS	NA NA NA NA NA						

NA

Hg

SEQ LAB ID SampleID Site Collection date Receipt Date Matrix % DRY % MOISTURE	SRM44967 MESS-3 NA NA Sediment NA NA	
Method	NA	
Batch	NA	
Prep Date	NA	
Analysis Date	NA	
Weight	NA	
UNITS	NA	
AI	NA	
Ба	NA NA	
Cu	NA	
Fe	NA	
Ni	NA	
V	NA	
Zn	NA	
Method	NA	
Batch	NA	
Prep Date	NA	
Analysis Date	NA	
Weight	NA	
UNITS	NA	
Ag	NA	
As	NA	
	NA	
PD Sh	NA NA	
Se	NA	
00		
Mothod		
Batch	9442	
Prep Date	09/17/18	
Analysis Date	09/17/18	
Weight	0.024	MESS-3 -20% +20%
UNITS	ppm	Q Certified Conc. Conc. Conc. MDL 3XMDL
Hg	0.0919	0.091 ± 0.009 0.066 0.120 0.0021 0.0062

Supporting Documents

Shipping, Sample Receiving, and Project Initiation Documents

SAMPLE RECEIVING/INTEGRITY REPORT

Job #: J18346	Date Received:08	/14/2018	Time Arrived:	09:33
Received by:	Amanda Brewster		SDG#:	18081401
Client: Kinnetic Li	abs - Harrison Bay	Sender:	Kinnetics: N	lark Savoie
Number of Shipping Contair Comments:	ners: <u>1</u> of <u>1</u>			
nedium sized blue coo	ler No Shipping Co	many Eed	Ev	
Tracking Number: 7729627289	Comments: 19 priority over	ernight	LA	
Container Secured?	Yes No	Comments: ta	ped shut	
Custody Seals?	Yes No			
	Custody Seals intact on	container		
		container		
4	Custody Seals broken o	n container	(tana	
	Comments: CUSTODY Se (see Sample Custody Correcti	eal on top o	f tape	
Chain of Custody Records:	Shipped with samples	Notes:		
	No COCs received			
Preservation Conditions:	Ice Blue ice	Dry ice	None	
	Comments:			
	Temperature on receipt	(°C): 2.7	Thermome	er#: T5
	Temperature blank:	Yes (°C): 2	2.1 No	
	(Note: If temperature receipt differ	s from required cond	litions, see Sample Custo	ody Corrective Action Report)
Condition of Samples	Sample containers intac	t		
	Sample containers/lids t	oroken/leaking	*	
	*(see Sample Custody Correct	tive Action Report	,	
Sample custody seals intac	t: Yes	No	✓ None	
Comple Labels:	Sample labels agree wit	h COC		
bample Labels.	Sample discrenanices (see Samale Custr	dy Corrective Action F	Penad)
		ice demple coste	sy concours notion i	in the second seco
	7 and instants			
Number of Samples Receiv	ed: / sediments			
Samples Checked in by	Amanda Brewster	Date: 08	/14/2018	Time: 11.10
		Duite.		11116. 11.10

Cooler Description:	medium blue
Custody seal on cooler?	(Yes) No
Custody seal intact?	Yes No N/A
Cooler sealed shut?	(Yes) No
Cooler sealed with what:	tape
Ice type: Blue ice) Wet	ice Dry ice None
Thermometer used:	Ts
Cooler temperature:	2.7°C
Temperature blank:	2.1 °C

SDG: <u>18081401</u> Cooler <u>1</u> of <u>1</u>

Co	oler signed for by
Name:	amanda
Date:	8/14/18
Time:	9:33

F sediments one broken jar: HB18-PAM-S3-2 transterred to new jar.

1330

#258164 08/13 652J1/3309/DCA5

State	CUSTODY SEAL	
Signature: Aby Rev. 0	Date ^{rri} me-	8/13/18
Amanda Brewster

From: Sent: To: Subject: TrackingUpdates@fedex.com Monday, August 13, 2018 2:49 PM amandabrewster@tdi-bi.com FedEx Shipment 772962728919 Notification

Kinnetic - MOA

This shipment is scheduled to be sent on 08/13/2018.

See "Preparing for Delivery" for helpful tips

3

Tracking # 772962728919

Anticipated ship date: Mon, 8/13/2018 KINNETIC LABORATORIES, INC ANCHORAGE, AK 99501 US

Initiated

Scheduled delivery: Tue, 8/14/2018 by 10:30 am

Coming 8/14/18

Amanda Brewster B&B Laboratories 14931B South Dowling Road COLLEGE STATION, TX 77845 US

Shipment Facts

Tracking number:	772962728919
Reference:	MOA 5089
Service type:	FedEx Priority Overnight®
Packaging type:	Your Packaging
Number of pieces:	1
Weight:	20.00 lb.
Special handling/Services:	Adult Signature Required
	Deliver Weekday

Preparing for Delivery

To help ensure successful delivery of your shipment, please review the below.

Won't be in? If an adult (age and required identification vary by country) will not

Sec. 1			Chain of (Custody R	ecord				1	Page of		
To: B&B LABORATORIES, IN(14391 B South Dowling Rd. College Station, TX 77845 Phone: (979) 693-3446 Contact: Amanda Brewster	2.		KL F Quote #: Q Lab #:	20 #: 4 2018-LAB0	4K18-1020 72601	Kinnetic Laboratories, Inc 704 West 2nd Ave. Anchorage, AK 99501 (907) 276-6178 Contact: Mark Savoie						
Project: Complete by: Standard T	2018 HARRISON	N BAY MMP			Matri	ix: Sediment		1	Project #: 5089.03			
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabID	Condition Upon Receip		
HB18-PAM- 52-1	52	8418	1036 K	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1		good		
HB18-PAM- 53-1	53	1	0929 V	Grab	PAH/AHC/METALS	250-mL WMGJ	4º C	1		good		
НВ18-РАМ- 53-2 🐇	53		0929	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1		broken		
HB18-PAM-56-(56		13584	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1				
HB18-PAM- 58 -1	58		1515 1	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1				
HB18-PAM- SU-)	Sil		1709V	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1				
HB18-PAM- 54-1	54	\downarrow	1207.	Grab	PAH/AHC/METALS	250-mL WMGJ	4° C	1				
										- AMB		
Data Report MUST include t on this sheet are military time	he following: Sar e. Email sample	nple ID, Analytic receipt confirm	cal Method, Det nations, PDF	tection Limit, I reports, and	Date of Extraction if applicab EDDs to msavoie@kinnetion	ole, Date of Analysis, clabs.net. EDD RE	Analytic: QUIRE	al Results, and D.	d Signature of QA Ro	viewer. All times		
Specien/Instructions/Comm	ments: See qu	ote list of analy	rtes and detec	tion limits.	Report on a dry weight ba	asis.						
Saupied and Relinquished B	y: U		Date/Time:		Transporter	Received By:	-			Date/Time:		
Chartm. 2	ana	81	3/2018 1	130	FEDEX	amand	a B	newst	In 8/14	118 11:10		

v20020904 6

Agreement for Services

Lab Contact: Juan Ramirez, Laboratory Manager 14391B South Dowling Road College Station,TX 77845 Phone: (979) 693-3446 email: juanramirez@tdi-bi.com

Project Manager:	MARK SAVOIE
Phone:	(907) 276-6178
Street Address City, State Zip:	704 W. 2nd AVE. ANCHORAGE, AK 99501
Fax:	-
Email:	MSAVDIE KINNETICLASS. NET

Payment Terms: Net 30 from date of invoice

All overdue payments are subject to an additional interest and service charge of one and one-half percent (1.5%) per month, from the due date until the date payment is received.

Billing corrections must be requested within 30 days of the invoice date.

Attention to:	BRENDA GUMMINGER
Company:	KINNETIC LABORATORIES, INC.
Street Address City, State, Zip:	FOY W. 2nd AVC. ANCHORAGE, AK 99501
Phone:	(907) 276-6178
Email:	BGUMMINGER KINNERCLAB

Sample Shipping Contact:

Amanda Brewster, Sample Custodian 14391B South Dowling Road College Station TX 77845 Phone: (979) 693-3446 email: amandabrewster@tdi-bi.com

Project Name:	HBMMP
Project Number:	5089
Requested Turn-Around (working days)	45 DAYS
Submission Date:	SHIP OFF SLOPE 8/10/18
Purchase Order #:	AK18-1020

Sample Storage and Disposal:

B&B Laboratories shall dispose of Client's samples 30 days after analytical report is issued, unless instructed to hold samples for an alternate period of time, or, request is made for samples to be returned to the Client. Longer storage periods may be requested (as space allows) for an additional charge.

If sample disposal is requested, it will be at cost to the client or, samples may be returned to client, at client's cost.

and h

Date/Time

8/10/18

Signature

*Signature indicates agreement with these terms and conditions

SAMPLE CUSTODY CORRECTIVE ACTION REPORT

Description of Discrepancy:	Explanation:	
sediment sample received br HB18-PAM-53-2	oken: transferred to new co	ntainer upon receipt
Documentation of client and labora	tory manager notification by sample cus	stodian.
Sample Custodian: <u>Amanda Bre</u> Client contacted by: ✔ E-mail (se Laboratory Manager: <u>Juan Rami</u> i	wster Date/Time: 08/14 e attached) Phone No	/2018, 15:19
Sample Custodian: <u>Amanda Bre</u> Client contacted by: ✔ E-mail (se Laboratory Manager: <u>Juan Ramin</u> Resolution of Discrepancy:	wster Date/Time: 08/14 e attached) Phone No rez Can be completed by Client, Sample C	vt Contacted ustodian or Lab Manage
Sample Custodian: <u>Amanda Bre</u> Client contacted by:	wster Date/Time: 08/14 e attached) Phone No rez Can be completed by Client, Sample C Date:	vt Contacted ustodian or Lab Manage
Sample Custodian: <u>Amanda Bre</u> Client contacted by: E-mail (see Laboratory Manager: <u>Juan Ramin</u> <u>Resolution of Discrepancy:</u> Client: Sample Custodian: <u>Amanda Bre</u>	wster Date/Time: 08/14 e attached) Phone No rez Can be completed by Client, Sample C Date: wster Date: 08/14/201	V2018, 15:19 ot Contacted ustodian or Lab Manage Time: 8 Time: 15:19

Amanda Brewster

From: Sent: To: Subject: Amanda Brewster <amandabrewster@tdi-bi.com> Tuesday, August 14, 2018 3:19 PM 'msavoie@kinneticlabs.net' RE: samples received 8/14/18

Hi Mark,

Sorry I forgot to mention ...

Sample HB18-PAM-S3-2 arrived broken, but frozen solid. We were able to transfer this to a new jar upon receipt.

Regards, Amanda

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Tuesday, August 14, 2018 3:18 PM To: 'msavoie@kinneticlabs.net' Subject: samples received 8/14/18

Hi Mark,

We received your samples this morning in good condition. The internal temperature of the cooler was 2.7°C, and the temp blank was 2.1°C. A PDF of the signed COC is attached for your records.

Would you like the cooler and ice returned? If so, could I please have a Fed Ex acct # to use for the return shipment?

Regards, Amanda

Amanda Brewster Sample Custodian

B&B Laboratories 14391B South Dowling Road College Station, Texas 77845

Phone: (979) 693-3446 Email: <u>amandabrewster@tdi-bi.com</u>

Amanda Brewster

From: Sent: To: Cc: Subject: Juan Ramirez <juanramirez@tdi-bi.com> Wednesday, August 15, 2018 9:05 AM 'Amanda Brewster'; 'Donell Frank' msavoie@kinneticlabs.com RE: samples received 8/14/18

Hello Mark,

We're ok on samples since everything was frozen.

Thanks,

Juan

Juan Ramirez Environmental Laboratory Manager

TDI-Brooks International, Inc. 14391 South Dowling Rd. College Station, Texas 77845

Office: 979.693.3446 Cell: 979.777.0793

juanramirez@tdi-bi.com

http://tdi-bi.com/

Could you please take a moment and answer a quick <u>survey</u>? We would like to know how we can improve our services.

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Wednesday, August 15, 2018 8:18 AM To: 'Juan Ramirez'; 'Donell Frank' Subject: FW: samples received 8/14/18

Juan,

Do you think they need to send the backup sample for the jar that arrived broken? It was frozen solid and inside a bubble wrap envelope so the lab was able to transfer it into a new jar upon receipt.

Regards, Amanda

From: Mark Savoie [mailto:msavoie@kinneticlabs.net] On Behalf Of Mark Savoie Sent: Tuesday, August 14, 2018 5:47 PM To: 'Amanda Brewster'; msavoie@kinneticlabs.net Cc: jsavoie@kinneticlabs.net; 'Gary Lawley' Subject: RE: samples received 8/14/18

Amanda –

Thanks for the update. If you think the broken sample is an issue, let us know, as we do have a backup/archive sample that we could send as a replacement.

You can keep the cooler and ice as they aren't worth the return shipping costs to Alaska.

Regards,

Mark

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Tuesday, August 14, 2018 12:19 PM To: msavoie@kinneticlabs.net Subject: RE: samples received 8/14/18

Hi Mark,

Sorry I forgot to mention ...

Sample HB18-PAM-S3-2 arrived broken, but frozen solid. We were able to transfer this to a new jar upon receipt.

Regards, Amanda

From: Amanda Brewster [mailto:amandabrewster@tdi-bi.com] Sent: Tuesday, August 14, 2018 3:18 PM To: 'msavoie@kinneticlabs.net' Subject: samples received 8/14/18

Hi Mark,

We received your samples this morning in good condition. The internal temperature of the cooler was 2.7°C, and the temp blank was 2.1°C. A PDF of the signed COC is attached for your records.

Would you like the cooler and ice returned? If so, could I please have a Fed Ex acct # to use for the return shipment?

Regards, Amanda

TERL Copy

B&B Laboratories Chain of Custody Project: J18346 Kinnetic Labs - Harrison Bay sediments to TERL for TM analysis

PO2018-LAB082903

sent: 9/14/18

#	Client Name	Client Name Lab ID Sar		Client Name Lab ID Sample ID Collection Date Receive D					Comments	SDG	Client Project #
1	Kinnetic Labs - Harrison Bay	RCA1041	HB18-PAM-S2-1	08/06/18	08/14/18	SED		18081401	5089.03		
2	Kinnetic Labs - Harrison Bay	RCA1042	HB18-PAM-S3-1	08/06/18	08/14/18	SED		18081401	5089.03		
3	Kinnetic Labs - Harrison Bay	RCA1043	HB18-PAM-S3-2	08/06/18	08/14/18	SED		18081401	5089.03		
4	Kinnetic Labs - Harrison Bay	RCA1044	HB18-PAM-S6-1	08/06/18	08/14/18	SED		18081401	5089.03		
5	Kinnetic Labs - Harrison Bay	RCA1045	HB18-PAM-S8-1	08/06/18	08/14/18	SED		18081401	5089.03		
6	Kinnetic Labs - Harrison Bay	RCA1046	HB18-PAM-S11-1	08/06/18	08/14/18	SED		18081401	5089.03		
7	Kinnetic Labs - Harrison Bay	RCA1047	HB18-PAM-S4-1	08/06/18	08/14/18	SED		18081401	5089.03		

9-14-18 Date 9-14-18 10:10 The have **B&B** Signature Time Bob Auglor 10:10 TERL Signature Date Time

B&B Laboratories 14391B South Dowling Road College Station, TX 77845 (979) 693-3446 (O) (979) 693-6389 (F) WWW TDI-BI COM Appendix B

Willow Marine Monitoring Program Benthic Infauna Results

November 2018

(This Page Left Intentionally Blank)

Annelid Identifications by Leslie Harris

Family	Taxon	Harrison Bay 6	Taxonomist commonts & notos
Capitallidaa	Amastigas on Pagufort 1	Aug 2010	
Саркешоае	Amasiigos sp beaulon i	X	Capitellid genus with only hooks, no capillaries, and very distinct. Only 3 species in the genus, from southern California, Pacific Panama, and Virginia. However, the shape is very similar to the Beaufort Capitella capitata complex & the specimens are smaller than the C. capitata complex specimens so I wonder if these are aberrant or juvenile C. c.c.
Ampharetidae	Ampharete sp Beaufort 1	x	The Harrison Bay specimens which key to A. vega don't match the descriptions or figures in Holthe 1986 & Jirkov 1989 in several characters. The differences are : length of branchiae (those shown in the orig. illustration by Wiren 1883 are easily 3X the length of the Harrison Bay branchiae), arrangement of the branchiae (all in single transverse line with no gap between the two groups while HB worms are arranged in 2 rows [3+1] and there is a slight gap), length of paleae (reaching anterior margin, but shorter in HB worms), number of teeth in uncini (3 teeth in each row, thoracic in 2 rows, abdominal in 3 but HB worms have 4-5 teeth per row & both abdominal & thoracic appear to have 2 rows), pygidium (small papillae but HB have 2 long lateral cirri). These are likely to belong to a similar, undescribed species which I have called Ampharete sp Beaufort 1.
Paraonidae	Aricidea (Aricidea) sp Beaufort 1	x	Similar to A. (A.) pseudoarticulata from southern California; might have been identified as A. (A.) minuta in the past
Nephtyidae	Bipalponepthys cornuta	х	
Capitellidae	Capitella capitata Cmplx	х	
Cirratulidae	Chaetozone ruffi	х	
Sabellidae	Chone sp Beaufort 1	Х	different staining pattern than others, very small specimen
Phyllodocidae	Eteone longa_flava Cmplx	x	My terminology, following comments by F. Pleijel 1993; the problems have not yet been resolved
	Euclymeninae	Х	
Orbiniidae	Leitoscoloplos sp	Х	Probably what the others called L. acutus
Spionidae	Marenzellaria arctia	х	
Oligochaeta	Oligochaeta UI	Х	
Orbiniidae	Orbinia sp	Х	
Spionidae	Prionospio cirrifera	Х	I used Prionospio, changed to Minuspio in report
Spionidae	Pygospio elegans	Х	
Orbiniidae	Scoloplos armiger Cmplx	Х	
Sphaerodoridae	Sphaerodoridium sp Beaufort 1	X	This species has probably been identified as Sphaerodoropsis minuta in the past however it does not match the redescription by Capa et al 2016 and is smaller, with a different pattern of macrotubercles & parapodial papillae than sp 1.
Sphaerodoridae	Sphaerodoridium sp Beaufort 2	x	This species has probably been identified as Sphaerodoropsis minuta in the past however it does not match the redescription by Capa et al 2016.
Trichobranchidae	Terebellides sp Beaufort 1	x	Differs in several respects from the neotype description of T. stroemi by Parapar & Hutchings 2014: stain pattern, number of rows of thoracic uncini, shape of geniculate hooks. In light of the recent paper by Nygren et al 2018 that found 15 species, most of them cryptic, in the NE Atlantic I feel keeping the Harrison Bay specimens separate as a provisional species is warranted.
Cirratulidae	Tharyx alaskensis	х	
Travisiidae	Travisia cf forbesi	х	

(This Page Left Intentionally Blank)

Appendix C

Willow Marine Monitoring Program Trawl Results

November 2018

(This Page Left Intentionally Blank)

Station	Rep #	Trawl Distance (m)	Trawl Area (m ²)	SampID	Date Collected	Analysis Type	ID_Type	Group	Taxon	Common Name	Catch/ 100 m ²	Count	Length	Length_ Unit	Stage	Dispostion
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	75	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	78	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	82	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	96	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	92	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	78	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	101	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	74	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	78	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	80	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	99	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	83	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	80	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	68	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	81	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	82	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	76	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	90	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	78	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	73	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	69	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	85	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	67	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Coregonus autumnalis	Arctic cisco	0.05	1	168	mm	adult	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Coregonus autumnalis	Arctic cisco	0.05	1	125	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Coregonus autumnalis	Arctic cisco	0.05	1	116	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Coregonus autumnalis	Arctic cisco	0.05	1	121	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	149	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	144	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	86	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	74	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	97	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	78	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	88	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	66	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	63	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Osmerus mordax	Rainbow smelt	0.05	1	94	mm	juv	Release
Т0	1	848	2120		08/08/2018	ID	Field	Fish	Pleuronectes glacialis	Arctic flounder	0.05	1	186	mm	adult	Release
Т0	1	848	2120	HB18-TWL-T0-1	08/08/2018	ID	Lab	Amphipoda	Gammarus setosus	Amphipod	0.05	1				Voucher
Т0	1	848	2120	HB18-TWL-T0-1	08/08/2018	ID	Lab	Mysida	Neomysis rayii	Mysid	0.09	2	>40	mm	Brood	Voucher
Т0	1	848	2120	HB18-TWL-T0-1	08/08/2018	ID	Lab	Hydrozoa	Tubularia indivisa		Р	Р	colonial			Voucher
Т0	1	848	2120	HB18-TWL-T0-1	08/08/2018	ID	Lab	Ascidiacea	Rhizomolgula globularis	tunicate	0.05	1				Voucher

