2019 Colville River Delta Spring Breakup Monitoring & Hydrological Assessment

Michael Baker International 3900 C Street Suite 900 Anchorage, AK 99503

MSA Contract No. 296937

EXECUTIVE SUMMARY

This report presents the observations and results from the 2019 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment conducted by Michael Baker International for ConocoPhillips Alaska. In the Colville River Delta, the breakup and downstream movement of river ice typically occurs during a three-week period in May and June. The spring breakup event historically produces flooding resulting from the rapid rise and fall of stage often attributed to ice jam formations and releases. Annual study and reporting of spring breakup is required by U.S. Army Corps of Engineers Permits 2-960874 Special Condition #6, POA-2004-253 Special Condition #17, and POA-2005-1576 Special Conditions #1 and #17 and Alaska Department of Fish and Game Permits FH04-III-0238, FG97-III-0260, FG99-III-0051, and FG97-III-0190. The analyses provide data to support design, permitting, and operation of oilfield development.

The 2019 monitoring and hydrological assessment is the 28th consecutive year of spring breakup investigations and the 33nd year of historical breakup monitoring in the Colville River Delta. Water surface elevations were monitored throughout the delta at locations of hydrologic importance, including near infrastructure. Discharge was measured, and peak discharge was calculated at key locations. The entire breakup event was documented with visual observations and photography from a helicopter and from roadways. Following breakup, roads, pads, and drainage structures were assessed for erosion and damage.

This year's spring breakup flood was characterized as a short-duration, low-magnitude event. Initial floodwater arrived in the delta on May 20 and reached the coast by May 21. On May 21, ice jams were observed approximately 7 and 13 river miles upstream of MON1. These jams released, progressed downstream through the MON1 reach and into the Colville East Channel on May 23. Ice jams and intact channel ice were flushed from the Colville East Channel on May 23. Ice jams and intact channel ice were flushed from the Colville East Channel by May 28. Overall, ice jamming effects in the CRD were minimal, as was associated backwater.

Peak conditions throughout the delta occurred between May 24 and May 26. Peak stage at MON1C occurred on May 24 and was 16.19-ft British Petroleum Mean Sea Level having an estimated recurrence interval of less than 2.0-years. Peak discharge at MON1C occurred on May 24 and was estimated at 305,000 cubic-ft per second having an estimated 3.5-year recurrence interval.

During peak conditions, floodwater in the delta was generally confined within channels, lakes, and swales and did not reach most infrastructure (roads/pads) in the delta. Measured pier scour at the CD5 bridges was minimal. Post-breakup visual inspections of all roads and pads found no evidence of erosion or damage.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Table of Contents

Exe	ecu	utive Summ	hary	i	
	on		previations	VIII	
Т.		Introductio	on - Okiastiwa	1	
	. 2	Monitoring			
•	1.2	Monitoring	Locations		
2.		Methods		/	
4	2.1	Observatio	ons		
4	2.2	Stage		8	
4	2.3	Discharge		10	
	2.4	POSI-Brear	Conditions Assessment	IZ	
	2.5		Scoul, Barik Erosion, & Balnymetry	IZ	
	2.0		Clossings Breakup	13	
	2.7		Flood Monitoring Network	13	
°,	2.0		age Frequency Analyses	10 17	
ۍ. ٬) 1		IIS imatic Summary	17	
2). I) າ		inialic Summary	17 20	
۲,).Z	Stage & Di	eakup Sunimaly	20 25	
4.	11		ior	20	
	t. 1 1 2		var Fast Channal		
-	ד. ב 1 כ	Niglig Cha	nnel		
_	т. Ј 1 Л		ilities	3/	
_	15	Peak Disch	narae Distribution	56	
5.	1.5	Post-Break	up Conditions Assessment	57	
6.		CD5 Pier S	cour. Bank Erosion. & Bathymetry	58	
U.	5.1	Pier Scour			
é	5.2	Bank Eros	ion		
(5.3	Bathymetr	ν		
7.		Ice Road C	rossings Breakup	65	
8.		Historical E	Breakup Timing & Magnitude	66	
8	3.1	Colville Riv	ver – Head of the Delta		
8	3.2	CD2 Road	Bridges	71	
8	3.3	CD5 Road	Bridges		
8	3.4	Alpine Drii	nking Water Lakes Recharge	74	
9.		Flood & Sta	age Frequency Analyses	76	
Ģ	9.1	Flood Free	juency		
Ģ	9.2	Stage Free	juency		
10		References	6	83	
Ap	pei	ndix A	Vertical Control, Gage Locations, & Culvert Locations	A.1	
Ap	pei	ndix B	PT Setup & Testing Methods	B.1	
Ap	pei	ndix C	Discharge Methods, Site Specific Information, & Plan & Profile Drawings	C.2	
Ap	pei	ndix D	Additional Photographs	D.1	
Ap	pendix E CD5 Pier Scour, Bank Erosion, & Bathymetry E.1				

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Figures

Figure 1.1: Colville River Drainage Basin	2
Figure 1.2: CRD Monitoring Locations	4
Figure 1.3: Alpine Facilities Monitoring Locations	5
Figure 2.1: RTFM Network Schematic	. 14
Figure 3.1: Spring Breakup Hydrologic Timeline	. 24
Figure 4.1: Peak Discharge Distribution in Colville East Channel and Nigliq Channel	56
Figure 4.2: Peak Discharge at the Head of the CRD	56

Tables

Table 1.1: Monitoring & Gage Station Locations	6
Table 2.1: Peak Discharge Quality Ratings	11
Table 2.2: RTFM Network Stations	14
Table 4.1: Peak Stage, Measured Discharge, and Peak Discharge Summary	25
Table 4.2: CD2 Road Culverts (Gages G3 & G4) Measured Discharge	39
Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge	40
Table 4.4: CD4 Road Culverts (Gages G17 & G18) Measured Discharge	46
Table 4.5: CD4 Road Culverts (Gages G17 & G18) Peak Discharge	47
Table 4.6: CD5 Road Culverts (Gages S1 and S1D) Measured Discharge	55
Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations	58
Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations	61
Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion	63
Table 6.4: Nigliq Bridge, Lake L9341 Bridge, and Nigliagvik Bridge Scour and Deposition	64
Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition	64
Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary	67
Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary	71
Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary	72
Table 8.4: CD5 Road Bridges Peak Discharge and Peak Stage Historical Summary	73
Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary	75
Table 9.1: Colville River Flood Frequency Analysis Comparison	76
Table 9.2: Colville River Flood Frequency Analysis Comparison	77
Table 9.3: Peak Stage Frequency Relative to 2D Model Stage Frequency Analysis	80
Table 9.4: Peak Stage Frequency Relative to Stage Frequency Analysis	81

Graphs

Graph 3.1: NPR-A N. Tundra Monitoring Station, CFDD, Winters 2002-2019 (ICE 2019)	17
Graph 3.2: Anaktuvuk Pass Daily High and Low Ambient Air Temperatures	18
Graph 3.3: Umiat Daily High and Low Ambient Air Temperatures	19
Graph 3.4: Nuiqsut Daily High and Low Ambient Air Temperatures and MON1 Leading Edge	19
Graph 4.1: Colville River at Umiat Stage (USGS 2019)	
Graph 4.2: Colville River at Umiat Discharge (USGS 2019)	27
Graph 4.3: Colville River at the Head of the Delta Stage & Discharge	29
Graph 4.4: Colville River East Channel Stage & Discharge	31
Graph 4.5: Nigliq Channel Stage	33
Graph 4.6: CD1 Pad (Gage G1) Stage	35
Graph 4.7: Lakes L9312 (Gage G9) and L9313 (Gage G10) Stage	
Graph 4.8: CD2 Road Bridges and Culverts (Gages G3 & G4) Stage & Discharge	39
Graph 4.9: CD3 Pipelines Stage	42
Graph 4.10: CD4 Road Culverts (Gages G15 & G16) Stage	45
Graph 4.11: CD4 Road Culverts (Gages G17 & G18) Stage & Discharge	45
Graph 4.12: CD4 Pad (Gages G19 & G20) Stage	46

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Graph 4.13: Lake L9323 Bridge (Gages G24 & G25) Stage	48
Graph 4.14: Nigliq Bridge (Gages G26, G27, G28, and G29) Stage & Discharge	50
Graph 4.15: Lake L9341 Bridge (Gages G32 and G33) Stage	52
Graph 4.16: Nigliagvik Bridge (Gages G38 & G39) Stage	54
Graph 4.17: CD5 Road Culverts (Gages S1 and S1D) Stage and Discharge	55
Graph 6.1: Nigliq Bridge Pier 2 (Pile E) Real-Time Scour Elevations	59
Graph 6.2: Nigliq Bridge Pier 3 (Pile E) Real-Time Scour Elevations	59
Graph 6.3: Nigliq Bridge Pier 4 (Pile E) Real-Time Scour Elevations	60
Graph 6.4: Nigliq Bridge Pier 5 (Pile E) Real-Time Scour Elevations	60
Graph 6.5: Nigliagvik Bridge Pier 3 (Pile B) Real-Time Scour Elevations	61
Graph 8.1: Colville River at the Head of the Delta Historical Peak Stage and Peak Discharge	68
Graph 8.2: Colville River at the Head of the Delta Historical Timing of Peak Stage	68
Graph 8.3: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Measured Discharge	
	69
Graph 8.4: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Peak Discharge	70
Graph 9.1: 2D Model Stage and Peak Stage Recurrence Intervals	79
Graph 9.2: Stage Frequency and Peak Stage Recurrence Intervals	82

Photos

Photo 2.1: Field crew recording observations at staff gage; May 26, 2019	7
Photo 2.2: Game camera at MON9; May 1, 2019	7
Photo 2.3: Direct-read gage G7 along the CD2 road; May 5, 2019	8
Photo 2.4: Indirect-read gages at G20; May 25, 2019	8
Photo 2.5: Measuring a high water mark on gage MON20-D; May 26, 2019	9
Photo 2.6: Installation of PT on staff gage G13; May 5, 2019	10
Photo 2.7: Baro PT at MON9/East Channel HDD; May 1, 2019	10
Photo 2.8: Measuring discharge at the Long Swale Bridge; May 25, 2019	11
Photo 2.9: Measuring discharge at a culvert along the CD2 road; May 25, 2019	11
Photo 2.10: Installation of real-time pier scour equipment on the Nigliq Bridge; May 15, 2019	12
Photo 2.11: Remote camera setup at MON1D; April 30, 2019	15
Photo 2.12: Remote stage monitoring equipment at Lake L9313 (G10); May 15, 2019	15
Photo 2.13: Pier scour sonar equipment; May 16, 2019	15
Photo 2.14: Field install of telemetry and solar/battery RTFM equipment; April 15, 2019	16
Photo 3.1: Approximate leading edge of observed flowing water, looking north (downstream); May 18,	
2019	20
Photo 3.2: Lifted channel ice through the MON1 reach, looking south (upstream); May 20, 2019	20
Photo 3.3: Ice jam on the Colville River approximately 12 RM upstream of MON1, looking northeast	
(downstream); May 21, 2019	21
Photo 3.4: Full extent of Horseshoe Bend ice jam, including the breakup front, on the Colville River	
approximately 6 RM upstream of MON1, looking north (downstream); May 21, 2019	21
Photo 3.5: Open reach between the two ice jams, looking north (downstream); May 21, 2019	21
Photo 3.6: MODIS imagery of North Slope; May 21, 2019 (Source: National Aeronautics and Space	
Administration 2019)	21
Photo 3.7: Colville River backwater in the Itkillik River, looking northwest; May 24, 2019	23
Photo 3.8: Stranded ice at MON9D indicating receding stage, looking southeast (upstream); May 25,	
2019	23
Photo 3.9: Open channel in Nigliq Channel to coast, looking north (downstream); May 28, 2019	23
Photo 4.1: Intact channel ice through MON1 reach just prior to release, looking southwest (upstream);	
May 24, 2019	28
Photo 4.2: Ice jam upstream of horseshoe bends upstream of MON1, looking southwest (upstream); May	
	28
Photo 4.3: Ice jam release through the MON1 reach the day of peak stage, at MON1U looking east; May	
24, 2019	28

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 4.4: Ice jam release through the MON1 reach the day of peak stage, at MON1D looking east; May 24, 2019	28
Photo 4.5: Intact channel ice in the East Channel just prior to upstream ice jam release, looking northwest (downstream); May 24, 2019	30
Photo 4.6: Ice jam release moving through MON9 reach and influencing peak discharge, looking east; May 24 2018	30
Photo 4.7: Rafted ice floes post ice jam release stranded on the bank at MON9D; May 25, 2019 Photo 4.8: Break up of channel ice at MON35/Helmericks Homestead; May 27, 2019	30
Photo 4.7. Leading edge past MON20 with channel ice, looking southwest (distream), May 21, 2017 Photo 4.10: Channel ice in the Nigliq Channel at MON22 and hydraulic connection with Nanuq Lake, looking northwest (downstream): May 22, 2019	32
Photo 4.11: Open channel at MON20 the day after peak stage, looking north (downstream); May 26, 2019	32
Photo 4.12: Post-peak remnant floes at MON22 soon after peak, looking northwest (downstream); May 26, 2019	32
Photo 4.13: Post-peak remnant floes at MON23 soon after peak, looking northwest (downstream); May 26, 2019	33
2019	33
Photo 4.16: Drifted snow downstream of the CD2 short swale bridge, looking west; May 25, 2019 Photo 4.17: Peak stage at G1 under the influence of channel ice in the Sakoonang, looking east; May 26, 2010	34
Photo 4.18: Lake L9313 being recharged from overland flow, looking east; May 26 2019 Photo 4.19: Lake L9312 hydraulically isolated from major water bodies; May 26, 2019	35 36 36
Photo 4.20: Flood extents along the CD2 road during peak stage conditions, looking north (downstream); May 26, 2019	37
measurement, looking east; May 25, 2019 Photo 4.22: Limited snow on the downstream side of the short swale bridge affecting flow during	38
discharge measurement, looking southwest (upstream); May 26, 2019 Photo 4.23: Culvert CD2-24 passing flow as designed, south (upstream) end, looking east; May 25, 2019	38
Photo 4.24: Culvert CD2-24 passing flow as designed, north (downstream) end, looking north; May 25, 2010	38
Photo 4.25: Sakoonang Channel the day of peak stage at SAK, looking east (upstream); May 26, 2019 Photo 4.26: Tamayayak Channel the day prior to peak stage at TAM, looking west (downstream); May	41
26, 2019 Photo 4.27: Ulamnigiaq Channel the day of peak stage at ULAM, looking east (upstream); May 26, 2019	41
Photo 4.28: Peak stage at gage G16, looking north; May 26, 2019	41 44 .44
Photo 4.30: Lack of evidence of overland flooding at CD4 road near gages G17/G18, looking north; May 26, 2019	44
Photo 4.31: Local melt at CD4 road culverts near gages G17/G18; May 25, 2019 Photo 4.32: No hydraulic connection through Lake L9323 bridge during peak conditions at	44
Alpine facilities, looking northeast (upstream); May 26, 2019	47 10
Photo 4.34: Channel ice intact at Niglig Bridge at 7:30pm, looking east; May 25, 2019	49
Photo 4.35: Channel ice being broken and pushed downstream at 7:45pm by upstream ice jam release,	
looking east; May 25, 2019 Photo 4.36: Peak conditions at the Nigliq Bridge, looking east; May 26, 2019	49 49
Photo 4.37: Floes caught or grounded upstream of the Nigliq Bridge, looking north (downstream); May 26, 2019	50

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 4.38: Measuring discharge downstream from the Nigliq Bridge, looking south; May 26, 2019	50
Photo 4.39: Competent ice in Lake L9341 as breakup initiates, looking south; May 22, 2019	51
Photo 4.40: Nigliq Channel backwater influence at the north end of Lake L9341 the day of peak stage,	
looking southeast (downstream); May 26, 2019	51
Photo 4.41: Conditions in the Nigliagvik Channel, looking southwest (upstream); May 22, 2019	53
Photo 4.42: Nigliagvik Channel one day prior to peak stage, looking west; May 25, 2019	53
Photo 4.43: South to north (downstream) flow through culverts at \$1/\$1D gages, looking south; May 25,	
2019	54
Photo 4.44: South to north (downstream) flow through culverts at S1/S1D gages, looking north; May 25,	
2019	54
Photo 5.1: CD2 road long swale bridge as breakup ebbs, looking north; May 28, 2019	57
Photo 5.2: CD2 road short swale bridge as breakup ebbs, looking north; May 28, 2019	57
Photo 5.3: CD5 road Niglig Bridge #2 as breakup ebbs, looking south (upstream); May 29, 2019	57
Photo 5.4: CD5 road Nigliagvik Bridge #4 as breakup ebbs, looking south (upstream); May 29, 2019	57
Photo 6.1: West bank of the Niglig Channel near the Niglig Bridge, looking south (upstream): August 13.	
2019	62
Photo 6.2: East bank of the Niglig Channel near the Niglig Bridge, looking northwest: August 13, 2019	62
Photo 6.3: West bank of the Nigliagvik Channel near the Nigliagvik Bridge, looking north (downstream):	
August 13, 2019	62
Photo 6.4: East bank of the Nigliagvik Channel, looking north (downstream); August 13, 2019	62

Appendix D Photos

Photo D.1: CD2 road long swale bridge SW abutment, looking east; June 3, 2019	D.1
Photo D.2: CD2 road long swale bridge NW abutment, looking east; June 3, 2019	D.1
Photo D.3: CD2 road short swale bridge SW abutment, looking west; June 3, 2019	D.1
Photo D.4: CD2 road short swale bridge NW abutment, looking east; June 3, 2019	D.1
Photo D.5: Road in vicinity of culvert CD2-21N post-breakup, looking west; June 3, 2019	D.2
Photo D.6: Road in vicinity of culvert CD2-21S post-breakup, looking east; June 3, 2019	D.2
Photo D.7: Road in vicinity of culvert CD2-22N post-breakup, looking west; June 3, 2019	D.2
Photo D.8: Road in vicinity of culvert CD2-22S post-breakup, looking west; June 3, 2019	D.2
Photo D.9: Road in vicinity of culvert CD2-23N post-breakup, looking west; June 3, 2019	D.3
Photo D.10: Road in vicinity of culvert CD2-23S post-breakup, looking east; June 3, 2019	D.3
Photo D.11: Road in vicinity of culvert CD2-24N post-breakup, looking west; June 3, 2019	D.3
Photo D.12: Road in vicinity of culvert CD2-24S post-breakup, looking east; June 3, 2019	D.3
Photo D.13: CD4 road post-breakup, looking northeast; June 3, 2019	D.4
Photo D.14: CD4 road in vicinity of G15 culverts post-breakup, looking northwest; June 3, 2019	D.4
Photo D.15: CD4 road in vicinity of G15 culverts post-breakup, looking northwest; June 3, 2019	D.4
Photo D.16: CD4 road in vicinity of G16 culverts post-breakup, looking southwest; June 3, 2019	D.4
Photo D.17: CD4 road in vicinity of G17 culverts post-breakup, looking west; June 4, 2019	D.5
Photo D.18: CD4 road in vicinity of G17 culverts post-breakup, looking east; June 4, 2019	D.5
Photo D.19: CD4 road in vicinity of G18 culverts post-breakup, looking west; June 4, 2019	D.5
Photo D.20: CD4 road in vicinity of G18 culverts post-breakup, looking east; June 4, 2019	D.5
Photo D.21: CD5 road Lake L9341 Bridge #3 as breakup subsides, looking south (upstream); May 28,	
2019	D.6
Photo D.22: CD5 road Nigliagvik Bridge #4 as breakup subsides, looking west; May 28, 2019	D.6
Photo D.23: CD5 road Nigliq Bridge #2 bank sloughing at west abutment, looking south (upstream); May	
28, 2019	D.6
Photo D.24: CD5 road Nigliq Bridge #2 bank sloughing at west abutment, looking north (downstream);	
May 28, 2019	D.6
Photo D.25: Road in vicinity of culvert CD5-04N post-breakup, looking south; June 3, 2019	D.7
Photo D.26: Road in vicinity of culvert CD5-04S post-breakup, looking south; June 3, 2019	D.7
Photo D.27: Road in vicinity of culvert CD5-05N post-breakup, looking west; June 3, 2019	D.7

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.28: Road in vicinity of culvert CD5-04S post-breakup, looking west; June 3, 2019......D.7 Photo D.29: Road in vicinity of culvert CD5-06N post-breakup, looking east; June 3, 2019D.8 Photo D.30: Road in vicinity of culvert CD5-06S post-breakup, looking east; June 3, 2019D.8 Photo D.31: Initial flow through slotted Colville River Ice Bridge, looking east; May 20, 2019D.9 Photo D.32: Breakup progression at Colville River Ice Bridge, looking southeast (upstream); May 22, 2019 D.9 Photo D.33: Peak conditions at Colville River Ice Bridge, looking south (upstream); May 24, 2019D.9 Photo D.34: Open channel at Colville River Ice Bridge, looking south (upstream); May 26, 2019......D.9 Photo D.35: Peak conditions at Toolbox Creek ice road crossing, looking south; May 26, 2019 D.10 Photo D.36: Post-breakup at Toolbox Creek ice road crossing, looking southwest; May 30, 2019 D.10 Photo D.37: Peak conditions at Slias Slough ice road crossing, looking northeast; May 26, 2019........D.10 Photo D.38: Peak conditions at Slias Slough ice road crossing, looking northeast; May 26, 2019........D.10 Photo D.39: Peak conditions at No Name Creek ice road crossing; May 30, 2019.......D.10 Photo D.41: Peak conditions at Kachemach ice road crossing, looking north; May 30, 2019.......D.11 Photo D.42: Peak conditions at Kachemach ice road crossing, looking northwest; May 30, 2019 D.11 Photo D.44: Peak conditions at Pineapple Creek ice road crossing, looking north; May 26, 2019 D.11 Photo D.45: Slotting at Tamayayak ice road crossing #1, looking south; May 20, 2019......D.11 Photo D.46: Peak conditions at Tamayayak ice road crossing #1, looking south; May 26, 2019 D.11 Photo D.47: Peak conditions at Tamayayak ice road crossing #1, looking north; May 26, 2019.......D.12

ACRONYMS & ABBREVIATIONS

2D	Two-dimensional
ABR	Alaska Biological Research
ADF&G	Alaska Department of Fish and Game
Baro PT	barometric pressure sensors
BPMSL	British Petroleum Mean Sea Level
CD	Colville Delta
CFDD	cumulative freezing degree days
cfs	cubic-ft per second
CPAI	ConocoPhillips Alaska, Inc.
CRD	Colville River Delta
FEMA	Federal Emergency Management Agency
fps	feet per second
ft	feet
gage	hydrologic staff gage
GPS	Global positioning system
HDD	Horizontal directional drill
HWM	High water mark
Michael Baker	Michael Baker International
Michael Baker MON	Michael Baker International Monument
Michael Baker MON MP-AMS	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy
Michael Baker MON MP-AMS NOAA	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration
Michael Baker MON MP-AMS NOAA NRCS	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service
Michael Baker MON MP-AMS NOAA NRCS NPR-A	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK TAM	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang Tamayayak
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK TAM ULAM	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang Tamayayak Ulamnigiaq
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK TAM ULAM UMIAQ	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang Tamayayak Ulamnigiaq Umiaq, LLC (UMIAQ)
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK TAM ULAM ULAM UMIAQ USACE	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang Tamayayak Ulamnigiaq Umiaq, LLC (UMIAQ) U.S. Army Corps of Engineers
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK TAM ULAM ULAM UMIAQ USACE USGS	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang Tamayayak Ulamnigiaq Umiaq, LLC (UMIAQ) U.S. Army Corps of Engineers U.S. Geological Survey
Michael Baker MON MP-AMS NOAA NRCS NPR-A PT RM RTFM SAK TAM ULAM ULAM UMIAQ USACE USGS	Michael Baker International Monument Monitoring Plan with an Adaptive Management Strategy National Atmospheric and Oceanic Administration Natural Resources Conservation Service National Petroleum Reserve of Alaska pressure transducer river mile Real-Time Flood Monitoring Sakoonang Tamayayak Ulamnigiaq Umiaq, LLC (UMIAQ) U.S. Army Corps of Engineers U.S. Geological Survey

1. INTRODUCTION

The Colville River is the largest river on the North Slope, initiating in the DeLong Mountains on the north side of the Brooks Range, running north and east through the Arctic Coastal Plain, and forms the Colville River Delta (CRD) where the river empties into the Beaufort Sea. The Colville River drainage basin is approximately 23,270 square miles and includes a large portion of the western and central areas north of the Brooks Range (Figure 1.1). Spring breakup commences with the arrival of meltwater in the delta and progresses with a rapid rise in stage which facilitates the breakup and downstream movement of river ice. The CRD spring breakup is generally considered to be the largest annual flooding event in the region and typically occurs during a three-week period in May and June. Spring breakup monitoring is integral to understanding regional hydrology and ice effects, establishing appropriate design criteria for proposed facilities, and maintaining the continued safety of the environment, oilfield personnel, and existing facilities during the flooding event.

The CRD Spring Breakup Monitoring and Hydrological Assessment supports the ConocoPhillips Alaska, Inc. (CPAI) Alpine Development Project and the Alpine Satellite Development Plan. The Alpine facilities are owned and operated by CPAI. Alpine facilities include the Colville Delta (CD) 1 processing facility (Alpine) and the CD2, CD3, CD4, CD5, and Greater Moose's Tooth 1/Moose's Tooth 6 (GMT1/MT6) pads, access roads, and pipelines. A new drill site, Greater Moose's Tooth 2/Moose's Tooth 7 (GMT2/MT7), is in construction and will be connected to the Alpine facilities by road and pipeline.

Colville River breakup monitoring has been ongoing since 1962. The timing and magnitude of breakup flooding has been determined consistently since 1992 by measuring stage and discharge at established locations throughout the delta. The program was expanded to include additional Alpine facilities in 2004 and the CD5 development area in 2009. The 2019 monitoring and hydrological assessment is the 28th consecutive year of CRD spring breakup investigations.

The 2019 field program took place from April 19 to June 5. Spring breakup setup began on April 19 and concluded on May 7. Spring breakup monitoring began on May 7 and concluded on June 5. Primary field tasks included documenting the distribution of floodwater and measuring water levels and discharge at select locations. Observations of lake recharge, ice jams, ice road crossing degradation, and floodwater effects on infrastructure were also recorded. Hydrologic observations were documented at all Alpine facilities, roads, and drainage structures, and relevant waterbodies within the CRD.

Umiaq, LLC (UMIAQ), CPAI Alpine Field Environmental Coordinators, Alpine Helicopter Coordinators, and Soloy Helicopters, LLC provided support during the field program and contributed to a safe and productive field season.

(SHEET 1 of 1)

1.1 Monitoring Objectives

The primary objective of CRD spring breakup monitoring and hydrological assessment is to monitor and estimate the magnitude of breakup flooding within the CRD in relation to Alpine facilities. Water surface elevations (WSE, or stage, used interchangeably in this report), discharge, and observations are used to validate design parameters of existing infrastructure, for planning and design of proposed infrastructure, and to satisfy permit requirements. Data collection supports refinement of the CRD flood frequency, two-dimensional (2D) surface water model, and stage frequency analyses.

The CRD spring breakup monitoring satisfies permit stipulations by the U.S. Army Corps of Engineers (USACE) and the Alaska Department of Fish and Game (ADF&G).

Permit stipulations for USACE Permits 2-960874 Special Condition #6, POA-2004-253-2 Special Condition #17, ADF&G Fish Habitat Permit FH04-III-0238, and USACE Permit POA-2005-1576 Special Conditions #1 and #17 require monitoring Alpine facilities during spring breakup. Permit stipulations include documentation of annual hydrologic conditions, direct measurements and indirect calculations of discharge through drainage structures, and documentation of pad and road erosion caused by spring breakup flooding. USACE Permit POA-2005-1576 Special Condition #1 requires the *Monitoring Plan with an Adaptive Management Strategy* (MP-AMS) (Michael Baker and Alaska Biological Research [ABR] 2013) which includes monitoring channel sedimentation and erosion specific to the CD5 development. Observations of functionality and flooding effects to the CD2 road bridges are recorded to satisfy ADF&G permit FG97-III-0260-Amendment #3. The ADF&G permits FG99-III-0051-Amendment #8 and FG97-III-0190-Amendment #1 require monitoring of recharge to lakes L9312 and L9313, respectively. Alpine facilities rely on water withdrawal from these lakes for daily operations; the volume of which is dictated in part by annual spring recharge. The information presented in this report encompasses the data required by the permits.