Station	Rep #	Trawl Distance (m)	Trawl Area (m ²)	SampID	Date Collected	Analysis Type	ID_Type	Group	Taxon	Common Name	Catch/ 100 m ²	Count	Length	Length_ Unit	Stage	Dispostion
T1	1	807	2018		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	82	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	79	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	86	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	83	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	75	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	152	mm	adult	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	112	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	104	mm	juv	Release
T1	1	807	2018		08/07/2018	ID	Field	Mysida	Mysida	Mysid	0.35	7				Release
T1	1	807	2018		08/07/2018	ID	Field	Isopoda	Saduria spp.	Isopod	0.25	5				Release
T2	1	989	2473		08/07/2018	ID	Field	Isopoda	Saduria spp.	Isopod	0.24	6				Release
T2	1	989	2473	HB18-TWL-T2-1	08/07/2018	ID	Lab	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.08	2				Voucher
T2	1	989	2473	HB18-TWL-T2-1	08/07/2018	ID	Lab	Jelly	Cnidaria, unid.	Jelly (pelagic)	0.04	1				Voucher
Т3	1	842	2105		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	81	mm	juv	Release Mort
Т3	1	842	2105		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	71	mm	juv	Release
Т3	1	842	2105		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	72	mm	juv	Release
Т3	1	842	2105	HB18-TWL-T3-1	08/07/2018	ID	Lab	Amphipoda	Gammaracanthus loricatus	Amphipod	0.05	1				Voucher
Т3	1	842	2105		08/07/2018	ID	Field	Mysida	Mysida	Mysid	0.71	15				Release
Т3	1	842	2105	HB18-TWL-T3-1	08/07/2018	ID	Lab	Mysida	Mysis segerstralei	Mysid	0.05	1				Voucher
Т3	1	842	2105	HB18-TWL-T3-1	08/07/2018	ID	Lab	Mysida	Neomysis rayii	Mysid	0.05	1				Voucher
Т3	1	842	2105		08/07/2018	ID	Field	Isopoda	Saduria spp.	Isopod	2.14	45	various			Release
Т3	1	842	2105	HB18-TWL-T3-1	08/07/2018	ID	Lab	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.10	2				Voucher
Т3	1	842	2105		08/07/2018	ID	Field	Jelly	Cnidaria, unid.	Jelly (pelagic)	0.19	4				Release
Т3	2	1021	2553		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	70	mm	juv	Release
Т3	2	1021	2553		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	82	mm	juv	Release
Т3	2	1021	2553		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	88	mm	juv	Release
Т3	2	1021	2553	HB18-TWL-T3-2	08/07/2018	ID	Lab	Euphausiidae	Thysanoessa inermis	Pelagic euphausiid	0.43	11			-	Voucher
Т3	2	1021	2553		08/07/2018	ID	Field	Euphausiidae	Thysanoessa inermis	Pelagic euphausiid						Release
Т3	2	1021	2553	HB18-TWL-T3-2	08/07/2018	ID	Lab	Mysida	Mysis segerstralei	Mysid	0.16	4				Voucher
Т3	2	1021	2553		08/07/2018	ID	Field	Mysida	Mysis segerstralei	Mysid						Release
тз	2	1021	2553		08/07/2018	ID	Field	Isopoda	Saduria spp.	Isopod	1.21	31	various			Release
Т3	2	1021	2553		08/07/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.08	2				Release
тз	2	1021	2553		08/07/2018	ID	Field	Algae (Dead)	Algae	Drift (dead)						Release
T3	2	1021	2553	HB18-TWL-T3-2	08/07/2018	ID	Lab	Polvchaeta Tube	Polychaete tubes, empty	Worm tubes, empty	/	numerous				Voucher
Τ4	1	893	2233		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	60	mm	iuv	Release
T4	1	893	2233		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	78	mm	iuv	Release
Т4	1	893	2233		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	67	mm	, iuv	Release
T4	1	893	2233		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	80	mm	iuv	Release
Τ4	1	893	2233		08/07/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	84	mm	iuv	Release
T4	1	893	2233		08/07/2018	ID	Field	Mvsida	Mvsida	Mvsid	1.61	36	σ.		J	Release
Τ4	1	893	2233		08/07/2018	. <u>-</u>	Field	Isopoda	Saduria spp.	Isopod	2.73	61	various			Release
T4	1	893	2233		08/07/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.04	1	10.1003			Release
та	1	893	2233		08/07/2018	 D	Field	Algae (Dead)	Algae	Drift (dead)	0.04					Release
		000	2200		20/01/2010		1 1010	guo (Douu)		2.111 (4044)						100000

Station	Rep #	Trawl Distance (m)	Trawl Area (m ²)	SampID	Date Collected	Analysis Type	ID_Type	Group	Taxon	Common Name	Catch/ 100 m ²	Count	Length	Length_ Unit	Stage	Dispostion
T4	1	893	2233	HB18-TWL-T4-1	08/07/2018	ID	Lab	Bivalve	Portlandia spp.	Clam	0.04	1	55	mm		Voucher
T4	1	893	2233		08/07/2018	ID	Field	Jelly	Cnidaria, unid.	Jelly (pelagic)	0.04	1				Release
T4	1	893	2233		08/07/2018	ID	Field	Polychaeta Tube	Polychaete tubes, empty	Worm tubes, empty	/	numerous				Release
Т5	1	852	2130		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	75	mm	juv	Release
Т5	1	852	2130		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	94	mm	juv	Release
Т5	1	852	2130		08/08/2018	ID	Field	Fish	Liparis tunicatus	Kelp snailfish	0.05	1	54	mm	juv	Release
Т5	1	852	2130	HB18-TWL-T5-1	08/08/2018	ID	Lab	Amphipoda	Gammaracanthus loricatus	Amphipod	0.05	1				Voucher
Т5	1	852	2130		08/08/2018	ID	Field	Mysida	Mysida	Mysid	0.56	12				Release
Т5	1	852	2130		08/08/2018	ID	Field	Isopoda	Saduria spp.	Isopod	13.85	295	various			Release
Т5	1	852	2130	HB18-TWL-T5-1	08/08/2018	ID	Lab	Polychaeta	Phyllodocida, unid.	Worm	0.05	1				Voucher
Т5	1	852	2130		08/08/2018	ID	Field	Polychaeta	Phyllodocida, unid.	Worm		Р				Release
Т5	1	852	2130		08/08/2018	ID	Field	Polychaeta Tube	Polychaete tubes, empty	Worm tubes, empty	/	numerous				Release
Т6	1	958	2395		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	77	mm	juv	Release
Т6	1	958	2395		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	89	mm	juv	Release
Т6	1	958	2395	HB18-TWL-T6-1	08/08/2018	ID	Lab	Amphipoda	Acanthostepheia behringiensis	amphipod	0.08	2				Voucher
Т6	1	958	2395	HB18-TWL-T6-1	08/08/2018	ID	Lab	Amphipoda	Atylus carinatus	amphipod	0.04	1				Voucher
Т6	1	958	2395	HB18-TWL-T6-1	08/08/2018	ID	Lab	Amphipoda	Onisimis affinis	amphipod	0.08	2	12-14	mm		Voucher
Т6	1	958	2395		08/08/2018	ID	Field	Mysida	Mysida	Mysid	0.58	14				Release
Т6	1	958	2395		08/08/2018	ID	Field	Isopoda	Saduria spp.	Isopod	4.84	116	various			Release
Т6	1	958	2395		08/08/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.04	1				Release
Т6	1	958	2395		08/08/2018	ID	Field	Gastropoda	Gastopoda egg case	Moon snail egg cas	0.04	1				Release
Т6	1	958	2395	HB18-TWL-T6-1	08/08/2018	ID	Lab	Gastropoda	Volutopsius castaneus?	Whelk	0.04	1				Voucher
T7	1	954	2385		08/08/2018	ID	Field	Fish	Boreoqadus saida	Arctic cod	0.04	1	85	mm	juv	Release
Τ7	1	954	2385	HB18-TWL-T7-1	08/08/2018	ID	Lab	Isopoda	Saduria entomon	Isopod	0.04	1	75	mm	,	Voucher
Τ7	1	954	2385		08/08/2018	ID	Field	lsopoda	Saduria spp.	lsopod	5.24	125	various			Release
Τ7	1	954	2385	HB18-TWL-T7-1	08/08/2018	ID	Lab	, Hvdrozoa	Tubularia indivisa		P	P	colonial			Voucher
Τ7	1	954	2385		08/08/2018	ID	Field	Jelly	Cnidaria, unid.	Jelly (pelagic)	0.92	22				Release
Τ7	1	954	2385		08/08/2018	ID	Field	Polychaeta Tube	Polychaete tubes, empty	Worm tubes, empty	/	numerous				Release
т8	1	922	2305		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	102	mm	iuv	Release
T8	1	922	2305		08/08/2018		Field	Fish	Boreogadus saida	Arctic cod	0.04	1	76	mm	iuv	Release
т8	1	922	2305		08/08/2018	םו	Field	Fish	Boreogadus saida	Arctic cod	0.04	1	79	mm	iuv	Release
T8	1	922	2305		08/08/2018		Field	Mysida	Mysida	Mysid	0.04	1			jui	Release
т8	1	922	2305		08/08/2018	םו	Field	Isonoda	Saduria spp	Isopod	0.43	10	various			Release
T8	1	922	2305		08/08/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.17	4	Various			Release
T8	1	922	2305		08/08/2018	סו	Field	Jelly	Cnidaria unid	Jelly (pelagic)	0.30	7				Release
T8	1	922	2305		08/08/2018	ID	Field	Polychaeta Tube	Polychaete tubes empty	Worm tubes empty	1	numerous				Release
T9	1	827	2068		08/08/2018		Field	Fish	Boreogadus saida	Arctic cod	0.05	1	66	mm	iuv	Release
Т9	1	827	2068		08/08/2018	ID.	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	76	mm	iuv	Release
T9	1	827	2068		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	74	mm	juv	Release
Т9	1	827	2068		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	76	mm	juv	Release
Т9	1	827	2068		08/08/2018	ID	Field	Fish	Liparis tunicatus	- Kelp snailfish	0.05	1	66	mm	juv	Release
Т9	1	827	2068		08/08/2018	ID	Field	Mysida	Mysida	Mysid	0.92	19				Release
Т9	1	827	2068		08/08/2018	ID	Field	Isopoda	Saduria spp.	Isopod	0.63	13	various			Release

Station	Rep #	Trawl Distance (m)	Trawl Area (m ²)	SampID	Date Collected	Analysis Type	ID_Type	Group	Taxon	Common Name	Catch/ 100 m ²	Count	Length	Length_ Unit	Stage	Dispostion
Т9	1	827	2068		08/08/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.15	3				Release
Т9	1	827	2068		08/08/2018	ID	Field	Gastropoda	Gastopoda egg case	Moon snail egg cas	0.05	1				Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	91	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	76	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Coregonus autumnalis	Arctic cisco	0.05	1	148	mm	juv	Release Mort
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	99	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	92	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	124	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	76	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	74	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	149	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Fish	Myoxocephalus quadricornis	Fourhorn sculpin	0.05	1	85	mm	juv	Release
T10	1	792	1980		08/08/2018	ID	Field	Amphipoda	Gammarida		0.05	1				Release
T10	1	792	1980		08/08/2018	ID	Field	Isopoda	Saduria spp.	Isopod	0.05	1				Release
T11	1	827	2068		08/08/2018	ID	Field	Amphipoda	Gammarida		0.05	1				Release
T11	1	827	2068		08/08/2018	ID	Field	Mysida	Mysida	Mysid	0.10	2				Release
T11	1	827	2068		08/08/2018	ID	Field	Isopoda	Saduria spp.	Isopod	2.37	49	various			Release
T11	1	827	2068		08/08/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.05	1				Release
T11	1	827	2068		08/08/2018	ID	Field	Jelly	Cnidaria, unid.	Jelly (pelagic)	0.24	5				Release
T12	1	854	2135		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	84	mm	juv	Release
T12	1	854	2135		08/08/2018	ID	Field	Fish	Boreogadus saida	Arctic cod	0.05	1	73	mm	juv	Release
T12	1	854	2135		08/08/2018	ID	Field	Fish	Liparis tunicatus	Kelp snailfish	0.05	1	82	mm	juv	Release
T12	1	854	2135		08/08/2018	ID	Field	Amphipoda	Gammarida		0.14	3				Release
T12	1	854	2135		08/08/2018	ID	Field	Mysida	Mysida	Mysid	0.09	2				Release
T12	1	854	2135		08/08/2018	ID	Field	Isopoda	Saduria spp.	Isopod	2.20	47	various			Release
T12	1	854	2135		08/08/2018	ID	Field	Gastropoda	Cryptonatia affinis	Arctic moon snail	0.05	1				Release
T12	1	854	2135		08/08/2018	ID	Field	Gastropoda	Gastopoda egg case	Moon snail egg cas	0.05	1				Release

Appendix D

Willow Marine Monitoring Program Hydrographic & Water Quality Results

November 2018

(This Page Left Intentionally Blank)

Mark Savoie Kinnetic Laboratories, Incorporated 704 . 2nd Ave Anchorage, AK 99501

Laboratory Results for: 2018 Harrison Bay MMP

Dear Mark,

Enclosed are the results of the sample(s) submitted to our laboratory August 11, 2018 For your reference, these analyses have been assigned our service request number **K1807594**.

Analyses were performed according to our laboratory s NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and e cept as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My e tension is 3364. ou may also contact me via email at howard.holmes alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

for Howard Holmes Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, A 98626 PHONE +1 360 577 7222 FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Matrix: Ocean Water

Client: Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP **Project:**

Service Request: K1807594 Date Received: 08/11/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Forty four ocean water samples were received for analysis at ALS Environmental on 08/11/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by March Dan

08/24/2018 Date

CLIENT ID: HB18-TSS-W1-SUR		Lab	DID: K1807	/594-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.0			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W1-BOT		Lab	DID: K1807	/594-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	12.4			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W3-SUR		Lab	DID: K1807	/594-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.0			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W3-BOT		Lab	DID: K1807	7594-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.6			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W5-SUR		Lab	DID: K1807	/594-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	9.4			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W5-BOT		Lab	DID: K1807	7594-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	9.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W7-SUR		Lab	DID: K1807	/594-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	10.0			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W7-BOT		Lab	D: K1807	7594-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	10.6			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W7-SD		Lab	D: K1807	/594-009		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	11.0			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W8-SUR		Lab	D: K1807	7594-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	19.4			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W8-BOT		Lab	D: K1807	7594-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	22.6			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W10-SUR		Lab	DID: K1807	7594-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	10.2			2.0	mg/L	SM 2540 D

CLIENT ID: HB18-TSS-W10-BOT		Lab	DID: K1807	/594-013		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	8.6			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W12-SUR		Lab	DID: K1807	/594-014		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W12-BOT		Lab	DID: K1807	/594-015		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.6			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W16-SUR		Lab	DID: K1807	/594-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	7.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W16-BOT		Lab	DID: K1807	/594-017		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W18-SUR		Lab	DID: K1807	/594-018		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	10.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W18-BOT		Lab	DID: K1807	/594-019		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	12.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W18-SD		Lab	D: K1807	/594-020		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	13.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W19-SUR		Lab	DID: K1807	/594-021		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	16.4			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W19-BOT		Lab	D: K1807	/594-022		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	12.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W20-SUR		Lab	DID: K1807	/594-023		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	11.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W20-BOT		Lab	DID: K1807	/594-024		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	9.6			2.0	mg/L	SM 2540 D

CLIENT ID: HB18-TSS-W21-SUR		Lab	DID: K1807	/594-025		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	7.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W21-BOT		Lab	DID: K1807	/594-026		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	9.0			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W22-SUR		Lab	DID: K1807	/594-027		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	8.6			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W22-BOT		Lab	DID: K1807	7594-028		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	7.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W22-SD		Lab	DID: K1807	7594-029		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	7.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W23-SUR		Lab	DID: K1807	7594-030		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W23-BOT		Lab	DID: K1807	/594-031		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	7.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W29-SUR		Lab	D: K1807	/594-032		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	6.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W29-BOT		Lab	DID: K1807	/594-033		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	8.8			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W30-SUR		Lab	D: K1807	/594-034		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	9.2			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W30-BOT		Lab	DID: K1807	7594-035		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	9.0			2.0	mg/L	SM 2540 D
CLIENT ID: HB18-TSS-W31-SUR		Lab	ID: K1807	7594-036		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Suspended (TSS)	27.6			2.0	mg/L	SM 2540 D

CLIENT ID: HB18-TSS-W31-BOT		Lab	ID: K1807	/594-037						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	32.8			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W31-SD		Lab	ID: K1807	/594-038						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	30.8			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W32-SUR		Lab	ID: K1807	/594-039						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	12.2			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W32-BOT		Lab	ID: K1807	/594-040						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	11.2			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W33-SUR	Lab ID: K1807594-041									
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	8.2			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W33-BOT		Lab	ID: K1807	/594-042						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	11.6			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W43-SUR		Lab	ID: K1807	/594-043						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	13.8			2.0	mg/L	SM 2540 D				
CLIENT ID: HB18-TSS-W43-BOT		Lab	ID: K1807	/594-044						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Suspended (TSS)	13.8			2.0	mg/L	SM 2540 D				

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

SAMPLE CROSS-REFERENCE

SAMPLE	<u>CLIENT SAI</u>	MPLE ID	DATE	TIME
K1807594-001	HB18-TSS-	1-SUR	8/8/2018	1701
K1807594-002	HB18-TSS-	1-BOT	8/8/2018	1701
K1807594-003	HB18-TSS-	3-SUR	8/8/2018	1741
K1807594-004	HB18-TSS-	3-BOT	8/8/2018	1741
K1807594-005	HB18-TSS-	5-SUR	8/8/2018	1805
K1807594-006	HB18-TSS-	5-BOT	8/8/2018	1805
K1807594-007	HB18-TSS-	7-SUR	8/8/2018	1848
K1807594-008	HB18-TSS-	7-BOT	8/8/2018	1848
K1807594-009	HB18-TSS-	7-SD	8/8/2018	1848
K1807594-010	HB18-TSS-	8-SUR	8/9/2018	0928
K1807594-011	HB18-TSS-	8-BOT	8/9/2018	0928
K1807594-012	HB18-TSS-	10-SUR	8/9/2018	0959
K1807594-013	HB18-TSS-	10-BOT	8/9/2018	0959
K1807594-014	HB18-TSS-	12-SUR	8/9/2018	1016
K1807594-015	HB18-TSS-	12-BOT	8/9/2018	1016
K1807594-016	HB18-TSS-	16-SUR	8/9/2018	1103
K1807594-017	HB18-TSS-	16-BOT	8/9/2018	1103
K1807594-018	HB18-TSS-	18-SUR	8/9/2018	1123
K1807594-019	HB18-TSS-	18-BOT	8/9/2018	1123
K1807594-020	HB18-TSS-	18-SD	8/9/2018	1123
K1807594-021	HB18-TSS-	19-SUR	8/9/2018	1144
K1807594-022	HB18-TSS-	19-BOT	8/9/2018	1144
K1807594-023	HB18-TSS-	20-SUR	8/9/2018	1154
K1807594-024	HB18-TSS-	20-BOT	8/9/2018	1154
K1807594-025	HB18-TSS-	21-SUR	8/9/2018	1205
K1807594-026	HB18-TSS-	21-BOT	8/9/2018	1205
K1807594-027	HB18-TSS-	22-SUR	8/9/2018	1217
K1807594-028	HB18-TSS-	22-BOT	8/9/2018	1217
K1807594-029	HB18-TSS-	22-SD	8/9/2018	1217
K1807594-030	HB18-TSS-	23-SUR	8/9/2018	1230
K1807594-031	HB18-TSS-	23-BOT	8/9/2018	1230
K1807594-032	HB18-TSS-	29-SUR	8/9/2018	1405
K1807594-033	HB18-TSS-	29-BOT	8/9/2018	1405
K1807594-034	HB18-TSS-	30-SUR	8/9/2018	1419
K1807594-035	HB18-TSS-	30-BOT	8/9/2018	1419
K1807594-036	HB18-TSS-	31-SUR	8/9/2018	1428
K1807594-037	HB18-TSS-	31-BOT	8/9/2018	1428
K1807594-038	HB18-TSS-	31-SD	8/9/2018	1428
K1807594-039	HB18-TSS-	32-SUR	8/9/2018	1512
K1807594-040	HB18-TSS-	32-BOT	8/9/2018	1512
K1807594-041	HB18-TSS-	33-SUR	8/9/2018	1528
K1807594-042	HB18-TSS-	33-BOT	8/9/2018	1528

SAMPLE CROSS-REFERENCE

SAMPLE	CLIENT SAMPLE ID	DATE	TIME
K1807594-043	HB18-TSS- 43-SUR	8/9/2018	1806
K1807594-044	HB18-TSS- 43-BOT	8/9/2018	1806

To: ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 (360) 577-7222 1-800-695-7222 Contact: Howard Holmes ()	Howard.Holmes@	alsglobal.com)	Chain of (KL PO Quote #: 9 Lab #:	Custody R #: AK 1641	lecord 18- 1619 . ·	From: Kinnetic Labora 704 West 2nd Av Anchorage, AK (907) 276-6178 Contact: Mark S	itories, In ve. 99501 Savoie	-5 /7 Paj	Page 1 of 4		
Project: Complete by: Standard T	2018 HARRISON AT	BAY MMP			Matr	ix: Water			Project #: 5089.03		
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabHD	Condition Upon Receipt	
HB18-TSS-WL-SUK	WI	8818	1701	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W] - B6T	W1		1701 .	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 3-SUR	v3		1741 -	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	I			
HB18-TSS-W 3 - BOT	W3		1741 -	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 5 - SUR	W5		1805	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 5 - BoT	WS		1805	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 7 - Suk	W7		1848	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 7- BOT	W7		1848	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 7- SD	W7	V	1848·	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 8 -SUR-	w8	8/9/18	09281	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 8 - BOT	w8		09281	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W JO- SWR	WID		0959,	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
Data Report MUST include th times on this sheet are militar Special Instructions/Comm	e following: Sam y time. Email san ents: See quo	ple ID, Analytica mple receipt con te list of analyte	l Method, Det nfirmations, l es and detect	ection Limit, I PDF reports, tion limits.	Date of Extraction if applicab and EDDs to msavoie@kin	ole, Date of Analysis, nneticlabs.net. ED	, Analytic D REQU	al Results, a JIRED.	and Signature of QA Rev	iewer. All	
iampled and Relinquished By Mon A / Relinquished By:	h	8/10/18)ate/Time: / <i>UD</i> 5)ate/Time:		Transporter AK GolJstscols Transporter	Received By: Received By:	A.	te Pengl	Mar 81118	Date/Time: //W_ Date/Time:	

K1827594

				Chain of (Custody H	Record				P	Page \underline{Z} of $\underline{4}$
To: ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 (360) 577-7222 1-800-695-7222 Contact: Howard Holmes ()	Howard.Holmes@	alsglobal.	com)	KLI PC Quote #: 91 Lab #:	From: Kinnetic Labora 704 West 2nd A Anchorage, AK (907) 276-6178 Contact: Mark S	itories, In ve. 99501 Savoie	c				
Project: Complete by: Standard T	2018 HARRISON	I BAY MN	1P			Matrix	Water			Project #: 5089.03	
SampleID	StationID	Sample	e Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabiĐ	Condition Upon Receipt
HB18-TSS-W 10-BoT	WIU	89	18	0959 .	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 12- SUR	w12			1016 ·	Grab		0.5-L HDPE	4° C	1	5 	
HB18-TSS-W 12 - BOT	W12			1016 -	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 16 - SUR	WIG			1103	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 14-1361	WIG			1103 .	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 18-SUR	W18			1123 -	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 19 - BOT	W18			1123 ·	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W (% - SD	W18			1123	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 19-5UR	WI9			144	Grab		0.5-L HDPE	4° C	1		
HB18-TSS-W 19- BOT	WIQ			1144 .	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 20-SUR	W20			1154 1	Grab	TSS/SM 2540D	0.5-L HDPE	4° C_	1		
HB18-TSS-W 20-Bot	W20	L L		11541	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
Data Report MUST include the times on this sheet are militar	ne following: Sam y time. Email sa	ple ID, An mple rece	nalytical cipt con	Method, Dete firmations, I	ection Limit, PDF reports	Date of Extraction if applicable , and EDDs to msavoie@kinn	, Date of Analysis eticlabs.net. EI	, Analytic D REQU	al Results, JIRED.	and Signature of QA R	eviewer. All
Special Instructions/Comm	ients: See quo	ote list of	analyte	es and detect	ion limits.						
Sampled and Relinquished By	7		Ð	ate/Time:		Transporter	Received By:				Date/Time:
Manah Relinquished By:	<u> </u>	0/18	Ð	1005 ate/Time:		AK Goldsteak	Received By:	LA	wak.	ma 8-11	-8 1000 Date/Time:

RI\$ 7594

			Chain of	Custody I	Record				Page	e <u>3</u> of <u>4</u>	
To: ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 (360) 577-7222 1-800-695-7222 Contact: Howard Holmes (H	loward.Holmes@	alsglobal.com)	KLI P Quote #: 9 Lab #:	0 #: Af 1641	From: Kinnetic Labora 704 West 2nd A Anchorage, AK (907) 276-6178 Contact: Mark S	ntories, In ve. 99501 Savoie	c				
Project: 2 Complete by: Standard T	2018 HARRISON	I BAY MMP			Matri	x: Water			Project #: 5089.03		
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LabID	Condition Upon Receipt	
HB18-TSS-W 21-SUR	W21	8918	1205-	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	l			
HB18-TSS-W 21 - BOT	WZ1		1205	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 22-5UR	W22		1217	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 22-Bot	WZZ		1217.	Grab	TSS/SM 2540D	0.5-L HDPE	4° C_	1			
HB18-TSS-W 22-SD	W22		1217 .	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 23-542	W23		1230	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 23-BO	W23		1230	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 29-SW2	WZ9		1405.	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 29 - BOT	W29		1405	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 30-537	W 30		1419 -	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 30- Bo	W30		1419	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
HB18-TSS-W 31-SUR	W31		1428	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1			
Data Report MUST include th times on this sheet are military Special Instructions/Comm	e following: Sam y time. Email sa ents: See quo	ple ID, Analytics mple receipt co ote list of analyt	al Method, Det nfirmations, l tes and detect	ection Limit, PDF reports tion limits.	Date of Extraction if applicabl , and EDDs to msavoie@kin	e, Date of Analysis neticlabs.net. EI	, Analytic DD REQU	al Results, JIRED.	and Signature of QA Revi	ewer. All	
sampled and Relinquished By			Date/Time;		Transporter	Received By:				Date/Time:	
Relinquished By:	- 81	10/18	1005 Date/Time:	-	AKGeblsfræk Transporter	Received By:	An	nz te	entrov 81148	1035 Date/Time:	

K1807594

To: ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 (360) 577-7222 1-800-695-7222 Contact: Howard Holmes (F	łoward.Holmes@	alsglobal.com)	Chain of (KLI PO Quote #: 91 Lab #:	Custody F #: Ai 1641	Record 218-1019	From: Kinnetic Labora 704 West 2nd A Anchorage, AK (907) 276-6178 Contact: Mark S	atories, In ve. 99501 Savoie			Page 4 of 4
Project: Complete by: Standard T	2018 HARRISON AT	I BAY MMP			Mat	rix: Water			Project #: 5089.0.	3
SampleID	StationID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	LahiD	Condition Upon Receip
HB18-TSS-W 31 - BOT	W31	8)9/18	1428	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W31-SD	W31		1428 -	Grab		0.5-L HDPE	4° C	1		
нв18-т55-w 32-5цр _	W32		151Z -	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 32-BoT	W32		1512	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W 33-5UR	W33		1528.	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W33-BOT	W33		1528.	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W43-S4R	W43		1806	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W43- BOT	W43		1806,	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1		
HB18-TSS-W				Grab	TSS/SM 2540D	0.5-L HDPE	4° C		spins	
MB18-TSS-W				Grab	155/SM 2540D	0.5-L HDPE	<u>4°C</u>	<u> </u>	-prs	
HB18-TSS-W			a a stada a stada a seconda de se	Grab	TSS/SM 2540D	0.5-L HDPE	4° C	<u> </u>	- qnys	
HB18-TSS-W				Grab	TSS/SM 2540D	0.5-L HDPE	4° C	1	Que D	
Data Report MUST include th imes on this sheet are militar; Special Instructions/Comm	e following: Sam y time. Email sa ents: See quo	ple ID, Analytica mple receipt co ste list of analyt	al Method, Det nfirmations, l es and detect	ection Limit, PDF reports, tion limits.	Date of Extraction if applica and EDDs to msavoie@k	ble, Date of Analysis, inneticlabs.net. ED	, Analytic DD REQ	cal Results, a UIRED.	and Signature of QA	Reviewer. All
Sampled and Relinquished By Mmaha Relinquished By:	<u> </u>	>/18 /	Date/Time:		Transporter AL Cold Stust	Received By:	4	Jun h	Lentre 811	Date/Fime:
Relinquished By:			Date/Time:		ransporter	Received By:	¥			Date/Tim

v20020904

1

ALS	8												PC	: 42	
3	17	í		· C	Cooler R	eceipt	and I	Preser	vatio	n Fo	rm				
ent	KINNET	TE LAR	Ŝ.					Şerv	ice R	equest	K18	075	- 92		
ceived:	8-11-	18 (Opene	d:	8-11-19	,)	Ву:	Asp		Unl	oaded:	8-11-	(% By:	Isp	-
Samples	s were recei	ved via?	USP	\$	Fed Ex	UPS	1	DHL	PDX	$\langle a$	ourier	Hand I	Delivered		
Samples	s were recei	wed in: (cir	cle)	Co	aler	Box	En	velope		Other_		· · · · · · · · · · · · · · · · · · ·		NA	
Were <u>ce</u>	ustody seals	on coolers	?	N	A Y	\mathbb{N}		lf yes,	how n	nany ai	nd where	?			
If prese	nt, were cu	stody seals	intact?)	Y	N		lfp	resent	were	they sign	ed and da	ted?	Y	N
Raw Sooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corre Tenn I	Ctet	Corr. Factor	Therm	ometer	Co	oler/C(A	Tr	acking Number	N	Filod
5.3	5.3	2,1	2	{	0.0	39									U i neu
6.0	59	5.5	52	2	-0.1	.3,	11		······						
 							•		· · · · · · · · ·						
		<u> </u>	 												
Deali	l	1	1 P = = = =	in d	Dubble H		10-1								
Were	ag material:	Inserts	bayg:	d aut (ink signed	ap Co			er ice	Dry ;	ice Sie	eves			
Were	custous par	cis proper ceived in ac	iy mic	u our (ndition	ink, Signer	a, etc.)?	rakan)) <i>Ind</i>	innen i				NA	Ċ	N
), were	samples re	lf a	pplicat	ole, tiss	sue sample	es were	receive): ina :d: i	Frozer	n ine i 1 Pi	uole belo artially T	w. hawed	NA Thawed	\mathcal{O}	N
7. Were	all sample	abels comp	lete (i.	e anal	ysis, prese	rvation,	etc.)?						NA	(A)	N
8. Did al	ll sample la	bels and tag	gs agre	e with	custody p	apers?	Indical	e majo	r discr	epanc	ies in the	table on p	age 2. NA	Ğ,	N
9. Were	e appropriat	e bottles/co	ntaine	rs and	volumes r	eceived	for the	tests i	ndicate	ed?			N	$\sim O$	N
10. Wer	e the pH-p	eserved bo	ttles (se	ee SMC	GEN SOP) receiv	ed at th	ne appr	opriate	pH?	Indicate	in the tabi	le below 🛛 🕅	<u>у</u> ү	N
11. Wei	re VOA via	ls received	withou	nt head	space? In	dicate i	n the ta	able bel	ow.				Č.	4) Y	N
12. Wa	s C12/Res r	egative?											N	У Y	N
		-								ļ		,			
	Sample I	D on Bottle		···		Sampl	e ID on	COC				·····	Identified by:		
·					+										
- <u></u>		<u> </u>						<u></u>							<u> </u>
					l			r		·····		······			
	Samo	ie ID		Bott Bot	le Count – tle Type	Out of Temp	Head- space	Broke	ъHа	Re	agent	Volume	Reagent Lot Number	Initials	Time
		······································									**************************************			.,	
- <u></u>															•
				ļ		<u> </u>		 		<u> </u>		<u> </u>			ļ
				 		-	 	_	 	<u> </u>					ļ
				ļ		_		<u> </u>	 	- 	<u></u>				_
				<u>}</u>					<u> </u>	1			1		<u> </u>
lotes	s, Discrepa	ıncies, & I	Resolu	utions:											

÷

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER
Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W1-SUR K1807594-001 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W1-BOT K1807594-002 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W3-SUR K1807594-003 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W3-BOT K1807594-004 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W5-SUR K1807594-005 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	56 AM		Superset Reference:18-0000476483

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W5-BOT K1807594-006 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W7-SUR K1807594-007 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W7-BOT K1807594-008 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W7-SD K1807594-009 Ocean Water		Date Collected: 08/8/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W8-SUR K1807594-010 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	56 AM		Superset Reference:18-0000476483

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W8-BOT K1807594-011 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W10-SUR K1807594-012 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W10-BOT K1807594-013 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W12-SUR K1807594-014 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W12-BOT K1807594-015 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	57 AM		Superset Reference:18-0000476483 rev 00

Analyst Summary report

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W16-SUR K1807594-016 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W16-BOT K1807594-017 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W18-SUR K1807594-018 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W18-BOT K1807594-019 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W18-SD K1807594-020 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	:57 AM		Superset Reference:18-000047648

Superset Reference:18-0000476483 rev 00

Analyst Summary report

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W19-SUR K1807594-021 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W19-BOT K1807594-022 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W20-SUR K1807594-023 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W20-BOT K1807594-024 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W21-SUR K1807594-025 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	:57 AM		Superset Reference:18-000047648

Superset Reference:18-0000476483 rev 00

Analyst Summary report

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W21-BOT K1807594-026 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W22-SUR K1807594-027 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W22-BOT K1807594-028 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W22-SD K1807594-029 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W23-SUR K1807594-030 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	57 AM		Superset Reference:18-000047648

Page 25 of 88

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W23-BOT K1807594-031 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W29-SUR K1807594-032 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W29-BOT K1807594-033 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W30-SUR K1807594-034 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W30-BOT K1807594-035 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	57 AM		Superset Reference:18-0000476483 rev 00

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W31-SUR K1807594-036 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W31-BOT K1807594-037 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W31-SD K1807594-038 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W32-SUR K1807594-039 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W32-BOT K1807594-040 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Printed 8/24/2018 11:53:	57 AM		Superset Reference:18-000047648

Client: Project:	Kinnetic Laboratories, Incorporated 2018 Harrison Bay MMP/5089.03		Service Request: K1807594
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W33-SUR K1807594-041 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W33-BOT K1807594-042 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W43-SUR K1807594-043 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON
Sample Name: Lab Code: Sample Matrix:	HB18-TSS-W43-BOT K1807594-044 Ocean Water		Date Collected: 08/9/18 Date Received: 08/11/18
Analysis Method SM 2540 D		Extracted/Digested By	Analyzed By JMADISON

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 30 of 88

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/08/18 17:01
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W1-SUR	Basis: NA
Lab Code:	K1807594-001	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.0	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/08/18 17:01
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W1-BOT	Basis: NA
Lab Code:	K1807594-002	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	12.4	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/08/18 17:41
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W3-SUR	Basis: NA
Lab Code:	K1807594-003	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.0	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/08/18 17:41
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W3-BOT	Basis: NA
Lab Code:	K1807594-004	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.6	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/08/18 18:05
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W5-SUR	Basis:	NA
Lab Code:	K1807594-005		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	9.4	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/08/18 18:05
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W5-BOT	Basis:	NA
Lab Code:	K1807594-006		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	9.2	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/08/18 18:48
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W7-SUR	Basis:	NA
Lab Code:	K1807594-007		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	10.0	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/08/18 18:48
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W7-BOT	Basis: NA
Lab Code:	K1807594-008	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	10.6	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/08/18 18:48
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W7-SD	Basis: NA
Lab Code:	K1807594-009	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	11.0	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 09:28
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W8-SUR	Basis: NA
Lab Code:	K1807594-010	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	19.4	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 09:28
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W8-BOT	Basis: NA
Lab Code:	K1807594-011	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	22.6	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 09:59
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W10-SUR	Basis:	NA
Lab Code:	K1807594-012		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	10.2	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 09:59
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W10-BOT	Basis:	NA
Lab Code:	K1807594-013		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	8.6	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 10:16
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W12-SUR	Basis:	NA
Lab Code:	K1807594-014		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.2	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 10:16
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W12-BOT	Basis:	NA
Lab Code:	K1807594-015		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.6	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 11:03
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W16-SUR	Basis: NA
Lab Code:	K1807594-016	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	7.2	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:03
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W16-BOT	Basis:	NA
Lab Code:	K1807594-017		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.8	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:23
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W18-SUR	Basis:	NA
Lab Code:	K1807594-018		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	10.2	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:23
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W18-BOT	Basis:	NA
Lab Code:	K1807594-019		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	12.8	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 11:23
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W18-SD	Basis: NA
Lab Code:	K1807594-020	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	13.8	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:44
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W19-SUR	Basis:	NA
Lab Code:	K1807594-021		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	16.4	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:44
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W19-BOT	Basis:	NA
Lab Code:	K1807594-022		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	12.8	mg/L	2.0	1	08/14/18 12:10	
Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:54
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W20-SUR	Basis:	NA
Lab Code:	K1807594-023		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	11.8	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 11:54
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W20-BOT	Basis:	NA
Lab Code:	K1807594-024		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	9.6	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 12:05
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name: Lab Code:	HB18-TSS-W21-SUR K1807594-025	Basis:	NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	7.2	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 12:05
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W21-BOT	Basis:	NA
Lab Code:	K1807594-026		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	9.0	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 12:17
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W22-SUR	Basis:	NA
Lab Code:	K1807594-027		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	8.6	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 12:17
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W22-BOT	Basis:	NA
Lab Code:	K1807594-028		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	7.8	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 12:17
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W22-SD	Basis: NA
Lab Code:	K1807594-029	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	7.2	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 12:30
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W23-SUR	Basis:	NA
Lab Code:	K1807594-030		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.8	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 12:30
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W23-BOT	Basis:	NA
Lab Code:	K1807594-031		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	7.8	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 14:05
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W29-SUR	Basis: NA
Lab Code:	K1807594-032	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	6.8	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 14:05
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W29-BOT	Basis:	NA
Lab Code:	K1807594-033		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	8.8	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 14:19
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W30-SUR	Basis:	NA
Lab Code:	K1807594-034		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	9.2	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 14:19
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W30-BOT	Basis:	NA
Lab Code:	K1807594-035		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	9.0	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 14:28
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W31-SUR	Basis:	NA
Lab Code:	K1807594-036		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	27.6	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 14:28
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W31-BOT	Basis:	NA
Lab Code:	K1807594-037		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	32.8	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: 08/09/18 14:28
Sample Matrix:	Ocean Water	Date Received: 08/11/18 10:00
Sample Name:	HB18-TSS-W31-SD	Basis: NA
Lab Code:	K1807594-038	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	30.8	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 15:12
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W32-SUR	Basis:	NA
Lab Code:	K1807594-039		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	12.2	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 15:12
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W32-BOT	Basis:	NA
Lab Code:	K1807594-040		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	11.2	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 15:28
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W33-SUR	Basis:	NA
Lab Code:	K1807594-041		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	8.2	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 15:28
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W33-BOT	Basis:	NA
Lab Code:	K1807594-042		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	11.6	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 18:06
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W43-SUR	Basis:	NA
Lab Code:	K1807594-043		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	13.8	mg/L	2.0	1	08/15/18 15:21	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request:	K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected:	08/09/18 18:06
Sample Matrix:	Ocean Water	Date Received:	08/11/18 10:00
Sample Name:	HB18-TSS-W43-BOT	Basis:	NA
Lab Code:	K1807594-044		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	13.8	mg/L	2.0	1	08/15/18 15:21	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 76 of 88

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB1	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB2	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/14/18 10:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB3	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB4	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/14/18 12:10	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB5	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB6	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/14/18 15:06	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB7	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/15/18 15:21	

Analytical Report

Client:	Kinnetic Laboratories, Incorporated	Service Request: K1807594
Project:	2018 Harrison Bay MMP/5089.03	Date Collected: NA
Sample Matrix:	Ocean Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807594-MB8	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Suspended (TSS)	SM 2540 D	ND U	mg/L	2.0	1	08/15/18 15:21	

Client:	Kinnetic Labo	oratories, Incorporate	ed	Service Re	quest:	K180759	4
Project:	2018 Harrison	n Bay MMP/5089.03	3	Date Analy	zed:	08/14/18	
Sample Matrix:	Ocean Water			Date Extracted:			
		La	ab Control Sample Summary				
		So	olids, Total Suspended (TSS)				
Analysis Method:	SM 2540 D			Units:		mg/L	
Prep Method:	None			Basis:		NA	
				Analysis L	ot:	602409	
~				Spike			% Rec
Sample Name		Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample		K1807594-LCS1	306	306	100		85-115

Client:	Kinnetic Labo	oratories, Incorporate	ed	Service Req	uest:	K180759	4
Project:	2018 Harrisor	n Bay MMP/5089.03	3	Date Analyz	08/14/18		
Sample Matrix:	Ocean Water			Date Extracted: NA			
		La	b Control Sample Summary				
		So	olids, Total Suspended (TSS)				
Analysis Method:	SM 2540 D			Units:		mg/L	
Prep Method:	None			Basis:		NA	
				Analysis Lo	t:	602393	
Sample Name		I ah Code	Posult	Spike Amount	% Rec		% Rec
Lab Control Sample		K1807594-LCS2	294	306	96		85-115