1.2 Monitoring Locations

The 2019 monitoring locations and gage stations are the same as those studied in 2018 (Michael Baker 2018). Most gage stations are adjacent to major hydrologic features and were selected based on topography, importance to the historical record, and proximity and hydraulic significance to existing or proposed facilities or temporary infrastructure. Figure 1.2 shows the CRD monitoring locations and gage stations denoted with a MON prefix. Monitoring locations and gage station specific to Alpine facilities are shown in Figure 1.3. The location descriptions for each gage station are listed in Table 1.1. Gage and culvert geographic coordinates and associated vertical control are provided in Appendix A.

Cono	CoDhilling				3
Cond	Alaska	0	1	2	
Date:	11/13/2019	Project:	17	'1385	
Drawn:	BTG	File:	Fig	ure 1.2	
Checked:	GCY	Scale:	1 in =	2 miles	

Michael Baker International 3900 C Street, Suite 900 Anchorage, AK 99503 Phone: (907) 273-1600 Fax: (907) 273-1699

(SHEET 1 of 1)

Table 1.1: Monitoring & Gage Station Locations

Monitoring Location	Monitoring Location Description	Gage Station	Gage Station Description				
CRD Monitoring Locations							
MON1U MON1U							
Colville	Head of the CRD	MON1C	West bank, farthest downstream confined reach of the Colville River, conveying approximately 22,500 square miles of runoff in				
River		MON1D	a single channel				
		MON9	West bank, adjacent to horizontal directional drill (HDD) West, downstream of Niglig Channel bifurcation				
Colville River Fast	East Channel Bifurcation	MON9D	West bank, downstream (north) of HDD West, upstream of Sakoonang Channel bifurcation				
Channel		MON35	East side of Helmericks Homestead, Kunigruak Channel just unstream of the coast line, farthest downstream gage station				
		MON20	East bank unstream (south) of CDA rad unstream of Toolbox Creek				
	Nigliq Channel Bifurcations	MON22	West bank, upstream of Niglianvik Channel tributary				
Nigliq Channel		MON22	East bank, downstream of Nigliagvik Channel tributary downstream (northwest) of CD2 and				
		MON29	East bank, downstream of Nighagvik Channel tributary, downstream (northwest) of CD2 pad				
		IVIOIN28					
CD1 Pad & Drinking	Lake L9312	G9	Northwest side of lake, southwest of CD1 pad				
Water	Lake L9313	G10	East side of lake, adjacent to CD1 pad				
Lakes	CD1 Pad	G1	West bank of Sakoonang Channel, east side of CD1 pad				
	Long Swale Bridge	G3	South side of road, downstream of Lake M9524				
		G4	North side of road, downstream of Lake M9524				
	Short Swale Bridge	G3	South side of road, downstream of Lake M9524				
		G4	North side of road, downstream of Lake M9524				
CD2 Pad 8		G3	South side of road, downstream of Lake M9524				
Road		G4	North side of road, downstream of Lake M9524				
	Culverts	G6	South side of road, between Lake L9322 and Lake L9321				
	currents	G7	North side of road, between Lake L9322 and Lake L9321				
		G12	South side of road, downstream of Nanuq Lake				
		G13	North side of road, downstream of Nanuq Lake				
	CD2 Pad	D2 Pad G8 Northwest side of CD2 pad, adjacent to Nigliq Channel					
		SAK	South side of Sakoonang Channel, downstream of pipeline bridge #2				
CD3 Pad &	Pipeline Crossings	TAM	South side of Tamayayak Channel, downstream of pipeline bridge #4, downstream of Ulamnigiaq Channel bifurcation				
Pipeline		ULAM	North side of Ulamnigiaq Channel, downstream of pipeline bridge #5, upstream of East and West Ulamnigiaq Channel				
		C11	bifurcation South side of CD2 and adjacent to north side of Fact Ulamaiging Channel				
	CDS Pau	611					
		GIS	East side of road, between Lake L9323 and Lake M9525				
		G16	west side of road, between Lake L9323 and Lake M9525				
		G17	North side of road, between Sakoonang Channel and Lake 19323				
	Culverts	G18	South side of road, between Sakoonang Channel and Lake 19323				
CD4 Pad &		G40	West side of road, between Lake M9525 and Nanuq Lake				
Noau		G41	East side of road, between Lake M9525 and Nanuq Lake				
		G42	west side of road, between Lake M9525 and Nanuq Lake				
		G43	East side of road, between Lake M9525 and Nanuq Lake				
	CD4 Pad	G19	South side of CD4 pad, north side of Lake L9324				
		G20	West side of CD4 pad, east side of Tapped Lake				
		G30	South side of road, east of Lake L9341				
		G31	North side of road, east of Lake L9341				
		G34	South side of road, west of Lake L9341				
	Culverts	G35	North side of road, west of Lake L9341				
		G36	South side of road, east of Nigliagvik Channel				
		G37	North side of road, east of Nigliagvik Channel				
		\$1	South side of road, between Oil Lake and Lake MB0301, outside of the CRD				
		S1D	North side of road, between Oil Lake and Lake MB0301, outside of the CRD				
CD5 Road	Lake L9323 Bridge/	G24	Northeast side of Lake L9323, 200-ft upstream of bridge centerline				
	CD5 Bridge #1	G25	Northeast side of Lake L9323, 310-ft downstream of bridge centerline				
		G28	West side of Nigliq Channel, 2,600-ft upstream of bridge centerline				
	Nigliq Bridge/	G26	East side of Nigliq Channel, 200-ft upstream of bridge centerline				
	CD5 Bridge #2	G27	East side of Nigliq Channel, 160-ft downstream of bridge centerline				
		G29	West side of Nigliq Channel, 2,300-ft downstream of bridge centerline				
	Lake L9341 Bridge/	G32	West side of Lake L9341, 180-ft upstream of bridge centerline				
	CD5 Bridge #3	G33	West side of Lake L9341, 300-ft downstream of bridge centerline				
	Nigliagvik Bridge/	G38	East side of Nigliagvik Channel, 350-ft upstream of bridge centerline				
	CD5 Bridge #4	G39	East side of Nigliagvik Channel, 300-ft downstream of bridge centerline				

2. METHODS

2.1 Observations

The U.S. Geological Survey (USGS) operates a hydrologic gage station on the Colville River at Umiat, approximately 90 river miles (RM) upstream of the CRD. Real-time stage data and photos from this site were used during spring breakup monitoring to help forecast the arrival of floodwater and timing of peak conditions in the CRD study area. A helicopter reconnaissance flight was also conducted to Ocean Point and towards the Anaktuvuk River and the Chandler River confluences to track the progression of the floodwaters.

Field data collection and observations of breakup progression, discharge distribution, bank erosion, ice events, scour, lake recharge, and interactions between floodwaters and infrastructure were recorded in field notebooks (Photo 2.1). Photographic documentation of breakup conditions was collected using digital cameras with integrated global positioning systems (GPS). Each photo was geotagged with the latitude and longitude, date, and time. The photo location is referenced to the World Geodetic System of 1984 horizontal datum. Additional photos were collected via game cameras installed at MON9 (Photo 2.2) and the Nigliq Bridge. These were programmed to record every 15 minutes, providing time-lapse observations of the Colville East and Nigliq Channels in the vicinity of the HDD crossing and Nigliq Bridge respectively.

UMIAQ provided Hägglund track vehicle support to access gage stations during setup and before a helicopter was onsite at Alpine. Soloy Helicopters, LLC provided helicopter support to access CRD gage stations, and Alpine Environmental Coordinators provided a pickup truck to access Alpine facilities monitoring locations.

Photo 2.1: Field crew recording observations at staff gage; May 26, 2019

Photo 2.2: Game camera at MON9; May 1, 2019

2.2 Stage

HYDROLOGIC STAFF GAGES

Stage data was collected using hydrologic staff gages (gages) and pressure transducers (PTs). Site visits were performed as needed and as conditions allowed. The field methodologies used to collect hydrologic data on the North Slope of Alaska during spring breakup are proven safe, efficient, and accurate for the conditions encountered.

Gages were installed or rehabilitated as needed in the previous fall and re-surveyed prior to spring breakup using standard differential leveling techniques.

Two types of gages were used:

- Direct-read gages directly correspond to a British Petroleum Mean Sea Level (BPMSL) elevation and were surveyed by UMIAQ. The survey is used to determine if correction factors must be applied to adjust elevations during flooding conditions. Adjustments are made annually by UMIAQ during ice-free conditions to correct for jacking or settlement induced by the freeze-thaw cycle. The gages consist of metal gage faceplates attached to drill stems permanently driven into the ground (Photo 2.3) or attached to pipeline vertical support members (VSMs).
- 2) **Indirect-read gages** do not directly correspond to a BPMSL elevation. The gage elevations were surveyed relative to a known benchmark elevation to determine a correction. The correction is applied to the gage reading to obtain the elevation in-ft (ft) BPMSL.

Indirect-read gage stations consist of one or more gage assemblies positioned perpendicular to the waterbody or road. Each indirect-read gage assembly includes a standard USGS metal faceplate mounted on a wooden two-by-four. The two-by-four is attached with U-bolts to a 1.5-inch-wide angle iron post driven into the ground. The faceplate is graduated and indicates water levels every 0.01 feet between 0.00 to 3.33-ft (Photo 2.4).

Photo 2.3: Direct-read gage G7 along the CD2 road; May 5, 2019

Photo 2.4: Indirect-read gages at G20; May 25, 2019

Alpine facilities gage stations were established at pads and along roads adjacent to infrastructure and at drinking water source Lakes L9313 and L9312. Paired gages along the access roads captured water levels on the upstream and downstream side of drainage structures to determine stage differential.

ConocoPhillips Alaska INTERNATIONAL

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

The CRD gage stations were established throughout the delta at locations of hydrologic importance. The number of gage assemblies per station is dependent upon site specific conditions: primarily slope of the channel bank and overbank. In locations where terrain elevation varied by more than 3 feet, multiple gages were installed linearly from the edge of the low water channel up to the overbank. The gages were installed at elevations overlapping by approximately 1 foot. Individual gage assemblies identified with were alphabetical designations beginning with "A" representing the location nearest to the stream. High water marks (HWMs) were measured by applying chalk on the angle iron gage supports or VSMs and measuring the wash line (Photo 2.5).

PRESSURE TRANSDUCERS

Pressure transducers were used at select gage stations to supplement gage measurements and provide a continuous record of WSEs (Photo 2.6). The PTs are designed to collect and store pressure and temperature data at discrete pre-set intervals. The PTs were programmed to collect data at 15-minute intervals from May 1 to August 30. Each PT was housed in a small

Photo 2.5: Measuring a high water mark on gage MON20-D; May 26, 2019

perforated galvanized steel pipe and secured to the base of the gage assembly nearest to the channel. By sensing the absolute pressure of the atmosphere and water column above the PT, the depth of water above the sensor was calculated. Atmospheric pressure was accounted for using barometric pressure sensors (Baro PT, Photo 2.7) at two locations in the CRD. During data processing, the PT measurements were adjusted to WSEs recorded at the staff gages.

Secondary PTs were installed to validate and backup the primary PT data at locations where discharge is calculated. The PT setup and testing methods are detailed in Appendix B.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 2.6: Installation of PT on staff gage G13; May 5, 2019

Photo 2.7: Baro PT at MON9/East Channel HDD; May 1, 2019

2.3 Discharge

MEASURED DISCHARGE

Discharge was measured as close to observed peak stage at the following drainage structures:

- Nigliq Bridge/CD5 Bridge #2
- CD2 Road Short Swale Bridge
- CD2 Road Long Swale Bridge
- CD2, CD4, and CD5 road culverts observed conveying flow

Discharge was not measured at MON1 because of helicopter mechanical issues and the potential for interference with Nuiqsut subsistence hunters during peak conditions. Discharge was not measured at the Lake L9323 Bridge/CD5 Bridge #1 or the Lake L9341 Bridge/CD5 Bridge #3 because floodwater at the bridges was either backwater or local melt and not flowing. Discharge was not measured at the Nigliagvik Bridge/CD5Bridge #4 because the presence of ice at the bridge didn't allow for equipment to be placed in the channel.

Flow depth and velocity were measured at the CD2 Road Long Swale and Short Swale bridges using a Price AA current meter suspended by cable with a sounding weight following USGS midsection procedures (USGS 1982) (Photo 2.8). Culvert flow depth and velocity were measured using a Hach flow meter attached to a wading rod following USGS velocity/area procedures (USGS 1968 [Photo 2.9]). Discharge at the Nigliq Bridge was measured using a boat mounted acoustic doppler current profiler (ADCP) following USGS ADCP measurement procedures (USGS 2006). Measured discharge methods are further detailed in Appendix C.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 2.8: Measuring discharge at the Long Swale Bridge; May 25, 2019

Photo 2.9: Measuring discharge at a culvert along the CD2 road; May 25, 2019

PEAK DISCHARGE

Peak discharge was calculated using indirect methods and observed WSEs. When possible, results were calibrated with a direct discharge measurement. Under open channel conditions, peak discharge typically occurs at the same time as peak stage; however, discharge in the CRD is typically affected by ice and snow during peak conditions. This often yields a lower discharge than an equivalent stage under open water conditions.

Peak discharge was calculated at the following locations:

- Colville River (MON1) •
- Colville River East Channel (MON9)
- Nigliq Bridge/CD5 Bridge #2
- CD2 Road Long Swale Bridge •
- CD2 Road Short Swale Bridge

- CD2 road culverts associated with gages G3/G4
- CD4 road culverts associated with gages G17/G18

Drainage structures not listed above were either dry, did not have discernable flow, had ice present in the water body during peak conditions, or experienced monitoring equipment malfunction. Peak discharge results are estimates based on conditions at the time of data collection. These conditions often include ice and snow effects, which are highly dynamic and challenging to quantify. Ice and snow conditions can affect channel geometry, roughness, energy gradient, and stage, all of which are used to calculate discharge indirectly. In consideration of these conditions, calculations of peak discharge are presented with quality ratings, as described in Table 2.1. Detailed peak discharge methods are presented in Appendix C.

Table 2.1: Peak Discharge	Quality Ratings
---------------------------	------------------------

Quality Rating	Description
Good	Open channel/drainage structure free of ice and snow, no backwater effects from downstream ice
	jamming, uniform channel/drainage structure through reach
Fair	Some ice floes and/or snow in the channel/drainage structure, some backwater effects, fairly uniform
	conditions through reach
Poor	Significant quantities of ice and snow in the channel/drainage structure, significant backwater effects from
	downstream ice jamming, non-uniform conditions through channel/drainage structure reach

2.4 Post-Breakup Conditions Assessment

Alpine facilities roads, pads, and drainage structures were assessed immediately following breakup flooding. A systematic inventory was completed to document the effects of flooding on infrastructure with a focus on erosion. Both sides of the roads were photographed from the ground and the condition of the fill material was described.

2.5 CD5 Pier Scour, Bank Erosion, & Bathymetry

Monitoring described in this section supports additional requirements specific to the CD5 development per USACE Permit POA-2005-1576 Special Condition #1 which requires the MP-AMS (Michael Baker and ABR 2013).

PIER SCOUR

The objective of measuring pier scour was to determine maximum pier scour depths during flood conditions and to determine post-breakup pier scour depths. Pier scour measurements satisfy the requirement for annual pier scour measurements during spring breakup and other large flood events at the Nigliq Bridge and Nigliagvik Bridge (Michael Baker and ABR 2013). Maximum scour occurring under the influence of peak velocities is often greater than the final scour measured after flood recession due to sediment deposition in the scour hole associated with lower flow velocities. For this reason, real-time soundings are collected during peak flood conditions.

The Nigliq Bridge is supported by two bridge abutments, abutments 1 and 9, and seven bridge piers, piers 2 through 8, numbers increasing west to east. Each bridge pier contains five piles labeled A through E, with pile A being the most upstream pile. Piles A and B support the ice breaker, while piles C, D, and E support the bridge. Bridge piers 2 through 5 are located within the main portion of the Nigliq Channel.

Photo 2.10: Installation of real-time pier scour equipment on the Nigliq Bridge; May 15, 2019

The Nigliagvik Bridge is supported by two bridge abutments, abutments 1 and 5, and three bridge piers, piers 2 through 4, numbers increasing west to east. Each bridge pier contains two piles labeled A and B, with pile A being the upstream pile. Bridge piers 3 and 4 are located within the main portion of the Nigliagvik Channel. Appendix E presents a plan view of each bridge (UMIAQ 2019a).

A real-time pier scour monitoring system was installed on bridge piers that are the most susceptible to scour (Photo 2.10). These include piers 2 through 5 of the Nigliq Bridge, installed in the spring of 2016, and pier 3 of the Nigliagvik Bridge, installed in the spring of 2015. Scour depths were measured using a single beam sonar installed inside a steel pipe casing welded to the downstream side of pile E on the Nigliq Bridge and pile B on the Nigliagvik Bridge. Sonar measurements were recorded with an on-site datalogger. The sonar system was programmed to measure depths and record data at 30-minute intervals. A telemetry system, using cellular communication, provided remote access to the sonar measurements. A post-breakup survey of the scour holes at the base of all piles at bridge piers within the main channel of the Nigliq Bridge and Nigliagvik Bridge were also completed and contour plots around the piers are provided in Appendix E.

BANK EROSION

The objective of the bank erosion study is to monitor bank migration upstream and downstream of the Nigliq Bridge and Nigliagvik Bridge. This work supports the requirements for visual inspection and documentation of tundra as well as bank erosion monitoring. A detailed edge-of-bank delineation was surveyed in 2013 to establish preconstruction baseline data. Post-construction bank surveys were performed in 2016, 2017, 2018, and again this year (UMIAQ 2016, 2017c, 2018, 2019). Maximum and average rates of erosion between 2013 and 2018 were determined for each bank.

BATHYMETRY

A. Bathymetry at Bridges

Topographic and bathymetric baseline post-breakup surveys upstream and downstream of the Nigliq Bridge, Nigliagvik Bridge, and Lake L9341 Bridge were performed by UMIAQ in August 2013, prior to construction of the bridges. The pre-construction survey included two transects surveyed upstream and two transects surveyed downstream of the Nigliq Bridge (Transects 8-11), the Nigliagvik Bridge (Transects 25-28), and the Lake L9341 Bridge (Transects 36-39). These transects have been surveyed annually since 2013 (Michael Baker and ABR 2013).

B. Channel Bathymetry

Topographic and bathymetric baseline post-breakup surveys of the Nigliq Channel and Nigliagvik Channel were performed by UMIAQ in August 2013, prior to construction of the bridges. The pre-construction survey included 15 transects surveyed along the Nigliq Channel upstream and downstream of the Nigliq Bridge (Transects 1-15) and 20 transects surveyed at the Nigliagvik Channel upstream and downstream of the Nigliagvik Bridge (Transects 16-35). These transects were surveyed post-construction in 2016 and annually through 2019. After 2019, the transects will be surveyed every five years (Michael Baker and ABR 2013).

2.6 Ice Road Crossings Breakup

Aerial observations of the hydraulic effects of winter ice road crossings during breakup were documented at the following ice road crossings:

- Colville River East Channel at HDD
- Kachemach River
- No Name Creek
- Pineapple Gulch

- Silas Slough
- Slemp Slough
- Tamayayak Channel 1 near coast
- Toolbox Creek

2.7 Real-Time Flood Monitoring Network

The objective of the Real-Time Flood Monitoring (RTFM) Network is to remotely monitor stage and pier scour at select monitoring locations during spring breakup flooding (Table 2.2). The RTFM Network has the following components: remote cameras to monitor stage and river conditions, sensors to monitor stage, barometric pressure and real-time bridge pier scour discussed in Section 2.5, dataloggers and telemetry systems to collect and transmit data, and a host computer to receive the transmitted data (Figure 2.1). The ability to remotely monitor stage and scour helps reduce helicopter traffic in the CRD, allows for round-the-clock monitoring of conditions, and provides an interactive tool for the hydrologic data when helicopter travel is restricted because of weather, maintenance, or other issues. In addition, a network of real-time monitoring stations at critical locations around Alpine infrastructure helps guide facilities operations preparedness, and helps hydrologists deploy resources during peak conditions when critical measurements are required.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Monitoring Location	Gage Station	Real-Time Data					
	 MON1U 	Stage					
Colville River	 MON1C 	River conditions and staff gage measurements via					
	 MON1D 	remote camera images					
Alpine Drinking Water Lakes	• L9312 (G9)	Stage					
Alpine Drinking water Lakes	• L9313 (G10)	Slage					
CD2 Road Swale Bridges	• G3	Stage					
CD4 Road/CD4 Rad	• 618	Stage					
	• 918	Barometric pressure					
CDE Bood	 Nigliq Bridge 	Stage					
	 Nigliagvik Bridge 	Pier scour					

Table 2.2: RTFM Network Stations

Figure 2.1: RTFM Network Schematic

STAGE MONITORING

NIGLIQ & NIGLIAGVIK BRIDGES,

MON1, G18, G3

REMOTE CAMERAS

MON1

Colville River Delta **RTFM NETWORK**

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

REMOTE CAMERAS

Remote camera systems were installed at the MON1 monitoring locations (Photo 2.11). A high-resolution digital camera was programmed to take pictures at 15-minute intervals. The camera collected wide-angle photographs of the Colville River to document conditions and monitor ice jam formation and releases in the MON1 reach. Additionally, the cameras' zoom capabilities allowed hydrologists to remotely read staff gages for validating PT data. This proved extremely valuable during peak stage when hydrologists were unable to land at the MON1 monitoring locations due to helicopter mechanical issues and local subsistence hunting.

Photo 2.11: Remote camera setup at MON1D; April 30, 2019

SENSORS

Pressure transducers were programmed to read and record water levels and barometric pressure at 15minute intervals. The RTFM PTs were installed at the head of the CRD (MON1), along the CD2 and CD4 road (G3 and G18), at the Nigliq and Nigliagvik Bridges (G45 and G46), and at the Alpine drinking water lakes (G9 and G10 [Photo 2.12]). Real-time pier scour sensors were also installed on the Nigliq and Nigliagvik Bridges. Pier scour was measured using single beam sonars (Photo 2.13) at 30-minute intervals.

Photo 2.12: Remote stage monitoring equipment at Lake L9313 (G10); May 15, 2019

Photo 2.13: Pier scour sonar equipment; May 16, 2019

DATALOGGERS & TELEMETRY

Onsite dataloggers were programmed to interface with the PTs and sonars. Data was uploaded to the datalogger via a data cable and stored internally. The dataloggers were programmed to interact with telemetry equipment to transmit data. Data was transmitted using an onsite cellular modem and TCP/IP communication where each cellular modem has a unique static IP address. To conserve power, cellular modems were programmed to power-on every

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

15 minutes for data transmission. Systems were powered with 12v DC batteries and charged with onsite solar panels (Photo 2.14).

Photo 2.14: Field install of telemetry and solar/battery RTFM equipment; April 15, 2019

2.8 Flood & Stage Frequency Analyses

HOST COMPUTER, DATA ACCESS, & NOTIFICATIONS

A host computer monitored the cellular modem IP addresses offsite and received data from the dataloggers once the connection was established. Realtime stage was processed using downloaded stage and barometric pressure data. Real-time stage was periodically compared with field-observed stage data for quality assurance. Real-time stage and pier scour were plotted on graphs and updated in tables as data was received. Alarms were set to notify Alpine operations personnel if stage or pier scour reached the 50- or 200year predicted values at any of the monitoring locations. alarms were triggered, notifications would lf automatically be sent by email and text message to the Michael Baker project manager and Alpine Operations personnel for immediate assessment.

Peak discharge at MON1 is assigned a flood recurrence interval annually based on current design criteria. The flood recurrence interval provides an estimate of the magnitude of annual breakup flooding entering the CRD. A flood recurrence interval was assigned to the peak discharge at MON1 based on the results from the basis of design flood frequency analysis (Michael Baker 2018). Peak stage at select monitoring locations was compared with historical stage data and results from the 2D model and assigned a stage recurrence interval.

3.0BSERVATIONS

3.1 General Climatic Summary

According to cumulative freezing degree-days (CFDD) measured at the National Petroleum Reserve Alaska (NPR-A) tundra monitoring station, the 2018-2019 (September – May) winter was the second warmest on record for the past 18 years (Graph 3.1, ICE 2019).

Graph 3.1: NPR-A N. Tundra Monitoring Station, CFDD, Winters 2002-2019 (ICE 2019)

No North Slope snowpack data is currently available for the 2018-2019 winter season through the Natural Resource Conservation Service, but general observations indicate snowpack was at or above normal levels in the Colville River drainage basin.

Air temperatures were generally higher than average throughout the Colville River drainage during the spring breakup season. At the southern-most, furthest extent of the drainage (at Anaktuvuk Pass in the Brooks Range), a brief warm period in late April and early May saw temperatures reach 45 degrees which initiated runoff in the upper reaches of the watershed. After a short cooling period between May 3 and May 7, the spring warming trend began; high temperatures averaged in the mid 50s throughout the rest of the monitoring period. The spring warming trend in the central Colville River watershed (at Umiat in the Brooks Range foothills) started April 25. This region also experienced a brief cooling period during early May. Daily maximum temperatures began to exceed freezing on May 12 and daily minimum temperatures began to regularly exceed freezing on May 23.

Temperatures for the CRD in the Alpine area are available from the Nuiqsut weather station, located approximately 9 air miles south (upstream) of Alpine facilities. Daily maximum temperatures at Nuiqsut exceeded freezing from April 29 to May 4, followed by a cooler period with sub-freezing temperatures. Daily high temperatures consistently exceeded freezing on May 16 and continued through the breakup monitoring period. Daily minimum temperatures generally remained below freezing through the breakup monitoring period. The leading edge of flowing meltwater in the Colville River arrived at MON1 on May 20, two days before the average arrival date.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Graph 3.2, Graph 3.3, and Graph 3.4 illustrate daily high and low ambient air temperatures recorded in Anaktuvuk Pass, Umiat, and Nuiqsut, respectively, superimposed on the average and record daily highs and lows during the breakup monitoring period (National Oceanic and Atmospheric Administration [NOAA] 2019).

Graph 3.2: Anaktuvuk Pass Daily High and Low Ambient Air Temperatures

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Graph 3.3: Umiat Daily High and Low Ambient Air Temperatures

Graph 3.4: Nuiqsut Daily High and Low Ambient Air Temperatures and MON1 Leading Edge

ConocoPhillips Alaska INTERNATIONAL

3.2 General Breakup Summary

Crew members began reconnaissance flights toward the headwaters of the Colville River drainage on May 18. On May 18, a well-defined leading edge of floodwater in the Colville River was observed approximately 28 RM south (upstream) of MON1 (Photo 3.1). Visible flow was observed within a couple miles upstream of the leading edge. Local melt was also observed around Alpine facilities and in distributary channels.

On May 20, the leading edge of floodwater passed through the MON1 reach. At that time, lifted, intact channel ice was observed in the MON1 reach (Photo 3.2).

Photo 3.1: Approximate leading edge of observed flowing water, looking north (downstream); May 18, 2019

Photo 3.2: Lifted channel ice through the MON1 reach, looking south (upstream); May 20, 2019

On May 21, a 10-mile-long ice jam was observed near Ocean Point with the downstream extent approximately 12 RM south (upstream) of MON1 (Photo 3.3). No substantial backwater was visible and water levels remained below bankfull stage behind the jam.

Another ice jam, approximately 2 miles in length, was observed near the horseshoe bends, about 4 RM south (upstream) of MON1 (Photo 3.4). The leading edge of this ice jam was situated at the furthest upstream extent of intact channel ice. The furthest upstream extent of intact channel ice is referred to hereafter as the "breakup front" and is a common location for ice jam formation. Between the two ice jams, the channel was predominantly clear of ice (Photo 3.5).