Client:	Kinnetic Labo	ratories, Incorporated	d	Service Re	quest:	K180759	4
Project:	2018 Harrison	Bay MMP/5089.03		Date Analy	zed:	08/14/18	
Sample Matrix:	Ocean Water			Date Extra	cted:	NA	
		Lat	b Control Sample Summary				
		Sol	lids, Total Suspended (TSS)				
Analysis Method:	SM 2540 D			Units:		mg/L	
Prep Method:	None			Basis:		NA	
				Analysis L	ot:	602453	
Comula Norue		Lah Cada	Dece 14	Spike	9/ Dec		% Rec
Lab Control Sample		K1807594-LCS3	304	306	99		85-115

Client: Project:	Kinnetic Lab 2018 Harriso	ooratories, 1 on Bay MM	Incorporated IP/5089.03			Se D	ervice Requ ate Analyzo	iest: ed:	K1807594 08/14/18	
Sample Matrix:	Ocean water	:	Duplicate I Gener	Lab Contro al Chemist	l Sample S ry Paramet	ummary ters	ate Extract	ea:	NA	
Analysis Method:	SM 2540 D					U	nits:		mg/L	
Prep Method:	None	None			Basis: Analysis Lot:		:	NA 602409		
		Lab Ki	Lab Control SampleDuplicate LK1807594-LCS1K1807		plicate Lab C K1807594	ontrol Sam -DLCS1	ple			
Analyte Name		Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Solids, Total Suspended (TSS)		306	306	100	306	306	100	85-115	<1	5
Willow - 2018 Water Quality Data

.	0	D (1	<u>,</u>		Sample	Date	Date	Date				•	Reporting	Detection		Result
Sample	Station	Depth	кер	Lab Code	Туре	Collected	Received	Analyzed	Method	Matrix	Units	Component	Limit	Limit	Result	Notes
HB18-TSS-W1-SUR	W1	SUR	1	K1807594-001	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		6.0	
HB18-TSS-W1-BOT	W1	BOT	1	K1807594-002	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		12.4	
HB18-TSS-W3-SUR	W3	SUR	1	K1807594-003	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		6.0	
HB18-TSS-W3-BOT	W3	BOT	1	K1807594-004	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		6.6	
HB18-TSS-W5-SUR	W5	SUR	1	K1807594-005	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		9.4	
HB18-TSS-W5-BOT	W5	BOT	1	K1807594-006	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		9.2	
HB18-TSS-W7-SUR	W7	SUR	1	K1807594-007	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	ISS	2		10.0	
HB18-TSS-W7-BOT	VV 7	BOI	1	K1807594-008	SMPL	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	155	2		10.6	
HB18-155-W7-5D	VV 7	SUR	50	K1807594-009	FIELD DUPE	08/08/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	155	2		11.0	
HB18-155-W8-5UR	VV8	SUR	1	K1807594-010	SIVIPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	155	2		19.4	
	VV0	BUI	1	K1007594-011	SIVIPL	00/09/10	00/11/10	00/14/10	SIVI 2540 D	Ocean Water	mg/L	155	2		22.0	
HB10-155-W10-50R	W10	BOT	1	K1007594-012	SIVIPL	00/09/10	00/11/10	00/14/10	SIVI 2540 D	Ocean Water	mg/L	155	2		10.2	
	W 10	SUD	1	K1007594-013	SIVIFL	00/09/10	00/11/10	00/14/10	SIVI 2540 D	Ocean Water	mg/L	100	2		0.0	
HB18 TSS W12-30K	W 12 W/12	BOT	1	K1807504 015	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	100	2		6.6	
HB18 TSS W12-DOT	W12 W16	SUP	1	K1807504 016	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	100	2		7.2	
HB18 TSS W16 BOT	W10	BOT	1	K1807504 017	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	100	2		6.8	
HB18-TSS-W18-SUR	W18	SUR	1	K1807594-018	SMPI	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	100	2		10.0	
HB18-TSS-W18-BOT	W18	BOT	1	K1807594-010	SMPI	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/l	TSS	2		12.8	
HB18-TSS-W18-SD	W18	SUR	SD	K1807594-020		08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/l	TSS	2		13.8	
HB18-TSS-W19-SUR	W19	SUR	1	K1807594-021	SMPI	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/l	TSS	2		16.0	
HB18-TSS-W19-BOT	W19	BOT	1	K1807594-022	SMPI	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/l	TSS	2		12.8	
HB18-TSS-W20-SUR	W20	SUR	1	K1807594-023	SMPI	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/l	TSS	2		11.8	
HB18-TSS-W20-BOT	W20	BOT	1	K1807594-024	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/L	TSS	2		9.6	
HB18-TSS-W21-SUR	W21	SUR	1	K1807594-025	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/L	TSS	2		7.2	
HB18-TSS-W21-BOT	W21	BOT	1	K1807594-026	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/L	TSS	2		9.0	
HB18-TSS-W22-SUR	W22	SUR	1	K1807594-027	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		8.6	
HB18-TSS-W22-BOT	W22	BOT	1	K1807594-028	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	ma/L	TSS	2		7.8	
HB18-TSS-W22-SD	W22	SUR	SD	K1807594-029	FIELD DUPE	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		7.2	
HB18-TSS-W23-SUR	W23	SUR	1	K1807594-030	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		6.8	
HB18-TSS-W23-BOT	W23	BOT	1	K1807594-031	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		7.8	
HB18-TSS-W29-SUR	W29	SUR	1	K1807594-032	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		6.8	
HB18-TSS-W29-BOT	W29	BOT	1	K1807594-033	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		8.8	
HB18-TSS-W30-SUR	W30	SUR	1	K1807594-034	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		9.2	
HB18-TSS-W30-BOT	W30	BOT	1	K1807594-035	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		9.0	
HB18-TSS-W31-SUR	W31	SUR	1	K1807594-036	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		27.6	
HB18-TSS-W31-BOT	W31	BOT	1	K1807594-037	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		32.8	
HB18-TSS-W31-SD	W31	SUR	SD	K1807594-038	FIELD DUPE	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		30.8	
HB18-TSS-W32-SUR	W32	SUR	1	K1807594-039	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		12.2	
HB18-TSS-W32-BOT	W32	BOT	1	K1807594-040	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		11.2	
HB18-TSS-W33-SUR	W33	SUR	1	K1807594-041	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		8.2	
HB18-TSS-W33-BOT	W33	BOT	1	K1807594-042	SMPL	08/09/18	08/11/18	08/14/18	SM 2540 D	Ocean Water	mg/L	TSS	2		11.6	
HB18-TSS-W43-SUR	W43	SUR	1	K1807594-043	SMPL	08/09/18	08/11/18	08/15/18	SM 2540 D	Ocean Water	mg/L	TSS	2		13.8	
HB18-TSS-W43-BOT	W43	BOT	1	K1807594-044	SMPL	08/09/18	08/11/18	08/15/18	SM 2540 D	Ocean Water	mg/L	TSS	2		13.8	
Method Blank				K1807594-MB1	MB1	NA	NA	08/14/18	SM 2540 D	Water	mg/L	TSS	2		ND	ND
Method Blank				K1807594-MB2	MB2	NA	NA	08/14/18	SM 2540 D	Water	mg/L	ISS	2		ND	ND
Method Blank				K1807594-MB3	MB3	NA	NA	08/14/18	SM 2540 D	Water	mg/L	TSS	2		ND	ND
Method Blank				K1807594-MB4	MB1	NA	NA	08/14/18	SM 2540 D	water	mg/L	155	2		ND	ND
Method Blank				K1807594-MB5	MB1	NA	NA	08/14/18	SM 2540 D	Water	mg/L	155	2		ND	ND
Method Blank				K1807594-MB6	MB1	NA	NA	08/14/18	SM 2540 D	vvater	mg/L	155	2		ND	ND
Method Blank				K1807594-MB7	MB1	NA	NA	08/15/18	SM 2540 D	vvater	mg/L	155	2		ND	ND
Intention Bidlik				K100/094-WIB0		INA NA	INA NA	00/10/10	SIVI 2340 D	Water	ma/L	100	2		206	ND
Lab Control Sample				K100/094-LC01	1081	INA NA	NA	00/14/18	SIVI 2540 D	Water	mg/L	155	20		300	
Lab Control Sample				K1807504 LCS2	1082	INA NA	INA NA	00/14/18	SIVI 2040 D	Water	mg/L	100	20		294	
Lab Control Sample				K1807594-LCS3	1033	NΔ	NΔ	08/15/19	SM 2540 D	Water	mg/L	133	20		304	
Dunlicate Lab Control 9	Sample			K1807594-DI CS1	DI CS1	NA	NA	08/14/18	SM 2540 D	Water	mg/L	TSS	20		306	
Sapirouto Lab OundOl C	- anipio				DLOOT		1 1/1	00,17,10	5m 2070 D	** 4101		.00	-0		000	

Willow - 2018 Water Quality Data

Sample	Station	Depth	Rep	Lab Code	Sample	Date	Date	Date	Method	Matrix	Units	Component	Reporting	Detection	Result	Result
	14/4	0110			Туре	Collected	Received	Analyzed	014 0 4 0 0 0	0 111 1			Limit	Limit	1.00	Notes
HB18-TUR-W1-SUR	VV 1	SUR	1		SMPL	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	1.89	
HB18-TUR-W1-BD	W1	BOT	BD	HB18-TUR-W1-BD		08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	3.00	
HB18-TUR-W3-SUR	W3	SUR	1	HB18-TUR-W3-SUR	SMPL	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.29	
HB18-TUR-W3-SD	W3	SUR	SD	HB18-TUR-W3-SD	FIELD DUPE	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.27	
HB18-TUR-W3-BOT	W3	BOT	1	HB18-TUR-W3-BOT	SMPL	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.51	
HB18-TUR-W5-SUR	W5	SUR	1	HB18-TUR-W5-SUR	SMPL	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	6.80	
HB18-TUR-W5-BOT	W5	BOT	1	HB18-TUR-W5-BOT	SMPL	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	6.62	
HB18-TUR-W5-BOT-2	W5	BOT	2	HB18-TUR-W5-BOT-2	INSTR DUPE	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	lurbidity		0.05	6.74	
HB18-TUR-W3-BD	W7	SUR	БD 1	HB18-TUR-W7-SUR	SMPI	08/08/18	ΝA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.39	
HB18-TUR-W7-SD	W7	SUR	SD	HB18-TUR-W7-SD	FIELD DUPE	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.95	
HB18-TUR-W7-BOT	W7	BOT	1	HB18-TUR-W7-BOT	SMPL	08/08/18	NA	08/08/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	8.02	
HB18-TUR-W8-SUR	W8	SUR	1	HB18-TUR-W8-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	8.51	
HB18-TUR-W8-SD	W8	SUR	SD	HB18-TUR-W8-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.89	
HB18-TUR-W8-BOT	W8	BOT	1	HB18-TUR-W8-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	8.15	
HB18-TUR-W8-BOT-2	W8	BOT	2	HB18-TUR-W8-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.90	
HB18-TUR-W10-SUR	W10	BOT	1		SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	5.37	
HB18-TUR-W10-BOT	W10	SUR	1	HB18-TUR-W10-BO1	SMPL	08/09/18	ΝA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.17	
HB18-TUR-W12-SD	W12	SUR	SD	HB18-TUR-W12-SD		08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	1.87	
HB18-TUR-W12-BOT	W12	BOT	1	HB18-TUR-W12-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	1.74	
HB18-TUR-W16-SUR	W16	SUR	1	HB18-TUR-W16-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.08	
HB18-TUR-W16-SD	W16	SUR	SD	HB18-TUR-W16-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.07	
HB18-TUR-W16-BOT	W16	BOT	1	HB18-TUR-W16-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.19	
HB18-TUR-W18-SUR	W18	SUR	1	HB18-TUR-W18-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	8.58	
HB18-TUR-W18-SD	W18	SUR	SD	HB18-TUR-W18-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	8.74	
HB18-TUR-W18-BUT	W18 W/10	BOI	1	HB18-TUR-W18-BUT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	8.58	
HB18-TUR-W19-SUR-2	W19	SUR	2	HB18-TUR-W19-SUR-2	INSTR DUPF	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	12.40	
HB18-TUR-W19-BOT	W19	BOT	1	HB18-TUR-W19-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	11.70	
HB18-TUR-W19-BOT-2	W19	BOT	2	HB18-TUR-W19-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	12.30	
HB18-TUR-W20-SUR	W20	SUR	1	HB18-TUR-W20-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	6.92	
HB18-TUR-W20-SD	W20	SUR	SD	HB18-TUR-W20-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.02	
HB18-TUR-W20-BOT	W20	BOT	1	HB18-TUR-W20-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	6.21	
HB18-TUR-W20-BOT-2	W20	BOI	2	HB18-TUR-W20-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	6.54	
HB18-TUR-W21-SUR	VV21	SUR	1			08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.81	
HB18-TUR-W21-BOT	W21	BOT	1	HB18-TUR-W21-BOT	SMPI	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.01	
HB18-TUR-W21-BOT-2	W21	BOT	2	HB18-TUR-W21-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.60	
HB18-TUR-W22-SUR	W22	SUR	1	HB18-TUR-W22-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.75	
HB18-TUR-W22-SUR-2	W22	SUR	2	HB18-TUR-W22-SUR-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.58	
HB18-TUR-W22-BOT	W22	BOT	1	HB18-TUR-W22-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	3.10	
HB18-TUR-W22-BOT-2	W22	BOT	2	HB18-TUR-W22-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	3.11	
HB18-TUR-W23-SUR	W23	SUR	1			08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.11	
HB18-TUR-W23-BOT	W23	BOT	2	HB18-TUR-W23-BOT	SMPI	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	3.58	
HB18-TUR-W29-SUR	W29	SUR	1	HB18-TUR-W29-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.07	
HB18-TUR-W29-SUR-2	W29	SUR	2	HB18-TUR-W29-SUR-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	2.09	
HB18-TUR-W29-BOT	W29	BOT	1	HB18-TUR-W29-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	3.48	
HB18-TUR-W30-SUR	W30	SUR	1	HB18-TUR-W30-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	5.53	
HB18-TUR-W30-SD	W30	SUR	SD	HB18-TUR-W30-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	5.53	
HB18-TUR-W30-BOT	W30	BOI	1	HB18-TUR-W30-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	lurbidity		0.05	5.59	
	W31	SUR	2			08/09/18	NA NA	08/09/18	SIVI 2130 B	Ocean Water	ntu	Turbidity		0.05	19.90	
HB18-TUR-W31-BOT	W31	BOT	1	HB18-TUR-W31-BOT	SMPI	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	20.00	
HB18-TUR-W31-SD	W31	SUR	SD	HB18-TUR-W31-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	19.70	
HB18-TUR-W32-SUR	W32	SUR	1	HB18-TUR-W32-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.81	
HB18-TUR-W32-SD	W32	SUR	SD	HB18-TUR-W32-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.68	
HB18-TUR-W32-BOT	W32	BOT	1	HB18-TUR-W32-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.44	
HB18-TUR-W32-BOT-2	W32	BOT	2	HB18-TUR-W32-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.73	
HB18-TUR-W33-SUR	W33	SUR	1	HB18-TUR-W33-SUR		08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	4.58	
HB18-THR-W33-SUR-2	VV 33 W/33	BOT	∠ 1	HB18-TUR-W33-SUR-2	SMPI	08/09/18	NA NA	06/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	4.00 6.77	
HB18-TUR-W43-SUR	W43	SUR	1	HB18-TUR-W43-SUR	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7,18	
HB18-TUR-W43-SD	W43	SUR	SD	HB18-TUR-W43-SD	FIELD DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.80	
HB18-TUR-W43-BOT	W43	BOT	1	HB18-TUR-W43-BOT	SMPL	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.19	
HB18-TUR-W43-BOT-2	W43	BOT	2	HB18-TUR-W43-BOT-2	INSTR DUPE	08/09/18	NA	08/09/18	SM 2130 B	Ocean Water	ntu	Turbidity		0.05	7.08	

Station Depth (m) Cond (S/m) Temp (deg C) Salinity (psu) pН **OBS** (ntu) DO (mg/L) Sigma-t S1 7.98 0.50 1.531 6.015 14.443 8.08 10.48 11.350 S1 0.75 7.55 1.732 5.300 16.861 8.02 10.45 13.307 S1 1.00 7.94 7.11 10.70 2.034 4.137 20.815 16.514 S1 1.25 2.290 3.058 24.459 7.90 6.03 11.18 19.478 S1 1.50 2.348 2.713 25.409 7.89 5.45 11.24 20.256 S1 2.350 2.697 7.88 5.94 11.02 1.75 25.447 20.287 S2 0.50 2.309 3.721 24.186 8.00 4.13 10.83 19.216 S2 0.75 2.325 3.563 24.480 8.00 2.78 10.84 19.461 S2 1.00 2.332 3.430 24.663 7.99 2.22 10.88 19.615 S2 1.25 1.89 2.344 3.181 24.993 7.99 10.95 19.895 S2 2.355 1.50 7.99 1.77 2.873 25.368 11.06 20.213 S2 1.75 2.362 2.701 25.581 7.98 1.67 11.18 20.394 S2 2.00 2.361 2.708 25.571 7.98 1.63 11.19 20.386 S2 2.25 7.97 1.58 2.366 2.651 11.15 20.467 25.668 S2 2.50 2.378 2.429 25.996 7.97 1.64 11.19 20.742 S3 0.50 2.297 3.645 24.106 7.99 2.21 10.80 19.158 S3 0.75 7.99 2.21 2.314 3.387 24.488 10.90 19.480 S3 1.00 2.321 3.236 24.681 7.99 2.20 10.99 19.643 S3 1.25 7.99 2.18 2.323 3.171 24.762 11.00 19.712 S3 1.50 2.328 2.932 25.004 7.99 2.18 11.09 19.920 S3 1.75 2.334 2.772 25.198 7.98 2.19 11.16 20.084 S3 2.00 2.338 2.682 25.314 7.98 2.17 11.16 20.182 S3 2.25 2.350 2.517 25.589 7.98 2.14 11.17 20.412 S3 2.50 2.368 25.962 7.98 2.21 20.721 2.316 11.19 S4 0.50 8.02 0.81 2.201 2.891 23.536 11.29 18.753 S4 0.75 2.219 2.857 23.783 8.01 0.76 11.30 18.952 S4 1.00 2.257 2.828 24.243 8.01 0.72 11.27 19.320 S4 1.25 2.296 2.744 8.00 0.68 11.25 19.746 24.771 S4 1.50 2.319 2.660 25.110 8.00 0.62 11.25 20.021 S4 1.75 7.99 0.61 20.092 2.323 2.611 25.195 11.23 S4 2.00 2.337 2.356 25.564 7.98 0.61 11.30 20.401 S4 7.98 0.74 2.25 2.347 2.232 25.782 11.33 20.582 S4 2.50 2.353 7.98 0.91 2.168 25.909 11.32 20.687 S4 7.98 2.75 2.359 2.127 26.008 1.15 11.29 20.768 S4 3.00 2.363 26.066 7.98 1.52 2.116 11.28 20.815 S4 3.25 7.98 1.96 2.368 2.102 26.142 11.26 20.877 S5 0.50 2.001 3.201 21.016 8.04 0.90 11.23 16.730 S5 8.02 0.97 0.75 2.042 2.942 21.660 11.30 17.256 S5 1.00 2.098 2.628 22.522 8.01 1.00 11.42 17.959 S5 1.25 2.141 2.350 23.235 8.00 0.95 11.50 18.543 S5 1.50 8.00 0.81 2.197 1.997 24.164 11.60 19.302 S5 1.75 2.226 1.821 24.651 7.99 0.69 11.69 19.699 S5 2.00 2.254 1.759 25.031 7.99 0.67 11.69 20.006 S5 2.25 2.273 1.786 25.251 7.98 0.65 11.62 20.180 S5 0.58 2.50 2.288 1.840 25.386 7.98 11.56 20.286 S5 2.75 2.302 1.891 25.508 7.98 0.56 11.56 20.381 S5 3.00 0.51 2.322 1.997 7.97 11.51 20.501 25.665 S5 0.48 3.25 2.333 2.055 25.753 7.97 11.45 20.568 S5 3.50 2.344 25.853 7.97 0.46 11.43 2.092 20.646 S5 3.75 2.349 2.065 25.936 7.97 0.43 11.44 20.714 S5 0.45 4.00 2.349 1.947 26.040 7.97 11.50 20.803 S5 4.25 1.840 7.96 0.46 20.897 2.351 26.151 11.55

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
S6	0.50	1.983	3.012	20.924	8.04	0.98	11.32	16.667
S6	0.75	2.020	2.916	21.425	8.02	1.03	11.32	17.070
S6	1.00	2.085	2.761	22.282	8.01	1.06	11.37	17.761
S6	1.25	2.121	2.643	22.784	8.00	1.00	11.48	18.167
S6	1.50	2.148	2.518	23.196	8.00	0.94	11.56	18.502
S6	1.75	2.171	2.394	23.553	8.00	0.92	11.60	18.794
S6	2.00	2.200	2.216	24.027	7.99	0.91	11.64	19.181
S6	2.25	2.225	2.023	24.483	7.99	0.82	11.66	19.555
S6	2.50	2.239	1.872	24.763	7.99	0.76	11.67	19.786
S6	2.75	2.253	1.813	24.978	7.99	0.72	11.65	19.961
S6	3.00	2.268	1.821	25.158	7.98	0.67	11.60	20.104
S6	3.25	2.277	1.812	25.269	7.98	0.67	11.55	20.193
S6	3.50	2.284	1.759	25.402	7.98	0.73	11.55	20.302
S6	3.75	2.299	1.682	25.642	7.98	0.82	11.55	20.498
S6	4.00	2.304	1.654	25.724	7.97	0.80	11.53	20.565
S6	4.25	2.314	1.665	25.848	7.97	0.81	11.51	20.664
S6	4.50	2.329	1.622	26.056	7.97	0.78	11.52	20.833
S6	4.75	2.339	1.532	26.264	7.96	0.74	11.55	21.003
S6	5.00	2.343	1.469	26.359	7.96	0.74	11.56	21.083
S6	5.25	2.348	1.392	26.484	7.96	0.73	11.56	21.186
S6	5 50	2 354	1 304	26 631	7.96	0.71	11.55	21 308
S6	5 75	2 358	1 228	26 755	7.96	0.63	11.54	21 411
S6	6.00	2,366	1 087	26.976	7.96	0.65	11 48	21 594
	0.50	1 891	5 265	18 555	8.07	5.63	10.51	14 646
S7	0.75	2.002	4.699	20.087	8.03	5.47	10.67	15.899
S7	1 00	2 179	3 790	22 652	7 99	5 14	10.93	17 994
S7	1.25	2.322	2.941	24.924	7.96	4.59	11.31	19.856
S7	1.50	2 382	2 508	25.974	7.95	4 04	11 47	20 719
S7	1.75	2.396	2.387	26 245	7 94	3 64	11 28	20.943
S7	2 00	2 400	2.348	26.319	7.94	3 42	11.20	21 004
S7	2 25	2 398	2 314	26.331	7.94	3 46	11 14	21 015
	0.50	2.000	4 235	22 537	8.03	3.60	10.87	17 871
58	0.75	2 223	4 019	22,990	8.02	3 50	10.94	18 246
58	1 00	2 244	3 780	23 394	8.02	3 20	10.94	18 583
58	1.00	2 251	3 679	23 542	8.01	3.06	10.94	18 708
58	1.50	2 264	3 502	23 825	8.01	3.06	10.98	18 945
58	1.75	2 291	3 185	24.371	8.00	3 14	11 04	19 400
58	2 00	2,330	3 032	24 950	7 99	3.18	11.07	19.871
<u>59</u>	0.50	2 251	3 505	23.678	8.02	1 42	11.02	18 827
59	0.75	2 254	3 348	23 820	8.02	1.26	11.08	18 951
59	1 00	2 255	3 240	23,917	8.02	1.28	11.00	19.035
59	1 25	2 258	3 185	23 993	8.02	0.93	11 15	19.099
59	1.50	2 266	3 108	24 143	8.02	0.84	11.15	19 223
<u>S9</u>	1.75	2.274	3,040	24,286	8.01	0.87	11.13	19.341
<u>S9</u>	2 00	2 284	3 000	24 437	8 01	1 02	11 11	19 464
59	2.00	2,204	2 963	24 693	8.00	1 42	11 08	19 670
<u> </u>	0.50	1 637	6 477	15,312	8 10	9.54	10.45	11 997
S10	0.75	1 874	5 402	18.341	8.05	10.80	10.54	14 468
S10	1.00	2,278	3,482	24,006	7.97	16.32	11.20	19,090
S10	1 25	2 329	3 191	24 816	7 95	27.37	11 13	19 753
S10	1.50	2.343	3.110	25.036	7.94	21.69	11.05	19.934

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
S11	0.50	2.294	3.655	24.062	7.99	5.73	11.12	19.122
S11	0.75	2.383	2.706	25.832	7.99	3.87	11.54	20.593
S11	1.00	2.399	2.226	26.410	7.98	2.86	11.53	21.084
S11	1.25	2.402	2.108	26.549	7.98	2.50	11.38	21.202
S11	1.50	2.407	1.997	26.696	7.98	2.80	11.37	21.325
S11	1.75	2.417	1.877	26.925	7.97	3.12	11.35	21.515
S11	2.00	2,427	1.813	27,103	7.97	3.77	11.36	21,661
S11	2.25	2.429	1.792	27.149	7.97	4.64	11.34	21.699
S11	2 50	2 430	1 770	27 178	7.97	4 72	11.34	21 723
S11	2 75	2 431	1 726	27 223	7.97	4 88	11.37	21 762
	0.50	2 265	2 284	24 763	8.01	0.70	11.57	19 765
S12	0.75	2 268	1 890	25 104	8.01	0.61	11.83	20.058
S12	1 00	2.200	1.000	25 458	8.00	0.50	11.00	20.000
S12	1.00	2 300	1.696	25.400	8.00	0.00	11.70	20.047
S12	1.20	2,308	1.030	25.042	8.00	0.43	11.74	20.430
S12	1.50	2.300	1.070	25.700	7.00	0.43	11.70	20.590
S12 S12	2.00	2.310	1.093	25.070	7.99	0.42	11.07	20.000
S12	2.00	2.327	1.749	25.937	7.99	0.40	11.03	20.731
512	2.25	2.339	1.851	25.993	7.99	0.39	11.56	20.771
512	2.50	2.351	1.964	26.046	7.99	0.45	11.50	20.807
S12	2.75	2.359	2.050	26.081	7.99	0.52	11.45	20.830
S12	3.00	2.367	2.119	26.117	7.99	0.63	11.41	20.855
S12	3.25	2.373	2.159	26.154	7.99	0.81	11.37	20.883
S12	3.50	2.378	2.175	26.199	7.99	1.03	11.35	20.918
S12	3.75	2.379	2.129	26.250	7.99	1.37	11.34	20.961
S12	4.00	2.379	2.083	26.289	7.99	1.66	11.34	20.995
S12	4.25	2.379	2.085	26.290	7.99	1.86	11.33	20.996
T4	0.50	1.997	3.965	20.482	8.06	0.97	11.16	16.261
T4	0.75	1.999	3.964	20.498	8.06	0.95	11.15	16.274
T4	1.00	1.999	3.964	20.502	8.06	0.98	11.16	16.277
T4	1.25	2.005	3.967	20.564	8.06	1.10	11.14	16.326
T4	1.50	2.019	3.978	20.719	8.05	1.10	11.14	16.448
T4	1.75	2.031	3.990	20.840	8.05	1.15	11.15	16.543
T4	2.00	2.085	4.030	21.427	8.03	1.22	11.08	17.006
T4	2.25	2.180	3.835	22.624	8.01	1.39	11.02	17.968
T4	2.50	2.300	3.051	24.584	7.99	1.61	11.23	19.578
T4	2.75	2.331	2.663	25.245	7.99	1.55	11.43	20.128
Τ4	3.00	2.333	2.612	25.305	7.99	1.44	11.27	20.180
Τ4	3.25	2.333	2.598	25.315	7.99	1.42	11.22	20.188
W1	0.50	1.515	3.812	15.233	8.15	0.90	11.15	12.106
W1	0.75	1.526	3.846	15.337	8.14	0.95	11.12	12.187
W1	1.00	1.543	3.905	15.497	8.13	1.02	11.06	12.312
W1	1.25	1.580	4.038	15.839	8.12	1.09	10.93	12.576
W1	1.50	1.673	4.298	16.713	8.10	1.22	10.69	13.254
W1	1.75	1.823	4.300	18.350	8.07	1.74	10.49	14.550
W1	2.00	1.944	3.680	20.062	8.05	2.26	10.66	15.945
W1	2.25	2.066	3.347	21.659	8.03	1.62	11.00	17.233
W1	2 50	2 172	3 149	23 020	8.01	1.06	11 19	18 327
W1	2 75	2 260	2 747	24 341	8 00	0.87	11 24	19 403
W1	3.00	2 325	2 230	25 517	7 99	0.82	11.36	20 371
W/1	3 25	2 403	1 779	26.845	7 97	0.82	11 41	21 456
١٨/١	3 50	2.400	1 362	28.465	7 0/	0.00	11 32	27.776
۱۸/۱	2 75	2.505	1 21/	20.400	7 02	1 1 2	11.00	22.110
VV 1 \\//1	3.73	2.000	1 1 2 0	20.311	7.01	1.10	11.20	20.194 02.000
VV 1 \\//4	4.00	2.042	1.120	23.143	7.91	1.00	10.02	20.002
	4.20	2.342	1.030	29.229	7.91	1.97	10.92	23.400
VVI	4.50	2.341	0.695	29.340	7.91	2.21	10.92	23.300

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
W1	4.75	2.540	0.728	29.496	7.91	2.34	11.02	23.635
W1	5.00	2.536	0.632	29.541	7.90	2.39	11.08	23.675
W2	0.50	1.599	4.027	16.052	8.12	0.78	11.11	12.746
W2	0.75	1.601	4.030	16.066	8.12	0.75	11.10	12.757
W2	1.00	1.603	4.032	16.087	8.12	0.75	11.12	12.773
W2	1.25	1.607	4.036	16.129	8.12	0.76	11.12	12.806
W2	1.50	1.610	4.040	16.164	8.12	0.80	11.10	12.834
W2	1.75	1.622	4.050	16.283	8.12	0.78	11.08	12.927
W2	2.00	1.637	4.064	16.448	8.12	0.78	11.07	13.057
W2	2.25	1.666	4.094	16.741	8.11	0.83	11.05	13.288
W2	2.50	1.776	4.215	17.885	8.08	0.96	10.92	14.187
W2	2.75	1.882	4.367	18.958	8.06	1.12	10.78	15.028
W2	3.00	2.011	4.504	20.296	8.03	1.49	10.68	16.077
W2	3.25	2.078	4.372	21.125	8.01	1.67	10.83	16.743
W3	0.50	1.791	4.525	17.879	8.06	1.23	10.88	14.164
W3	0.75	1.791	4.522	17.882	8.06	1.21	10.89	14.166
W3	1.00	1.791	4.521	17.884	8.06	1.16	10.90	14.168
W3	1.25	1.791	4.519	17.888	8.06	1.16	10.91	14.171
W3	1.50	1.792	4.516	17.894	8.06	1.17	10.91	14.176
W3	1.75	1.792	4.514	17.900	8.06	1.19	10.91	14.181
W3	2.00	1.793	4.515	17.912	8.06	1.19	10.90	14,191
W3	2.25	1.796	4.526	17.938	8.06	1.14	10.88	14.210
W4	0.50	1.806	5.985	17.279	8.05	3.22	10.31	13.584
W4	0.75	1.806	5.981	17.277	8.05	3.21	10.32	13.582
W4	1.00	1.806	5.977	17.274	8.05	3.18	10.30	13.581
W4	1.25	1.806	5.977	17.275	8.05	3.25	10.29	13.582
W4	1.50	1.808	5.987	17.289	8.05	3.18	10.31	13.592
W4	1.75	1.815	6.009	17.359	8.05	3.28	10.28	13.645
W4	2.00	1.838	6.046	17.571	8.05	3.52	10.27	13.809
W5	0.50	1.793	6.525	16.873	8.04	4.76	10.11	13.219
W5	0.75	1.793	6.523	16.873	8.04	4.71	10.12	13.219
W5	1 00	1 793	6.524	16 872	8.05	4 77	10.12	13 219
W5	1.25	1.793	6.524	16.872	8.05	4.77	10.12	13.219
W5	1.50	1 793	6 5 2 4	16.872	8.05	4 75	10.13	13 219
W5	1.75	1.793	6.524	16.872	8.05	4.68	10.12	13.219
W6	0.50	1.695	6.889	15.697	8.03	11.02	9.92	12.264
W6	0.75	1 694	6 887	15 697	8.03	8.97	9.92	12 264
W6	1.00	1.694	6.887	15.697	8.03	8.87	9.93	12.264
W6	1 25	1 694	6 887	15 697	8.03	8.96	9.93	12 264
W6	1.50	1 694	6 887	15 697	8.03	8 69	9.95	12 264
	0.50	1.676	7 238	15.357	8.03	5 78	9.83	11.966
W/7	0.75	1 676	7 234	15 357	8.03	5 42	9.89	11 966
W/7	1 00	1 676	7 233	15 357	8.00	5.52	9.88	11 966
W/7	1 25	1.676	7 235	15,356	8.03	5.50	9.88	11 965
\\\7	1.20	1.676	7 237	15 356	8.00	5 60	9.88	11 965
\\\/7	1 75	1 676	7 237	15 356	8.04	5.65	9.80	11 065
 	0.50	1 474	6 938	13 472	8.02	6.43	9.85	10.514
W/8	0.75	1 474	6 938	13 472	8.02	7 31	9.85	10.514
W8	1.00	1.474	6.940	13.473	8.02	7.70	9.86	10.514

Station Depth (m) Cond (S/m) Temp (deg C) Salinity (psu) pН **OBS** (ntu) DO (mg/L) Sigma-t W9 0.50 8.05 5.96 9.95 1.673 6.551 15.630 12.241 W9 0.75 6.543 15.639 8.05 6.03 10.00 12.248 1.673 W9 1.00 1.675 6.533 15.657 8.05 6.02 10.02 12.263 W9 1.25 1.676 6.523 8.05 5.95 10.02 12.283 15.681 W9 1.50 1.680 6.506 8.06 5.88 10.00 12.319 15.726 W9 1.75 1.689 6.473 8.05 5.89 9.93 12.405 15.830 W9 2.00 1.699 6.440 15.952 8.05 6.01 9.74 12.503 W10 0.50 1.817 5.905 17.434 8.05 3.37 10.13 13.712 W10 3.27 10.19 0.75 1.820 5.888 17.469 8.05 13.742 W10 1.00 3.24 1.826 5.849 17.548 8.04 10.20 13.807 W10 1.25 1.844 5.752 17.788 8.04 3.24 10.23 14.004 W10 1.50 1.870 5.635 8.03 3.10 18.126 10.27 14.279 W10 1.75 1.888 5.590 8.03 2.81 10.29 14.457 18.347 W10 2.62 2.00 1.923 5.544 18.735 8.03 10.32 14.766 W11 0.50 1.895 4.280 19.155 8.06 0.86 10.88 15.189 W11 0.75 1.894 4.268 19.155 8.06 0.80 10.91 15.190 W11 1.00 1.894 4.265 19.159 8.06 0.76 10.90 15.193 W11 1.25 1.896 4.262 8.06 0.82 10.91 19.178 15.208 W11 1.50 1.899 4.251 19.213 8.06 0.87 10.92 15.237 W11 1.75 8.05 0.92 1.907 4.248 19.310 10.88 15.314 W11 2.00 1.920 4.248 19.449 8.05 0.91 10.85 15.424 0.95 W11 2.25 1.926 4.250 19.512 8.05 10.83 15.474 W12 0.50 1.833 4.228 18.503 8.07 0.92 10.94 14.676 W12 0.75 1.833 4.228 8.07 0.76 18.507 10.97 14.679 W12 1.00 1.834 4.228 8.07 0.72 10.98 18.511 14.682 W12 1.25 1.834 4.229 18.517 8.07 0.72 11.00 14.687 W12 1.50 1.838 4.236 18.553 8.07 0.77 11.00 14.715 W12 1.75 4.260 18.697 8.06 0.75 10.96 14.827 1.852 W12 2.00 4.290 8.06 0.74 1.873 18.913 10.93 14.997 W12 2.25 1.886 4.298 19.043 8.06 0.72 10.94 15.099 W12 8.06 0.73 10.90 2.50 1.918 4.312 19.396 15.378 W13 0.50 1.846 4.152 18.692 8.09 0.82 10.94 14.830 W13 8.08 0.90 0.75 1.846 4.151 18.689 10.96 14.828 W13 1.00 1.846 4.152 8.08 0.92 10.96 14.827 18.687 W13 1.25 1.847 4.154 18.698 8.07 0.88 10.94 14.835 W13 1.50 4.160 8.07 0.91 14.859 1.850 18.729 10.98 W13 8.07 0.93 1.75 1.847 4.155 18.699 10.96 14.836 W13 2.00 1.889 4.225 19.118 8.06 0.93 10.83 15.163 W13 2.25 0.99 2.066 4.379 20.988 8.04 10.62 16.634 W13 2.50 4.072 8.00 1.13 2.243 23.180 11.26 18.393 W14 0.50 1.791 4.155 18.081 8.08 0.81 10.98 14.346 W14 0.75 8.08 0.92 1.791 4.155 18.080 11.00 14.345 W14 0.92 1.00 1.791 4.153 18.082 8.08 11.00 14.347 W14 1.25 8.08 0.84 10.99 1.791 4.153 18.080 14.346 W15 0.88 0.50 1.947 3.954 19.927 8.06 10.92 15.821 W15 0.75 1.05 1.993 4.011 20.409 8.06 10.89 16.200 W15 1.00 8.05 1.56 2.028 4.025 20.787 10.80 16.499 W15 1.25 2.035 4.030 8.05 1.92 10.78 20.869 16.563 W15 1.50 2.045 4.046 20.963 8.04 1.95 10.78 16.637 W15 1.75 2.085 4.039 8.03 1.92 10.73 21.418 16.998 W15 2.00 4.016 8.02 2.18 2.124 21.875 10.69 17.362 W15 2.25 2.185 3.963 22.595 8.01 2.33 10.59 17.937 W15 2.50 2.235 3.915 23.193 8.00 2.21 10.49 18.414

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
W16	0.50	2.050	4.395	20.799	8.05	1.17	10.71	16.483
W16	0.75	2.050	4.384	20.801	8.05	1.01	10.74	16.485
W16	1.00	2.050	4.384	20.807	8.05	0.94	10.74	16.490
W16	1.25	2.051	4.388	20.818	8.05	0.94	10.71	16.499
W16	1.50	2.053	4.395	20.832	8.05	0.97	10.75	16.509
W16	1.75	2.055	4.404	20.849	8.05	0.97	10.77	16.522
W16	2.00	2.059	4.424	20.883	8.05	1.02	10.73	16.547
W16	2.25	2.065	4.449	20.925	8.05	1.07	10.72	16.579
W17	0.50	1.756	6.176	16.666	8.07	4.53	10.03	13.086
W17	0.75	1.760	6.166	16.709	8.07	4.62	10.06	13.121
W17	1.00	1.766	6.146	16.778	8.07	4.76	10.06	13.176
W17	1.25	1.776	6.091	16.907	8.07	4.86	10.06	13.282
W17	1.50	1.793	5.992	17.137	8.06	4.87	10.06	13.471
W17	1.75	1.831	5.895	17.584	8.05	4.74	10.04	13.831
W17	2.00	1.932	5.767	18.712	8.03	4.47	9.98	14.730
W17	2.25	2.050	5.610	20.052	8.01	3.82	10.11	15.799
W17	2.50	2.097	5.431	20.668	8.00	2.91	10.43	16.300
W18	0.50	1.640	6.380	15.377	8.06	5.81	10.14	12.056
W18	0.75	1.641	6.381	15.381	8.07	5.67	10.13	12.059
W18	1.00	1.641	6.382	15.383	8.07	5.68	10.14	12.060
W18	1.25	1.642	6.384	15.391	8.07	5.77	10.15	12.067
W18	1.50	1.647	6.390	15.437	8.07	5.78	10.12	12.102
W18	1.75	1.653	6.385	15.506	8.07	5.75	10.10	12.157
W18	2.00	1.661	6.363	15.595	8.07	5.85	10.08	12.229
W19	0.50	1.567	6.256	14.685	8.08	8.47	10.24	11.522
W19	0.75	1.568	6.253	14.695	8.08	8.22	10.28	11.530
W19	1.00	1.568	6.251	14.699	8.08	8.36	10.28	11.533
W19	1.25	1.569	6.247	14.708	8.08	8.40	10.26	11.541
W20	0.50	1.665	6.236	15.695	8.07	4.84	10.19	12.318
W20	0.75	1.703	6.205	16.096	8.06	4.74	10.18	12.635
W20	1.00	1.743	6.168	16.529	8.05	4.75	10.17	12.979
W20	1.25	1.751	6.163	16.616	8.05	4.65	10.15	13.048
W20	1.50	1.754	6.144	16.656	8.05	4.45	10.16	13.081
W20	1.75	1.759	6.099	16.729	8.05	4.29	10.13	13.142
W21	0.50	2.071	4.536	20.939	8.04	2.01	10.68	16.584
W21	0.75	2.070	4.527	20.941	8.04	1.39	10.69	16.587
W21	1.00	2.071	4.529	20.952	8.04	1.43	10.69	16.595
W21	1.25	2.074	4.543	20.966	8.04	1.46	10.66	16.604
W21	1.50	2.077	4.566	20.993	8.04	1.48	10.66	16.624
W21	1.75	2.083	4.602	21.028	8.04	1.49	10.67	16.649
W21	2.00	2.091	4.661	21.082	8.04	1.48	10.62	16.687
W21	2.25	2.095	4.692	21.112	8.03	1.56	10.56	16.709
W21	2.50	2.099	4.691	21.149	8.03	1.57	10.53	16.739
W21	2.75	2.101	4.623	21.223	8.03	1.67	10.56	16.802
W22a	0.50	1.995	4.739	19.984	8.05	1.78	10.74	15.814
W22a	0.75	1.997	4.751	19.994	8.05	1.61	10.74	15.821
W22a	1.00	1.999	4.768	20.003	8.05	1.56	10.73	15.827
W22a	1.25	2.007	4.833	20.058	8.05	1.56	10.59	15.866
W22a	1.50	2.053	5.030	20.438	8.05	1.68	10.49	16.151
W22a	1.75	2.113	4.946	21.149	8.04	1.83	10.54	16.719
W22a	2.00	2.167	4.649	21.933	8.02	1.83	10.45	17.362
W22a	2.25	2.188	4.402	22.325	8.02	1.90	10.35	17.691
W22a	2.50	2.213	4.165	22.772	8.01	2.16	10.29	18.063
W22a	2.75	2.243	4.013	23.211	8.00	2.38	10.28	18.422