Lifted channel ice was observed downstream of the breakup front at the horseshoe bends and throughout the main channels in the CRD. Daily satellite imagery indicated that floodwater from the Nigliq and East Channel had reached the coast and was flowing over top of shorefast sea ice (Photo 3.6). The ice jams had not substantially moved by May 22, although increasing backwater below bankfull stage was observed upstream of Ocean Point, about 14 RM upstream of MON1.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 3.3: Ice jam on the Colville River approximately 12 RM upstream of MON1, looking northeast (downstream); May 21, 2019

Photo 3.4: Full extent of Horseshoe Bend ice jam, including the breakup front, on the Colville River approximately 6 RM upstream of MON1, looking north (downstream); May 21, 2019

Photo 3.5: Open reach between the two ice jams, looking north (downstream); May 21, 2019

Photo 3.6: MODIS imagery of North Slope; May 21, 2019 (Source: National Aeronautics and Space Administration 2019)

Stage continued to rise around the CRD and Alpine facilities on May 23. Aerial observations were limited at this time due to helicopter maintenance. By May 24, the ice jams had converged and progressed to near the Itkillik River confluence, just upstream of MON1. Some backwater flooding was observed in low-lying areas and tributary channels, including the Itkillik River (Photo 3.7). Open channel conditions were observed upstream of the jam. By late evening on May 23, RTFM images revealed the breakup front passing through the MON1 reach, followed by peak stage conditions. Channel ice on the Nigliq Channel was intact but visibly deteriorating. Near Alpine facilities, flow into Nanuq Lake had connected to Lake M9524 and was passing through the Long and Short Swale Bridges.

On the morning of May 25, the progression of ice jams formation and release cleared the MON9 reach of ice. Stage steadily declined in the East Channel but rose in the Nigliq channel and around the Alpine facilities. An ice jam was observed in the East Channel at the Elaktoveach bifurcation downstream of MON9. Floes were stranded at MON9D,

indicating stage had receded (Photo 3.8). Channel ice remained intact throughout the Nigliq channel and stage was near bankfull.

The Nigliq channel at the CD5 bridge and most Alpine facilities experienced peak stage on May 26. Discharge was measured in the Nigliq Channel mid-morning on May 26, after the channel ice cleared. On May 27, the Nigliagvik Channel was conveying flow into the Nigliq Channel as stage in the Nigliq receded and a downstream gradient developed in the Nigliagvik Channel. Stage continued to decrease across the CRD through the rest of the monitoring period. Open water extending to the coast in all distributary channels was confirmed on May 29 (Photo 3.9).

In general, peak stage conditions were observed around the CRD and Alpine facilities from May 24 to May 26. During peak conditions, stage generally remained below bankfull levels, however, many typical hydraulic connections between lakes and channels were established, including the recharge of both Lake L9312 and L9313. Lake L9312 was not connected to floodwater and recharged by local melt only. Overall, ice jamming effects in the CRD were minimal, as was associated backwater and flooding. Further information on drinking water lake recharge at Alpine facilities is found in Section 8.4.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 3.7: Colville River backwater in the Itkillik River, looking northwest; May 24, 2019

Photo 3.8: Stranded ice at MON9D indicating receding stage, looking southeast (upstream); May 25, 2019

Photo 3.9: Open channel in Nigliq Channel to coast, looking north (downstream); May 28, 2019

4. STAGE & DISCHARGE

Table 4.1 contains a summary of peak stage, measured discharge (in cubic ft per second [cfs]), and peak discharge at each gage station.

			Pe	eak Stage	Measured Discharge			Peak Discharge			
Monitoring	Monitoring	Gage	Stage		Discharge Stage ¹		Discharge Stage				
Location	Description	Station	ft	Date & Time	cfs	ft	Date & Time	cfs	ft RPMSI	Date & Time	
			BPMSL		013	BPMSL		013			
Colville River	Opstream of Anaktuvuk & Chandler River Confluences	Umiat ³	56.36	5/24, 11:15pm	118,000	55.48	5/29, 2:30pm	135,000	56.35	5/25, 12:30am	
				CRD Moni	toring Locat	tions	1	l .		1	
Colville		MON1U	16.44	5/24, 6:15pm	Not me	asured hecau	ise of access		16.44		
River	Head of the CRD	MON1C	16.19	5/24, 6:30pm	restrictions			305,000	15.86	5/24, 6:15pm	
Colville			15.99	5/24, 6:45pm					15.69		
River	River Fast Channel		14.20	5/24, 11:00pm				249,000	12.70	5/24, 6:30pm	
East Dis Channel	Distributary	MON2E	2.00	E/26 8:00am							
			3.70	5/20, 8.00am							
Nielie	Niglig Channel	MON20	10.19 9.50	5/25, 5:30pm							
Channel	Distributary	MON22 MON23	7.12	5/26, 10:00am	Se	See Nigliq Bridge Below		See Nigliq Bridge Below			
	,	MON28	2.95	5/26, 6:30am							
		1		Alpine Facilities	Monitoring	Locations					
CD1 Pad &	Lake L9312	G9	8.09	5/23, 7:15pm							
Water		610	<u>ö.12</u>	5/20, 5:158m							
Lakes	CD1 Pad	G1	7.83	5/26, 6:30am							
	Short Swale	G3	7.64	5/25, 10:45pm	244	7.27	5/26 1:00pm	252	7.32	5/25, 4:45pm	
	Bridge	G4	7.49	5/26, 6:45am		7.28			6.97		
	Long Swale Bridge	G4	7.04	5/26 6:45pm	2,795	6.59	5/25 12:15pm	2,998	6.97	5/25, 4:45pm	
		G3	7.64	5/25, 10:45pm	(0	6.84	E/2E 12.4Emm	01	7.32		
CD2 Pad & Road		G4	7.49	5/26, 6:45am	09	6.61	5725, 12:45pm	91	6.97	5/25, 4:45pm	
nodu	Culverts	G6	7.96	5/26, 12:00am	-	No flow obse	erved		Not calculat	ed	
		G12 ⁴	7.91	5/26, 6:30am 5/25, 11:00pm				Not calculated			
		G13 ⁴	7.80	5/26, 3:00am	No flow observed						
	CD2 Pad	G8	Dry								
CD3 Pad & Pipeline	Dinalina Creasings	SAK	7.33	5/26, 6:30am							
	Pipeline Crossings		8.36	5/25, 7:45pm 5/26, 5:00am							
	CD3 Pad	G11	Dry								
		G15 ⁴	8.73	5/26, 4:45am		No flow obse	arved		Not calculat	ed	
	Culverts	G16 ⁴	8.80	5/26, 4:45am							
		G17 G18	10.39	5/25, 5:00pm 5/25, 2:45pm	7	10.38	5/25, 4:30pm	70	10.18	5/25, 3:00pm	
CD4 Pad &		G40	Dry			10.75			<u> </u>		
Road		G41	Dry		No flow observed		Not calculated				
		G42	Dry		No flow observed		Not calculated				
		G43 G19	Dry								
	CD4 Pad	G20 ²	unk	5/25, 5:30pm							
		G30	Dry			No flow obse	erved		Not calculat	ed	
		G31	Dry								
		G34 G35	Dry		No flow observed		Not calculated				
	Culverts	G36	Dry			No flow obco	pryod	Not coloriated			
		G37	Dry								
		\$1 \$1D	unk	water below PT	3	21.08	5/25, 5:45pm		Not calculat	ed	
	Lako L 0222 Bridge	G24 ⁴	8 49	5/29 1.15pm		17.00					
CD5 Road	(CD5 Bridge #1)	G25 ⁴	9.07	5/18, 3:00pm	1	No flow obse	erved		Not calculat	ed	
		G28	9.30	5/25, 3:45pm		<u>7.1</u> 4			9.23		
	Nigliq Bridge	G26	9.16	5/26, 12:15am	37.888	7.02	5/26, 7:00nm	95,000	8.67	5/25 8·00nm	
	(CD5 Bridge #2)	G27	9.10	5/25, 11:45pm		7.01	-	10,000	8.67	0,20, 0.00p	
	Lake 02/11 Pridge	G29 G32	8.63	5/26, 1:30am		0.94	I		ð.3Z	<u> </u>	
	(CD5 Bridge #3)	G33	8.71	5/26, 1:30am	No flow observed			Not calculat	ed		
	Nigliagvik Bridge	G38	9.30	5/26, 5:00am	Not measured because of ice in channel				_		
	(CD5 Bridge #4)	G39	unk	PT malfunction				Not calculated			
Notes					•						
^{1.} Stage prior to	discharge measuremen	nt									
² Peak stage date estimated											
³ Data obtained ⁴ Peak stage fro	I from USGS Umiat gage	e station 158	75000 and	referenced to NAVI	J88 vertical d	atum					
Gray cells indic	ate that measured and c	calculated dis	charge at t	hat location are no	t included wit	hin the scope	of the program				

4.1 Colville River

UMIAT

The USGS Umiat gage station 15875000 is located approximately 90 RM upstream of the CRD and is monitored throughout breakup to help predict the timing of floodwater and flood crests in the CRD. Umiat is upstream of the Chandler and Anaktuvuk River confluences and Umiat gage data does not account for the contribution from these two major tributaries. Because of local ice effects, distance, and streamflow additions between Umiat and the CRD, the magnitude of flooding at Umiat and in the CRD do not necessarily correlate.

The leading edge of floodwater in the Colville River reached Umiat on May 18, based on the initial gage height reporting date. Stage peaked on May 25 at 56.3 ft NAVD88. This is below the National Weather Service established flood stage of 59.0 ft NAVD88. A slightly lower crest of 55.6 ft NAVD88 was recorded on May 29, prior to stage falling for the season.

The peak discharge of 135,000 cfs occurred prior to peak stage, on May 24. Peak annual discharges at this location, with the exception of the lowest year of the 2002 to 2018 reporting period (2017), occur during spring breakup and are affected by snow and ice. These values range from 82,000 cfs in August 2017 to 268,000 cfs in May 2015. USGS stage and discharge data presented in Graph 4.1 and Graph 4.2, respectively, is provisional and subject to revision.

Graph 4.1: Colville River at Umiat Stage (USGS 2019)

Graph 4.2: Colville River at Umiat Discharge (USGS 2019)

HEAD OF THE DELTA

MON1 is located at the head of the Colville River Delta, where all flow is confined to a single channel. Stage and discharge have been monitored at MON1 annually since 1992 and periodically since 1962. This location has the longest historical record of all CRD monitoring locations.

Channel ice remained intact through the MON1 reach (Photo 4.1) until peak discharge and peak stage occurred on May 24. Peak conditions at MON1 occurred when an ice jam (Photo 4.2) and associated backwater released from upstream and progressed through the MON1 reach (Photo 4.3 and Photo 4.4). During peak conditions, floodwater was contained within the banks. The estimated peak discharge was assigned a fair quality rating (Table 2.1) because of the ice influences.

Discharge was not measured at MON1 in 2019 because of helicopter mechanical issues and subsistence hunting activity in the area during peak conditions. Stage and discharge results at MON1 are presented in Graph 4.3. Site specific discharge data and plan and profile drawings are provided in Appendix C.

Photo 4.1: Intact channel ice through MON1 reach just prior to release, looking southwest (upstream); May 24, 2019

Photo 4.2: Ice jam upstream of horseshoe bends upstream of MON1, looking southwest (upstream); May 22, 2019

Photo 4.3: Ice jam release through the MON1 reach the day of peak stage, at MON1U looking east; May 24, 2019

Photo 4.4: Ice jam release through the MON1 reach the day of peak stage, at MON1D looking east; May 24, 2019

Graph 4.3: Colville River at the Head of the Delta Stage & Discharge

4.2 Colville River East Channel

MON9 is located at the Colville HDD pipeline crossing. It has been monitored annually since 2005. Data is collected to estimate the distribution of discharge between the East Channel and Nigliq Channel and to monitor stage and ice affects at the HDD pipeline crossing. MON35 is located at the Helmericks Homestead. It has been monitored since 1999 for stage at the outer extents of the CRD.

Channel ice remained intact in the East Channel until May 25 (Photo 4.5). Peak discharge and peak stage at MON9 and MON9D were the result of an upstream ice jam and associated backwater releasing on May 25 and progressing through the MON9 reach. During peak discharge, large ice floes were observed flowing through the reach via remote field camera images (Photo 4.6). The estimated discharge was assigned a fair quality rating (Table 2.1) due to these influences. Site specific discharge data and plan and profile drawings are provided in Appendix C. Large rafted floes were stranded on the bank at MON9D after the ice jam release through the reach (Photo 4.7).

All stage observations at MON35 were manually recorded by Jim Helmericks. The leading edge of flow in the East Channel passed Helmericks and reached Harrison Bay on May 21. Peak stage at MON35 occurred on May 26 at which time channel ice was still intact. The channel ice began to break up by May 27 (Photo 4.8) and the majority of the ice cleared the MON35 reach on May 28, after which the entire East Channel was open water.

Stage and discharge at MON9 and MON9D and stage at MON35 are presented in Graph 4.4.

Photo 4.5: Intact channel ice in the East Channel just prior to upstream ice jam release, looking northwest (downstream); May 24, 2019

Photo 4.6: Ice jam release moving through MON9 reach and influencing peak discharge, looking east; May 24 2018

Photo 4.7: Rafted ice floes post ice jam release stranded on the bank at MON9D; May 25, 2019

Photo 4.8: Break up of channel ice at MON35/Helmericks Homestead; May 27, 2019

Graph 4.4: Colville River East Channel Stage & Discharge

4.3 Nigliq Channel

MON20, MON22, and MON23 have been monitored intermittently since 1998 and MON28 has been monitored since 1999. Four additional gage stations, G29, G28, G27, and G26, provide site specific data upstream and downstream of the Nigliq Bridge and are discussed in Section 4.4, Nigliq Bridge. Discharge in the Nigliq Channel is measured and calculated at the bridge.

The leading edge of upstream meltwater had progressed past all Nigliq Channel monitoring locations (Photo 4.9) to the coast by May 21. At that time, flow had entered Nanuq Lake but had not yet approached the CD2 road swale bridges. Nigliq Channel ice remained intact as stage rose on May 22 (Photo 4.10). Stage peaked progressively downstream at Nigliq Channel monitoring sites on May 25 and 26. This was influenced by ice jams progressing downstream, forming and flushing out channel ice previously intact at the downstream end of ice jams upon release. By May 26, much of the Nigliq Channel was ice-free open water (Photo 4.11 at MON20). Some floes remained in the vicinity of MON22 (Photo 4.12) and MON23 (Photo 4.13) and channel ice was intact downstream of MON23 to the coast at MON28 (Photo 4.14). Peak conditions at MON28 coincided with the presence of intact channel ice.

Stage at MON20, MON22, MON23, and MON28 is presented in Graph 4.5.

Photo 4.9: Leading edge past MON20 with channel ice, looking southwest (upstream); May 21, 2019

Photo 4.10: Channel ice in the Nigliq Channel at MON22 and hydraulic connection with Nanuq Lake, looking northwest (downstream); May 22, 2019

Photo 4.11: Open channel at MON20 the day after peak stage, looking north (downstream); May 26, 2019

Photo 4.12: Post-peak remnant floes at MON22 soon after peak, looking northwest (downstream); May 26, 2019

Photo 4.13: Post-peak remnant floes at MON23 soon after peak, looking northwest (downstream); May 26, 2019

Photo 4.14: Channel ice presence in the Nigliq at MON28, looking northwest (downstream); May 26, 2019

Graph 4.5: Nigliq Channel Stage

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

4.4 Alpine Facilities

Conditions in active channels surrounding Alpine facilities, including the Sakoonang, Tamayayak, and Ulamnigiaq channels to the east/northeast and the Nigliq Channel to the west, dictate the progression of the floodwater around facilities. Floodwaters in the Nigliq and Sakoonang channels typically overtop the banks and facilitate the annual recharge of many lakes and paleochannels through overbank inundation. The extent of inundation is dependent on topography, vegetation, WSEs, and local ice and ice jam influences. Lakes L9312 and L9313 (G9 and G10 monitoring stations) were recharged above bankfull levels, and recorded spring peak stage of 8.09 ft and 8.72 ft-BPMSL, respectively. Further information on drinking water lake recharge at Alpine facilities is found in Section 8.4.

Drainage structures are kept free of ice, snow accumulation, and blockages through regular maintenance by CPAI. Plywood covers are installed at the culvert inlets and outlets during the winter and removed prior to breakup. Snow is also mechanically removed from the immediate upstream and downstream areas of all culverts and the CD2 swale bridges prior to breakup flooding. Snow was cleared from the entrances and exits of CD2 swale bridges prior to the arrival of floodwater, though drifted snow remained immediately beneath the swale bridges at the onset of breakup flow (Photo 4.15 and Photo 4.16).

Culverts were monitored to assess flow conditions and culvert performance. All culvert covers were removed prior to the arrival of floodwater. Snow and ice were cleared at all culvert inlets prior to breakup. Limited flow restrictions were observed related to piles of removed snow and ice in and around culvert ends. Culvert locations and proximity to gages are shown in Appendix A. Detailed culvert discharge measurements, calculations, and performance summary field notes are provided in Appendix C.

Photo 4.15: Drifted snow upstream of the CD2 road short swale bridge, looking west; May 25, 2019

Photo 4.16: Drifted snow downstream of the CD2 short swale bridge, looking west; May 25, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

CD1 PAD & LAKES L9312 & L9313

Gage station G1 is situated along the east end of the CD1 pad to monitor stage in the adjacent Sakoonang Channel. Spring breakup stage data and observations have been collected at gage G1 since 2000. Peak stage at G1 occurred under the influence of ice in the channel (Photo 4.17), which remained within its banks in the vicinity of the CD1 pad. Stage at gage G1 is presented in Graph 4.6.

Recharge at drinking water source Lake L9312 (gage G9) and Lake L9313 (gage G10) has been monitored annually since 1998. Overbank flooding from the Sakoonang Channel is the primary recharge mechanism for both lakes. Snowmelt from within each drainage basin, however, also contributes to recharge. Lake L9313 recharged from overbank flow this spring (Photo 4.18). Overbank flow did not recharge Lake L9312 this year (Photo 4.19), however PT data indicates that this lake did recharge above the bankfull elevation from snowmelt. Stage at gage G9 (L9313) and gage G10 (L9313) is presented in Graph 4.7.

Photo 4.17: Peak stage at G1 under the influence of channel ice in the Sakoonang, looking east; May 26, 2019

Graph 4.6: CD1 Pad (Gage G1) Stage

Photo 4.18: Lake L9313 being recharged from overland flow, looking east; May 26 2019

Photo 4.19: Lake L9312 (in background) hydraulically isolated from major water bodies; May 26, 2019

Graph 4.7: Lakes L9312 (Gage G9) and L9313 (Gage G10) Stage

CD2 ROAD & PAD

Stage data and observations of breakup processes have been collected along the CD2 road and pad intermittently since 1998.

Floodwater along the CD2 road was only present around gages G3/G4. Monitoring locations G6/G7, G12/G13, and G8 were either dry or only had local melt. The long swale bridge, the short swale bridge, and four adjacent culverts conveyed flow from the Nigliq Channel (via Nanuq Lake then Lake M9524) across the CD2 road north toward lakes L9316 and M9933 (Photo 4.20). Peak stage occurred at G3 and G4 on May 25 and May 26. Discharge was measured at the long swale bridge and area culverts on May 25, within a few hours of peak; discharge was measured at the short swale bridge on May 26.

The measured average velocity at the long swale bridge on May 25 was 1.4 ft per second (fps) and the highest depth-averaged velocity within a single section was 2.8 fps. An excavator removed ice floes that had accumulated on the upstream side of the bridge prior to the discharge measurement (Photo 4.21). Additional floes accumulated during the measurement, producing small eddies that affected velocities at the bridge. Some drifted snow was present at the downstream side of the east abutment as well as at the upstream side of the west abutment. These factors influenced the rating of the quality of the measurement as "fair."

The measured average velocity through the short swale bridge on May 26 was 0.70 fps and the highest depthaveraged velocity within a single section was 0.99 fps. Flow had cleared the snow through the majority of the bridge opening at the time of the measurement, though some remained at the downstream side of the west abutment (Photo 4.22). This factor influenced the rating of the quality of the measurement as "good."

Photo 4.20: Flood extents along the CD2 road during peak stage conditions, looking north (downstream); May 26, 2019

Photo 4.21: Excavator removing accumulated ice floes from the long swale bridge prior to discharge measurement, looking east; May 25, 2019

Photo 4.22: Limited snow on the downstream side of the short swale bridge affecting flow during discharge measurement, looking southwest (upstream); May 26, 2019

All culverts along the CD2 road in the presence of floodwater performed as designed (Photo 4.23 and Photo 4.24). Peak discharge through area drainage structures occurred on May 25 during peak stage differential across the CD2 road as measured at gages G3 and G4. This is consistent with the conditions under which peak discharge typically occurs. Peak discharge at the CD2 road bridges and culverts was calculated using the measured velocity and adjusting the hydraulic depth for peak conditions.

Photo 4.23: Culvert CD2-24 passing flow as designed, south (upstream) end, looking east; May 25, 2019

Photo 4.24: Culvert CD2-24 passing flow as designed, north (downstream) end, looking north; May 25, 2019

Stage and total discharge at CD2 bridges and culverts are provided in Graph 4.8. Measured discharge and peak discharge at culverts conveying flow is summarized in Table 4.2 and

Table 4.3, respectively. Historical measured and peak discharge at the long and short swale bridges are summarized in Section 8.0. A summary of the CD2 road swale bridge discharge measurement is presented in Appendix C.

Graph 4.8: CD2 Road Bride	es and Culverts (G	Gades G3 & G4)	Stage & Discharge

Culvert	Measurement Date & Time	Total Depth of Flow Measurement Depth ¹		Flow Depth ²	Measured Velocity	Calculated Discharge ³	Total Discharge	
		(ft)	(ft)		(ft/s)	(cfs)	(cfs)	
CD2-21	5/25 12:33 PM	1.4	0.6	Less than Half Full	2.2	8.8		
CD2-22	5/25 12:41 PM	1.7	0.7	Less than Half Full	3.0	15.1	60	
CD2-23	5/25 12:52 PM	2.0	0.8	More than Half Full	3.6	22.3	09	
CD2-24	5/25 12:59 PM	2.2	0.9	More than Half Full	3.3	23.1		
Notes:								

Table 4.2: CD2 Road Culverts	(Gages G3 & G4	I) Measured Discharge
------------------------------	----------------	-----------------------

2019

1. Measurement taken at 0.6 of total depth of flow.

2. Culverts are 48 inches in diameter.

3. Negative values indicate flow moving north to south through culvert.

Culvert	Calculated Date & Time	WSE Differential (ft) ¹	Total Depth of Flow (ft)	Flow Depth ²	Calculated Velocity (ft/s)	Calculated Discharge (cfs)	Total Discharge (cfs)				
CD2-21	5/25 4:45 PM		1.8	Less than Half Full	3.0	16					
CD2-22	5/25 4:45 PM	0.35	1.8	Less than Half Full	3.3	18	01				
CD2-23	5/25 4:45 PM	0.33	2.5	More than Half Full	3.4	27	,,				
CD2-24	5/25 4:45 PM		2.7	More than Half Full	3.3	30					
Notes:											
2. Culverts a	 Calculated during peak stage differential between G3 (upstream) and G4 (downstream). Culverts are 48 inches in diameter. 										

Table 4.3: CD2 Road Culverts (Gages G3 & G4) Peak Discharge

CD3 PAD & PIPELINE

Stage data and observations of breakup processes have been collected at the CD3 pad and along the pipeline intermittently since 2000.

Gage G11 at the CD3 pad remained dry throughout breakup. Peak stage in the Sakoonang Channel (CD3 Pipe Bridge #1) occurred under the influence of intact channel ice (Photo 4.25). Peak stage in the Tamayayak Channel (CD3 Pipe Bridge #2) occurred during the presence of channel ice broken into floes (Photo 4.26). Peak stage in the Ulamnigiaq Channel (CD3 Pipe Bridge #3) occurred during open channel conditions in the vicinity (Photo 4.27). Open channel conditions at all CD3 pipeline crossing locations were observed by June 4. Stage at the Sakoonang, Tamayayak, and Ulamnigiaq gages is presented in Graph 4.9.

Photo 4.25: Sakoonang Channel the day of peak stage at SAK, looking east (upstream); May 26, 2019

Photo 4.26: Tamayayak Channel the day prior to peak stage at TAM, looking west (downstream); May 26, 2019

Photo 4.27: Ulamnigiaq Channel the day of peak stage at ULAM, looking east (upstream); May 26, 2019

Graph 4.9: CD3 Pipelines Stage

CD4 ROAD & PAD

Stage data and observations of breakup processes have been collected at the CD4 road and pad intermittently since 2005.

Initial melt was observed at road gages G15/G16 on March 26 (Photo 4.28 and Photo 4.29). The PT stage indicates that connectivity through the road culverts at the G15/G16 gages. These drainage structures, however, were not accessible because of ice and snow blockages. Discharge was not measured, and peak discharge was not calculated for culverts at this location.

Initial melt was observed at road gages G17 and G18 on May 25. Stage increased sufficiently to cause a brief hydraulic connection through the culverts on this day which was, based on the lack of evidence of overland flooding in the area (Photo 4.30), attributed to local melt. Discharge was measured at culverts CD4-25, 26, 27, and 28 on May 25 (Photo 4.31), which performed as designed to equalize flow across the CD4 road. Peak discharge was calculated for these culverts. The timing of peak discharge, however, nearly coincides with the measured discharge, suggesting that the peak value is too high. This is likely influenced by ice and snow inside the culverts and variation in the culvert invert elevations since the date of last survey (UMIAQ 2017).

Road gages G40, G41, G42, and G43 remained dry throughout monitoring.

At the CD4 pad, gage G19 remained dry. No PT was installed on the G20 gage and no HWM was observed. Peak stage timing at G20, however is estimated to have coincided between the MON20 and G28 peaks, based on proximity of those sites in the Nigliq Channel.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Stage and discharge, as applicable, at CD4 road gages G15/G16, G17/G18, and CD4 pad gages G19/G20 are provided in Graph 4.10, Graph 4.11, and Graph 4.12. Measured and peak discharge at G17/G18 culverts conveying flow is summarized in Table 4.4 and Table 4.5. Additional culvert discharge data is provided in Appendix C.

Photo 4.28: Peak stage at gage G16, looking north; May 26, 2019

Photo 4.29: Peak stage at gage G15, looking north; May 26, 2019

Photo 4.30: Lack of evidence of overland flooding at CD4 road near gages G17/G18, looking north; May 26, 2019

Photo 4.31: Local melt at CD4 road culverts near gages G17/G18; May 25, 2019

Graph 4.10: CD4 Road Culverts (Gages G15 & G16) Stage

Graph 4.11: CD4 Road Culverts (Gages G17 & G18) Stage & Discharge

ConocoPhillips Alaska INTERNATIONAL

Graph 4.12: CD4 Pad (Gages G19 & G20) Stage

Table 4.4: CD4 Road Culverts ((Gages G17 & G18)	Measured Discharge
--------------------------------	-------------------	---------------------------

Culvert	Measurement Date & Time	Total Depth of Flow (ft)	Measurement Depth ¹ (ft)	Flow Depth ²	Measured Velocity (ft/s)	Calculated Discharge ³ (cfs)	Total Discharge (cfs)	
CD4-26	5/25 4:31 PM	0.5	0.2	Less than Half Full	1.6	1.4		
CD4-27	5/25 4:28 PM	0.9	0.4	Less than Half Full	1.6	3.5	6.9	
CD4-28	5/25 4:21 PM	0.6	0.2	Less than Half Full	1.7	2.0		
Notes:		hatal dauth of f						

1. Measurement taken at 0.6 of total depth of flow.

2. Culverts are 48 inches in diameter.

3. Negative values indicate flow moving north to south through culvert.

				· · ·	=	-				
Culvert	Calculated Date & Time	WSE Differential (ft) ¹	Total Depth of Flow (ft)	Flow Depth ²	Calculated Velocity (ft/s)	Calculated Discharge (cfs)	Total Discharge (cfs)			
CD4-26	5/25 3:00 PM		1.4	Less than Half Full	5.7	22				
CD4-27	5/25 3:00 PM	0.96	1.5	Less than Half Full	5.9	24	69			
CD4-28	5/25 3:00 PM		1.4	Less than Half Full	5.7	22				
Notes: 1. Calculated during peak stage differential between G18 (upstream) and G17 (downstream). 2. Culverts are 48 inches in diameter										

Table 4.5: CD4 Road Culverts (Gages G17 & G18) Peak Discharge

CD5 ROAD

Stage data and observations of breakup processes have been collected along the CD5 road since 2009. The CRD floodwater remained within channels and no overbank flooding was observed along the CD5 road.