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рΗ	OBS (ntu)	DO (mg/L)	Sigma-t
W22b	0.50	2.003	4.802	20.032	8.06	1.57	10.64	15.847
W22b	0.75	2.010	4.849	20.081	8.06	1.49	10.67	15.882
W22b	1.00	2.017	4.897	20.126	8.06	1.49	10.65	15.914
W22b	1.25	2.031	4.973	20.228	8.06	1.66	10.62	15.990
W22b	1.50	2.061	5.060	20.506	8.05	1.77	10.55	16.202
W22b	1.75	2.107	4.979	21.056	8.04	1.73	10.54	16.643
W22b	2.00	2.172	4.589	22.027	8.02	1.69	10.72	17.441
W22b	2.25	2.192	4.374	22.391	8.02	1.81	10.83	17.745
W22b	2.50	2.215	4.153	22.799	8.01	1.88	10.76	18.085
W22c	0.50	1.999	4.761	20.016	8.06	1.49	10.68	15.837
W22c	0.75	2.007	4.808	20.069	8.06	1.47	10.70	15.876
W22c	1.00	2.015	4.846	20.135	8.06	1.52	10.69	15.925
W22c	1.25	2.031	4.921	20.262	8.05	1.68	10.64	16.020
W22c	1.50	2.099	5.014	20.943	8.04	1.69	10.52	16.551
W22c	1.75	2.156	4.729	21.761	8.03	1.67	10.59	17.219
W22c	2.00	2.185	4.463	22.255	8.02	1.73	10.85	17.631
W22c	2.25	2.201	4.263	22.572	8.01	1.91	10.82	17.897
W22c	2.50	2.228	4.073	23.003	8.01	2.00	10.68	18.252
W23	0.50	1.687	3.783	17.133	8.11	0.75	11.14	13.615
W23	0.75	1.694	3.794	17.208	8.10	0.81	11.18	13.674
W23	1.00	1.703	3.806	17.308	8.09	0.84	11.17	13.753
W23	1.25	1.739	3.846	17.674	8.06	0.87	11.13	14.041
W23	1.50	1.890	4.050	19.240	8.04	0.91	10.95	15.271
W23	1.75	2.026	4.351	20.556	8.02	1.02	10.70	16.294
W23	2.00	2.110	4.572	21.346	8.01	1.28	10.50	16.903
W23	2.25	2.189	4.426	22.319	8.00	1.54	10.48	17.685
W23	2.50	2.257	4.097	23.317	7.99	1.77	10.64	18.499
W23	2.75	2.302	3.821	24.027	7.97	1.93	10.79	19.083
W23	3.00	2.328	3.644	24.461	7.97	1.94	10.86	19.440
W23	3.25	2.343	3.520	24.723	7.96	1.81	10.87	19.657
W23	3.50	2.361	3.417	25.008	7.95	1.90	10.74	19.891
W24	0.50	1.808	3.868	18.435	8.07	2.29	11.02	14.643
W24	0.75	1.998	4.105	20.401	8.04	0.86	10.91	16.188
W24	1.00	2.071	4.200	21.158	8.03	0.77	10.88	16.781
W24	1.25	2.173	4.152	22.331	8.01	0.90	10.85	17.714
W24	1.50	2.254	3.945	23.387	7.99	1.05	11.02	18.566
W24	1.75	2.284	3.775	23.852	7.99	1.10	11.11	18.947
W24	2.00	2.288	3.711	23.951	7.99	1.28	11.02	19.031
W24	2.25	2.289	3.645	24.004	7.99	1.39	10.97	19.077
W24	2.50	2.290	3.594	24.051	7.99	1.41	10.94	19.118
W24	2.75	2.291	3.551	24.103	7.99	1.49	10.93	19.162
W24	3.00	2.294	3.523	24.151	7.99	1.47	10.94	19.202
W24	3.25	2.295	3.512	24.179	7.99	1.48	10.94	19.225
W24	3.50	2.298	3.510	24.209	7.98	1.41	10.92	19.249
W24	3.75	2.302	3.501	24.257	7.98	1.38	10.87	19.288
W24	4.00	2.307	3.483	24.332	7.98	1.38	10.85	19.349
W24	4.25	2.314	3.440	24.442	7.98	1.35	10.78	19.439
W24	4.50	2.312	3.390	24.460	7.97	1.56	10.64	19.457

Station Depth (m) Cond (S/m) Temp (deg C) Salinity (psu) pН **OBS** (ntu) DO (mg/L) Sigma-t W25 1.447 8.19 0.50 0.86 11.39 11.616 3.568 14.602 W25 0.75 1.458 8.19 0.93 11.37 11.707 3.578 14.717 W25 1.00 1.482 3.601 14.976 8.19 0.91 11.34 11.912 W25 1.25 8.17 0.92 11.29 1.518 3.635 15.353 12.210 W25 1.50 1.652 3.783 8.13 0.91 16.757 11.11 13.317 W25 1.75 8.09 0.87 1.831 3.987 18.618 10.88 14.781 W25 2.00 1.915 4.048 19.515 8.07 0.82 10.82 15.489 W25 2.25 2.060 3.861 21.255 8.04 0.87 10.91 16.881 W25 2.50 2.142 3.473 22.446 8.02 0.85 11.17 17.851 W25 0.74 2.75 2.170 3.048 23.069 8.02 11.53 18.372 W25 3.00 2.180 2.850 23.320 8.01 0.69 11.68 18.583 W25 3.25 2.686 8.01 0.62 18.722 2.183 23.482 11.67 W25 3.50 2.190 2.497 8.01 0.52 23.698 11.69 18.904 W25 3.75 8.01 0.54 2.215 2.414 24.065 11.66 19.202 W25 4.00 2.241 2.473 24.329 8.00 0.52 11.59 19.409 W25 4.25 2.282 2.659 7.99 0.53 11.36 19.667 24.666 W25 4.50 2.744 24.960 7.99 0.63 11.15 19.896 2.312 W25 4.75 2.542 7.99 0.67 2.327 25.295 11.12 20.176 W25 5.00 2.344 2.184 25.782 7.98 0.71 11.19 20.584 W25 7.98 0.85 5.25 2.359 1.833 26.255 11.17 20.981 W25 5.50 2.394 1.209 27.218 7.97 0.95 11.25 21.783 W25 5.75 2.444 0.417 28.566 7.96 0.91 11.62 22.900 W25 6.00 -0.246 7.95 0.74 12.26 2.468 29.498 23.675 W25 6.25 2.477 -0.561 29.922 7.94 0.77 12.30 24.028 W26 0.50 -2.70 11.285 1.403 3.448 14.179 11.17 W26 0.75 1.557 3.590 15.799 8.17 1.30 11.10 12.566 W26 1.00 1.819 3.746 8.10 0.96 10.91 14.799 18.623 W26 1.25 2.050 8.06 0.81 10.91 3.656 21.277 16.911 W26 8.04 0.77 1.50 2.113 3.584 22.038 11.14 17.520 W26 1.75 2.149 3.472 22.524 8.04 0.75 11.28 17.913 W26 2.00 2.175 3.425 8.03 0.74 11.31 18.181 22.858 W26 2.25 2.191 3.401 8.03 0.70 11.29 23.057 18.341 W26 2.50 2.203 3.347 23.238 8.03 0.63 11.31 18.488 W26 2.75 2.222 3.240 8.02 0.64 23.535 11.35 18.731 W26 3.00 2.241 3.103 23.857 8.02 0.62 11.33 18.996 W26 3.25 8.02 0.62 2.253 2.971 24.094 11.31 19.193 W26 3.50 2.261 2.878 24.255 8.02 0.63 11.27 19.326 W26 3.75 2.275 2.698 24.558 8.02 0.55 11.25 19.579 W26 0.51 4.00 2.288 2.542 24.832 8.01 11.28 19.806 2.328 W26 4.25 8.01 0.49 11.35 2.307 25.227 20.134 W26 4.50 2.323 2.090 25.605 8.01 0.47 11.42 20.448 W26 4.75 0.48 2.340 1.687 26.144 8.01 11.48 20.900 W26 5.00 2.358 1.287 8.00 0.52 11.48 21.365 26.700 W26 5.25 2.402 0.651 27.808 8.00 0.43 11.46 22.281 W26 5.50 2.444 -0.127 29.077 7.98 0.23 11.87 23.331 W26 5.75 2.461 -0.59729.746 7.97 0.17 12.39 23.886 W26 0.30 6.00 2.468 -0.848 30.094 7.97 12.48 24.174 W26 6.25 -0.979 7.97 0.52 12.41 24.318 2.471 30.266 W26 6.50 2.471 -1.028 30.318 7.96 0.73 12.32 24.361 W26 6.75 2.471 -1.048 7.96 0.96 30.332 12.21 24.372 W26 7.00 -1.091 1.00 2.473 30.407 7.96 12.19 24.435 W26 7.25 2.475 -1.113 30.451 7.95 1.05 12.18 24.470 W26 7.50 2.476 -1.127 30.476 7.95 1.13 12.16 24.491 W26 7.75 2.475 -1.139 30.481 7.95 1.24 24.496 12.13

Station Depth (m) Cond (S/m) Temp (deg C) Salinity (psu) pН **OBS** (ntu) DO (mg/L) Sigma-t W27 0.50 1.33 11.57 1.238 3.310 12.432 -9.901 W27 0.75 1.286 3.342 1.19 11.51 10.309 12.946 -W27 1.00 1.303 3.365 13.124 _ 1.18 11.48 10.449 W27 1.25 1.378 3.428 13.906 8.18 1.13 11.38 11.069 W27 1.50 1.623 3.574 8.13 1.08 11.14 16.543 13.157 W27 1.75 1.859 8.08 1.00 10.94 3.681 19.111 15.191 W27 2.00 1.995 3.688 20.630 8.06 0.92 10.87 16.395 W27 2.25 2.060 3.672 21.371 8.05 0.84 10.89 16.985 W27 0.75 2.50 2.111 3.694 21.940 8.04 10.96 17.435 W27 0.66 2.75 2.150 3.679 22.390 8.04 11.06 17.793 W27 3.00 2.178 3.581 22.780 8.03 0.60 11.15 18.109 W27 3.25 8.03 0.59 2.202 3.483 23.129 11.20 18.393 W27 3.50 2.220 3.387 8.02 0.62 11.21 23.404 18.618 W27 3.75 2.237 3.282 8.02 0.65 11.20 23.668 18.834 W27 4.00 2.256 3.129 24.003 8.01 0.65 11.21 19.111 W27 4.25 2.268 2.875 24.333 8.00 0.66 11.17 19.389 W27 4.50 2.281 2.445 24.821 7.99 0.70 10.92 19.802 W27 4.75 2.330 1.879 7.98 0.75 10.62 25.870 20.671 W27 5.00 2.409 1.056 27.535 7.97 0.74 10.84 22.045 W27 7.97 0.45 5.25 2.463 0.241 28.977 11.63 23.238 W27 5.50 2.464 -0.417 29.619 7.97 0.19 12.35 23.778 W27 5.75 2.459 -0.891 30.013 7.97 0.10 12.67 24.110 W27 6.00 -1.106 7.97 0.06 12.70 2.461 30.263 24.318 W27 6.25 -1.200 7.97 0.01 2.468 30.449 12.62 24.471 W27 -1.253 7.97 0.02 6.50 2.476 30.613 12.52 24.605 W27 6.75 2.480 -1.280 30.689 7.97 0.04 12.46 24.667 W27 7.00 2.481 -1.295 7.96 0.11 12.44 30.724 24.696 W27 7.25 2.482 -1.304 7.96 0.18 12.43 30.745 24.713 W27 -1.306 0.22 7.50 2.483 30.758 7.96 12.41 24.724 W27 7.75 2.484 -1.30230.767 7.96 0.24 12.37 24.731 W27 -1.297 7.96 0.31 8.00 2.485 12.33 24.735 30.773 W27 8.25 2.485 -1.298 7.96 0.43 12.33 30.776 24.738 W27 8.50 2.485 -1.30430.783 7.96 0.63 12.38 24.744 W27 8.75 2.486 7.96 0.82 12.42 -1.309 30.799 24.757 W27 9.00 2.487 -1.313 30.824 7.95 0.91 12.35 24.777 W27 9.25 -1.298 7.95 1.00 12.29 2.489 30.827 24.779 W27 -1.299 9.50 2.489 30.832 7.95 1.16 12.28 24.783 W28 0.50 1.459 3.767 14.645 8.17 0.98 11.39 11.642 W28 0.95 0.75 1.482 3.781 14.888 8.16 11.41 11.834 W28 1.00 1.547 3.806 15.593 8.14 0.98 11.36 12.392 W28 1.25 1.675 3.857 16.964 8.10 0.97 11.24 13.477 W28 8.07 1.09 1.50 1.820 3.940 18.528 11.08 14.713 W28 1.75 1.901 4.212 19.257 8.05 1.38 10.90 15.274 W28 2.00 1.993 4.581 20.054 8.03 1.65 10.58 15.880 W28 2.25 2.076 4.616 20.952 8.02 1.73 10.44 16.588 W28 1.61 2.50 2.106 4.370 21.436 8.01 10.60 16.989 W28 4.189 1.39 2.75 2.131 21.834 8.00 10.78 17.317 W28 3.00 2.203 3.859 7.98 1.17 10.92 22.872 18.164 W28 3.25 2.276 3.492 23.968 7.97 1.03 11.19 19.059 W28 3.50 3.392 7.96 0.92 11.38 2.311 24.454 19.452 W28 3.75 2.322 7.95 0.91 3.246 24.687 11.31 19.647 W28 4.00 2.328 3.082 24.879 7.95 0.89 11.32 19.810 W28 4.25 2.347 3.090 25.099 7.95 0.94 11.24 19.985 W28 4.50 2.362 3.102 7.94 1.06 25.263 11.11 20.115

Willow Marine Monitoring Program - 2018 Hydrographic Data

25.521

7.94

1.18

11.01

20.324

3.051

W28

4.75

2.380

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
W28	5.00	2.400	2.921	25.855	7.93	1.35	11.02	20.599
W28	5.25	2.405	2.818	25.992	7.93	1.57	11.04	20.714
W28	5.50	2.404	2.772	26.029	7.93	1.81	10.95	20.746
W29	0.50	1.633	3.945	16.461	8.12	0.92	11.25	13.074
W29	0.75	1.639	3.962	16.518	8.12	0.83	11.29	13.118
W29	1.00	1.673	4.047	16.847	8.11	0.86	11.24	13.375
W29	1.25	1.753	4.234	17.626	8.09	0.89	11.08	13.981
W29	1.50	1.911	4.436	19.242	8.05	1.17	10.76	15.248
W29	1.75	2.002	4.298	20.330	8.03	1.27	10.83	16.118
W29	2.00	2.051	4.504	20.740	8.02	1.19	10.83	16.429
W29	2.25	2.089	4.726	21.016	8.01	1.37	10.64	16.631
W29	2.50	2.102	4.731	21.157	8.01	1.59	10.64	16.742
W29	2.75	2.113	4.673	21.321	8.01	1.75	10.69	16.876
W29	3.00	2.150	4.503	21.838	8.00	1.94	10.65	17.298
W29	3.25	2.208	4.241	22.658	7.99	2.16	10.60	17.966
W29	3.50	2.246	3.930	23.314	7.98	2.21	10.64	18.510
W29	3.75	2.266	3.730	23.679	7.97	2.27	10.74	18.813
W29	4.00	2.279	3.656	23.888	7.96	2.13	10.73	18.984
W30	0.50	1.837	5.877	17.654	8.05	3.68	10.19	13.888
W30	0.75	1.838	5.871	17.663	8.05	3.68	10.21	13.896
W30	1.00	1.839	5.866	17.676	8.06	3.60	10.21	13.906
W30	1.25	1.839	5.864	17.685	8.06	3.58	10.21	13.913
W30	1.50	1.840	5.859	17.699	8.06	3.53	10.20	13.925
W30	1.75	1.842	5.854	17.715	8.06	3.50	10.21	13.938
W30	2.00	1.843	5.848	17.734	8.06	3.43	10.20	13.953
W30	2.25	1.846	5.839	17.762	8.06	3.40	10.20	13.976
W30	2.50	1.850	5.823	17.814	8.06	3.44	10.21	14.018
W30	2.75	1.856	5.797	17.889	8.05	3.50	10.22	14.080
W31	0.50	1.633	6.239	15.369	8.07	15.85	10.24	12.061
W31	0.75	1.642	6.225	15.467	8.07	15.68	10.20	12.139
W31	1.00	1.662	6.195	15.682	8.06	15.71	10.19	12.311
W31	1.25	1.712	6.126	16.228	8.05	14.95	10.21	12.746
W31	1.50	1.777	6.045	16.942	8.04	13.47	10.23	13.314
W32	0.50	1.725	6.223	16.319	8.07	5.23	10.20	12.809
W32	0.75	1.727	6.214	16.339	8.07	5.48	10.22	12.825
W32	1.00	1.730	6.194	16.387	8.07	5.64	10.23	12.865
W32	1.25	1.741	6.146	16.517	8.07	5.76	10.20	12.971
W32	1.50	1.758	6.073	16.732	8.07	5.83	10.20	13.147
W32	1.75	1.769	6.030	16.866	8.07	6.14	10.24	13.256
W33	0.50	1.893	5.819	18.274	8.07	3.20	10.16	14.381
W33	0.75	1.907	5.778	18.440	8.06	3.15	10.22	14.515
VV33	1.00	1.927	5./12	18.695	8.06	3.25	10.23	14.721
W33	1.25	1.983	5.534	19.385	8.05	3.32	10.26	15.279
W33	1.50	2.079	5.230	20.602	8.03	3.38	10.33	16.265
VV33	1.75	2.205	4.794	22.257	7.99	3.71	10.44	17.607
VV33	2.00	2.379	4.167	∠4.048 25.247	7.96	4.55	10.60	19.549
VV 33	2.25	2.430	4.015	25.347	7.95	0.43	10.59	20.110