C. Lake L9323 Bridge

The CD5 Road Bridge #1 crosses a swale at the north/downstream end of the western lobe of Lake L9323. Lake L9323 can become hydraulically connected to the Nigliq Channel (via Tapped Lake and north of the Lake L9323 Bridge) and/or the Sakoonang Channel (via a low-lying area crossed by the Alpine Sales Pipeline and the CD4 road) during periods of high water. Lake L9323 also becomes hydraulically connected to adjacent water bodies through the CD4 road culverts at the northern/downstream and southern/upstream ends of the eastern lobe. Gage G24 is south/upstream and gage G25 is north/downstream of the bridge.

The Nigliq Channel did not hydraulically connect to Lake L9323 (Photo 4.32), therefore no flow was conveyed through the Lake L9323 Bridge. Aside from brief and limited connections of the eastern lobe of the lake to Lake M9525 through the CD4 road culverts, Lake L9323 recharge was limited to meltwater within the lake basin.

Stage at G25 peaked prior to G24. A hydraulic connection through the bridge was not observed or recorded in the PT data. Stage data suggests meltwater was locally isolated upstream and downstream of the bridge as well as between the western and eastern lobes of Lake L9323 throughout the spring breakup monitoring period.

Lake L9323 bridge stage data is provided in Graph 4.13. Stage data at G17 and G16, near the northern and southern ends, respectively, of the eastern lobe of the lake, are provided for reference. The graph shows stage above the PTs only; gaps in data indicate stage dropped below the PTs.

Photo 4.32: No hydraulic connection through Lake L9323 bridge during peak conditions at Alpine facilities, looking northeast (upstream); May 26, 2019

Graph 4.13: Lake L9323 Bridge (Gages G24 & G25) Stage

D. Nigliq Bridge

The leading edge of floodwater in the Nigliq Channel passed under the bridge on May 21. Channel ice remained intact through the reach (Photo 4.33) until cleared by the progression of ice jamming and release through the bridge on May 25 (Photo 4.34 and Photo 4.35). Stage through the reach peaked after the channel ice moved downstream (Photo 4.36), potentially the result of backwater created by jams further downstream. Some floes remained caught or grounded on the upstream side of the bridge on May 26 (Photo 4.37).

Discharge was measured on May 26 downstream of the Nigliq Bridge. At the time of the measurement, large pans were still situated upstream of the bridge but the channel, where the measurement was performed, was mostly clear of snow and ice and conditions were considered steady and uniform (Photo 4.38). The average velocity was 2.57 fps. The quality of the measurement was classified as good. Indirect discharge calculated at the time of direct measurement was 0.67 percent higher than the measured discharge.

Peak discharge occurred on the evening of May 25, after channel ice had cleared the bridge opening. Some floes remained and stage was likely influenced by backwater resulting from ice jamming downstream. Peak discharge was assigned a fair quality rating (Table 2.1) because of these influences.

Nigliq Bridge stage and discharge data is provided in Graph 4.13. A summary of the discharge measurement, peak discharge calculation methods, and plan and profile drawings are presented in Appendix C.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo 4.33: Channel ice at Nigliq Bridge, looking south (upstream); May 22, 2019

Photo 4.34: Channel ice intact at Nigliq Bridge at 7:30pm, looking east; May 25, 2019

Photo 4.35: Channel ice being broken and pushed downstream at 7:45pm by upstream ice jam release, looking east; May 25, 2019 Photo 4.36: Peak conditions at the Nigliq Bridge, looking east; May 26, 2019

Photo 4.37: Floes caught or grounded upstream of the Nigliq Bridge, looking north (downstream); May 26, 2019

Photo 4.38: Measuring discharge downstream from the Nigliq Bridge, looking south; May 26, 2019

Graph 4.14: Nigliq Bridge (Gages G26, G27, G28, and G29) Stage & Discharge

E. Lake L9341 Bridge

The CD5 Road Bridge #3 crosses Lake L9341, which is the downstream-most water body in a series of lakes formed through a paleochannel of the Nigliq Channel. This paleochannel can become an active channel during periods of high water. During lower stage breakup events, Lake L9341 only experiences backwater from the Nigliq Channel at its northern end. Gage G32 is south (upstream) and gage G33 is north (downstream) of the bridge.

Competent ice was present and visible throughout the paleochannel including at the Lake L9341 surface throughout breakup (Photo 4.39) including during peak conditions. Peak breakup stage at the Lake L9341 bridge was the result of backwater from the Nigliq Channel (Photo 4.40). Nigliq Channel water levels were not sufficient to enter the upstream end of the paleochannel; therefore, no flow was observed through the Lake L9341 bridge.

Lake L9341 Bridge stage data is provided in Graph 4.15.

Photo 4.39: Competent ice in Lake L9341 as breakup initiates, looking south; May 22, 2019

Photo 4.40: Nigliq Channel backwater influence at the north end of Lake L9341 the day of peak stage, looking southeast (downstream); May 26, 2019

Graph 4.15: Lake L9341 Bridge (Gages G32 and G33) Stage

F. Nigliagvik Bridge

The CD5 Road Bridge #4 crosses the Nigliagvik Channel, which is an anabranch of the Nigliq Channel. The Nigliagvik Channel diverges from the Nigliq Channel approximately 4 RM upstream of the Nigliq bridge and 5.5 RM upstream of the Nigliagvik bridge; it converges with the Nigliq Channel approximately 2 RM downstream of each bridge. The Nigliagvik Channel is typically hydraulically connected throughout its length with the Nigliq Channel during the open water season. During spring breakup, backwater from the Nigliq Channel typically reaches the Nigliagvik Bridge prior to downstream flow from the south. The backwater flow typically meets downstream flow at some location along the channel. During the lowest spring flood events however, downstream flow has been observed not progressing far enough to integrate with backwater flow. Channel ice is typically present at the peak of lower spring flood events because flow is not enough to move floes downstream. Gage G38 is south (upstream) and gage G39 is north (downstream) of the bridge.

The PT at gage G39 malfunctioned and data recovered was inaccurate. Gage readings show that the water surface gradient under the bridge was negative, indicating backwater flow, in the period leading up to peak conditions. On May 26, the peak water surface elevations recorded at the G38 and G39 gage sites indicated a slight downstream gradient was established through the bridge though still largely influenced by backwater flow from the Nigliq Channel. By May 28, the gradient had increased, indicating upstream to downstream flow was well established.

Channel ice was present upstream of the bridge throughout breakup (Photo 4.41) including during peak conditions (Photo 4.42) and floes remained in the vicinity of the bridge after peak. This ice prevented measuring discharge during peak conditions. Peak discharge could not be calculated due to a lack of data from the equipment malfunction.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Nigliagvik Bridge stage data is provided in Graph 4.16. Plan and profile drawings at the Nigliagvik Bridge are presented in Appendix C.

Photo 4.41: Conditions in the Nigliagvik Channel, looking southwest (upstream); May 22, 2019

Photo 4.42: Nigliagvik Channel one day prior to peak stage, looking west; May 25, 2019

Graph 4.16: Nigliagvik Bridge (Gages G38 & G39) Stage

G. Culverts

The CD5 culverts east of the Nigliagvik Channel convey overbank floodwater from the Nigliq and Nigliagvik Channels during large flood events or just equalize local meltwater across the CD5 road during low flood events. The CD5 culverts west of the Nigliagvik Channel are topographically isolated from CRD flooding. Lacking major channels in the vicinity, culverts in this region allow hydraulic equalization of meltwater between lakes, swales, and/or paleochannels.

Flow through CD5 road culverts east of the Nigliagvik was limited to the equalization of local melt water. Water levels at gages G30/G31, gages G34/G35, and gages G36/G37 were below PT elevation throughout breakup; these gages only saw ponding of local meltwater.

Stage remained below the PT elevation at gages S1/S1D throughout breakup. Flow was observed (Photo 4.43) and measured at two culverts along the CD5 road west of the Nigliagvik Channel twice during breakup monitoring. Peak discharge was not calculated for either location; there are no gages at the CD5-04 vicinity and stage at S1/S1D was too low for PT recordings at the CD5-07 vicinity. Gages S1/S1D stage and discharge data is provided in Graph 4.17. Measured discharge at CD5 road culverts conveying flow is summarized in Table 4.4. Additional culvert discharge data is provided in Appendix C.

Photo 4.43: South to north (downstream) flow through culverts at S1/S1D gages, looking south; May 25, 2019

Photo 4.44: South to north (downstream) flow through culverts at S1/S1D gages, looking north; May 25, 2019

Graph 4.17: CD5 Road Culverts (Gages S1 and S1D) Stage and Discharge

Culvert	Measurement Date & Time	Total Depth of Flow	Measurement Depth ¹	Flow Depth ²	Measured Velocity	Calculated Discharge ³	Total Discharge
		(ft)	(ft)		(ft/s)	(cfs)	(cfs)
CD5-04	5/25 5:53 PM	1.3	0.5	Less than Half Full	3.4	12	12
CD5-07	5/25 5:46 PM	1.0	0.4	Less than Half Full	1.7	3	3
CD5-04	5/28 9:59 AM	1.3	0.5	Less than Half Full	2.7	10	10
CD5-07	5/28 9:50 AM	0.8	0.3	Less than Half Full	0.8	1	1
Noto							

Table 4.6: CD5 Road Culverts (Gag	es S1 and S1D) Measured Discharge
-----------------------------------	-----------------------------------

1. Measurement taken at 0.6 of total depth of flow.

2. Culvert CD5-04 is 48 inches in diameter; culvert CD5-07 is 24 inches in diameter.

3. Negative values indicate flow moving north to south through culvert.

4.5 Peak Discharge Distribution

Alaska INTERNATIONAL

The distribution of peak discharge between the East Channel and Nigliq Channel bifurcations is presented in Figure 4.1. Each section of the pie graph is represented by the location's peak discharge; however, peak discharge did not occur at the same time and date for each location. Combined peak discharges in the East Channel and the Nigliq Channel were 11% greater than the peak discharge calculated for the Colville River at the head of the CRD/MON1 (Figure 4.2). Flow through minor channels downstream of MON1 not accounted for at MON9 or the Nigliq Bridge is negligible.

The discharge quantity downstream of a location is typically larger than the discharge upstream because the distance between provides for a larger drainage area to contribute runoff, assuming no losses occur via distributary channels, etc. However, because losses between MON1 and the Nigliq Bridge/MON9 were negligible, it is not likely that the actual combined peak discharge in the Colville East Channel and the Nigliq Channel would be as large as 11% greater that the peak discharge at the head of the CRD. Timing, storage and attenuation contribute to the overestimate, as do the errors associated with indirect methods of calculating peak discharge at each location, which are influenced by channel ice and ice jam events.

Figure 4.1: Peak Discharge Distribution in Colville East Channel and Nigliq Channel

5. POST-BREAKUP CONDITIONS ASSESSMENT

Alpine road and pads were inspected for erosion between June 3 and June 4. Photo 5.1 through Photo 5.4 show major drainage structures that passed breakup flow as stage is subsiding. No discernable erosion attributable to 2019 breakup flooding was observed during aerial and ground reconnaissance of the CD2, CD4, and CD5 roads. Floodwaters did not reach CD5 bridge abutments or the CD5 road within the CRD. Washlines from 2015 spring breakup, which was the largest historical flood event to impact Alpine facilities, remain evident along portions of the CD2, CD4, and CD5 roads. There were no signs of sloughing or undermining at drainage structures. Additional photo documentation of erosion surveys and breakup conditions along the Alpine facilities roads and pads are shown in Appendix D.

Photo 5.1: CD2 road long swale bridge as breakup ebbs, looking north; May 28, 2019

Photo 5.2: CD2 road short swale bridge as breakup ebbs, looking north; May 28, 2019

Photo 5.3: CD5 road Nigliq Bridge #2 as breakup ebbs, looking south (upstream); May 29, 2019

Photo 5.4: CD5 road Nigliagvik Bridge #4 as breakup ebbs, looking south (upstream); May 29, 2019

6. CD5 PIER SCOUR, BANK EROSION, & BATHYMETRY

6.1 Pier Scour

Post-breakup pier scour elevations that encompass all piles in each pier group were measured by UMIAQ in August 2019. Post-breakup contour plots around the piers and within the main channel of the Nigliq Bridge and Nigliagvik Bridge are provided in Appendix E (UMIAQ 2019a).

NIGLIQ BRIDGE

The minimum post-breakup scour elevation (-30.2 ft BPMSL at pier 4, pile D) is 1.3 ft below the 50-year design scour elevation and 2.8 ft above the 200-year scour elevation. A comparison of design and observed scour elevations are presented in Table 6.1. Real-time pier scour at piers 2 through 5 and corresponding WSEs during spring breakup monitoring are presented in Graph 6.1 through Graph 6.4. Real-time pier scour measurements indicated little to no active scour during peak conditions. The scatter in sonar measurements during real-time monitoring at some locations are likely attributed to a high concentration of near-bed sediments suspended in turbulence associated with eddies converging on the downstream side of the pier. In these cases, the lower readings are interpreted as the true bed elevations.

Nigliq Bridge Pier Scour										
Du	uring Breakup 2019	Elevation (ft-BPMSL) ^{1,2}								
Pier 2	Pile E	-14.7								
Pier 3	Pile E	-23.9								
Pier 4	Pile E	-30.6								
Pier 5	Pile E	-20.9								
P	ost-Breakup 2019	Elevation (ft-BPMSL) ³								
Pier 2	Pile A on northeast side	-21.5								
Pier 3	Pile C on northwest side	-25.0								
Pier 4	Pile D on south side	-30.2								
Pier 5 Pile E on north side		-18.3								
	Design 2013	Elevation (ft-BPMSL) ^{4,5}								
50 year	Pier 2-6	-28.9								
50-year	Pier 7-8	-7.1								
200_vear	Pier 2-6	-33.0								
200-year	Pier 7-8	-16.4								
Notes: ¹ Minimum chann ² Real-time scour ³ Minimum chann ⁴ Design values p ⁵ Elevations based	Pier 7-8 -16.4 Notes: 1 1Minimum channel bed elevations recorded by real-time scour system in May and June 2019. 2Real-time scour measurements at downstream side of downstream pile. 3Minimum channel bed elevations recorded by LCMF in August 2019. 4Design values presented in PND 2013.									

Table 6.1: Nigliq Bridge Comparison of Design and Observed Pier Scour Elevations

Graph 6.1: Nigliq Bridge Pier 2 (Pile E) Real-Time Scour Elevations

Graph 6.2: Nigliq Bridge Pier 3 (Pile E) Real-Time Scour Elevations

Michael Baker

ConocoPhillips

Alaska

ConocoPhillips

Alaska

Michael Baker

INTERNATIONAL

Graph 6.3: Nigliq Bridge Pier 4 (Pile E) Real-Time Scour Elevations

Graph 6.4: Nigliq Bridge Pier 5 (Pile E) Real-Time Scour Elevations

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

NIGLIAGVIK BRIDGE

The minimum post-breakup scour elevation (-5.7 ft BPMSL at pier 4, pile B) is 8.5 ft above the 50-year design scour elevation and 16.1 ft above the 200-year scour elevation. A comparison of design and observed scour elevations are presented in Table 6.2. Real-time pier scour at pier 3 and corresponding WSEs during spring breakup monitoring is presented in Graph 6.1. Real-time pier scour measurements indicated little to no active scour during peak conditions.

Table 6.2: Nigliagvik Bridge Comparison of Design and Observed Pier Scour Elevations

Nigliagvik Bridge Pier Scour										
During	J Breakup 2019	Elevation (ft-BPMSL) ¹								
Pier 3	Pile B on north side	-3.2								
Post-Breakup 2019		Elevation (ft-BPMSL) ¹								
Pier 3	Pile A on north side	-5.0								
Pier 4	Pile B on North side	-5.7								
De	esign 2013	Elevation (ft-BPMSL) ^{2,3}								
50-year	Pier 3-4	-14.2								
200-year	Pier 3-4	-21.8								
Netes										

Notes:

¹Minimum channel bed elevations recorded by LCMF in August 2019 ²Design values presented in PND 2013

³Elevations based on LCMF 2008 survey

Graph 6.5: Nigliagvik Bridge Pier 3 (Pile B) Real-Time Scour Elevations

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

6.2 Bank Erosion

Site conditions during the bank erosion survey at the Nigliq Bridge and Nigliagvik Bridge are presented in Photo 6.1 through Photo 6.4. Maximum incremental and cumulative erosion at the Nigliq Bridge and Nigliagvik Bridge and maximum incremental, maximum cumulative, and average erosion along the top of bank, upstream and downstream of the bridges, is presented in Table 6.3. Bank erosion tabulated data is presented in Appendix E (UMIAQ 2019b).

Photo 6.1: West bank of the Nigliq Channel near the Nigliq Bridge, looking south (upstream); August 13, 2019

Photo 6.2: East bank of the Nigliq Channel near the Nigliq Bridge, looking northwest; August 13, 2019

Photo 6.3: West bank of the Nigliagvik Channel near the Nigliagvik Bridge, looking north (downstream); August 13, 2019

Photo 6.4: East bank of the Nigliagvik Channel, looking north (downstream); August 13, 2019

			Nigliq Channel						Nigliagvik Channel				
		W	est Bank		E	ast Bank		West Bank			East Bank		
		Station ¹ (STA)	Distance (ft)	Rate (ft/yr)	Station ¹ (STA)	Distance (ft)	Rate (ft/yr)	Station ¹ (STA)	Distance (ft)	Rate (ft/yr)	Station ¹ (STA)	Distance (ft)	Rate (ft/yr)
Bridge Stations ²	Maximum Incremental Erosion (2018-2019)	12+00	2.7		None	None		4+70	2.4		5+23	0.2	
	Maximum Cumulative Erosion (2013-2019)	12+00	12.0	0.1	14+00	4.2	0.7	5+00	20.9	3.5	5+23	1.5	0.3
All Stations	Maximum Incremental Erosion ³ (2018-2019)	1+00	9.0	-	None	None	1	7+00	5.6	I	7+00	0.2	I
	Maximum Cumulative Erosion ³ (2013-2019)	0+00	35.6	5.9	12+00	7.5	1.3	0+00	8.9	1.5	4+00	7.2	1.2
	Average Cumulative Erosion (2013-2019)	All		0.7	All		0.1	All		1.2	All		0.1
Note ^{1.} Sta	es: tioning begins upstream of t	oridge											

Table 6.3: Nigliq Channel and Nigliagvik Channel Bank Erosion

² Nigliq Bridge Stations 10+00 through 13+00 on West Bank and 13+00 through 15+00 on East Bank. Nigliagvik Bridge Stations 4+00 through 6+00 on both banks

^{3.} Excludes bridge transects

6.3 Bathymetry

BATHYMETRY AT BRIDGES

The 2019 survey results at each CD5 bridge location were compared with the survey results from 2013-2018 to obtain maximum incremental scour and deposition between 2019 and 2018, and maximum cumulative scour and deposition between 2019 and 2013 (Table 6.4). Transect profiles, bathymetric cross-sections, and tabulated data are provided in Appendix E (UMIAQ 2019c).

	I	Niglig Bridge			Lake L9341 Bridge			Nigliagvik Bridge		
	Depth (ft)	Station (STA)	Transect	Depth (ft)	Station (STA)	Transect	Depth (ft)	Station (STA)	Transect	
Maximum Incremental Scour (2018-2019)	2.9	6+79	9	1.3	1+89	36	2.1	2+19	26	
Maximum Cumulative Scour (2013-2019)	11.9	2+67	10	1.3	3+90	36	3.4	1+00	25	
Maximum Incremental Deposition (2018-2019)	4.9	8+33	9	2.5	2+20	36	1.6	1+29	25	
Maximum Cumulative Deposition (2013-2019)	6.8	8+58	9	0.9	2+95	36	3.4	0+85	26	

CHANNEL BATHYMETRY

The 2019 survey results at Nigliq Channel and Nigliagvik Channel were compared with the 2013, 2016, 2017 and 2018 survey results to obtain maximum incremental scour and deposition between 2019 and 2018, and maximum cumulative scour and deposition between 2019 and 2013 (Table 6.5). Transect profiles, bathymetric cross-sections, and tabulated data are provided in Appendix E (UMIAQ 2019c).

Table 6.5: Nigliq Channel & Nigliagvik Channel Scour & Deposition

	N	igliq Channel		Nigliagvik Channel			
	Depth (ft)	Station (STA)	Transect	Depth (ft)	Station (STA)	Transect	
Maximum Incremental Scour (2018-2019)	12.5	20+10	6	3.9	4+79	32	
Maximum Cumulative Scour (2013-2019)	21.0	39+38	13	4.3	4+59	33	
Maximum Incremental Deposition (2018-2019)	4.9	8+33	9	8.1	1+91	16	
Maximum Cumulative Deposition (2013-2019)	10.7	4+94	11	7.4	1+91	16	

7. ICE ROAD CROSSINGS BREAKUP

Ice roads are constructed annually for ground transportation of supplies and equipment to Alpine facilities. Aerial surveys were conducted during spring breakup to observe and document the progression of melting of the ice road crossings. To facilitate melt and the progression of breakup flooding, ice road crossings are mechanically slotted at the conclusion of the winter season.

In general, ice road crossings melted at a similar rate as channel ice. Aerial surveys showed that slotting was completed, and floodwaters were passing freely through the ice road crossings. The majority of the crossings were submerged during the peak of flooding. When flooding receded, the ice road crossings and channel ice had cleared at most locations. Photos of all monitored ice road crossings are presented in Appendix D.

8. HISTORICAL BREAKUP TIMING & MAGNITUDE

Colville River breakup monitoring has been ongoing, intermittently, since 1962. The timing and magnitude of breakup flooding has been determined consistently since 1992 by measuring WSEs and discharge at established locations throughout the delta.

8.1 Colville River – Head of the Delta

The historical record of peak stage and peak discharge for the CRD is at MON1C, at the head of the delta. Annual peak stage and peak discharge at MON1C has been recorded intermittently from 1962 to 1992 and annually from 1992 to 2019 (Table 8.1 and Graph 8.1).

Peak stage at MON1C was 16.19-ft BPMSL and occurred on May 24. The average historical peak stage is 16.91 ft BPMSL and the average date is May 30. The maximum historical peak stage is 23.47 ft BPMSL occurring in 2015.

Peak discharge at MON1C was 305,000 cfs and occurred on May 24. The average historical peak discharge is 314,000 cfs and the average date is May 31. The maximum historical peak discharge is 590,000 cfs occurring in 2011.

Statistical analysis of historical peak stage dates shows 78 percent of the peaks at MON1C occur during a 13-day period from May 23 to June 5. This represents one standard deviation of 6.3 days on either side of the average (mean) peak stage date of May 30, based on a normal distribution, as illustrated in Graph 8.2. Peak stage at MON1C this year was six days prior to the historical average.

Table 8.1: Colville River at the Head of the Delta Peak Discharge and Peak Stage Historical Summary

	Discharge		Stage (W	/SE)	
Year	Peak Discharge (cfs)	Date	Peak Stage (ft BPMSL)	Date	Reference
2019	305,000	24-May	16.19	24-May	Michael Baker 2019
2018	331,000	1-Jun	15.90	2-Jun	Michael Baker 2018
2017	288,000	30-May	14.79	30-May	Michael Baker 2017
2016	348,000	23-May	17.16	23-May	Michael Baker 2016
2015	469,000	22-May	23.47	21-May	Michael Baker 2015
2014	327,000	1-Jun	15.18	31-May	Michael Baker 2014
2013	497,000	3-Jun	20.69	3-Jun	Michael Baker 2013
2012	366,000	1-Jun	14.18	27-May	Michael Baker 2012b
2011	590,000	28-May	19.56	28-May	Michael Baker 2012a
2010	320,000	31-May	19.59	1-Jun	Michael Baker 2010
2009	266,000	23-May	17.65	23-May	Michael Baker 2009b
2008	221,000	28-May	17.29	30-May	Michael Baker 2008
2007	270,000	3-Jun	18.97	4-Jun	Michael Baker 2007b
2006	281,000	30-May	19.83	30-May	Michael Baker 2007a
2005	195,000	9-Jun	13.18	1-Jun	Michael Baker 2005b
2004	360,000	26-May	19.54	27-May	Michael Baker 2005a
2003	232,000	11-Jun	13.76	5-Jun	Michael Baker 2006a
2002	249,000	27-May	16.87	24-May	Michael Baker 2006a
2001	255,000	11-Jun	17.37	10-Jun	Michael Baker 2006a
2000	580,000	11-Jun	19.33	11-Jun	Michael Baker 2000
1999	203,000	30-May	13.97	30-May	Michael Baker 1999
1998	213,000	3-Jun	18.11	29-May	Michael Baker 1998b
1997	177,000	-	15.05	29-May	Michael Baker 2002b
1996	160,000	26-May	17.19	26-May	Shannon & Wilson 1996
1995	233,000	-	14.88	16-May	ABR 1996
1994	159,000	25-May	12.20	25-May	ABR 1996
1993	379,000	31-May	19.20	31-May	ABR 1996
1992	188,000	-	13.90	2-Jun	ABR 1996
1977	407,000	-	19.10	7-Jun	ABR 1996
1973	478,000	-	-	2-Jun	ABR 1996
1971	447,000	8-Jun	-	8-Jun	ABR 1996
1964	-	-		3-Jun	ABR 1996
1962	215,000	-	13.20	14-Jun	ABR 1996

Graph 8.1: Colville River at the Head of the Delta Historical Peak Stage and Peak Discharge

Graph 8.2: Colville River at the Head of the Delta Historical Timing of Peak Stage

ConocoPhillips Alaska INTERNATIONAL

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

The MON1C stage-discharge rating curve, shown in Graph 8.3, represents a relationship between stage and discharge. The rating curve was calculated from direct discharge measurements taken during ice-free conditions between 1992 and 2005. Colville River discharge can be greatly influenced by channel ice; the rating curve more accurately represents the relationship between stage and discharge at lower stage values when ice-free discharge measurements are possible. A direct measurement was not collected in 2019 because of lack of accessibility to the site during peak conditions.

Graph 8.3: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Measured Discharge

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Peak discharge between 1992 and 2019 are plotted against the open water rating curve in Graph 8.4. Open water conditions rarely occur (ice is generally present) at or near peak stage during breakup. Differences between peak discharge and the open water rating curve are attributed to ice effects on stage and discharge. Values that fall to the right and below the rating curve tend to be the result of an upstream ice jam release. Conversely, values that fall to the left and above the rating curve tend to be the result of downstream ice jam backwater effects. Peak discharge in 2019 falls to the left of the rating curve by 5 percent.

Graph 8.4: Colville River at the Head of the Delta Stage-Discharge Rating Curve with Peak Discharge

8.2 CD2 Road Bridges

Discharge has been measured at the CD2 road bridges since 2000, and overall the measurements are estimated to be within 5-10% of the true discharge value based on the quality rating assigned to measurements. Measured flow through both the Long Swale Bridge and Short Swale Bridge was 82.1% of the average annual measured flow through both bridges (3,700 cfs). A summary of historical discharge measurements at the CD2 road bridges is presented in Table 8.2.

Date	Stage ¹ (ft)	Stage Differential ² (ft)	Width (ft)	Area (ft²)	Mean Velocity ³ (ft/s)	Discharge (cfs)	Measurement Rating ⁴	Number of Sections	Measurement Type	Reference
Short Swale Bridge (62 ft)										
05/26/19	7.27	0.02	53	349	0.7	244	G	11	Cable	This report
06/03/18	6.63	0.08	36	32	0.22	5.40	Р	22	Cable	Michael Baker 2018
2017 ⁵	-	-	-	-	-	-	1	I	-	Michael Baker 2017
05/25/16	7.39	0.32	53	322	2.11	700	G	27	Cable	Michael Baker 2016
05/23/15	7.85	0.05	54	373	0.81	302	F	19	Cable	Michael Baker 2015
06/02/14	7.90	0.12	54	365	1.31	479	F	28	Cable	Michael Baker 2014
06/05/13	9.75	0.46	54	446	3.60	1,608	G	36	Cable	Michael Baker 2013
06/03/12	7.04	0.17	52	306	1.26	386	F	19	Cable	Michael Baker 2012b
05/28/11	8.15	0.43	52	336	2.51	840	F	27	Cable	Michael Baker 2012a
06/03/10	7.58	0.16	55	316	1.79	570	F	28	Cable	Michael Baker 2010
2009 ⁵	-	-	-	-	-	_	-	-	-	Michael Baker 2009b
05/29/08	6.35	0.18	55	211	0.58	120	Р	14	Cable	Michael Baker 2008
06/05/07	7.83	0.09	55	292	1.18	350	F	20	Cable	Michael Baker 2007b
05/31/06	8.49	0.26	55	615	1.59	980	F	20	Cable	Michael Baker 2007a
2005 ⁵	-	-	-	-	-	_	-	-	-	Michael Baker 2005b
05/29/04	8.34	0.14	55	451	1.60	720	F	17	Cable	Michael Baker 2005a
2003 ⁵	-	_	-	-	-	-	-	-	_	Michael Baker 2003
05/25/02	6.74	0.22	56	283	1.52	430	G	17	Cable	Michael Baker 2002b
06/11/01	7.64	0.56	56	336	1.79	600	G	15	Cable	Michael Baker 2001
06/10/00	7.87	0.61	47	175	3.30	580	F	13	Cable	Michael Baker 2000
					Long	Swale Bridge	(452 ft)			
05/25/19	6.84	0.29	440	2,046	1.37	2,795	F	21	Cable	This report
06/03/18	7.05	0.16	431	2,090	1.50	3,140	Р	-	Cable	Michael Baker 2018
06/01/17	5.92	0.04	445	1,505	0.86	1,290	F	27	Cable	Michael Baker 2017
05/25/16	7.48	0.40	445	2,025	2.25	4,800	G/F	28	Cable	Michael Baker 2016
05/22/15	9.93	0.55	447	3,024	3.12	9,440	G	24	Cable	Michael Baker 2015
06/02/14	8.00	0.13	445	2,183	1.30	2,842	G	38	Cable	Michael Baker 2014
06/05/13	9.87	0.42	448	2,947	2.47	7,286	G	36	Cable	Michael Baker 2013
06/03/12	7.10	0.17	445	1,686	1.53	2,582	-	26	Cable	Michael Baker 2012b
05/29/11	8.16	0.38	447	2,027	2.22	4,500	F	26	Cable	Michael Baker 2012a
06/01/10	7.97	0.47	441	1,699	2.66	4,500	G	25	Cable	Michael Baker 2010
05/26/09	5.89	0.09	445	1,592	0.82	730	F	27	Wading	Michael Baker 2009b
05/29/08	6.35	0.18	445	949	2.03	1,930	F	21	Wading	Michael Baker 2008
06/05/07	7.76	0.08	447	1,670	0.74	1,240	F	20	Cable	Michael Baker 2007b
05/31/06	8.42	0.18	409	1,730	1.89	3,260	F	29	Cable	Michael Baker 2007a
06/02/05	6.13	0.08	445	841	1.37	1,100	G	20	Wading	Michael Baker 2005b
05/29/04	8.34	0.14	446	1,700	1.40	2,400	F	18	Cable	Michael Baker 2005a
06/08/03	5.48	-0.05	444	478	0.88	420	G	16	Wading	Michael Baker 2003
05/25/02	6.74	0.22	445	930	3.47	3,200	G	17	Cable	Michael Baker 2002b
06/11/01	7.64	0.56	460	1,538	2.40	3,700	G	16	Cable	Michael Baker 2001
06/09/00	7.34	0.78	437	1,220	3.27	4,000	F	15	Cable	Michael Baker 2000
Notos:										

Table 8.2: CD2 Road Bridges Measured Discharge Historical Summary

1. Source of stage is G3

2. Stage differential between G3/G4 at time of discharge measurement

3. Mean velocities adjusted with angle of flow coefficient

E - Excellent: Within 2% of true value

G - Good: Within 5% of true value

F - Fair: Within 8% of true value

P - Poor: Velocity < 0.70 ft/s; shallow depth for measurement; greater than 8% error

4. Measurement Rating -

5. Bridge obstructed with snow or ice and/or lack of flow, no measurement made

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Calculated peak flow through both bridges was 73 percent of the average annual peak flow through both bridges (4,450 cfs). Table 8.3 summarizes peak stage and peak calculated discharge at the CD2 Long and Short Swale Bridges between 2000 and 2019.

	Peak	Stage	Long Swald (452	e Bridge ft)	Short Swa (62	le Bridge ft)	
Date ¹	Stage ² (ft BPMSL)	Differential ³ (ft)	Peak Discharge (cfs)	Mean Velocity (ft/s)	Peak Discharge (cfs)	Mean Velocity (ft/s)	References
05/25/19	7.32	0.35	3,000	1.37	250	0.71	This report
06/02/18	7.12	0.25	3,240	1.50	12	0.22	Michael Baker 2018
05/31/17	6.04	0.04	1,350	0.86	- ⁴	<u> </u>	Michael Baker 2017
05/25/16	7.50	0.44	4,800	2.35	680	2.06	Michael Baker 2016
05/22/15	11.93	1.54	12,350	3.12	484	0.81	Michael Baker 2015
06/02/14	8.18	0.19	2,971	1.30	501	1.31	Michael Baker 2014
06/04/13	10.27	1.17	7,723	2.47	1,706	3.60	Michael Baker 2013
06/03/12	7.60	0.41	2,940	1.53	425	1.26	Michael Baker 2012b
05/29/11	8.89	0.30	5,200	2.22	940	2.51	Michael Baker 2012a
06/02/10	8.64	0.59	5,300	2.66	670	1.79	Michael Baker 2010
05/25/09	7.63	0.45	1,400	0.82	- ⁴	_ ⁴	Michael Baker 2009b
05/30/08	6.49	0.26	2,100	0.49	130	0.58	Michael Baker 2008
06/05/07	8.60	0.43	1,500	1.35	400	1.18	Michael Baker 2007b
05/31/06	9.72	0.87	4,400	1.77	1,100	1.59	Michael Baker 2007a
05/31/05	6.48	0.20	1,400	1.37	_ ⁴	_ ⁴	Michael Baker 2005b
05/27/04	9.97	0.50	3,400	1.38	900	1.59	Michael Baker 2005a
06/07/03	6.31	0.12	700	0.88	- ⁴	_ 4	Michael Baker 2003
05/26/02	7.59	0.69	4,000	3.47	500	1.52	Michael Baker 2002b
06/11/01	7.95	0.73	3,900	2.40	600	1.79	Michael Baker 2001
06/12/00	9.48	0.73	7,100	3.60	1,000	4.30	Michael Baker 2000

Table 8.3: CD2 Road Bridges Peak Stage and Discharge Historical Summary

Notes:

¹Based on gage HWM readings.

²Source of stage is Gage 3.

³Stage differential between G3/G4 at time of peak discharge.

⁴Bridge obstructed with snow or ice, no velocity measurements.

8.3 CD5 Road Bridges

Peak annual discharge has been calculated at the Nigliq Bridge since 2009 and at the Nigliagvik, Lake L9341, and Lake L9323 Bridges since 2012. A summary of peak stage and peak discharge during breakup flood events for the CD5 road bridges is shown in Table 8.4.

	Lake L93	23 Bridge	e Nigliq Bridge		Lake L934	11 Bridge	Nigliagvik Bridge	
Year	Peak Discharge (cfs)	Peak Stage [G24] (ft BPMSL)	Peak Discharge (cfs)	Peak Stage [G26] (ft BPMSL)	Peak Discharge (cfs)	Peak Stage [G32] (ft BPMSL)	Peak Discharge (cfs)	Peak Stage [G38] (ft BPMSL)
			Pos	t-Bridge Cons	truction			
2019	- 1	8.49	95,000	9.16	- 1	8.63	- ³	9.30
2018	- 1	9.67	42,200	8.43	- 1	8.77	10,400	7.43
2017	_ 1	9.54	47,400	8.60	_ 1	7.10	2,550	6.86
2016	- 1	8.85	65,000	9.05	_ 1	8.65	2,800	8.35
2015 ²	9,100	15.39	112,000	14.50	22,500	14.51	17,300	13.57
2014	- 1	8.58	66,000	9.38	- ³	8.48	7,800	8.64
			Pro	e-Bridge Cons	truction			
2013	_ 1	12.40	110,000 ⁴	12.42 ⁵	5,000 ⁴	11.07	7,800 ⁴	11.41
2012	- 1	8.55	94,000 ⁶	8.82	6,000 ⁶	8.58	11,000 ⁶	8.51
2011	- ³	- ³	141,000 ⁶	9.89 ⁷	- ³	9.5 ⁸	- ³	8.78 ⁹
2010	_ 3	_ 3	134,000 ⁶	9.65 ⁷	_ 3	5.85 ⁸	_ 3	8.69 ⁹
2009	_ 3	_ 3	57,000 ⁶	7.91 ⁷	_ 3	7.98 ⁸	_ 3	7.71 ⁹

Table 8.4: CD5 Roa	ad Bridges Peak	Discharge and Peak	Stage Historical	Summary

Notes:

¹No discharge reported because of a lack of hydraulic connection through bridge, backwater flow, and/or ice conditions return unreasonable calculation results.

²Discharge influenced by flow contraction through bridges.

³Data not available.

⁴Indirect discharge computed with consideration of intact channel ice present at time of peak discharge.

⁵Inferred from G25 at Lake L9323 Crossing.

⁶Indirect discharge computed as open water conditions, even though channel ice was present at time of peak discharge. ⁷Stage data from decommissioned gage G21 at proposed bridge centerline.

⁸Stage data from decommissioned gage G22 at proposed bridge centerline.

⁹Stage data from decommissioned gage G23 at proposed bridge centerline.

8.4 Alpine Drinking Water Lakes Recharge

Recharge of Alpine drinking water lakes L9312 and L9313 has been documented annually since 1998. Primary recharge mechanisms for these lakes are overland flood flow and local melt. Lakes are determined to be fully recharged if bankfull conditions are met—either overland floodwater was observed flowing into the lake, or there was evidence of a stage rise and fall on the breakup hydrograph.

In most years, Lake L9313 is recharged by overland flow from the Sakoonang Channel via the North Paleo Lake and Lake M9525. The historical record of observed flooding and stage indicates bankfull elevation of Lake L9313 is approximately 6.5-ft BPMSL at gage G10 (Michael Baker 2006a, 2007b). Observations on July 10 and July 18, 2018 indicated a hydraulic connection was established between Lakes L9313 and M9525, implying WSE at Lake L9313 was at or above bankfull elevation. The measured WSE on July 10 was 6.29-ft BPMSL, suggesting actual bankfull elevation at L9313 is lower than 6.5-ft BPMSL. Based on the 2018 observations, the bankfull recharge elevation at L9313 has been revised to 6.29-ft BPMSL.

Lake L9312 is surrounded by higher tundra than Lake L9313 and is less frequently recharged by floodwater from the Sakoonang Channel. Recharge at this lake relies more on local melt of snow and ice and precipitation. Bankfull elevation of Lake L9312 is 7.8 ft BPMSL at gage G9 per the Fish Habitat Permit FG99-III-0051-Amendment #8.

Table 8.5 provides a historical summary of Alpine drinking water lakes stage and bankfull recharge record. Lake L9312 has recharged to bankfull 16 of the last 22 years, and Lake L9313 has recharged to bankfull 19 of the last 22 years.

		ake 19312		ako 19313
Year	Peak Stage (ft BPMSL)	Bankfull Recharge to 7.8 ft BPMSL ¹	Peak Stage (ft BPMSL)	Bankfull Recharge to 6.29 ft BPMSL ²
2019	8.09	Yes ³	8.72	Yes
2018	8.10	Yes ³	6.29	Yes ³
2017	-	No ³	7.40	Yes
2016	7.47	No ³	8.15	Yes
2015	13.32	Yes	12.71	Yes
2014	7.94	Yes	8.59	Yes
2013	8.79	Yes	10.44	Yes
2012	8.23	Yes	8.20	Yes
2011	10.72	Yes	10.67	Yes
2010	7.63	No ³	7.52	Yes
2009	7.65	No ³	7.12	Yes
2008	7.45	No ³	6.95	Yes
2007	9.35	Yes	9.47	Yes
2006	9.55	Yes	9.95	Yes
2005	8.00	Yes	6.12	No ³
2004	8.37	Yes	9.40	Yes
2003	8.01	Yes	7.12	Yes
2002	8.05	Yes	7.98	Yes
2001	7.55	No ³	8.31	Yes
2000	-	Yes	-	Yes
1999	7.93	Yes	6.14	No ³
1998	8.35	Yes	7.35	Yes

Table 8.5: Alpine Drinking Water Lakes Historical Recharge Summary

Notes:

¹Bankfull recharge is based on peak stage exceeding 7.8 ft BPMSL per Fish Habitat Permit FG99-III-0051, Amendment #8. ²Bankfull recharge elevation is based on visual observations of hydraulic connectivity of lake to breakup floodwater. ³Lake recharged from snow meltwater.

9. FLOOD & STAGE FREQUENCY ANALYSES

9.1 Flood Frequency

A flood frequency analysis is performed every three years for the head of the CRD at MON1 to estimate and update flood magnitudes for standard recurrence intervals. The current basis of design flood magnitudes are compared with the flood frequency analysis results to ensure the basis of design values are relevant as the body of data grows. The most recent flood frequency analysis was performed in 2018. These values are presented in Table 9.1 along with the current basis of design.

Return	Basis for Current Design Criteria ¹	2018 Analysis Values ²				
Period	Discharge (cfs)	Discharge (cfs)				
2-year	240,000	266,000				
5-year	370,000	396,000				
10-year	470,000	487,000				
25-year	610,000	608,000				
50-year	730,000	702,000				
100-year	860,000	800,000				
200-year	1,000,000	901,000				
Notes:						
¹ Michael Baker and Hydroconsult 2002						
² Michael Ba	² Michael Baker 2018					

Table 9.1: Colville River Flood Frequency Analysis Comparison

This year's peak discharge of 305,000 cfs has a recurrence interval of 3.5 years. The flood recurrence interval should be considered with respect to conditions at the time of peak discharge. The ranking of the 2019 peak discharge relative to the historical record (evaluated using current basis of design flood magnitudes) is shown in Table 9.2.

Table 9.2: Colville River Flood Frequency Analysis Comparison

Year	Peak Discharge (cfs)	Recurrence Interval (years)
2011	590,000	22.9
2000	580,000	21.8
2013	497,000	12.9
2015	469,000	10
1993	379,000	5.5
2018	331,000	4.1
2012	366,000	4.9
2004	360,000	4.8
2016	348,000	4.5
2014	327,000	4
2010	320,000	3.8
2019	305,000	3.5
2017	288,000	3.1
2006	281,000	2.9
2007	270,000	2.7
2009	266,000	2.6
2001	255,000	2.3
2002	249,000	2.2
1995	233,000	<2
2003	232,000	<2
2008	221,000	<2
1998	213,000	<2
1999	203,000	<2
2005	195,000	<2
1997	177,000	<2
1994	165,000	<2
1992	164,000	<2
1996	160,000	<2

11.27.19 PAGE 77

9.2 Stage Frequency

HIGH MAGNITUDE, LOW FREQUENCY

The CRD 2D surface water model was first developed in 1997 to estimate stage and velocities at the proposed Alpine facility locations (Michael Baker 1998a). The model has undergone numerous revisions to include improved topographic and bathymetric data and the addition of CD3, CD4, and CD5 facilities (Michael Baker 2002a, 2006b, 2009a, and 2012b).

The 2D model was developed to predict open water flood conditions during low-frequency, high-magnitude events, i.e. design events having 50- and 200-year recurrence intervals. To estimate the relationship between discharge and stage during more frequent, lower magnitude floods, 2- and 10-year recurrence intervals have also been modeled. The 2019 peak stage at select gage stations were assigned a recurrence interval relative to the 2D model predictions (Graph 9.1 and Table 9.3). The 2D model assumes open water steady-state conditions and does not account for snow, channel ice, or ice jams. Elevated stage resulting from snow and ice effects is typically localized and more pronounced during lower magnitude flood events. As a result, the 2D model generally under-predicts stage for lower recurrence intervals of approximately 10 years and less.

Based on the 2D model predictions, flood stage recurrence intervals throughout the CRD ranged from below model results of area inundation (i.e. site-specific areas can be dry during lower magnitude flood-recurrence events) to a maximum of 8.2 years. Peak spring breakup flood stage is highly variable throughout the CRD. Local ice and snow processes influence specific sites, and the effect is more pronounced during lower-magnitude, higher-frequency spring breakup flood events.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Graph 9.1: 2D Model Stage and Peak Stage Recurrence Intervals

ConocoPhillips Alaska INTERNATIONAL

Table 9.3: Peak Stage Frequency Relative	to 2D Model Stage Frequency Analysis
--	--------------------------------------

	2D Model Stage Recurrence Intervals ^{1,2}				Peak Stage	Peak Stage
Gage Station		(ft B	PMSL)			Recurrence Interval
	2-year	10-year	50-year	200-year	(ft BPMSL)	(years)
		Colville River				
MON1C (head of CRD)	13.9	19.2	23	25.9	16.19	4.0
	Colville	River East C	hannel			
MON9 (HDD)	11.5	16.1	19	21.1	14.23	5.2
MON35 (Helmericks)	4.3	5.4	6.1	6.5	3.98	<2
	N	ligliq Channe	4			
MON20	7.8	11.4	14.6	16.8	10.19	5.8
MON22	6.3	9.3	12.1	14.2	8.59	6.8
MON23	5.1	7.4	10.2	12	7.12	8.2
MON28	3.1	3.4	3.9	4.3	2.95	<2
	CD1 Pad 8	k Drinking Wa	ater Lakes			
Gage G1	7.3	9.7	12.5	14.6	7.83	2.9
Gage G9 (Lake L9312)	8.3	10.8	13.4	15.7	8.09	<2
Gage G10 (Lake L9313)	8.3	10.8	13.4	15.7	8.72	2.6
	CI	D2 Pad & Roa	d			
Gage G8 (CD2 pad)	\	8.7	10.6	12.3	dry	-
Gage G3 (swale bridges)	6.3	9.4	12	14	7.64	4.0
Gage G4 (swale bridges)	6.2	8.5	10.1	11.6	7.49	4.9
Gage G6	\	9.5	12.2	14.2	7.96	<10
Gage G7	\	8.4	10	11.6	7.91	<10
Gage G12	\	9.5	12.1	14.1	7.9 ³	-
Gage G13	\	8.4	10	11.6	7.8 ³	-
	CDS	8 Pad & Pipel	ine			
Gage G11	5.2	6.4	6.9	8	dry	-
SAK Gage (Pipeline Crossing #2)	6.4	8.9	11.2	12.9	5.78	<2
TAM Gage (Pipeline Crossing #4)	6.7	8.5	9	9.8	7.84	5.5
ULAM Gage (Pipeline Crossing #5)	5.5	7.1	7.8	8.7	6.88	8.0
	CI	D4 Pad & Roa	d			
Gage G15	8.4	10.8	13.5	15.9	8.7 ³	-
Gage G16	8.4	11.1	14.2	16.3	8.8 ³	-
Gage G17	\	11.1	14.2	16.3	10.39	<10
Gage G18	\	11.9	14.8	16.8	11.15	<10
Gage G19 (CD4 pad)	\	\	14.7	16.8	dry	-
Gage G20 (CD4 pad)	\	11.1	14.3	16.4	-	-
CD5 Road						
Gage G24 (Lake L9323/CD5 Bridge #1)	\	11.1	14.1	16	8.5 ³	-
Gage G26 (Nigliq/CD5 Bridge #2)	6.7	9.8	12.5	14.6	9.16	7.2
Gage G27 (Nigliq/CD5 Bridge #2)	6.7	9.8	12.5	14.5	9.1	7.0
Gage G30	\	\setminus	13.3	15.5	dry	-
Gage G32 (Lake L9341/CD5 Bridge #3)	\	\	13.3	15.1	8.63	<50
Gage G34		\	13.3	15.7	dry	-
Gage G36	\	\setminus	13.3	15.7	dry	-
Gage G38 (Nigliagvik/CD5 Bridge #4)	6.9	10	12.8	14.9	9.3	7.0

Notes:

¹Sites having dry ground in 2D model during lower recurrence intervals are denoted with a backward slash "\."

²2D WSEs based on post-CD5 model results.

³Stage attributed to ponded local melt.

LOW MAGNITUDE, HIGH FREQUENCY

A site-specific stage frequency analysis using the historical record can provide a better estimate of low magnitude recurrence intervals. MON1C, MON22, gage G1, gage G3, and gage G18 have the longest periods of continuous record and are distributed throughout the project area. The maximum period of continuous record is 24 years at MON1C. Analyses have been performed every three years as the body of data grows (Michael Baker 2007a, 2009a, and 2012b), the most recent being in 2018 (Michael Baker 2018).

It is considered risky to extrapolate stage data for a river impacted by ice and ice jamming beyond the continuous record (USACE 2002; FEMA 2003). This is because of the inherent unpredictability of ice jams, the greater impact ice effects have on lower magnitude events, and the upper limit of stage considering available floodplain storage for overbank flow (for example, water height can only increase so much once it has crested the banks and spilled into the floodplain). Stage frequency was extrapolated to the 50-year recurrence interval, almost twice the continuous record at MON1C, for comparison to the 2D model because this is where the 2D model results and stage frequency analysis results tend to converge. Unlike the 2D model, the observed data upon which the stage frequency analyses are based reflect ice-affected flooding conditions. Therefore, the stage frequency analysis results from the most recent stage frequency analysis are compared to this year's observed peak stages in Table 9.4 and Graph 9.2. Based on the stage frequency analysis, all gage stations analyzed fell below the 3-year recurrence interval.

Monitoring Location	Stage Frequency Recurrence Intervals (ft BPMSL)					Peak Stage	Peak Stage Recurrence Interval	
	2-year	3-year	5-year	10-year	20-year	50-year	(ft BPMSL)	(years)
MON1C (head of CRD)	16.82	18.02	19.23	20.59	21.78	23.18	16.19	<2
MON22 (Nigliq Channel)	8.31	8.92	9.55	10.27	10.92	11.70	8.59	2.4
Gage G1 (CD1 Pad)	7.24	8.03	8.84	9.77	10.57	11.52	7.83	2.7
Gage G3 (CD2 Road)	7.70	8.35	9.04	9.88	10.67	11.67	7.64	<2
Gage G18 (CD4 Road)	10.22	11.30	12.43	13.77	15.00	16.52	11.15	2.8

Table 9.4:	Peak Stage	e Frequency	v Relative to	Stage Free	auencv A	Analysis

Graph 9.2: Stage Frequency and Peak Stage Recurrence Intervals

10. REFERENCES

- Alaska Biological Research (ABR). 1996. Geomorphology and Hydrology of the Colville River Delta, Alaska, 1995. Prepared for ARCO Alaska, Inc.
- Chow, V.T., 1959, Open-Channel Hydraulics, New York, McGraw-Hill, p. 138.
- Federal Emergency Management Agency (FEMA). 2003. Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix F: Guidance for Ice-Jam Analysis and Mapping. April 2003.

ICE Consult and Design (ICE). 2019 NPR-A North Tundra Monitoring Station. Cumulative Freezing Degree Days. Winters 2002-2019 Coldest to Warmest Year. October 2019.

- Michael Baker International (Michael Baker). 1998a. Colville River Delta Two-Dimensional Surface Water Model Project Update. September 1998. Prepared for ARCO Alaska, Inc.
- ——— 1998b. 1998 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. October 1998. Prepared for ARCO Alaska, Inc.
- ——— 1999. 1999 Spring Breakup and Hydrologic Assessment, Colville River Delta, North Slope, Alaska. November 1999. Prepared for ARCO Alaska, Inc.
- ——— 2000. Alpine Facilities Spring 2000 Breakup Monitoring Alpine Development Project. November 2000. Prepared for Phillips Alaska, Inc.
- ——— 2001. Alpine Facilities 2001 Spring Breakup and Hydrologic Assessment. August 2001. Prepared for Phillips Alaska, Inc.
- ——— 2002a. Colville River Delta Two-Dimensional Surface Water Model, CD-Satellite Project Update. May 2002. Prepared for ConocoPhillips Alaska, Inc.
- —— 2002b. Alpine Facilities 2002 Spring Breakup and Hydrologic Assessment. October 2002. Prepared for ConocoPhillips Alaska, Inc.
- —— 2003. Alpine Facilities 2003 Spring Breakup and Hydrologic Assessment. September 2003. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2005a. Alpine Facilities 2004 Spring Breakup and Hydrologic Assessment. March 2005. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2005b. 2005 Colville River Delta and Fish Creek Basin Spring Breakup and Hydrologic Assessment. December 2005. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2006a. 1992-2005 Annual Peak Discharge Colville River Monument 1 Estimate, Calculation, and Method Review. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2006b. Colville River Delta Two-Dimensional Surface Water Model CD5 Update. February 2006. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2007a. 2006 Colville River Delta and Fish Creek Basin Spring Breakup and Hydrological Assessment. January 2007. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2007b. 2007 Colville River Delta Spring Breakup and Hydrologic Assessment. November 2007. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2008. 2008 Colville River Delta Spring Breakup and Hydrologic Assessment. December 2008. Prepared for ConocoPhillips Alaska, Inc.
- —— 2009a. Colville River Delta, Two-Dimensional Surface Water Model Update. CD5 Alpine Satellite Development Project. September 2009. Prepared for ConocoPhillips Alaska, Inc.

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

- 2009b. Colville River Delta Spring Breakup 2009 Hydrologic Assessment. December 2009. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2009c. Alpine Pipeline River Crossings 2009 Monitoring Report. September 2009. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2010. 2010 Colville River Delta Spring Breakup 2010 Hydrologic Assessment. November 2010. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2012a. Colville River Delta Spring Breakup 2011 Hydrologic Assessment. January 2012. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2012b. 2012 Colville River Delta Spring Breakup Monitoring and Hydrologic Assessment. December 2012. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2013a. 2013 Colville River Delta Spring Breakup Monitoring and Hydrologic Assessment. November 2013. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2014. 2014 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2014. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2015. 2015 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2015. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2016. 2016 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. December 2016. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2017. 2017 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2017. Prepared for ConocoPhillips Alaska, Inc.
- ——— 2018. 2018 Colville River Delta Spring Breakup Monitoring and Hydrological Assessment. November 2018. Prepared for ConocoPhillips Alaska, Inc.
- Michael Baker International (Michael Baker) and Alaska Biological Research (ABR), 2013 Monitoring Plan with an Adaptive Management Strategy CD5 Development Project for ConocoPhillips, Alaska. March 2013.
- Michael Baker International (Michael Baker) and Hydroconsult EN3 Services, Ltd. 2002. Colville River Flood Frequency Analysis, Update. September 2002. Prepared for ConocoPhillips Alaska, Inc.
- National Oceanic and Atmospheric Administration (NOAA). Website access 2019. (<u>https://www.noaa.gov/weather</u>).
- Natural Resource Conservation Service (NRCS). 2018. Alaska Snow Survey Report. July 2018. United States Department of Agriculture (USDA).
- Office of Surface Water (OSW). 1999a. Development of New Standard Rating Tables for the Price Type AA and Pygmy Current Meters. Technical Memorandum No. 99.05. Website access 2009. (<u>http://water.usgs.gov/admin/memo/SW/sw99.05.html</u>). U.S. Geological Survey (USGS).
- ——— 1999b. Care and Maintenance of Vertical-Axis Current Meters. Technical Memorandum No. 99.06. Website access 2009. (<u>http://water.usgs.gov/admin/memo/SW/sw99.06.html</u>). USGS.
- PND Engineers (PND). 2013. Proposed CD5 Access Road Bridges Scour Estimates Summary. May 2013.
- Shannon & Wilson, Inc. 1996. 1996 Colville River Delta Spring Breakup and Hydrologic Assessment, North Slope, Alaska. November 1996. Prepared for Michael Baker Jr., Inc.
- UMIAQ/LCMF LLC, Inc. (UMIAQ) 2002. As-built survey. CD2 and CD4 culverts. Prepared for ConocoPhillips Alaska, Inc. (Submitted as Kuukpik/UMIAQ LLC, Inc. [UMIAQ]).
- —— 2004. Cross-section survey, Colville River at Monument 01. Prepared for Michael Baker Jr., Inc. (Submitted as Kuukpik/UMIAQ LLC, Inc. [UMIAQ]).