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
W34	0.50	1.847	5.190	18.124	8.06	2.00	10.56	14.311
W34	0.75	1.868	5.288	18.295	8.06	2.13	10.53	14.439
W34	1.00	1.877	5.305	18.381	8.06	2.17	10.51	14.506
W34	1.25	1.887	5.311	18.481	8.05	2.18	10.51	14.584
W34	1.50	1.902	5.340	18.625	8.05	2.19	10.48	14.695
W34	1.75	1.917	5.389	18.758	8.05	2.22	10.44	14.797
W34	2.00	1.925	5.413	18.837	8.05	2.24	10.38	14.857
W34	2.25	1.929	5.411	18.874	8.05	2.27	10.37	14.887
W34	2.50	1.933	5.405	18.923	8.05	2.31	10.38	14.926
W34	2.75	1.937	5.381	18.984	8.04	2.36	10.38	14.976
W34	3.00	1.953	5.301	19.198	8.04	2.34	10.37	15.151
W34	3.25	1.992	5.156	19.704	8.02	2.28	10.38	15.561
W34	3.50	2.045	4.970	20.392	8.01	2.20	10.43	16.119
W34	3.75	2.129	4.682	21.489	8.00	2.17	10.52	17.008
W34	4.00	2.190	4.347	22.393	7.99	2.12	10.68	17.749
W35	0.50	1.514	3.847	15.212	8.17	1.17	11.38	12.088
W35	0.75	1.524	3.840	15.316	8.17	0.86	11.41	12.171
W35	1.00	1.524	3.835	15.321	8.17	0.84	11.42	12.175
W35	1.25	1.529	3.837	15.379	8.17	0.88	11.40	12.221
W35	1.50	1.556	3.846	15.670	8.17	0.91	11.37	12.451
W35	1.75	1.622	3.854	16.388	8.14	0.98	11.33	13.021
W35	2.00	1.739	3.894	17.658	8.11	1.08	11.25	14.026
W35	2.25	1.891	4.330	19.084	8.07	1.28	10.97	15.129
W35	2.50	2.106	4.792	21.164	8.03	1.56	10.54	16.743
W35	2.75	2.179	4.506	22.162	8.02	1.72	10.49	17.554
W35	3.00	2.225	4.146	22.918	8.01	1.82	10.69	18.179
W35	3.25	2.258	3.818	23.532	8.00	1.78	10.74	18.690
W35	3.50	2.308	3.449	24.375	7.99	1.46	10.88	19.385
W35	3.75	2.330	3.210	24.811	7.98	1.25	11.19	19.748
W35	4.00	2.344	3.161	25.006	7.98	1.08	11.31	19.907
W35	4.25	2.354	3.188	25.107	7.97	0.99	11.32	19.985
W35	4.50	2.358	3.178	25.164	7.97	0.99	11.22	20.031
W35	4.75	2.363	3.095	25.285	7.97	1.08	11.22	20.133
W35	5.00	2.373	2.910	25.547	7.96	1.28	11.22	20.353
W35	5.25	2.381	2.678	25.821	7.96	1.58	11.16	20.587
W35	5.50	2.382	2.638	25.869	7.96	1.80	11.03	20.627
W36	0.50	1.255	3.422	12.579	-	1.22	11.57	10.014
W36	0.75	1.256	3.424	12.582	-	1.07	11.64	10.017
W36	1.00	1.259	3.429	12.617	-	1.04	11.64	10.044
W36	1.25	1.281	3.447	12.847	-	1.02	11.58	10.226
W36	1.50	1.466	3.556	14.817	-	0.99	11.39	11.787
W36	1.75	1.707	3.775	17.368	8.13	0.96	11.12	13.801
W36	2.00	1.913	3.988	19.532	8.07	0.86	10.91	15.506
W36	2.25	1.991	4.025	20.377	8.05	0.82	10.88	16.173
W36	2.50	2.050	3.932	21.098	8.04	0.87	10.95	16.751
W36	2.75	2.091	3.733	21.689	8.02	0.86	11.14	17.233
W36	3.00	2.136	3.361	22.454	8.01	0.76	11.34	17.864
W36	3.25	2.167	2.931	23.114	8.00	0.64	11.52	18.415
W36	3.50	2.185	2.667	23.516	8.00	0.65	11.66	18.750
W36	3.75	2.203	2.543	23.823	8.00	0.64	11.67	19.001
W36	4.00	2.217	2.448	24.057	7.99	0.63	11.64	19.193
W36	4.25	2.228	2.335	24.277	7.99	0.61	11.65	19.375
W36	4.50	2.237	2.226	24.464	7.99	0.60	11.65	19.530
W36	4.75	2.256	2.056	24.831	7.98	0.52	11.65	19.832

Station Depth (m) Cond (S/m) Temp (deg C) Salinity (psu) pН **OBS** (ntu) DO (mg/L) Sigma-t W36 7.98 0.49 5.00 2.276 1.950 25.149 11.64 20.091 W36 5.25 2.298 1.882 25.476 7.97 0.49 11.54 20.356 W36 5.50 2.330 1.867 25.873 7.96 0.54 11.33 20.674 W36 5.75 2.371 1.730 7.95 0.75 11.08 26.486 21.171 W36 6.00 2.430 1.007 27.851 7.94 1.21 11.24 22.300 1.49 W36 6.25 2.471 0.290 7.93 11.80 29.031 23.280 W36 6.50 2.482 -0.433 29.864 7.93 1.44 12.46 23.977 W36 6.75 2.489 -0.746 30.269 7.93 1.52 12.58 24.313 7.93 1.66 W36 7.00 2.489 -0.851 30.380 12.43 24.406 W36 7.25 -0.903 7.93 1.47 2.488 30.413 12.30 24.434 W36 7.50 2.488 -0.920 30.426 7.93 1.32 12.27 24.445 1.51 W37 0.50 9.816 7.823 0.990 3.165 -11.84 W37 0.75 1.125 3.168 1.30 11.73 8.981 11.271 -W37 1.22 1.00 1.526 3.196 15.653 11.37 12.466 _ W37 1.25 1.928 3.231 20.167 8.14 1.12 11.09 16.053 W37 1.50 2.176 3.247 22.994 8.06 0.92 11.00 18.301 W37 1.75 2.250 3.271 23.837 8.02 0.75 11.05 18.970 W37 2.00 2.292 8.00 0.62 11.07 3.192 24.382 19.408 W37 2.25 2.318 3.094 24.758 8.00 0.51 11.13 19.713 W37 7.99 0.45 2.50 2.347 2.935 25.216 11.25 20.088 W37 2.75 2.391 2.628 25.984 7.98 0.43 11.45 20.720 W37 3.00 2.426 2.226 26.742 7.98 0.36 11.78 21.349 W37 3.25 7.97 0.28 12.02 2.436 1.823 27.203 21.740 W37 3.50 2.440 7.97 0.24 1.681 27.375 12.03 21.886 W37 3.75 7.97 0.24 2.440 1.568 27.472 11.94 21.970 W37 4.00 2.436 1.233 27.724 7.96 0.24 11.98 22.188 W37 4.25 2.439 0.830 7.96 0.26 12.12 28.123 22.527 0.24 W37 4.50 2.457 0.523 28.623 7.96 12.21 22.942 W37 4.75 0.339 7.95 0.22 2.470 28.964 12.18 23.224 W37 5.00 2.484 0.079 29.401 7.94 0.16 12.16 23.586 W37 5.25 7.94 0.14 2.498 -0.079 29.736 12.22 23.862 W37 5.50 2.510 -0.232 30.039 7.93 0.14 12.30 24.112 W37 5.75 2.515 -0.471 30.340 7.93 0.17 12.46 24.362 W37 6.00 -0.699 30.593 7.93 0.19 12.69 2.517 24.574 W37 6.25 2.517 -0.875 30.780 7.93 0.21 12.84 24.731 W37 6.50 2.519 -1.006 7.93 0.14 12.93 30.942 24.866 W37 0.15 6.75 2.521 -1.106 31.065 7.93 12.97 24.968 W37 7.00 2.522 -1.183 31.162 7.93 0.20 12.94 25.049 W37 7.92 7.25 2.522 -1.221 31.206 0.32 12.88 25.085 W37 7.50 2.523 -1.251 31.241 7.92 0.38 12.84 25.114 W37 7.75 2.523 -1.280 31.271 7.92 0.42 12.83 25.139 W37 7.92 0.42 8.00 2.523 -1.30531.302 12.80 25.165 W37 8.25 2.523 -1.321 31.322 7.92 0.45 12.74 25.181 W37 0.46 8.50 2.524 -1.332 31.338 7.92 12.70 25.195 W37 8.75 2.524 -1.337 31.350 7.92 0.50 12.66 25.205 W37 9.00 -1.342 7.92 2.524 31.359 0.57 12.63 25.212 W37 9.25 -1.348 7.92 0.62 2.524 31.367 12.62 25.218 W37 9.50 2.524 -1.360 31.377 7.92 0.65 12.62 25.227 W37 9.75 2.524 -1.381 31.399 7.91 0.65 12.64 25.245 7.91 W37 10.00 2.525 -1.401 31.424 0.58 12.68 25.266 31.436 W37 10.25 2.525 -1.412 7.91 0.53 12.72 25.276 W37 10.50 2.525 -1.414 31.438 7.91 0.49 12.73 25.278 W37 10.75 2.525 -1.409 31.438 7.91 0.46 12.74 25.277 W37 11.00 2.526 -1.401 31.439 7.91 0.47 12.75 25.278 W37 -1.398 11.25 2.526 31.440 7.91 0.48 12.76 25.279

Station Depth (m) Cond (S/m) Temp (deg C) Salinity (psu) pН **OBS** (ntu) DO (mg/L) Sigma-t W38 0.50 1.26 11.52 1.377 3.249 13.976 _ 11.130 W38 0.75 1.693 3.182 8.15 1.10 11.34 13.958 17.529 W38 1.00 2.029 3.042 21.438 8.07 0.97 11.21 17.074 W38 1.25 2.091 8.05 0.82 11.31 17.700 2.945 22.217 W38 1.50 2.540 8.05 0.63 11.47 2.131 22.970 18.321 W38 1.75 2.101 8.04 0.56 11.66 2.162 23.669 18.900 W38 2.00 2.193 1.701 24.346 8.03 0.53 11.77 19.460 W38 2.25 2.207 1.593 24.590 8.03 0.48 11.75 19.660 0.44 W38 2.50 2.225 1.517 24.874 8.02 11.63 19.891 W38 0.40 2.75 2.248 1.484 25.185 8.01 11.58 20.142 W38 3.00 2.276 1.603 25.430 8.00 0.40 11.55 20.333 W38 3.25 7.99 0.38 2.312 1.787 25.723 11.54 20.558 W38 3.50 2.329 1.522 7.99 0.31 26.143 11.77 20.907 W38 3.75 7.98 0.23 2.319 1.079 26.398 12.08 21.131 W38 4.00 2.342 0.793 26.929 7.98 0.21 12.20 21.569 W38 4.25 2.388 0.831 7.97 0.22 12.07 22.001 27.469 W38 4.50 0.968 27.897 7.97 0.29 11.85 22.340 2.431 W38 4.75 2.457 7.96 0.34 0.932 28.247 11.74 22.622 W38 5.00 2.483 0.816 28.688 7.96 0.27 11.76 22.981 W38 7.96 0.23 5.25 2.489 0.607 28.957 11.84 23.207 23.410 W38 5.50 2.495 0.432 29.200 7.96 0.21 11.90 W38 0.21 5.75 2.507 0.348 29.437 7.95 11.88 23.604 W38 6.00 7.95 0.20 2.508 0.056 29.727 11.99 23.849 W38 7.95 0.18 6.25 2.510 -0.224 30.027 12.21 24.102 W38 7.95 0.20 6.50 2.512 -0.403 30.227 12.37 24.269 W38 6.75 2.515 -0.678 30.553 7.95 0.23 12.55 24.541 W38 7.00 2.516 -0.810 30.702 7.94 0.23 12.68 24.666 W38 7.25 -0.944 30.861 7.94 0.31 12.72 2.518 24.798 W38 -1.039 7.94 0.32 12.73 7.50 2.520 30.980 24.897 W38 7.75 2.520 -1.06831.020 7.94 0.39 12.71 24.930 7.93 0.49 W38 8.00 2.521 -1.094 31.060 12.66 24.963 W38 8.25 2.523 -1.119 31.102 7.93 0.66 12.62 24.998 W38 8.50 2.523 -1.139 31.128 7.93 0.86 12.59 25.020 W38 8.75 2.523 7.93 1.00 12.53 -1.145 31.136 25.026 W38 9.00 2.524 -1.141 31.139 7.93 1.17 12.49 25.029 W38 9.25 2.524 -1.140 31.141 7.93 1.31 12.47 25.030 W38 1.40 9.50 2.523 -1.147 31.138 7.93 12.48 25.028 W39 0.50 1.476 3.382 15.018 4.87 11.43 11.954 -W39 1.51 0.75 1.761 3.209 18.282 11.36 14.556 W39 1.00 1.988 3.021 20.983 8.14 0.97 11.29 16.713 W39 1.25 2.066 2.913 21.953 8.09 0.80 11.30 17.491 W39 0.71 1.50 2.086 2.856 22.230 8.06 11.29 17.715 W39 1.75 2.122 2.807 22.674 8.04 0.67 11.25 18.071 W39 2.00 2.140 2.846 22.865 8.04 0.65 11.22 18.221 W39 2.25 2.169 2.802 23.235 8.03 0.61 11.20 18.518 W39 2.50 2.203 2.696 23.707 8.02 0.59 11.21 18.900 W39 8.02 0.62 2.75 2.216 2.615 23.917 11.30 19.072 W39 3.00 2.240 2.393 24.373 8.01 0.65 11.42 19.448 W39 3.25 2.253 2.307 24.597 8.01 0.64 11.50 19.631 W39 3.50 2.265 8.00 0.65 11.58 2.243 24.791 19.790 W39 3.75 8.00 0.64 2.286 2.089 25.156 11.59 20.089 W39 4.00 2.294 1.987 25.338 8.00 0.66 11.61 20.240 W39 4.25 2.309 1.873 25.614 7.99 0.65 11.59 20.467 W39 4.50 1.829 7.99 0.74 11.52 2.316 25.737 20.567 W39 4.75 2.323 1.781 25.857 7.99 0.79 11.46 20.665

Station	Depth (m)	Cond (S/m)	Temp (deg C)	Salinity (psu)	рН	OBS (ntu)	DO (mg/L)	Sigma-t
W39	5.00	2.327	1.747	25.939	7.99	0.81	11.44	20.733
W39	5.25	2.335	1.645	26.111	7.99	0.82	11.41	20.876
W39	5.50	2.347	1.635	26.274	7.99	0.84	11.37	21.007
W39	5.75	2.386	1.689	26.705	7.98	0.80	11.29	21.349
W39	6.00	2.415	1.585	27.149	7.98	0.69	11.34	21.710
W39	6.25	2.419	1.040	27.678	7.98	0.71	11.60	22.160
W39	6.50	2.432	0.547	28.285	7.97	0.80	11.75	22.669
W39	6.75	2.469	0.242	29.040	7.96	0.82	11.72	23.288
W39	7.00	2.489	0.048	29.489	7.96	0.71	11.91	23.658
W39	7.25	2.490	-0.270	29.815	7.95	0.69	12.19	23.932
W40	0.50	1.597	3.755	16.161	8.13	1.08	11.33	12.845
W40	0.75	1.606	3.746	16.259	8.14	0.86	11.38	12.924
W40	1.00	1.604	3.738	16.245	8.14	0.82	11.40	12.913
W40	1.25	1.617	3.721	16.393	8.14	0.78	11.39	13.031
W40	1.50	1.669	3.738	16.959	8.12	0.75	11.31	13.480
W40	1.75	1.776	3.813	18.104	8.09	0.69	11.17	14.384
W40	2.00	2.031	3.844	20.934	8.03	0.59	11.06	16.627
W40	2.25	2.092	3.844	21.628	8.02	0.52	11.20	17.178
W40	2.50	2.106	3.845	21.785	8.02	0.49	11.25	17.302
W40	2.75	2.111	3.773	21.882	8.02	0.51	11.28	17.384
W40	3.00	2.118	3.716	22.000	8.02	0.47	11.31	17.481
W40	3.25	2.116	3.634	22.042	8.02	0.46	11.31	17.519
W40	3.50	2.113	3.560	22.051	8.02	0.48	11.33	17.532
W40	3.75	2.114	3.502	22.106	8.02	0.51	11.30	17.579
W40	4.00	2.117	3.475	22.153	8.02	0.48	11.28	17.618
W40	4.25	2.118	3.473	22.169	8.02	0.42	11.26	17.631
W40	4.50	2.135	3.508	22.338	8.01	0.48	11.27	17.763
W40	4.75	2.158	3.506	22.605	8.01	0.47	11.27	17.975
W40	5.00	2.245	3.275	23.766	7.99	0.51	11.31	18.913
W40	5.25	2.284	3.155	24.312	7.98	0.61	11.29	19.355
W41	0.50	1.738	3.958	17.607	8.08	1.62	11.18	13.982
W41	0.75	1 738	3 954	17 608	8.08	0.87	11 23	13.982
W41	1.00	1.738	3.954	17.609	8.08	0.77	11.24	13.984
W41	1 25	1 738	3 954	17 609	8.08	0.82	11 25	13 984
W41	1.50	1.738	3.955	17.610	8.09	0.79	11.20	13.984
W41	1.75	1.739	3.954	17.621	8.09	0.77	11.19	13,993
W41	2 00	1 744	3 946	17 685	8.08	0.76	11 20	14 044
W41	2.25	1.779	3.940	18.066	8.08	0.84	11.16	14.347
W41	2 50	1 856	3,961	18 912	8.05	0.95	11 10	15 016
W41	2 75	1 984	3 974	20.329	8.03	1.02	11.06	16 139
W41	3.00	2.012	3.918	20.676	8.02	1.03	11.16	16.418
W41	3 25	2 020	3 877	20 790	8.02	1.06	11 23	16.511
W42	0.50	2 194	5 042	21.969	8.03	2.97	10.46	17 359
W42	0.75	2.194	5.042	21.968	8.03	2.97	10.48	17.359
W42	1 00	2 194	5 043	21.968	8.03	3.04	10 49	17 358
W42	1 25	2 1 9 4	5 044	21.969	8.03	3.02	10.50	17 359
W42	1.50	2 194	5 044	21.968	8.03	3 14	10.00	17 358
W43	0.50	2 042	5 556	20.005	8 04	5 34	10.32	15 767
W43	0.75	2.042	5.556	20.006	8.04	5.56	10.37	15.768
W43	1.00	2.042	5.556	20.005	8.04	5.71	10.35	15,766
W43	1 25	2.042	5.556	20.003	8.04	5.81	10.37	15,765

Willow Marine Monitoring Program - 2018 Hydrographic Data, W8.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W9.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W10.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W11.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W12.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W13.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W14.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W16.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W17.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W18.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W19.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W20.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W21.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W22.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W22b.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W22c.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W24.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W25.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W26.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W27.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W29.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W31.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W32.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W34.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W36.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W37.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W40.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W41.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W42.cnv

Willow Marine Monitoring Program - 2018 Hydrographic Data, W43.cnv

Appendix E

Willow Marine Monitoring Program QA/QC Evaluation

November 2018

(This Page Left Intentionally Blank)

TABLE OF CONTENTS

1.0	Intro	oduction	n 5				
2.0	QA/	QC Met	thods				
	2.1	Precis	ion5				
	2.2	Accur	acy				
	2.3	Repre	sentativeness, Comparability, and Completeness				
	2.4	Valida	ation7				
	2.5	Data (Qualifier Codes				
3.0	QA/	QC Res	ults				
	3.1	Sedim	ent Quality Control Records				
		3.1.1	Completeness and Holding Times				
		3.1.2	Reporting Limits				
		3.1.3	Field Duplicates				
		3.1.4	Method Blanks				
		3.1.5	Laboratory Duplicates				
		3.1.6	Laboratory Control Samples10				
		3.1.7	Matrix Spikes11				
		3.1.8	Standard Reference Material11				
		3.1.9	Surrogates11				
	3.2	3.2 Hydrographic and Water Quality Control Records1					
		3.2.1	Completeness and Holding Times				
		3.2.2	Reporting Limits				
		3.2.3	Field Duplicates				
		3.2.4	Method Blanks				
		3.2.5	Laboratory Duplicates				
		3.2.6	Laboratory Control Samples				
		3.2.7	Hydrographic Variability Check12				
	3.3	Benth	ic Infauna Laboratory13				
4.0	QA/QC Conclusions						
5.0	REI	FEREN	CES 13				

LIST OF TABLES

Page No.

Table E-1.	Summary of QC Performed on Sediment and Water Chemistry Samples.	5
Table E-2.	Counts of QC Records per Analytical Category	8
Table E-3.	Field Duplicate Results for Sediment Samples with RPD > 50%	9
Table E-4.	Sediment Method Blank QC Review Detail	0

1.0 INTRODUCTION

Field sampling and analyses conducted for the Willow MMP were performed in accordance with formal quality assurance/quality control (QA/QC) procedures. The objectives of the QA/QC program were to fully document the field and laboratory data collected, to maintain data integrity from the time of field collection to storage at the end of the project, and to produce the highest quality data possible. The program was designed to allow the data to be assessed by the following parameters: Precision, Accuracy, Comparability, Representativeness, and Completeness. These parameters were controlled by adhering to documented methods and standard operating procedures (SOPs) and by the analysis of quality control (QC) samples on a routine basis.

Field QC included the analysis of field duplicate samples, adherence to SOPs, and formal sample documentation and tracking. Analytical chemistry methodology and QC procedures were formalized by EPA and State certification agencies and involve internal QC checks such as method blanks, laboratory control spike/laboratory control spike duplicates (LCS/LCSDs), matrix spike/spike duplicates (MS/MSDs), standard reference material (SRMs), laboratory duplicates (DUPs) or triplicates (TRP), surrogates (SURR), and instrument calibration procedures.

All analytical data collected for this testing program underwent QA/QC evaluation according to EPA National Functional Guidelines for inorganic and organic data review (EPA 2017a and 2017b). A summary of QC analyses that were performed for each type of analyses is provided in Table E-1.