- ----- 2014. DOT HDD Waterway Crossing Inspection. Prepared for ConocoPhillips Alaska, Inc. 2014.
- ——— 2016a. Cross-section survey of the Nigliq & Nigliagvik Channel crossings. Prepared for ConocoPhillips Alaska, Inc. July 2016.
- ——— 2017. As-built survey, CD2, CD4, and CD5 access road culverts. Prepared for ConocoPhillips Alaska, Inc. July 2017.
- ——— 2019a. CD5 access road Nigliq & Nigliagvik Bridge scour monitoring. Prepared for ConocoPhillips Alaska, Inc. August 2018.
- ——— 2019b. Top of bank survey of the Nigliq Channel & Nigliagvik Channel. Prepared for ConocoPhillips Alaska, Inc. August 2018.
- ——— 2019c. Cross-section survey of the Nigliq Channel, Nigliagvik Channel, and Lake L9341. Prepared for ConocoPhillips Alaska, Inc. August 2018.
- ——— 2018d. As-built survey, CD2, CD4, and CD5 access road culverts. Prepared for ConocoPhillips Alaska, Inc. July 2018.
- U.S. Army Corps of Engineers (USACE). 1991. U.S. Army Corps of Engineers Ice-Influenced Flood Stage Frequency Analysis TL 110-2-325. Washington D.C. July 2002.
- 2002. U.S. Army Corps of Engineers Ice Engineering Manual EM 1110-2-1612. Washington D.C. 30 October 2002.
- ——— 2010. User's Manual for HEC-SSP Statistical Software Program Version 2.0, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines. Brunner, G.W. and Fleming, M.J.
- U.S. Geological Survey (USGS). 1968. Bodhaine, G.L. Measurement of Peak Discharge at Culverts by Indirect Methods. Techniques of Water Resources Investigations of the U.S. Geological Survey. USGS-TWRI Book 3, Chapter A3. United States Government Printing Office, Washington, DC. 1968.
- ----- 1982. Measurement and Computation of Streamflow, Vols. 1 and 2. S.E. Rantz and others. Water Supply Paper 2175.
- ——— 2006. Mueller, D.S., and Wagner, C.R. Measuring discharge with acoustic Doppler current profilers from a moving boat. U.S. Geological Survey Techniques and Methods 3A-22,72p. (available online at <u>http://pubs.water.usgs.gov/tm3a22</u>).
- ——— 2019a. Gage height and discharge data, May 11 through June 15. Website access September 1, 2019. https://waterdata.usgs.gov/nwis/uv?site_no=15875000.
- —— 2018b. Guidelines for determining flood flow frequency—Bulletin 17C: U.S. Geological Survey Techniques and Methods, book 4, chap. B5, <u>https://doi.org/10.3133/tm4B5</u>.

VERTICAL CONTROL, GAGE LOCATIONS, & CULVERT LOCATIONS APPENDIX A

A.1 **VERTICAL CONTROL**

Control	Elevation (ft BPMSL)	Latitude (NAD83) ¹	Longitude (NAD83)	Control Type	Reference
CD2-4N	8.96	N 70.3399°	W 151.0292°	Culvert top	UMIAQ 2017
CD2-14N	10.83	N 70.3371°	W 151.0110°	Culvert top	UMIAQ 2017
CD2-14S	10.89	N 70.3369°	W 151.0111°	Culvert top	UMIAQ 2017
CD2-22N	9.14	N 70.3404°	W 150.9829°	Culvert top	UMIAQ 2017
CD2-22S	9.09	N 70.3402°	W 150.9827°	Culvert top	UMIAQ 2017
CD2-6N	8.89	N 70.3399°	W 151.0290°	Culvert top	UMIAQ 2017
CD2-6S	7.78	N 70.3397°	W 151.0291°	Culvert top	UMIAQ 2017
CD4-10E	11.72	N 70.3274°	W 150.9929°	Culvert top	UMIAQ 2017
CD4-10W	12.17	N 70.3275°	W 150.9934°	Culvert top	UMIAQ 2017
CD4-12E	11.42	N 70.3235°	W 150.9954°	Culvert top	UMIAQ 2017
CD4-12W	12.412	N 70.3401°	W 150.9962°	Culvert top	UMIAQ 2017
CD4-22E	6.73	N 70.3021°	W 150.9932°	Culvert top	UMIAQ 2017
CD4-22W	7.45	N 70.3018°	W 150.9930°	Culvert top	UMIAQ 2017
CD4-6E	14.37	N 70.3348°	W 150.9707°	Culvert top	UMIAQ 2017
CD5-29N	12.28	N 70.3060°	W 151.0951°	Culvert top	UMIAQ 2016
CD5-29S	12.38	N 70.3058°	W 151.0948°	Culvert top	UMIAQ 2016
CD5-35N	13.09	N 70.3065°	W 151.0683°	Culvert top	UMIAQ 2016
CD5-35S	13.26	N 70.3063°	W 151.0683°	Culvert top	UMIAQ 2016
CD5-40N	10.65	N 70.3050°	W 151.0439°	Culvert top	UMIAQ 2016
CD5-40S	10.93	N 70.3048°	W 151.0442°	Culvert top	UMIAQ 2016
CP01-13-09A	12.94	N 70.3401°	W 150.9843°	Top rail support	UMIAQ 2016
CP08-11-12	7.36	N 70.3639°	W 150.9204°	Alcap	BAKER 2012
CP08-11-23	8.52	N 70.3916°	W 150.9078°	Alcap	LCMF 2008
СР08-11-35	8.88	N 70.4066°	W 150.8822°	Alcap	BAKER 2015 (UMIAQ 2010)
CP08-12-61	11.95	N 70.2777°	W 150.9935°	Alcap	LCMF 2017
MONUMENT 1	27.93	N 70.1659°	W 150.9400°	Alcap	LCMF 2005
MONUMENT 9	25.06	N 70.2446°	W 150.8583°	Alcap	UMIAQ 2016
MONUMENT 20	18.97	N 70.2800°	W 151.0115°	Alcap	BAKER 2017
MONUMENT 21	13.30	N 70.3424°	W 150.9236°	Top of bolt	UMIAQ 2016
MONUMENT 22 (BAKER)	10.03	N 70.3181°	W 151.0560°	Alcap	BAKER 2010
MONUMENT 22	11.21	N 70.3422°	W 150.9321°	Alpine drill stem	LCMF 2015
MONUMENT 23	9.55	N 70.3444°	W 151.0613°	Alcap	BAKER 2009
MONUMENT 25	17.89	N 70.3024°	W 151.0130°	Capped drill stem	UMIAQ 2016
MONUMENT 27	13.86	N 70.3060°	W 151.0533°	Capped drill stem	UMIAQ 2016
MONUMENT 28 (Colville @ Coast)	3.65	N 70.4256°	W 151.0670°	Alcap	UMIAQ GPS 2002
MOUNMENT 29	28.63	N 70.3052°	W 151.1228°	Capped drill stem	UMIAQ 2016
NANUQ 4	12.64	N 70.2954°	W 150.9813°	Alcap	UMIAQ 2016

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Control	Elevation (ft BPMSL)	Latitude (NAD83) ¹	Longitude (NAD83)	Control Type	Reference	
NANUQ-5	17.42	N 70.2917°	W 150.9805°	Alcap	UMIAQ 2016	
PMB-F	17.83	N 70.3393°	W 151.0467°	Top of rod	UMIAQ 2016	
PMB-P	20.89	N 70.2915°	W 150.9889°	South side of CD4 pad	UMIAQ 2017	
Pile 08	16.74	N 70.4175°	W 150.9105	SW Bolt	UMIAQ 2010	
Pile 568	23.72	N 70.3639°	W 150.9206°	HSM cap SW bolt	LCMF 2010	
ТВМ А	5.89	N 70.4264°	W 150.4053°	Corner of entryway	BAKER 2017	
ТВМ В	8.46	N 70.4264°	W 150.4056°	East corner of structure	BAKER 2017	
твм с	8.15	N 70.3338°	W 150.4057°	West corner of structure	BAKER 2017	
TBM 02-01-39 O	11.59	N 70.3338°	W 150.9522°	Top SW corner 2 nd HSM	LCMF 2015	
TBM 02-01-39 P	11.83	N 70.3337°	W 150.9521°	Top SW corner 1 st HSM	LCMF 2015	
TBM 05-05-06 B	21.01	N 70.3427°	W 150.9250°	NW corner F1 Product	UMIAQ 2016	
TBM 99-32-60	15.86	N 70.3420°	W 150.9321°	Top lifting lug	LCMF 2015	
TBM L99-32-59	14.60	N 70.3338°	W 150.9522°	Pile Cap SE VSM	UMIAQ 2015	
TBM M9603-X	-	N 70.2213°	W 150.7896°	Angle iron	BAKER 2011	
TBM M9605-X	-	N 70.2290°	W 150.5127°	Angle iron	BAKER 2011	
1. North American Datum o	1 North American Datum of 1983 (NAD83)					

A.2 CRD GAGE LOCATIONS

Gage Station	Gage Type	Gage Assembly	Latitude (NAD83)	Longitude (NAD83)	Control
		MON1U-A ¹	N 70.1585°	W 150.9450°	
		MON1U-A1 ²	N 70.1585°	W 150.9451°	
		MON1U-B	N 70.1585°	W 150.9455°	
MON1U		MON1U-C	N 70.1585°	W 150.9461°	
		MON1U-D	N 70.1585°	W 150.9462°	
		MON1U-E	N 70.1585°	W 150.9464°	
		MON1U-F	N 70.1585°	W 150.9465°	
		MON1C-A ¹	N 70.1657°	W 150.9383°	
		MON1C-A1 ²	N 70.1656°	W 150.9385°	
	Indirect-Read	MON1C-B	N 70.1658°	W 150.9386°	MONUMENT 1
MON1C		MON1C-C	N 70.1658°	W 150.9392°	
		MON1C-D	N 70.1658°	W 150.9393°	
		MON1C-E	N 70.1658°	W 150.9395°	
		MON1C-F	N 70.1659°	W 150.9397°	
		MON1D-A ¹	N 70.1738°	W 150.9359°	
		MON1D-B ²	N 70.1738°	W 150.9371°	
MON1D		MON1D-C	N 70.1738°	W 150.9372°	
		MON1D-D	N 70.1738°	W 150.9373°	
		MON1D-Z	N 70.1737°	W150.9376°	
		MON9-A ¹	N 70.2447°	W 150.8573°	
		MON9-B ¹	N 70.2447°	W 150.8575°	
		MON9-B1	N 70.2446°	W 150.8576°	
		MON9-C	N 70.2447°	W 150.8578°	
		MON9-D	N 70.2446°	W 150.8580°	
MON9		MON9-E	N 70.2446°	W 150.8580°	
			N 70.2446	W 150.8580	
			N 70.2446	W 150.8580	MONUMENT 9
			N 70.2440	W 150.8580	
	Indirect-Read		N 70.2440	W 150.8581	
			N 70.2442	W 150.8005	
MON9D			N 70.2586°	W 150.8593	
		MON9D-C	N 70.2586°	W 150.8598°	
		MON9D-D	N 70.2586°	W 150.8508	
		MON9-D1	N 70.2586°	W 150.8600°	
		MON9D-E	N 70.2586°	W 150.8600°	
		MON35-A	N 70.4260°	W 150.4058°	
		MON35-B	N 70.4260°	W 150.4058°	
MON35		MON35-C	N 70.4261°	W 150.4058°	TBM B
		MON35-D	N 70.4261°	W 150.4058°	
		MON35-E	N 70.4261°	W 150.4058°	
		MON20-A ¹	N 70.2786°	W 150.9986°	
		MON20-B	N 70.2786°	W 150.9985°	
MON20		MON20-C	N 70.2786°	W 150.9983°	PBM-P
		MON20-D	N 70.2785°	W150.9982°	
		MON20-E	N 70.2785°	W 150.9982°	
		MON22-A ¹	N 70.3186°	W 151.0546°	
MON22		MON22-B	N 70.3185°	W 151.0549°	MONUMENT 22
		MON22-C	N 70.3185°	W 151.0550°	
	Indirect-Read	MON22-D	N 70.3183°	W 151.0555°	
		MON23-A ¹	N 70.3436°	W 151.0659°	
		MON23-B	N 70.3436°	W 151.0657°	
MON23		MON23-C	N 70.3436°	W 151.0652°	MONUMENT 23
		MON23-D	N 70.3436°	W 151.0649°	
		MON23-E	N 70.3436°	W 151.0648°	
MONSE		MON28-A ¹	N 70.4258°	W 151.0697°	MONUMENT 28
MON28		IVION28-B	N 70.4257	W 151.0692°	(Colville @ Coast)
Notos:		IVIUN28-C	IN /U.4256	vv 151.0672	
1. PT, 2. RTFM PT.	3. Baro PT				

A.3 ALPINE FACILITIES GAGE LOCATIONS

Gage Station	Gage Type	Gage Assembly	Latitude (NAD83)	Longitude (NAD83)	Control
G1		G1 ¹	N 70.3428°	W 150.9208°	TBM 05-05-06 B
G9	Direct-Read	G9 ¹	N 70.3336°	W 150.9519°	TBM 02-01-39 O
G10		G10 ¹	N 70.3425°	W 150.9328°	MONUMENT 22
G3	Direct Road	G3 ^{1,2}	N 70.3400°	W 150.9831°	222 272
G4	Direct-Read	G4 ¹	N 70.3403°	W 150.9833°	CD2-225
G6	Direct-Read	G6 ¹	N 70.3396°	W 151.0293°	
G7	Direct-Read	G7 ¹	N 70.3400°	W 151.0289°	CD2-0N
G12	Indirect-Read	G12 ¹	N 70.3367°	W 151.0117°	CD2-14S
G13	man eet-nead	G13 ¹	N 70.3373°	W 151.0118°	CD2-14N
G8	Indirect-Read	G8	N 70.3393°	W 151.0491°	PBM-F
		SAK-A ¹	N 70.3646°	W 150.9217°	
SAK		SAK-B	N 70.3645°	W 150.9220°	Pile 568 cap SW bolt
		SAK-C	N 70.3645°	W 150.9220°	
		TAM-A ¹	N 70.3917°	W 150.9115°	
ТАМ		TAM-B	N 70.3915°	W 150.9113°	CP08-11-23
	Indirect-Read	TAM-C	N 70.3914°	W 150.9113°	
		TAM-Z	N 70.3912°	W 150.9109°	
		ULAM-A ¹	N 70.4068°	W 150.8835°	
ULAM		ULAM-B	N 70.4069°	W 150.8833°	CP08-11-35
		ULAM-C	N 70.4070°	W 150.8831°	
		ULAM-Z	N 70.4070°	W 150.8831°	
G11	Direct-Read	G11	N 70.4175°	W 150.9105°	Pile 08
G15		G15-A ¹	N 70.3023°	W 150.9929°	CD4-22W
615		G15-B	N 70.3023°	W 150.9929°	
G16	Indirect-Read	G16-A ¹	N 70.3017°	W 150.9933°	CD4-22F
		G16-B	N 70.3017°	W 150.9933°	00 - 111
G17		G17-A ¹	N 70.2933°	W 150.9827°	
G18		G18-A	N 70.2930°	W 150.9818°	NANUQ-5
	Direct-Read	G18-B ^{1,2,3,4}	N 70.2925°	W 150.9828°	
G19	Direct-Read	G19	N 70.2915°	W 150.9882°	
G20		G20-A	N 70.2917°	W 150.9968°	PBM-P
		G20-B	N 70.2917°	W 150.9968°	
G40	Indirect-Read	G40	N 70.3234°	W 150.9968°	CD4-12E
G41		G41	N 70.3235°	W 150.9949°	
G42		G42	N 70.3276°	W 150.9939°	CD4-10E
G43		G43	N 70.3274°	W 150.9924°	
G24		G24-A ¹	N 70.3030°	W 151.0065°	
		G24-B	N 70.3034°	W 151.0041°	MONUMENT 25
G25		G25-A [⊥]	N 70.3044°	W 151.0066°	
		G25-B	N 70.3046°	W 151.0049°	
	Indirect-Read	G26-A ¹	N 70.3023°	W 151.0217°	
		G26-B ¹	N 70.3022°	W 151.0206°	
G26		G26-C	N 70.3022°	W 151.0190°	MONUMENT 25
		G26-D	N 70.3022°	W 151.0190°	
		G26-E	N 70.3023°	W 151.0185°	
Notes: 1. PT, 2. RTFM PT	, 3. Baro PT				

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Gage Station	Gage Type	Gage Assembly	Latitude (NAD83)	Longitude (NAD83)	Control
		G27-A ¹	N 70.3033°	W 151.0216°	
		G27-B ¹	N 70.3033°	W 151.0207°	
G27		G27-C	N 70.3033°	W 151.0194°	
		G27-D	N 70.3032°	W 151.0185°	
		G27-E	N 70.3032°	W 151.0179°	
		G28-A ¹	N 70.2959°	W 151.0329°	
		G28-B	N 70.2959°	W 151.0331°	
G28		G28-C	N 70.2959°	W 151.0331°	PBM-24
		G28-D	N 70.2959°	W 151.0332°	
		G28-E	N 70.2959°	W 151.0335°	
		G29-A ¹	N 70.3095°	W 151.0332°	
		G29-B	N 70.3095°	W 151.0334°	
G29		G29-C	N 70.3095°	W 151.0337°	
		G29-D	N 70.3094°	W 151.0343°	
		G29-E	N 70.3093°	W 151.0350°	
622		G32-A ¹	N 70.3054°	W 151.0507°	
652		G32-B	N 70.3055°	W 151.0513°	
	Indirect Read	G33-A ¹	N 70.3065°	W 151.0484°	MONUMENT 27
G33	munect-keau	G33-B	N 70.3065°	W 151.0487°	
		G33-C	N 70.3068°	W 151.0500°	
		G38-A ¹	N 70.3046°	W 151.1187°	
639		G38-B ¹	N 70.3046°	W 151.1185°	
038		G38-C	N 70.3046°	W 151.1183°	
		G38-D	N 70.3047°	W 151.1172°	
		G39-A ¹	N 70.3064°	W 151.1177°	
629		G39-B ¹	N 70.3063°	W 151.1175°	
035		G39-C	N 70.3063°	W 151.1172°	_
		G39-D	N 70.3063°	W 151.1170°	
G30		G30 ¹	N 70.3046°	W 151.0443°	CD5-40S
G31		G31 ¹	N 70.3051°	W 151.0437°	CD5-40N
G34		G34 ¹	N 70.3060°	W 151.0710°	CD5-35S
G35		G35 ¹	N 70.3067°	W 151.0711°	CD5-35N
G36		G36 ¹	N 70.3056°	W 151.0968°	CD5-29S
G37		G37 ¹	N 70.3063°	W 151.0971°	CD5-29N
S1		S1-A ¹	N 70.3060°	W 151.1947°	CD5-09S
- 51		S1-D ¹	N 70.3066°	W 151.1957°	CD5-09N
Notes: 1. PT, 2. RTFM PT, 3.	Baro PT				

CULVERT LOCATIONS A.4

Culvert	Station	Latitude	Longitude	
Cuivert	Station	(NAD83)	(NAD83)	
CD2-01N	18+71	N 70.3396°	W 151.0403°	
CD2-01S	10171	N 70.3395°	W 151.0396°	
CD2-02N	26+12	N 70.3399°	W 151.0340°	
CD2-02S	20112	N 70.3397°	W 151.0340°	
CD2-03N	20124	N 70.3399°	W 151.0308°	
CD2-03S	30+24	N 70.3397°	W 151.0306°	
CD2-04N	22.01	N 70.3399°	W 151.0292°	
CD2-04S	32+01	N 70.3397°	W 151.0292°	
CD2-05N	22.42	N 70.3399°	W 151.0291°	
CD2-05S	32+10	N 70.3397°	W 151.0292°	
CD2-06N		N 70.3399°	W 151.0290°	
CD2-06S	32+21	N 70.3397°	W 151.0291°	
CD2-07N		N 70.3399°	W 151.0290°	
CD2-07S	32+30	N 70.3397°	W 151.0291°	
CD2-08N		N 70.3397°	W 151.0265°	
CD2-085	35+29	N 70.3394°	W 151.0268°	
CD2-09N		N 70 3388°	W 151 0224°	
CD2-095	41+30	N 70,3386°	W 151 0227°	
CD2-10N		N 70 3381°	W 151 0198°	
CD2-10N	45+25	N 70 3379°	W 151 0206°	
CD2-109		N 70 3375°	W 151 017/°	
CD2 115	48+85	N 70.3373	W 151.0174	
CD2-113		N 70.3374	W 151.0160	
CD2-12N	53+08	N 70.3372	W 151.0144	
CD2-125		N 70.3370	W 151.0145	
CD2-13N	54+84	N 70.3371	W 151.0133*	
CD2-135		N 70.3369	W 151.0129*	
CD2-14N	57+38	N 70.3371°	W 151.0110°	
CD2-14S		N 70.3369°	W 151.0111°	
CD2-15N	63+01	N /0.33/3°	W 151.0065°	
CD2-15S		N 70.3372°	W 151.0066°	
CD2-16N	67+69	N 70.3377°	W 151.0029°	
CD2-16S		N 70.3375°	W 151.0029°	
CD2-17N	71+51	N 70.3380°	W 150.9999°	
CD2-17S	-	N 70.3378°	W 150.9999°	
CD2-18N	76+29	N 70.3383°	W 150.9960°	
CD2-18S		N 70.3381°	W 150.9963°	
CD2-19N	81+56	N 70.3387°	W 150.9922°	
CD2-19S		N 70.3386°	W 150.9921°	
CD2-20N	84+06	N 70.3391°	W 150.9905°	
CD2-20S		N 70.3389°	W 150.9901°	
CD2-21N	88+50	N 70.3396°	W 150.9873°	
CD2-21S	00100	N 70.3394°	W 150.9869°	
CD2-22N	94+47	N 70.3403°	W 150.9829°	
CD2-22S	51172	N 70.3401°	W 150.9827°	
CD2-23N	98+66	N 70.3403°	W 150.9793°	
CD2-23S	55100	N 70.3402°	W 150.9795°	
CD2-24N	101±42	N 70.3402°	W 150.9771°	
CD2-24S	101743	N 70.3400°	W 150.9772°	
CD2-25N	112.04	N 70.3393°	W 150.9670°	
CD2-25S	115+94	N 70.3391°	W 150.9679°	
CD2-26N	110, 22	N 70.3397°	W 150.9638°	
CD2-26S	119+33	N 70.3396°	W 150.9632°	
CD4-01E	10.50	N 70.3391°	W 150.9670°	
CD4-01W	10+50	N 70.3391°	W 150.9678°	
CD4-02E	12:51	N 70.3383°	W 150.9674°	
CD4-02W	13+51	N 70.3383°	W 150.9679°	
CD4-26E	204 25	N 70.2932°	W 150.9813°	
CD4-26W	201+05	N 70.2934°	W 150.9818°	
CD4-27E	201:05	N 70.2932°	W 150.9815°	
CD4-27W	201+05	N 70.2934°	W 150.9820°	
CD4-28E	201+21	N 70.2932°	W 150.9816°	

Culvort	Station	Latitude	Longitude
Cuivert	Station	(NAD83)	(NAD83)
CD4-03E	16+02	N 70.3376°	W 150.9672°
CD4-03W		N 70.3376°	W 150.9676°
CD4-04E	18+95	N 70.3368°	W 150.9669°
CD4-04W		N 70.3369°	W 150.9674°
CD4-05E	23+08	N 70.3358	W 150.9680
CD4-05W		N 70.3359	W 150.9685
	28+03	N 70.3347	W 150.9707
CD4-00W		N 70.3349	W 150.9711 W/ 150.9747°
CD4-07W	34+16	N 70 3338°	W 150.9747
CD4-08F		N 70 3318°	W 150 9811°
CD4-08W	44+28	N 70.3320°	W 150.9815°
CD4-09E		N 70.3287°	W 150.9886°
CD4-09W	59+20	N 70.3288°	W 150.9890°
CD4-10E		N 70.3273°	W 150.9929°
CD4-10W	66+48	N 70.3274°	W 150.9934°
CD4-11E	91 - 24	N 70.3235°	W 150.9954°
CD4-11W	81+24	N 70.3235°	W 150.9961°
CD4-12E	81+66	N 70.3234°	W 150.9954°
CD4-12W	01:00	N 70.3234°	W 150.9961°
CD4-13E	82+09	N 70.3233°	W 150.9955°
CD4-13W	02:00	N 70.3233°	W 150.9961°
CD4-14E	82+51	N 70.3232°	W 150.9955°
CD4-14W		N 70.3232°	W 150.9960°
CD4-15E	102+00	N 70.3179	W 150.9980°
CD4-15W		N 70.3179	W 150.9985
CD4-16W	129+97	N 70.3104°	W 151.0003
CD4-17E		N 70.3070°	W 150.9990°
CD4-17W	143+00	N 70.3068°	W 150.9994°
CD4-18E		N 70.3059°	W 150.9985°
CD4-18W	146+55	N 70.3059°	W 150.9989°
CD4-19E	154.57	N 70.3038°	W 150.9973°
CD4-19W	154+57	N 70.3037°	W 150.9978°
CD4-20AE	162+95	N 70.3022°	W 150.9937°
CD4-20AW		N 70.3019°	W 150.9936°
CD4-20BE	163+15	N 70.3021°	W 150.9934°
CD4-20BW		N 70.3018	W 150.9933*
CD4-21E	163+35	N 70.3021	W 150.9933
CD4-22F		N 70 3021°	W 150.9932°
CD4-22W	163+55	N 70.3018°	W 150.9930°
CD4-23E	164.40	N 70.3019°	W 150.9926°
CD4-23W	164+40	N 70.3017°	W 150.9925°
CD4-23AE	164+60	N 70.3019°	W 150.9924°
CD4-23AW	104+00	N 70.3016°	W 150.9923°
CD4-23BE	164+80	N 70.3019°	W 150.9923°
CD4-23BW	201100	N 70.3016°	W 150.9922°
CD4-23CE	165+00	N 70.3018°	W 150.9921°
CD4-23CW		N 70.3016	W 150.9920*
	165+20	N 70.3018	W 150.9920
CD4-23DW		N 70.3010	W 150.9919 W 150.9798°
CD4-24W	197+02	N 70.2944°	W 150.9803°
CD4-25E		N 70.2933°	W 150.9812°
CD4-25W	200+89	N 70.2934°	W 150.9818°
CD5-21S	126+42	N 70.3033°	W 151.1546°
CD5-22N	130+54	N 70.3034°	W 151.1513°
CD5-22S		N 70.3032°	W 151.1512°
CD5-23N	148+07	N 70.3043°	W 151.1377°
CD5-23S		N 70.3041°	W 151 1374°

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Culturat	Station	Latitude	Longitude	
Cuivert	Station	(NAD83)	(NAD83)	
CD4-28W		N 70.2933°	W 150.9821°	
CD4-29E	201+21	N 70.2929°	W 150.9825°	
CD4-29W	201121	N 70.2931°	W 150.9828°	
CD4-30E	201+37	N 70.2929°	W 150.9826°	
CD4-30W	201157	N 70.2930°	W 150.9829°	
CD4-31E	201+37	N 70.2928°	W 150.9827°	
CD4-31W	201157	N 70.2930°	W 150.9830°	
CD4-32E	202+88	N 70.2928°	W 150.9828°	
CD4-32W	202:00	N 70.2930°	W 150.9832°	
CD4-33E	202+88	N 70.2926°	W 150.9838°	
CD4-33W	202:00	N 70.2928°	W 150.9841°	
CD5-01E	14+08	N 70.3122°	W 151.2186°	
CD5-01W	14100	N 70.3121°	W 151.2190°	
CD5-02E	28+83	N 70.3083°	W 151.2161°	
CD5-02W	20105	N 70.3082°	W 151.2166°	
CD5-03E	31+50	N 70.3076°	W 151.2153°	
CD5-03W	51.50	N 70.3075°	W 151.2158°	
CD5-04N	37+97	N 70.3060°	W 151.2134°	
CD5-04S	57157	N 70.3059°	W 151.2138°	
CD5-05N	44+77	N 70.3047°	W 151.2103°	
CD5-05S	,	N 70.3045°	W 151.2104°	
CD5-06N	53+53	N 70.3051°	W 151.2036°	
CD5-06S	55155	N 70.3049°	W 151.2033°	
CD5-07N	60+82	N 70.3059°	W 151.1984°	
CD5-07S		N 70.3058°	W 151.1978°	
CD5-08N	64+82	N 70.3064°	W 151.1953°	
CD5-08S		N 70.3062°	W 151.1950°	
CD5-09N	64+89	N 70.3064°	W 151.1952°	
CD5-09S	01100	N 70.3062°	W 151.1950°	
CD5-10N	71+74	N 70.3072°	W 151.1900°	
CD5-10S		N 70.3070°	W 151.1901°	
CD5-11N	74+56	N 70.3074°	W 151.1881°	
CD5-11S		N 70.3073°	W 151.1878°	
CD5-12N	82+45	N 70.3082°	W 151.1821°	
CD5-12S		N 70.3081°	W 151.1818°	
CD5-13N	88+82	N 70.3089°	W 151.1774°	
CD5-135		N 70.3087	W 151.1769*	
CD5-14N	90+76	N 70.3090°	W 151.1/57°	
CD5-145		N 70.3088	W 151.1/56	
CD5-15N	92+09	N 70.3091	W 151.1746	
CD5-155		N 70.3089	VV 151.1/40	
CD5-16N	94+73	N 70.3090	W 151.1/24	
CD5-105		N 70.3088	W 151.1/25	
	100+44	N 70.3083	W 151 1696°	
CD5-18N		N 70.3001	W 151 1672°	
CD5-18N	101+99	N 70 3079	W 151 1670°	
CD5-19N		N 70 3056°	W 151 162/1°	
CD5-19N	111+86	N 70 3055°	W 151 1620°	
CD5-20N		N 70 3037°	W 151 1578°	
CD5-20N	122+31	N 70 3035°	W 151 1578°	
CD5-205	126+42	N 70.3035°	W 151 1545°	
000 211	120,12	11,0.0000	** 101.1040	

		Latitudo	Longitudo
Culvert	Station	(NAD83)	(NAD83)
CD5-24N		N 70.3048°	W 151.1336°
CD5-24S	153+63	N 70.3046°	W 151.1331°
CD5-25N	160+11	N 70.3052°	W 151.1284°
CD5-25S		N 70.3050°	W 151.1280°
CD5-26N	179+13	N 70.3056°	W 151.1130°
CD5-26S		N 70.3054°	W 151.1129°
CD5-27N	100.50	N 70.3058°	W 151.1054°
CD5-27S	188+59	N 70.3056°	W 151.1052°
CD5-28N	106+71	N 70.3059°	W 151.0987°
CD5-28S	196+71	N 70.3057°	W 151.0987°
CD5-29N	201+40	N 70.3060°	W 151.0951°
CD5-29S	201+40	N 70.3058°	W 151.0948°
CD5-30N	205+72	N 70.3060°	W 151.0916°
CD5-30S	205+72	N 70.3058°	W 151.0913°
CD5-31N	209+46	N 70.3061°	W 151.0885°
CD5-31S		N 70.3059°	W 151.0883°
CD5-32N	216+78	N 70.3062°	W 151.0824°
CD5-32S		N 70.3060°	W 151.0826°
CD5-33N	216+86	N 70.3062°	W 151.0823°
CD5-33S		N 70.3060°	W 151.0825°
CD5-34N	225+38	N 70.3063°	W 151.0755°
CD5-34S	223:30	N 70.3061°	W 151.0755°
CD5-35N	234+35	N 70.3065°	W 151.0683°
CD5-35S	201100	N 70.3063°	W 151.0683°
CD5-36N	239+00	N 70.3065°	W 151.0645°
CD5-36S	200 00	N 70.3064°	W 151.0645°
CD5-37N	245+56	N 70.3066°	W 151.0592°
CD5-37S		N 70.3065°	W 151.0592°
CD5-38N	249+12	N 70.3066°	W 151.0563°
CD5-38S		N 70.3064°	W 151.0564°
CD5-39N	254+23	N 70.3063°	W 151.0522°
CD5-395		N 70.3060°	W 151.0525°
CD5-40N	265+63	N 70.3049	W 151.0439
CD5-405		N 70.3047	W 151.0441
CD5-41N	272+56	N 70.3041	W 151.0388
CD5-415		N 70.3039	VV 151.0391
CD5-42N	276+40	N 70.3030	W 151.0359
CD5-425		N 70.3035	W 151.0305
CD5-45N	322+30	N 70.3042	W 151.0003
CD5-435		N 70.3040	VV 121.0003

11.27.19 PAGE A.7

APPENDIX B PT SETUP & TESTING METHODS

PTs measure the absolute pressure of the atmosphere and water, allowing the depth of water above the sensor to be calculated. Resulting data yield a comprehensive record of the fluctuations in stage. The reported pressure is the sum of the forces imparted by the water column and atmospheric conditions. Variations in local barometric pressure were taken into account using a Solinst Barologger[®] barometric pressure logger. A correction of barometric pressure was obtained from the Solinst Levelogger installed at the Tinmiaqsiugvik Bridge.

The PTs were tested before field mobilization. The PTs were configured using Solinst Levelogger[®] v4.0.3 (for both the Solinst Leveloggers and Barologgers) software prior to placement in the field. Absolute pressure was set to zero. The PT sensor was surveyed during setup to establish a vertical datum using local control.

PT-based stage values were determined by adding the calculated water depth and the surveyed sensor elevation. PTs have the potential to drift and can be affected by ice and sediment. Gage WSE readings were used to validate and adjust the data collected by the PTs. A standard conversion using the density of water at 0°C was used to calculate all water depths from adjusted gage pressures. Fluctuations in water temperature during the sampling period did not affect WSE calculations because of the limited range in temperature and observed water depths

APPENDIX C DISCHARGE METHODS, SITE SPECIFIC INFORMATION, & PLAN & PROFILE DRAWINGS

C.1 METHODS

C.1.1 MEASURED DISCHARGE

1) USGS Midsection Technique

Bridge flow depth and velocity measurements were taken from the upstream side of bridge decks using a sounding reel mounted on a USGS Type A crane with 4-wheel truck. A Price AA velocity meter was attached to the sounding reel and stabilized with a counter weight. A tag line was placed along the bridge rail to define the cross section and to delineate measurement subsections within the channel. The standard rating table No.2 for Price AA velocity meters, developed by the USGS Office of Surface Water (OSW) Hydraulic Laboratory as announced in the OSW Technical Memorandum No. 99.05 (OSW 1999a), was used to convert revolutions to stream velocity. The Price AA velocity meter was serviced prior to spring breakup monitoring in accordance with USGS precise standards. A spin test of the meter was completed prior to and after each measurement. Procedures outlined in OSW Technical Memorandum No. 99.06 (OSW 1999b) were followed to confirm accurate meter performance. Discharge was calculated based on velocity and flow depth.

2) USGS Velocity/Area Technique

Standard USGS velocity/area techniques (USGS 1968) were used to measure depth of flow and velocity to determine discharge at each culvert experiencing flow. Depth of flow and velocity were measured on the downstream end of the culvert using a HACH FH950 electromagnetic velocity meter attached to a wading rod. The accuracy of the HACH meter is \pm 2% of the reading, \pm 0.05 ft/s between 0 ft/s and 10 ft/s, and \pm 4% of the reading from between 10 ft/s and 16 ft/s. Discharge was calculated based on velocity, flow depth, and culvert geometry.

3) ADCP METHODS

A direct discharge measurement was performed at the Nigliq Bridge on May 26 using an Acoustic Doppler Current Profiler (ADCP). Discharge was not measured in the Colville River at MON1 because of lack of access during peak conditions.

A. HARDWARE & SOFTWARE

A Teledyne RD Instruments 600-kilohertz Workhorse Sentinel broadband ADCP was used. The unit has a phased array, Janus four-beam transducer with a 20-degree beam angle. The ADCP unit and supporting laptop (Panasonic Toughbook CF-19) were self-powered via internal batteries.

BBTalk v3.06, a DOS-based communication program, was used to perform pre-deployment tests. WinRiverII v2.18 was used to configure, initiate, and communicate with the ADCP while on the river. WinRiverII was also used to review and evaluate collected discharge data after returning from the field.

B. PRE-DEPLOYMENT TESTING

Prior to deployment of the ADCP unit, a full suite of tests were run in accordance with the manufacturer's instructions using BBTalk. The tests confirmed the signal path and all major signal processing subsystems were functioning properly. Tests also confirmed accurate tilt and pitch readings. A beam continuity test was performed to verify the transducer beams were connected and operational. Additional diagnostic tests were performed using WinRiverII. Pre-deployment tasks also included compass calibration and verification and a moving bed test. The

internal compass was calibrated to an error of 1.9°, which is within the specified 5° limit. A loop test was performed to detect and estimate compensation for a moving bed, which was identified at a velcoity of 0.073 ft/s.

C. ADCP DEPLOYMENT & DATA COLLECTION

The Workhorse Sentinel ADCP was mounted to an Achilles SGX-132 inflatable raft powered by a Tohatsu 9.8 horsepower outboard motor. A fabricated aluminum tube framework spanning the boat's gunwales provided a rigid and secure placement of the ADCP unit, and allowed necessary navigation adjustments as river conditions required.

The discharge measurement was performed approximately 1,100-ft downstream of the Nigliq Bridge, between gages G27 and G29. Cross section end points were marked with handheld GPS units having wide area augmentation system enabled accuracy. The position of the boat was determined by tracking the bottom of the channel with the ADCP. Distances to the right and left edge of water from respective end points were estimated from GPS coordinates.

The four most agreeing of a total of six transects were used. The measured discharges varied by 0.00%, which is less than the standard 5% of their mean. Cross section end points were dependent on a depth associated with a minimum of two good bins to provide acceptable data.

D. ADCP BACKGROUND & DATA PROCESSING

An ADCP measures the velocity of particles in the water. Particles, on average, move at the same horizontal velocity of the water relative to the ADCP unit. The velocity of flow is then calculated relative to the earth, based on the simultaneous velocity and position of the boat. The velocity and position of the boat were recorded by tracking the bottom of the channel with the ADCP unit.

The Nigliq Channel bed is composed of fine-grained sediment, and water velocities are sufficient to entrain the materials resulting in a moving river bed condition. When using bottom tracking, a moving bed can affect the accuracy of the results by biasing the velocity and discharge lower than actual values. This phenomenon can be eliminated with the use of either a differential global positioning system (DGPS), the loop method (USGS 2006). To account for the bias introduced by a moving bed, the loop method was employed.

The loop method is a technique to determine whether a moving bed is present and, if present, to provide an approximate correction to the final discharge value. The USGS established guidance for the loop method by outlining procedures for mean correction and distributed correction (USGS 2006). Both procedures yield results within 2 percent of the actual discharge, as measured using DGPS. Since a moving bed was identified, the mean correction procedure was applied to the because of the simple geometry of the channel cross section. The results of the loop test, performed during discharge measurements, was used to estimate the mean velocity of the moving bed. The mean velocity was multiplied by the cross-sectional area perpendicular to the mean observed flow to yield a discharge correction. The resulting correction was applied to each transect, and the resulting direct discharge measurement was determined by averaging the corrected discharge measurements.

C.1.2 PEAK DISCHARGE

1) Culverts

Bentley CulvertMaster[®] software was used to calculate peak discharge through the CRD road culverts associated with gage stations that experienced flow. Timing and magnitude of peak discharge through the culverts was determined based on recorded stage on both sides of the road prism. Peak discharge results were evaluated against visual assessment of performance. Average velocity and discharge through the culverts assumes ice-free openwater conditions and were estimated based on several variables, including:

- Headwater and tailwater elevations at each culvert (hydraulic gradient)
- Culvert diameter and length from UMIAQ as-built surveys (UMIAQ 2002, 2017)
- Culvert upstream and downstream invert elevations (UMIAQ 2017, 2019d)
- Culvert Manning's roughness coefficients (0.013 for smooth steel and 0.024 for corrugated metal pipe)

2) Streams

Peak discharge in streams was calculated indirectly using either the Slope Area (Benson and Dalrymple 1967) or the Normal Depth (Chow 1959) method. Both methods use channel roughness, cross sectional geometry, and stage differential between gage sites as an estimate for the energy grade line. The methods differ by the number of cross sections used in the calculations. The Slope Area method is considered the standard for indirect discharge calculations and is generally used if sufficient stage data is available for multiple cross-sections through a reach. The accuracy of each method, however, depends on conditions at the time of calculation, particularly the presence of ribbon and bottom-fast ice, ice jam activity, and backwater effects. Direct discharge measurements at or near the time of peak can support calibration and accuracy of indirect calculations.

The Slope Area method was used to estimate peak discharge at MON1, using the cross sections surveyed at MON1U, MON1C, and MON1D.

The Normal Depth method was used to estimate peak discharge at MON9 and the Nigliq Bridge crossing because they each only have a single surveyed cross-section.

Cross sectional geometry for MON1 is current as of 2004 (UMIAQ 2004), MON9 is current as of 2014 (UMIAQ 2014), Nigliq Bridge (CD5 Bridge #2) is current as of 2016 (UMIAQ 2016a). Cross-sectional geometry data was collected in the summer at all locations and does not account for bank-fast or bottom-fast ice or snow. Additionally, because of channel bed morphology, cross sectional geometry becomes less accurate with time, particularly for those CRD channels that are predominantly comprised of fine grained. Stage and energy gradient data were obtained from observations, gage data, and PT data.

Peak discharge was not calculated at the Lake L9323 bridge (CD5 Bridge #1), Lake L9341 bridge (CD5 bridge #2), or the Nigliagvik bridge (CD5 Bridge #4). There was no flow to pass though the Lake L9323 bridge; there was only limited backwater flow passing through the Lake L9341 bridge which was additionally under the significant influence of competent lake ice; and the PT failed at the Nigliagvik bridge which did not allow for calculation during peak conditions.

C.2 Site Specific Data & Plan & Profile Drawings

C.2.1 MON1

1) PEAK DISCHARGE DATA

Peak discharge at MON1 was calculated indirectly using the Slope Area method. The Slope Area method is considered to be a more refined approach than the Normal Depth method and can be used when sufficient stage data is available to characterize discharge at more than one cross-section. The energy grade-line was approximated by the average water surface slope between MON1U, MON1C, and MON1D. Manning's n roughness values used were 0.0256 for the main channel and 0.06 for the overbanks, based on historical calibration of measured discharge and corresponding stage.

2. CHANNEL PROFILE MEASUREMENTS COMPLETED AUGUST 2004 BY UMIAQ (KUUKPIK/LCMF INC.)

- 1. BASIS OF ELEVATION, MONUMENT 1.
- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED AUGUST 2004 BY UMIAQ (KUUKPIK/LCMF INC.)

- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED
 - AUGUST 2004 BY UMIAQ (KUUKPIK/LCMF INC.)

C.2.2 MON9

1) PEAK DISCHARGE DATA

Peak discharge at MON9 was calculated using the Normal Depth method. The energy grade-line was approximated by the water surface slope between MON9 and MON9D. Manning's n roughness values used were 0.021 for the low flow channel and 0.023 for the main channel.

2) PLAN & PROFILE

GCY

1 in = 1000 feet

Imagery Source: ConocoPhillips Alaska, 2015

(SHEET 1 of 2)

Ν	0	Τ	ES	

- 1. BASIS OF ELEVATION, MONUMENT 9.
- 2. CHANNEL PROFILE MEASUREMENTS COMPLETED NOVEMBER 2009 BY UMIAQ (KUUKPIK/LCMF INC.)

C.2.3 NIGLIQ BRIDGE

1)

MAY 26 SPRING BREAKUP MEASURED DISCHARGE SUMMARY

Transect	Area (ft²)	Unadjusted Measured Discharge (cfs)	Discharge Correction Attributed to Moving Bed (cfs)	Adjusted Measured Discharge (cfs)	Error	Average Velocity (ft/s)
Downstream001 at 18:56	14,990	36,967	1,094	38,061	0.46%	2.54
Downstream002 at 19:03	14,648	37,186	1,069	38,255	0.97%	2.61
Downstream004 at 19:13	14,788	36,338	1,080	37,417	-1.24%	2.53
Downstream005 at 19:20	14,644	36,748	1,069	37,817	-0.19%	2.58
Average	14,768	36,810	1,078	37,888		2.57

E. TRANSECT DOWNSTREAM001 RAW DATA OUTPUT

F. TRANSECT DOWNSTREAM002 RAW DATA OUTPUT

G. TRANSECT DOWNSTREAM004 RAW DATA OUTPUT

2) PEAK DISCHARGE DATA

Peak discharge was calculated using the Normal Depth method. The channel geometry applied in the Normal Depth calculation was from Transect 10 surveyed for the *Monitoring Plan with an Adaptive Management Strategy* in July 2016. The friction slope used in the Normal Depth calculation was based on WSEs at gages G26 and G28. The channel roughness values used were calibrated from the measured discharge. Manning's n values used were 0.095 for the left overbank, 0.06 for the right overbank, and 0.036 for the main channel. Main channel roughness is relatively high to account for minor obstructions from the bridge piers and scour holes.

C.2.4 NIGLIAGVIK BRIDGE

1) MEASURED DISCHARGE

Discharge was not measured at the Nigliagvik Bridge because of the presence of ice in the channel just upstream of the bridge during peak conditions.

2) PEAK DISCHARGE DATA

Peak discharge was not calculated at the Nigliagvik Bridge because of an equipment malfunction at G39.

<u>NOTES</u>

1. BASIS OF ELEVATION, MONUMENT 29.

2. CHANNEL PROFILE MEASUREMENTS COMPLETED JULY 2016 BY UMIAQ (KUUKPIK/LCMF INC.)

C.2.5 LONG SWALE BRIDGE

ConocoPhillips Alaska INTERNATIONAL

1)

MEASURED DISCHARGE

NTERNATIONAL			-		i c	Computed By:	May 25, 2019 : KDB
Location Name:		Long Swale B	Bridge			Checked By	:HLR
Party: DTR	MDB, ACG, CMB	Start:	5/25/2019 1	0:55 Finish:	5/25/	2019 14:12	
Temp:34	۴F	Weather:			Foggy		
Channel Characteristics	:						
Width:	439.5 f	t Area: 2046	sqft V	/elocity: 1.37	fps	Discharge	: 2795 cfs
Method:	Aid-section technique	Number of S	ections:		Count:		
Spin Test:	ок	minutes after	OK secon	ds Meter:		Price AA	
	GAGE READIN			Meter:	0.94 1	t above botto	m of weight
Gage	Start	Finish	Change	meter	0.04		an of weight
G3 G4	6.69 6.50	7.00	0.31 0.19	Weight:	30	lbs	
				Wading	Cable	Ice Boat	
				Upstream	or	Downstream	side of bridge
GPS Data:					٥		
Water:				LE Floodplain:		-	•
Right Edge of Water:				RE Floodplain:	0	1	
Descriptions: Cross Section: Flow:							
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 2701 - 11	e un ^{(H} r bri	óge	2951-	3-32	- ice	und+1 0 358
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270' - 10	e uniter ber	dae J	<u>295'-</u> Ą	3-72 brok	e while	0 358'
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270'- ji	e un Mr Vori	tge	<u>295'-</u> Æ	3.52 • brot	e while	under 1 0 322
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270' - 11	e unitte ber	daje Li	295'- A	3.52 . brot	e vezer	und+1 0 222
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270' - 11	e unitter bori	dage D	295'- A	3-72 brot	2 - 156 8 White	und+1 0 358
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270'- (1	e unitte ber	daje 2	295'- 2 1 1 1 1 1 295'- 2 1 2 1 1 1 295'-	352 brok	2 - 150 8 White 2 200	
Descriptions: Cross Section: Flow: Remarks: 2.3 Control of the section of the s	a'- 270'- 11	unitter ber D Hab D D D D D D D D D	dae	295'- 4 1 H20	332 brok	- 160 8 While 1	
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270'- 11	e unitter beri	daje Le)	295'-	3.72 both	1 - 152 2 White 6 300	
Descriptions: Cross Section: Flow: Remarks: 2.3 Cross Section: Flow: Remarks: 2.3 Cross Section: Flow: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Cross Section: Remarks: 2.3 Cross Section: Cross Section: Remarks: 2.3 Cross Section: Cross Section: Cross Section: Remarks: 2.3 Cross Section: Cross Section:	a'- 270'- 11	e un Mr bri	daje 12) L (mositi)	295'- A	332 box	2 - 100 8 While 1	unit: 1 0 322
Descriptions: Cross Section: Flow: Remarks: 2-3	a'- 270' - 11 120	e un Mr bri	dae (morr)	295'- 4 1 H20	332 • brot	2 - 150 2 White 2 White	
Descriptions: Cross Section: Flow: Remarks: 2.3 Control of the section of the s	a'- 270'- 11	e unitter bern	daje 2) (morta)	295'- 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	332 brok	1 - 152 2 White 2 White	
Descriptions: Cross Section: Flow: Remarks: 2.3 Cross Action: Remarks: 2.3 Cross Action: Cross Action:	a'- 270'- 11	e un Mr bri	daje 1) (mostří)	295'- A 1 H20	332 - brot	2 - 1 C C 2 While 1 2 - 1 C C 2 - 1 C C	
Descriptions: Cross Section: Flow: Remarks: 2-3 Cross Section: Remarks: 2-3 Cross Section: Cross Section: Remarks: 2-3 Cross Section: Cross Section: Remarks: 2-3 Cross Section: Cross Section: Remarks: 2-3 Cross Section: Cross Section: Cross Section: Cross Section: Remarks: 2-3 Cross Section: Cross Section:	a'- 270'- 11 120 120 2110 2110	e un Mr bri De de la MSD B Contraction Con	dae (morril)	295'- 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	332 brok	2 - 1 C C 2 White C - 1 C C 2 White - 1 C C 2 White - 1 C C - 1 C C	
Descriptions: Cross Section: Flow: Remarks: 2.3	a'- 270'- 11	e un iller beri	daje 12) (morita)	295'- A	392 brok		
Descriptions: Cross Section: Flow: Remarks: 2.3 Cross Section: Flow: Remarks: 2.3 Cross Section: Flow: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Remarks: 2.3 Cross Section: Cross Section: Remarks: 2.3 Cross Section: Cross Section: Cross Section: Remarks: 2.3 Cross Section: Cross Sectio	a'- 270'- 11	e un Mr bri	daje j	295'- A 1 H20 2	332 brok	2 - 122 2 White 1	

Long Swale Bridge May 25, 2019

Angle Coeff	Distance from initial	Section Width	Water Depth	Observed Depth	Revolution Count	Time Increment	At Point	VELOCITY Mean in	Adjusted for Angle	Area	Discharge
	point (ft)	(ft)	(ft)	(ft)		(sec)	(fps)	Vertical (fps)	Coeff (fps)	(s.f.)	(cfs)
1	0			•							
0.9	10	15.0	3.1	1.9	50	40	2.77	2.77	2.50	46.5	116.08
0.95	20	10.0	3.1	1.9	60	47	2.83	2.83	2.69	31.0	83.42
0.95	30	10.0	3.9	2.3	40	40	2.22	2.22	2.11	39.0	82.35
0.99	40	15.0	3.4	2.1	30	43	1.56	1.56	1.54	51.0	78.56
0.99	60	20.0	4.1	2.5	20	44	1.02	1.02	1.01	82.0	82.80
0.99	80	20.0	3.2	1.9	25	43	1.30	1.30	1.29	64.0	82.35
0.98	100	20.0	3.6	2.2	30	42	1.59	1.59	1.56	72.0	112.38
0.98	120	20.0	4.4	2.7	25	42	1.33	1.33	1.30	88.0	114.71
0.98	140	20.0	4.0	2.4	25	40	1.40	1.40	1.37	80.0	109.43
0.99	160	20.0	4.4	2.7	20	40	1.12	1.12	1.11	88.0	97.59
1	180	20.0	5.1	4.1 1.0	15 7	40 40	0.84 0.40	0.62	0.62	102.0	63.66
1	200	20.0	4.5	3.6 0.9	15 15	48 47	0.71 0.72	0.71	0.71	90.0	64.27
0.97	220	37.5	5.7	4.6 1.1	30 20	46 48	1.46 0.94	1.20	1.16	213.8	247.99
0.92	275	32.5	7.5	6.0 1.5	30 50	43 43	1.56 2.58	2.07	1.90	243.8	463.92
0.98	285	7.5	6.7	5.4 1.3	30 50	43 48	1.56 2.31	1.94	1.90	50.3	95.30
0.99	290	25.0	6.5	5.2 1.3	25 40	45 45	1.24 1.98	1.61	1.59	162.5	259.03
0.85	335	30.0	4.6	3.6 1	50 50	47 45	2.36 2.47	2.42	2.05	138.0	283.33
0.98	350	22.5	4.3	2.6	25	53	1.06	1.06	1.04	96.8	100.30
0.94	380	30.0	4.6	3.6 0.9	15 10	56 42	0.61 0.54	0.58	0.54	138.0	74.66
0.99	410	28.5	4.2	2.6	20	44	1.02	1.02	1.01	119.7	120.87
0.98	437	16.0	3.1	1.9	25	44	1.27	1.27	1.25	49.6	61.76
1	442		-	~	-	~					
									Total	Discharge	2794.78

11.27.19 PAGE C.20

C.2.6 SHORT SWALE BRIDGE

1)

MEASURED DISCHARGE

INTERNATIONAL		Discharge			D	ate: I	May 26, 2019)
Location Name:		Short Swale Bridge				Checked By:	HLR	2
Party: ACG,	KDB, TC (ABR)	Start: 5/2	26/2019 12:00	Finish:	5/26/2	019 13:00	-	
Temp: 30	°F	Weather:		Overca	ast 20 MI	РН		
Channel Characteristics:								
Middle M	50 E # A		6 Valasita	0.70	6.0	Discharge		- 6-
	52.5 π Α	rea: <u>349</u> sq	T Velocity:	0.70	tps	Discharge:	244	CTS
Method: <u>Mi</u>	d-section technique	Number of Section	s:	c	ount:			
Spin Test:	OK m	inutes after OK	seconds	Meter:		Price AA		
	GAGE READINGS			Meter:	0.94 ft	above botto	m of weight	Ē
Gage G3	Start 7.35	Finish Cl 7.19 ·	0.16	Weight:	30	lbs		
G4	7.40	7.15 -	0.25	Wading	Cable	Ice Boat		
					or 7	lounctroam	cide of bel	dae
				upstream	or L	Jownstream	side of brid	uge
GPS Data: Left Edge of			LE FIG	oodplain:	0		. "	
Water:				a dala la la l	0			
Water:				ooplain:			······································	
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u>	Excellent Go	nts	Ide					
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2 39</u>	w constriction near Wes	nts	lde 295 1	- 332	- 9	ie woles l		
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2 39</u> 4	excellent G	nts	ide 295 i	- 332 1	- 11 - 11	1 0 35		
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2 3 A 1</u>	excellent difference and the second s	nts	ide 295 i	- 332	- 11 3 White	1 0 3	0'	
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2 % '</u>	excellent G	tabutment on DS si	lde 	- 332 (A (0/1)	- 11 8 Whit	ie unite i		
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks: 2.32	excellent difference abutmer	it abutment on DS s	ide	- 332 1 10 101	- (1) 8 white		Č.	
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks: 2.32 Haz	excellent difference abutmer	tain Forman	ide 295 ¹ H	- 332 1 1 101	- 11 0 (1/11)	0 35		
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2.32</u> Hast	excellent difference abutmer	tabutment on DS si	Ide 295 H	- 332 (1 10(0)) =0	- 11 e white (
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2.3A</u> [*] Hat	Excellent difference abutmer	it abutment on DS si	ide 295 H K	- 332 1 2 brost	- 11 3 who			
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2.32</u> Hart	excellent difference abutmer	tabutment on DS s	ide 295 ¹ H	- 352 (03	2	
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2.39</u> Hast Hast Hast Constricte	excellent difference abutmer	tabutment on DS si	Ide 295	- 332 1 1 10 101				
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks: 2.3A ⁺ Hat Kenarks: 2.3A ⁺	Excellent difference abutmer	tabutment on DS si	ide 295 ¹ H	- 332 1 1 20	- 11 3 who			
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks: 2.32 Has Grand E	excellent difference abutmer	tai for tabutment on DS si tr bridge	ide 295 ¹ H	- 332/ 10/01				
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks: 2-3a' Hast Hast Constricte	Excellent difference abutmer	tai ron	Ide 295	- 332 1 1 20 1 N				
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks: 2.3a.' Has Cond Land Cond Land Cond Land Cond Land Cond Land Cond Land Cond Constricte Flow: Minor sno Constricte Flow: Constricte Flow: Minor sno Constricte Constri Constr	Excellent difference abutmer	tai too	Ide 295 1 H	- 332 2 brost 20	- 11 8 White			
Measurement Rated: Descriptions: Cross Section: Constricte Flow: Minor sno Remarks. 2.32 Hart Constricte Flow: Minor sno Remarks. 2.32 Hart Constricte Remarks. 2.32 Hart Constricte Remarks. 2.32 Hart Constricte Remarks. 2.32 Hart Constricte Remarks. 2.32 Minor sno Remarks. 2.32 Minor sno Remarks. 2.32 Remarks. 3.32 Remarks. 3.32 Rem	Excellent difference abutmer	tai room	Ide 295 I H K	- 3-32 / 2 5/0) 20	- 11 3 whi 			
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>232</u> Har Constricte	excellent difference abutmer	tan For	Ide 295 H	- 332 1000 20 N				
Measurement Rated: Descriptions: Cross Section: <u>Constricte</u> Flow: <u>Minor sno</u> Remarks: <u>2.32</u> Has Has E	excellent difference abutmer	tai too	Ide 295 H	- 332 2 bross -0				