Analyte	Blanks	Lab DUP	LCS	MS/MSD	SRM	Surrogates		
Sediments								
% Solids	-	\checkmark	-	-	-	-		
ТОС	\checkmark	\checkmark	\checkmark	\checkmark	-	-		
TVS	✓	\checkmark	-	-	-	-		
Grain Size	-	\checkmark	-	-	-	-		
Total Metals	✓	\checkmark	\checkmark	\checkmark	✓	-		
PAHs	✓	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark		
AHCs	✓	\checkmark	\checkmark	\checkmark	✓	~		
Steranes/Triterpanes	✓	\checkmark	✓	\checkmark	✓	~		
Water								
Total Suspended Solids	✓	-	✓	-	-	-		
Turbidity	✓	\checkmark	-	-	✓	—		

 Table E-1.
 Summary of QC Performed on Sediment and Water Chemistry Samples.

2.0 QA/QC METHODS

The overall quality of the dataset was determined to a large degree by the thoroughness, accuracy, and precision of the laboratory QC records. The QC is discussed individually by topic in this evaluation.

2.1 PRECISION

Precision provides an assessment of mutual agreement between repeated measurements. These measures may apply to DUPs, MSDs, and LCSDs. Monitoring of precision through the process allows for the evaluation of the consistency of laboratory analyses.

The Relative Percent Difference (RPD) is used to evaluate duplicative sample results. The RPD is the difference between the two samples divided by their average expressed as percent and is calculated as:

$$RPD = 100 * \left(\frac{|x_1 - x_2|}{\frac{1}{2}(x_1 + x_2)} \right)$$
 where:

$$x_1 = \text{Concentration of sample 1}$$

$$x_2 = \text{Concentration of sample 2}$$

RPDs can be large when analyzing differences between small numbers, a situation that is common when analyzing DUPs with values near the method reporting limit (MRL) or in sediment matrices where the sample is heterogeneous. When one or both concentrations are less than five times the MRL, replication is assessed by determining if the two values differ by more than one times the MRL. When one or both values are less than the MRL, precision cannot be ascertained.

2.2 ACCURACY

An assessment of the accuracy of measurements is based on determining the difference between measured values and the known or "true" value and is applied to MS/MSDs, LCS/LCSDs, and SRMs.

In general, Percent Recovery is calculated as:

$$\% R = 100 * \left(\frac{Measured Value}{True Value} \right)$$

Matrix Spike recoveries take into account the concentration of the source sample:

$$\% R_{MS} = 100 * \left(\frac{Measured Value - Sample Value}{True Value} \right)$$

2.3 REPRESENTATIVENESS, COMPARABILITY, AND COMPLETENESS

Representativeness is the degree to which data accurately and precisely represent the natural environment. The objective for representativeness for this program is a function of the initial study design and overall program objectives as described by the SAP. Representativeness was achieved in part through use of the standard sampling and analytical procedures described in this report, the SAP, and associated SOPs.

Comparability is the measure of confidence with which one dataset can be compared to another. The use of standardized methods of chemical analysis and field sampling and processing are ways of assuring comparability. The implementation of thorough QA/QC methods such as laboratory QC is essential.

Completeness is a measure of the percentage of the data judged valid after comparison with specific validation criteria. This includes data lost through accidental breakage of sample containers or other activities that result in irreparable loss of samples. Implementation of standardized chain of custody procedures which track samples as they are transferred between custodians is one method of maintaining a high level of completeness.

A high level of completeness is essential to all phases of this study due to the limited number of samples targeted for collection. Of course, the overall goal is to obtain completeness of 100 percent. However, a

realistic data quality objective of 95% for both field and collection analytical data will insure an adequate level of data return.

Close adherence to SOPs assures that the resulting data is representative, complete, and comparable. The results are further assessed with a thorough validation process.

2.4 VALIDATION

Data validation was performed in accordance with the National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA 540-R-2017-001, January 2017) and Organic Review (EPA 540-R-2017-002, January 2017). All laboratory and field data generated under the program were reviewed for accuracy, precision, and completeness. The review included:

- Data package completeness
- Chain of custody information and integrity
- Use of specified analytical methods
- Holding times for extraction and analysis
- Blanking results relative to the MRLs and sample concentrations
- Field duplicate frequency and precision
- Laboratory duplicates, frequency and precision
- Laboratory Control Sample frequency, compounds and recoveries
- Surrogate standard frequency, compounds and recoveries
- Matrix spike frequency, compounds and recoveries
- Matrix spike duplicate frequency and relative percent differences
- MRLs and dilution factors

2.5 DATA QUALIFIER CODES

Where appropriate, data qualifiers were associated with the results using the following standard notations from the EPA guidance documents:

	Appropriate Data Review Qualifiers				
	Not detected above the MDL or MRL.				
<	The compound was analyzed for but was not detected above method MDL or MRL. The associated value is the sample MDL or MRL.				
	Estimated Non-detect.				
UJ	The compound result was raised to the MRL due to a method blank hit.				
	Estimated Value.				
J-	The associated value is a low estimate.				
J	Estimated Value.				
	The associate value is an estimated quantity.				
J+	Estimated Value.				
	The associated value is a high estimate.				
R	Rejected.				
	The data are unusable. The analyte may or may not be present.				

EPA guidance documents are clear that data review and qualification rules are to be tempered using best professional judgment. The specific data qualifications as they apply to this program are discussed in the following section.

3.0 QA/QC RESULTS

This project generated a final count of 1,236 analytical results for target analytes including field duplicate results, of which 1,139 were for sediment and 97 were for water matrices. An additional 882 supporting QC records were derived alongside, and the counts of each type per chemical category can be found in Table E-2.

Generally, the laboratory QC was found to be very good and within limits with the exceptions fully noted below. Two sediment sample analyses were found to require additional qualification. No additional water sample results were further qualified as a result of this QC review. The details of the entire review follow with the sediment and water records discussed separately.

Analyte Group	Blank	Lab DUP	LCS/Blank Spike	MS/MSD	SRM	Surrogate	Total		
Sediment									
% Solids		8					8		
TOC	1	1	1	2			5		
TVS	1	2					3		
PGS		14					14		
Metals	15	15	14	15	15		74		
PAHs	67	70	27	60	138	70	432		
AHCs	41	45	35	74	39	39	273		
Steranes/Triterpanes	10	10	1		20		41		
Sediment Total	135	165	78	151	212	109	850		
Water									
TSS	8		5				13		
Turbidity	2	15			2		19		
Water Totals	10	15	5		2		32		

 Table E-2.
 Counts of QC Records per Analytical Category

3.1 SEDIMENT QUALITY CONTROL RECORDS

Quality control results for the sediment composite samples are discussed in subsections that follow.

3.1.1 Completeness and Holding Times

All sediment environmental samples and associated QC samples (i.e., field duplicates) were collected as required, resulting in a field completeness value of 100%. With the exception of one sediment sample, all samples were received intact under proper chain of custody procedures at the analytical laboratory within the proper temperature ranges and were analyzed within acceptable EPA holding times. One sediment sample arrived at the laboratory with a cracked jar, but since the sample was frozen and intact, it was deemed acceptable for analysis after discussions between the KLI and the laboratory. In addition, no laboratory data were deemed invalid or were rejected during the data validation process; the analytical completeness was therefore assessed at 100%.

3.1.2 Reporting Limits

Sediment method MRLs and method detection limits (MDLs) were compared to target limits as specified in the program SAP and detailed earlier in this report. All MDLs and MRLs target limits were achieved with no dilutions or matrix interferences that resulted in adjustments to MDLs. For sediments,

low percent solids results can sometimes cause MDLs to be elevated once results are dry-weight adjusted; however, the laboratories performing the analyses for this program provided MDLs on a dry weight basis, so this issue was not encountered.

3.1.3 Field Duplicates

Field duplicate results are summarized in Table E-3. Strict criteria are not established for the evaluation of field duplicates since sediment samples by their nature are often very heterogeneous. Rather, sample/field duplicate results are evaluated based upon best professional judgment. RPDs in Table E-3 are highlighted in yellow when greater than 50% and red when greater than 100%; any samples falling outside these values were given closer scrutiny.

Sample ID	Analyte	Sample	Field Dup	RPD	Diff	MRL
HB18-PAM-S3-1	i-C15	0.018	0.059	106	0.041	0.016
HB18-PAM-S3-1	i-C18	0.021	ND	200	0.021	0.004
HB18-PAM-S3-1	n-C13	0.04 J	0.067	50	0.027	0.045
HB18-PAM-S3-1	Dibenzo(a,h)anthracene	0.482	0.225	73	0.257	0.064
HB18-PGS-S3-1	Clay, 3.9 um	0.58	0.32	58	0.26	0.01
HB18-PGS-S3-1	Gravel, Fine	0.03	0.01	100	0.02	0.01
HB18-PGS-S3-1	Sand, Very Coarse	0.08	0.03	91	0.05	0.01
Shading Description Yellow: 50 < RPD < 100%			Red: RPD > 100%			

Table E-3.Field Duplicate Results for Sediment Samples with RPD > 50%

As a general rule, KLI considers values to be of concern if they exceed 50% provided both values are greater than five times the MRL. In cases where one or both values are less than five times the MRL, those values are considered to be of potential concern if the difference between the two values is greater than twice the MRL. The excursions from these guidelines are discussed below.

Of the 169 field duplicate analyses performed for the program, 5 were above 50% RPD QC limit, and an additional 2 samples showed RPDs greater than 100%. Two of those (n-C₁₃ and Gravel-fine) occurred where both concentrations were < 5xMRL and where the difference between the values was < 2xMRL, so these were dismissed. The two other grain size analyses were also dismissed and were the result of slight natural differences between fractions as the overall difference in the distribution of sand, silt, clay, and % fines was less 20% RPD. The overall differences for the two AHC analyses, i-C₁₅ and iC₁₈, were small and near the MRL, so the higher RPDs could just be the result of slight differences in the amount of organic material or peat between the field sample and duplicate. The last analyte, dibenzo(a,h)anthracene, was found at concentrations where the duplicate was < 5xMRL but where the field sample was > 5xMRL with an RPD of 73. This analyte is considered a pyrogenic PAH, but since its overall contribution to TPAH was ~ 0.1%, this deviation was considered minor and well within the natural range expected for heterogeneous sediments.

As a result of these considerations, no final qualifications were made to the field duplicates, and so all results were forwarded without qualifiers, although the results do indicate that some sediment samples have a higher degree of variability due to differences in grain size distribution and TOC content.

3.1.4 Method Blanks

Method blanks were prepared and run alongside all sediment samples. All blanks were evaluated down to the MDL with three constituents being found above the MDL and none recorded above the MRL.

If the method blank result is below the MRL, all sample results estimated between the MDL and MRL and that are less than five times the blank hit are reported as non-detect at the MRL level and flagged with "UJ." If the method blank is below the MRL and the sample results are above the MRL but below five times the blank hit, results are flagged with a "J+" to indicate that they have a potential high bias. Dry weight results were compared to the method blank hit to allow for easy comparison with the laboratory data and therefore may contain a slight bias due to the dry weight conversion.

There were a total of 3 analytes (iron, silver, and phenanthrene) with method blank hits in the sediment results. Iron and phenanthrene results did not require any additional qualification of the data as they were < 2xMDL (metals) and < 3xMDL (hydrocarbons) with all sample values being greater than ten times the blank concentration. Two results for silver were qualified with a J+ indicating the sample has the potential to be biased high since the analysis result was above the MRL and less than five times the value seen in the blank. A summary of the method blank results are summarized in Table E-4 below.

Sediment Analyte	Report No.	Reported Blank Result	MDL	Qualifier	No. of Qualified Samples
Iron	18-3808-TM	0.258	0.246		0
Silver	18-3808-TM	0.0171	0.00986	J+	2
Phenanthrene	K1508007	0.072 J	0.208		0

 Table E-4.
 Sediment Method Blank QC Review Detail

3.1.5 Laboratory Duplicates

Laboratory duplicates provide a manner of assessing laboratory precision. Because the field-collected samples are split in the laboratory and then analyzed, it is measure of both laboratory precision and the sample homogeneity. When the RPD between the sample and duplicate value is above the QC objective of <30%, it is flagged for further review. Small values below the MRL can lead to large RPDs. If the differences between these values are small (less than the MRL), they are not of concern. All other cases with elevated RPDs are subjected to extended review.

One aliphatic hydrocarbon (i- C_{18}) laboratory duplicate associated with the field samples had an RPD above the laboratory's QC limit of 30%, thereby requiring review. This resulted from trace levels seen in the duplicate and an ND in the sample, leading to a high RPD. Since no other AHC analytes exceeded QC criteria and since the overall concentration of the analyte was < 0.8% of total AHCs, no further action was deemed necessary. For metals, selenium also exceeded the QC limit of 30% with an RPD of 73; however, since both the sample and laboratory duplicate were < 3xMDL, no further action was warranted. All other laboratory duplicate analyses met QC criteria.

3.1.6 Laboratory Control Samples

Laboratory Control Spikes, including blank spikes and their duplicates (LCS/LCSD), are solutions of known compounds and selected concentrations in clean laboratory water. Precision and accuracy are evaluated in a similar fashion as MS/MSDs with the exception that there is no source sample to subtract and no matrix interference issues.

All sediment LCS/LCSD samples for this program were recovered within acceptance range criteria with the exception of 1-Methylphenanthrene which had a high recovery in a blank spike. Note, this analyte was included in the hydrocarbon analyses but was not on the program's target analyte list as a pollutant of interest; therefore, no further action was taken.

3.1.7 Matrix Spikes

Matrix Spike and Matrix Spike Duplicate (MS/MSD) percent recoveries were evaluated to determine acceptable accuracy based on method-specific percent recoveries. Precision was evaluated by calculating the RPD of the MS/MSD recovery results. When spikes are reported below the accepted range, they indicate a low bias to the results and when reported above the accepted range, they indicate a high bias.

QA/QC guidelines indicate that no action needs to be taken on MS/MSD data alone. The data reviewer may use the MS/MSD results in conjunction with other QC criteria when determining the need for further qualification. Cases where the spike concentration is less than the source concentration are ignored as the recoveries cannot be calculated.

For this program, nearly all the MS/MSD results were acceptable. Six PAHs had recoveries that were outside of QC limits; however, in all cases, the spike concentrations were found to be low (< 50%) compared to native sediment concentrations. Since other QC sample analyses (blank, duplicate, LCS, and SRM data) were acceptable, no further qualification was necessary.

3.1.8 Standard Reference Material

Standard reference material (SRM) that was analyzed for the program included certified sediment SRMs and Gulf of Mexico reference crude oil. Sediment metals analyses utilized National Research Council of Canada's MESS-3 sediment SRM from the Beaufort Sea. Hydrocarbon analyses for PAHs utilized National Institute of Standards and Technology's (NIST) SRM 1944, a sediment SRM from the New Jersey/New York Waterway. In addition, a Gulf of Mexico crude oil SRM 2779 was run as a reference for both PAH and AHC analyses.

With the exception of i- C_{16} reference oil SRM, all sediment SRMs for both metals and hydrocarbons that were analyzed for this project were recovered within their certified acceptance ranges. The isoprenoid i- C_{16} recovered low with an RPD of 51. The laboratory indicated that this excursion did not affect the overall data quality as there were no other excursions for this analyte.

3.1.9 Surrogates

Surrogate analytes behave similarly to the target analytes. Surrogate spikes are introduced into organic samples (AHC and PAH) at specific concentrations and are used to provide a measure of instrument and method performance and to indicate sample-specific matrix effects. Based upon logic similar to that offered for matrix spikes, no action is required based on surrogate recoveries alone, but surrogate recoveries should be considered in context with other QC records.

All surrogates were recovered well within QC limits.

3.2 HYDROGRAPHIC AND WATER QUALITY CONTROL RECORDS

Quality control results for the background water samples are discussed in subsections that follow.

3.2.1 Completeness and Holding Times

All water samples and field duplicates for this project were collected as required. All samples were received intact and within proper temperature range. All samples were analyzed within EPA holding times. In addition, no data were rejected during the data validation process. One hundred percent completeness was achieved for water analyses for this program. For hydrographic data, 15 near surface pH values were rejected due to anomalously high readings; however, the overall usability of the hydrographic data was not affected.

3.2.2 Reporting Limits

Target MRLs were achieved for all water analyses.

3.2.3 Field Duplicates

No specific RPD limit was set in the SAP for field duplication. This measure is used more as an indication of field variability that may then be compared to laboratory variability that is determined by duplicate laboratory analyses. Four field duplicates were performed for TSS on the forty water samples with RPDs ranging from 9.5 to 30, which is within the typical acceptance range of \leq 30%. For turbidity, 13 field duplicate analyses were performed which exceeded the 10% number required. The duplicate RPDs for turbidity ranged from 0.0 to 23.2%, which is within the typical acceptance range of \leq 30%.

3.2.4 Method Blanks

Method blanks were prepared and run alongside all TSS samples. All eight TSS blanks were evaluated down to the MDL, and no blank concentration was reported above the MDL. Laboratory blanks for turbidity consisted of deionized water placed in a sample cuvette; all readings were 0.05 NTU which is considered the MDL as that is the minimum reading found for an air sample.

3.2.5 Laboratory Duplicates

A total of 15 laboratory duplicate samples were run for the turbidity analyses, and all were reported within the 20% acceptance range for RPDs with values ranging from 0.0 to 6.4%. Due to sample size, laboratory duplicates were not performed for TSS analysis.

3.2.6 Laboratory Control Samples

Three LCS and one LCS duplicate were run for TSS; all were reported to be within QC acceptance limits of 85-115%, and the LCS duplicate had an RPD of <1. Turbidity analyses included daily calibrations and periodic checks against three certified formazin standards. Following each calibration, turbidity was further checked against a secondary Gelex standard. All calibrations and field checks were found to be well within acceptance criteria.

3.2.7 Hydrographic Variability Check

Field variability checks of the SeaBird CTD electronic profiler were performed in the field by performing a triplicate profile of temperature, salinity, OBS, pH, and DO at one location. In addition, each profile of the CTD provides duplicate information (down cast versus up cast) for comparison. Results of these variability checks showed that probe variability was low with the coefficient of variation all less than 3% for temperature, salinity, pH, and DO, with the majority of differences being

less than 1%. The highest variability was seen in OBS turbidity measurements, where the coefficient of variation ranged from 2.5 to 9.3%, probably the result of the very low turbidities seen overall and the natural variability of the nearshore waters in terms of suspended solids in the water column.

Due to its high precision and accuracy, the SeaBird Electronics CTD requires factory calibration for most sensors. However, it is recommended by SeaBird that the pH sensor be calibrated immediately prior to any field effort and on an ongoing basis as pH sensors tend to have a high degree of drift. Calibration of the pH sensor was performed by KLI immediately prior to the field effort and checked both in the field and again after the survey. Following the completion of the survey, the CTD was sent to SeaBird's facility in Seattle, WA for post-survey calibration to further verify other sensor measurements. Post-survey calibrations indicated a <0.005% difference in conductivity (salinity), temperature, and pressure (depth) measurements; therefore, no post-survey calibration adjustments were made. The post-survey calibration of DO indicated that the sensor was reading approximately 2% high; therefore, the post-survey calibration coefficients were utilized in the processing of data that are presented in this report. Calibration checks were also made in the field against a secondary YSI multiprobe system and calibration standards (pH and conductivity). All final measurements were found to be within acceptance criteria, and no qualification of the data was necessary.

3.3 BENTHIC INFAUNA LABORATORY

All biological samples were collected as required, and all were received intact under proper chain of custody at the biological facilities. QC for benthic infauna included the resorting of a minimum of 30% by volume of each sample sorted by one individual; these samples were then resorted (i.e., again placed under a dissecting microscope to check for remaining organisms) by a different individual. Any samples showing more than 5% of the total number of organisms "missed" fail this sorting check (i.e., if less than 95% of the total number of organisms were removed from the sample during the first sort); these samples were then 100% resorted and again checked for missed organisms against the cumulative total using the 5% criteria. Six samples required 100% resort; no other anomalies were reported.

4.0 QA/QC CONCLUSIONS

A careful review of the program data confirmed that the laboratory and field analyses met most QA/QC requirements. A total of 2 sediment chemistry values were further qualified as part of the QA/QC process; no further qualifications were needed for the water sample analyses. This equated to 0.16% of the analytical data being re-qualified. All qualifications were due to low level method blank contamination in silver and the fact that silver concentrations in the sediment samples were low. Despite these minor QC issues, overall evaluation of the analytical QA/QC data indicates that the chemical data are within established performance criteria. No analytical data were rejected or considered unusable. For hydrographic data, 15 pH values were rejected that equated to 2% of all pH measurements; this did not affect the overall usability of the hydrographic data. One hundred percent of the data described in this report can be used for characterization of sediments and waters for the proposed project area.

5.0 REFERENCES

- EPA (U.S. Environmental Protection Agency). 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 540-R-2017-001. January 2017.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-2017-002. January 201