ConocoPhillips Alaska INTERNATIONAL Long Swale Bridge May 25, 2019

Coeff	from initial point	Width	Depth	Depth	Count	Increment	At Point	Mean in Vertical	for Angle Coeff	Area	Discharge
	(ft)	(ft)	(ft)	(ft)		(sec)	(fps)	(fps)	(fps)	(s.f.)	(cfs)
1	0		•	•	-	•					
0.94	5	7.5	5.3	1.1 4.2	7	42 46	0.39	0.44	0.41	39.8	16.48
0.9	10	5.0	5.1	1 4.2	15	44 52	0.77	0.71	0.64	25.5	16.33
1	15	5.0	5.9	1.2	15 15	49 46	0.69	0.71	0.71	29.5	21.09
1	20	5.0	6.1	1.2	20 20	44 47	1.02	0.99	0.99	30.5	30.13
0.99	25	5.0	6.4	1.3 5.1	20 15	50 51	0.90	0.78	0.78	32.0	24.81
0.99	30	5.0	7.4	1.5 5.9	15 15	40 42	0.84 0.81	0.82	0.82	37.0	30.22
0.99	35	5.0	7.7	1.5 6.2	15 20	48 47	0.71 0.96	0.83	0.82	38.5	31.69
0.98	40	5.0	8.4	1.7 6.7	15 20	54 45	0.63	0.81	0.80	42.0	33.50
0.98	45	5.0	7.4	1.5 5.9	15 10	53 45	0.64 0.51	0.57	0.56	37.0	20.84
0.97	50	5.0	7.5	1.5 6	15 10	64 43	0.53 0.53	0.53	0.52	37.5	19.37
1	55			~		~					
										Disat	
									Total	Discharge:	244.46 cfs

11.27.19 PAGE C.22

2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

C.2.7 CULVERTS

1) MEASURED DISCHARGE

Date	Time	Culvert ID	Flow Conditions	Flow Direction	Total Depth (ft)	Measured Depth (ft)	v1 (ft/s)	v2 (ft/s)	v3 (ft/s)	Upstream Gage	Upstream WSE (ft BPMSL)	Downstream Gage	Downstream WSE (ft BPMSL)	Notes
5/25/2019	12:33	CD2-21	Flowing	South to North	1.4	0.56	2.24	2.23	2.23	G3	6.82	G4	6.58	
5/25/2019	12:41	CD2-22	Flowing	South to North	1.7	0.68	3.06	2.95	2.91	G3	6.82	G4	6.58	
5/25/2019	12:52	CD2-23	Flowing	South to North	2.0	0.80	3.60	3.52	3.54	G3	6.82	G4	6.58	
5/25/2019	12:59	CD2-24	Flowing	South to North	2.2	0.88	3.24	3.28	3.26	G3	6.82	G4	6.58	
5/25/2019	16:21	CD4-28	Flowing	South to North	0.6	0.24	1.66	1.72	1.66	G18-A	0.90	G17-A	0.37	lce on bottom, diameter = 2.7
5/25/2019	16:28	CD4-27	Flowing	South to North	0.9	0.36	1.72	1.65	1.54	G18-A	0.90	G17-A	0.37	lce on bottom, diameter = 2.9
5/25/2019	16:31	CD4-26	Flowing	South to North	0.5	0.20	1.52	1.62	1.63	G18-A	0.90	G17-A	0.37	lce on bottom, diameter = 2.7
5/25/2019	17:46	CD5-07	Flowing	South to North	1.0	0.40	1.66	1.65	1.66	S1	0.32	S1D	0.10	
5/25/2019	17:53	CD5-04	Flowing	East to West	1.3	0.52	3.45	3.46	3.41	n/a	n/a	n/a	n/a	
5/28/2019	9:50	CD5-07	Flowing	South to North	0.8	0.32	0.84	0.82	0.84	S1	0.21	S1D	dry	
5/28/2019	9:59	CD5-04	Flowing	East to West	1.3	0.52	2.74	2.70	2.77	n/a	n/a	n/a	n/a	
Note: Any culv	ert not liste	ed was observed	to either be stagn	ant or dry at the time o	of the discha	rge measurement	ts							

2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

2)

PEAK DISCHARGE

I. CULVERT CD2-21

omments: 5/25/19 4:45 pm					
olve For: Discharge					
Culvert Summary					_
Allowable HW Elevation	7.32 ft	Headwater Depth/Height	0.50		_
Computed Headwater Elevation	7.32 ft	Discharge	16.31	cfs	
Inlet Control HW Elev.	6.98 ft	Tailwater Elevation	6.97 Outlet Control	ft	
Odder Control 1107 Elev.	7.32 1	Control Type	Callet Control		_
Grades					=
Upstream Invert	5.31 ft	Downstream Invert	5.20	ft	_
Length	76.70 ft	Constructed Slope	0.001330	ft/ft	
					=
Profile	M1	Depth, Downstream	1.77	ft	_
Slope Type	Mild	Normal Depth	1.53	ft	
Flow Regime	Subcritical	Critical Depth	1.18	ft	
Velocity Downstream	3.04 ft/s	Critical Slope	0.003537	ft/ft	
Section					-
Section Shape	Circular	Mannings Coefficient	0.013		_
Section Material	Steel	Span	4.00	ft	
Section Size	48 inch	Rise	4.00	ft	
Number Sections	1				_
Outlet Control Properties					_
Outlet Control HW Elev.	7.32 ft	Upstream Velocity Head	0.15	ft	_
Ke	0.90	Entrance Loss	0.14	ft	
Inlet Control Properties					_
Inlet Control HW Elev.	6.98 ft	Flow Control	N/A		_
Inlet Type	Projecting	Area Full	12.6	ft²	
к	0.03400	HDS 5 Chart	2		
M	1.50000	HDS 5 Scale	3		
C Y	0.05530	Equation Form	1		
					_
M C Y	1.50000 0.05530 0.54000	HDS 5 Scale Equation Form	3 1		_

J. CULVERT CD2-22

Comments: 5/25/19 4:45 pm						
olve For: Discharge						
Quivert Summary						-
Allowable H\\/ Flevation	7 32	ft	Headwater Denth/Height	0.55		-
Computed Headwater Elevation	7.32	ft	Discharge	17.71	cfs	
Inlet Control HW Elev.	6.97	ft	Tailwater Elevation	6.97	ft	
Outlet Control HW Elev.	7.32	ft	Control Type	Outlet Control		
Grades						_
Upstream Invert	5 14	ft	Downstream Invert	5 19	ft	_
Length	72.80	ft	Constructed Slope	-0.000797	ft/ft	
Hydraulic Profile						_
Profile	A2		Depth, Downstream	1.78	ft	-
Slope Type	Adverse		Normal Depth	0.00	ft	
Velocity Downstream	3.28	ft/s	Critical Slope	0.003538	ft/ft	
						_
Section						_
Section Shape Section Material	Circular		Mannings Coefficient Span	0.013	ft	
Section Size	48 inch		Rise	4.00	ft	
Number Sections	1					_
Outlet Control Properties						_
Outlet Control HVV Elev.	7.32	ft	Upstream Velocity Head	0.14	ft	_
Ke	0.90		Entrance Loss	0.12	ft	
Inlet Control Properties						
Inlet Control HW Elev.	6.97	ft	Flow Control	N/A		_
Inlet Type	Projecting		Area Full	12.6	ft²	
К	0.03400		HDS 5 Chart	2		
M	1.50000		HDS 5 Scale	3		
Y	0.54000		Equation Form	1		_

K. CULVERT CD2-23

comments: 5/25/19 4:45 pm						
Colve For: Discharge						
						-
Culvert Summary	7.00					
Allowable HW Elevation	7.32	ft	Headwater Depth/Height Discharge	0.75	cfe	
Inlet Control HW Elev.	6.97	ft	Tailwater Elevation	6.97	ft	
Outlet Control HW Elev.	7.32	ft	Control Type	Outlet Control		
Grades						
Upstream Invert	4 31	ft	Downstream Invert	4.51	ft	-
Length	72.80	ft	Constructed Slope	-0.002843	ft/ft	
Hydraulic Profile						
Profile	A2		Depth, Downstream	2.46	ft	-
Slope Type	Adverse		Normal Depth	0.00	ft	
Flow Regime	Subcritical		Critical Depth	1.55	ft	
Velocity Downstream	3.38	ft/s	Critical Slope	0.003604	ft/ft	
Section						•
Section Shape	Circular		Mannings Coefficient	0.013		-
Section Material	Steel		Span	4.00	ft	
Number Sections	48 inch 1		Rise	4.00	π	-
Outlet Control Properties						•
Outlet Control HW Elev.	7.32	ft	Upstream Velocity Head	0.14	ft	
Ke	0.90		Entrance Loss	0.12	ft	
Inlet Control Properties						•
Inlet Control HW Elev.	6.97	ft	Flow Control	N/A		-
Inlet Type	Projecting		Area Full	12.6	ft²	
M	1.50000		HDS 5 Chart HDS 5 Scale	2		
c	0.05530		Equation Form	1		
Y	0.54000					

L. CULVERT CD2-24

Comments: 5/25/19 4:45 pm						
Solve For: Discharge						
Solve For. Discharge						_
Culvert Summary						-
Allowable HW Elevation	7.32	ft	Headwater Depth/Height	0.79	ofe	
Inlet Control HW Elev.	6.97	ft	Tailwater Elevation	6.97	ft	
Outlet Control HW Elev.	7.32	ft	Control Type	Outlet Control		
Grades						-
Upstream Invert	4 14	ft	Downstream Invert	4.26	ft	_
Length	76.00	ft	Constructed Slope	-0.001566	ft/ft	
Hydraulic Profile						-
Profile	A2		Depth, Downstream	2.71	ft	_
Slope Type	Adverse		Normal Depth	0.00	ft	
Flow Regime	Subcritical		Critical Depth	1.62	ft	
Velocity Downstream	3.30	ft/s	Critical Slope	0.003633	ft/ft	_
Section						_
Section Shape	Circular		Mannings Coefficient	0.013		_
Section Material	Steel		Span	4.00	ft	
Section Size Number Sections	48 inch 1		Rise	4.00	ft	_
Outlet Control Properties						_
Outlet Control HW Elev.	7.32	ft	Upstream Velocity Head	0.15	ft	_
Ke	0.90		Entrance Loss	0.13	ft	_
Inlet Control Properties						_
Inlet Control HW Elev.	6.97	ft	Flow Control	N/A		_
Inlet Type	Projecting		Area Full	12.6	ft²	
K	0.03400		HDS 5 Chart	2		
C	0.05530		Equation Form	3		
Y	0.54000					_

M. CULVERT CD4-26

comments: 5/25/19 3:00 pm						
Solve For: Discharge						
Culvert Summary						_
Allowable HW Elevation	11.14	ft	Headwater Depth/Height	0.57		_
Computed Headwater Elevation	11.14	ft	Discharge	22.31	cfs	
Outlet Control HW Elev.	11.14	ft	Control Type	Outlet Control	π	
Grades						-
Upstream Invert	8.85	ft	Downstream Invert	8.96	ft	_
Length	78.30	ft	Constructed Slope	0.000000	ft/ft	
Hydraulic Profile						-
Profile	H2		Depth, Downstream	1.39	ft	-
Slope Type	Horizontal		Normal Depth	N/A	ft	
Flow Regime	Subcritical		Critical Depth	1.39	ft	
velocity Downstream	5.73	π/s	Critical Slope	0.003559	π/π	_
Section						-
Section Shape	Circular		Mannings Coefficient	0.013	~	
Section Material	Steel		Span	4.00	ft #	
Number Sections	48 man 1		Nise	4.00	ĸ	_
Outlet Control Properties						_
Outlet Control HW Elev.	11.14	ft	Upstream Velocity Head	0.26	ft	-
Ke	0.90		Entrance Loss	0.23	ft	_
Inlet Control Properties						-
Inlet Control HW Elev.	10.98	ft	Flow Control	N/A		_
Inlet Type	Projecting		Area Full	12.6	ft²	
к м	0.03400		HDS 5 Chart HDS 5 Scale	2		
C Y	0.05530		Equation Form	1		

N. CULVERT CD4-27

Comments: 5/25/19 3:00 pm						
Solve For: Discharge						
O threat Summan (_
Allewable HM Flovation	11.14	4	Headwater Depth/Height	0.64		_
Computed Headwater Elevation	11.14	ft	Discharge	24.33	cfs	
Inlet Control HW Elev.	10.99	ft	Tailwater Elevation	10.18	ft	
Outlet Control HW Elev.	11.14	ft	Control Type	Outlet Control		
Grades						_
Upstream Invert	8.56	ft	Downstream Invert	8.86	ft	_
Length	77.70	ft	Constructed Slope	-0.003861	ft/ft	
Hydraulic Profile						-
Profile	Α2		Depth. Downstream	1 46	ft	-
Slope Type	Adverse		Normal Depth	0.00	ft	
Flow Regime	Subcritical		Critical Depth	1.46	ft	
Velocity Downstream	5.88	ft/s	Critical Slope	0.003574	ft/ft	
Section						-
Section Shape	Circular		Mannings Coefficient	0.013		_
Section Material	Steel		Span	4.00	ft	
Section Size	48 inch		Rise	4.00	ft	
Number Sections	1					_
Outlet Control Properties						_
Outlet Control HW Elev.	11.14	ft	Upstream Velocity Head	0.17	ft	_
Ke	0.90		Entrance Loss	0.16	ft	
Inlet Control Properties						_
Inlet Control HW Elev.	10.99	ft	Flow Control	N/A		_
Inlet Type	Projecting		Area Full	12.6	ft²	
к	0.03400		HDS 5 Chart	2		
M	1.50000		HDS 5 Scale	3		
Y	0.54000			1		

0. CULVERT CD4-28

comments: 5/25/19 3:00 pm						
Solve For: Discharge						
Solve For. Enscharge						_
Culvert Summary						_
Allowable HW Elevation	11.14	ft #	Headwater Depth/Height	0.60	ofe	
Inlet Control HW Elev.	10.93	ft	Tailwater Elevation	10.18	ft	
Outlet Control HW Elev.	11.14	ft	Control Type	Outlet Control		
Grades						_
Upstream Invert	8.75	ft	Downstream Invert	8.90	ft	_
Length	78.70	ft	Constructed Slope	-0.001919	ft/ft	
Hydraulic Profile						_
Profile	A2		Depth, Downstream	1.39	ft	-
Slope Type	Adverse		Normal Depth	0.00	ft	
Flow Regime	Subcritical	-	Critical Depth	1.39	ft	
Velocity Downstream	5.74	ft/s	Critical Slope	0.003559	ft/ft	_
Section						_
Section Shape	Circular		Mannings Coefficient	0.013		
Section Material	Steel		Span	4.00	ft	
Number Sections	48 inch 1		Rise	4.00	π	_
Outlet Control Properties						_
Outlet Control HW Elev.	11.14	ft	Upstream Velocity Head	0.19	ft	_
Ke	0.90		Entrance Loss	0.17	ft	_
Inlet Control Properties						_
Inlet Control HW Elev.	10.93	ft	Flow Control	N/A		_
Inlet Type	Projecting		Area Full	12.6	ft²	
K M	0.03400		HDS 5 Chart	2		
C	0.05530		Equation Form	1		
Y	0.54000					_

APPENDIX D ADDITIONAL PHOTOGRAPHS

- D.1 EROSION SURVEY
- D.1.1 CD2 ROAD

Photo D.1: CD2 road long swale bridge SW abutment, looking east; June 3, 2019

Photo D.2: CD2 road long swale bridge NW abutment, looking east; June 3, 2019

Photo D.3: CD2 road short swale bridge SW abutment, looking west; June 3, 2019

Photo D.4: CD2 road short swale bridge NW abutment, looking east; June 3, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.5: Road in vicinity of culvert CD2-21N post-breakup, looking west; June 3, 2019

Photo D.6: Road in vicinity of culvert CD2-21S post-breakup, looking east; June 3, 2019

Photo D.7: Road in vicinity of culvert CD2-22N post-breakup, looking west; June 3, 2019

Photo D.8: Road in vicinity of culvert CD2-22S post-breakup, looking west; June 3, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.9: Road in vicinity of culvert CD2-23N post-breakup, looking west; June 3, 2019

Photo D.10: Road in vicinity of culvert CD2-23S post-breakup, looking east; June 3, 2019

Photo D.11: Road in vicinity of culvert CD2-24N post-breakup, looking west; June 3, 2019

Photo D.12: Road in vicinity of culvert CD2-24S post-breakup, looking east; June 3, 2019

D.1.2 CD4 ROAD

Photo D.13: CD4 road post-breakup, looking northeast; June 3, 2019

Photo D.14: CD4 road in vicinity of G15 culverts post-breakup, looking northwest; June 3, 2019

Photo D.15: CD4 road in vicinity of G15 culverts post-breakup, looking northwest; June 3, 2019

Photo D.16: CD4 road in vicinity of G16 culverts post-breakup, looking southwest; June 3, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.17: CD4 road in vicinity of G17 culverts post-breakup, looking west; June 4, 2019

Photo D.18: CD4 road in vicinity of G17 culverts post-breakup, looking east; June 4, 2019

Photo D.19: CD4 road in vicinity of G18 culverts post-breakup, looking west; June 4, 2019

Photo D.20: CD4 road in vicinity of G18 culverts post-breakup, looking east; June 4, 2019

D.1.3 CD5 ROAD

Photo D.21: CD5 road Lake L9341 Bridge #3 as breakup subsides, looking south (upstream); May 28, 2019

Photo D.22: CD5 road Nigliagvik Bridge #4 as breakup subsides, looking west; May 28, 2019

Photo D.23: CD5 road Nigliq Bridge #2 bank sloughing at west abutment, looking south (upstream); May 28, 2019

Photo D.24: CD5 road Nigliq Bridge #2 bank sloughing at west abutment, looking north (downstream); May 28, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.25: Road in vicinity of culvert CD5-04N post-breakup, looking south; June 3, 2019

Photo D.27: Road in vicinity of culvert CD5-05N post-breakup, looking west; June 3, 2019

Photo D.26: Road in vicinity of culvert CD5-04S post-breakup, looking south; June 3, 2019

Photo D.28: Road in vicinity of culvert CD5-04S post-breakup, looking west; June 3, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.29: Road in vicinity of culvert CD5-06N post-breakup, looking east; June 3, 2019

Photo D.30: Road in vicinity of culvert CD5-06S post-breakup, looking east; June 3, 2019

D.2 ICE ROAD CROSSINGS BREAKUP

Photo D.31: Initial flow through slotted Colville River Ice Bridge, looking east; May 20, 2019

Photo D.32: Breakup progression at Colville River Ice Bridge, looking southeast (upstream); May 22, 2019

Photo D.33: Peak conditions at Colville River Ice Bridge, looking south (upstream); May 24, 2019

Photo D.34: Open channel at Colville River Ice Bridge, looking south (upstream); May 26, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.35: Peak conditions at Toolbox Creek ice road crossing, looking south; May 26, 2019

Photo D.36: Post-breakup at Toolbox Creek ice road crossing, looking southwest; May 30, 2019

Photo D.37: Peak conditions at Slias Slough ice road crossing, looking northeast; May 26, 2019

Photo D.39: Peak conditions at No Name Creek ice road crossing; May 30, 2019

Photo D.38: Peak conditions at Slias Slough ice road crossing, looking northeast; May 26, 2019

Photo D.40: Slotting at Slemp Slough ice road crossing; May 20, 2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Photo D.41: Peak conditions at Kachemach ice road crossing, looking north; May 30, 2019

Photo D.42: Peak conditions at Kachemach ice road crossing, looking northwest; May 30, 2019

Photo D.43: Slotting at Pineapple Creek ice road crossing, looking north; May 20, 2019

Photo D.44: Peak conditions at Pineapple Creek ice road crossing, looking north; May 26, 2019

Photo D.45: Slotting at Tamayayak ice road crossing #1, looking south; May 20, 2019

Photo D.46: Peak conditions at Tamayayak ice road crossing #1, looking south; May 26, 2019

Photo D.47: Peak conditions at Tamayayak ice road crossing #1, looking north; May 26, 2019

APPENDIX E CD5 PIER SCOUR, BANK EROSION, & BATHYMETRY

- E.1 PIER SCOUR
- E.1.1 NIGLIQ BRIDGE

E.1.2 NIGLIAGVIK BRIDGE

DESIGN:

GD

_

CE-CD50-1023

CHECKED:

APPROVAL:

DRAWING NO:

_

CC NO:

PART:

_

1 of 1

REV:

6

CADD FILE NO. 14-08-12-1CW

TO ALPINE

DATE:

SCALE:

JOB NO:

—

8/25/14

1" = 20'

SUB JOB NO:

_

E.2 BANK EROSION

E.2.1 NIGLIQ CHANNEL WEST & EAST BANK TABULATED DATA

Calc/d By: 3 Date: 11/05 RPT-CE-CI	SZ /2019 D-112 REV8		71					
		West	Bank Monit	or Top of	E Bank Loo	ations		DOCLOWIF-100 REVO
Raceline	See	Drawing C	E-4P00-11	26 Rev 5 fo	r Survey Ba	seline Loca	tion	
et l'	0/04/0040	ana una d	0/07/0045	71010040	00040047	010410040	04020040	Description
Station	8/21/2013	8/24/2014	8/2//2015	7/6/2016	8/24/2017	8/24/2018	8/13/2019	Description
0+00	180.2			153.6	147.0	147.0	144.6	Baseline Offset (In Feet)
				-26.6	-0.0	0.0	-2.4	Incremental Change
				-20.0	-33.2	-33.2	-35.0	Cumulative Change
4100	101.0			100 5	100 5	484.0	455.0	Describes Offerst (In East)
1+00	191.0			108.0	108.0	2.7	100.8	Baseline Offset (In Feet)
				-22.0	22.5	-0.7	-8.0	Cumulative Change
				-22.0	-22.0	-20.2	-30.2	Cumulative Change
2+00	102.1			104.4	101.8	177.7	172.1	Paceline Officet (In East)
2400	185.1			.9.7	-2.9	-2.0	-4.6	Incremental Change
				-0.7	11.5	15.4	20.0	Cumulative Change
				-0.7	-11.0	-10.4	-20.0	Cumulative Change
2+00	190.2			108.1	108.1	102.4	170.8	Receive Officet (In East)
3700	108.2			2.1	100.1	-2.7	.4.9	Incremental Change
				2.1	2.1	-2.7	10.6	Cumulative Change
				-9.1	-0.1	-0.0	-10.0	Cumulative Change
4+00	102.2			107.7	107.7	105.7	102.4	Receive Officet (In East)
4700	182.2			-4.5	107.7	-2.0	102.4	Incremental Change
				-4.5	4.5	-2.0	-0.0	Cumulative Change
				-4.0	-4.5	-0.0	-8.0	cumulative change
5+00	202.9			197.1	194.8	191.3	188.0	Baseline Offset (In Feet)
	202.0			-5.8	-2.3	-3.5	-3.3	Incremental Change
				-5.8	-8.1	-11.6	-14.9	Cumulative Change
				-0.0	-0.1	-11.0	-11.0	contrative onlange
6+00	224.0			207.8	203.8	203.8	200.8	Baseline Offset (In Feet)
				-16.2	-4.0	0.0	-3.0	Incremental Change
				-16.2	-20.2	-20.2	-23.2	Cumulative Change
7+00	228.9			209.3	206.0	202.7	202.7	Baseline Offset (In Feet)
				-19.6	-3.3	-3.3	0.0	Incremental Change
				-19.6	-22.9	-26.2	-26.2	Cumulative Change
								ů.
8+00	232.9			219.1	215.1	212.3	212.3	Baseline Offset (In Feet)
				-13.8	-4.0	-2.8	0.0	Incremental Change
				-13.8	-17.8	-20.6	-20.6	Cumulative Change
9+00	220.0			217.9	217.9	217.9	219.4	Baseline Offset (In Feet)
				-2.1	0.0	0.0	1.5	Incremental Change
				-2.1	-2.1	-2.1	-0.6	Cumulative Change
								ž

Doc LCMF-155 Nigliq Streambank Monitor Rev9.xlsx 1 of 4

West Bank Monitor

Baseline Station 8/2 10+00 2 10+00 2 10+00 2 11+00 2 11+00 1 12+00 1	See 21/2013 216.8 209.1 199.0	West 1 Drawing C 8/24/2014 216.8 0.0 0.0 209.1 209.1 199.0 0.0 0.0 0.0	Bank Monit E-AP00-112 8/27/2015 213.5 -3.3 -3.3 -3.3 -3.3 -3.3 -204.9 -4.2 -4.2 -4.2 -4.2 -4.2 -0.0 0.0 0.0	tor - Top of 28 Rev 5 fo 7/6/2016 213.5 0.0 -3.3 204.8 -0.1 -4.3 199.8	Bank Loc: r Survey Ba 8/24/2017 213.5 0.0 -3.3 204.8 0.0 -4.3	ations seline Loca 8/24/2018 210.9 -2.6 -5.9 204.8 0.0 -4.3	tion 8/13/2019 209.5 -1.4 -7.3 204.8 0.0 -4.3	Description Baseline Offset (In Feet) Incremental Change Cumulative Change Baseline Offset (In Feet) Incremental Change Cumulative Change
Baseline 8/2 10+00 2 10+00 2 10+00 2 10+00 2 10+00 2 11+00 2 11+00 10 12+00 10	See 21/2013 216.8 209.1 199.0	Drawing C 8/24/2014 216.8 0.0 0.0 209.1 0.0 0.0 199.0 0.0 0.0 0.0	E-AP00-112 8/27/2015 213.5 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -	26 Rev 5 fo 7/6/2016 213.5 0.0 -3.3 204.8 -0.1 -4.3 199.8	r Survey Ba 8/24/2017 213.5 0.0 -3.3 204.8 0.0 -4.3	seline Loca 8/24/2018 210.9 -2.6 -5.9 204.8 0.0 -4.3	tion 8/13/2019 209.5 -1.4 -7.3 204.8 0.0 -4.3	Description Baseline Offset (In Feet) Incremental Change Cumulative Change Baseline Offset (In Feet) Incremental Change Cumulative Change
Station 8/2 10+00 2 11+00 2 11+00 2 12+00 1	21/2013 216.8 209.1 199.0	8/24/2014 216.8 0.0 0.0 209.1 0.0 0.0 199.0 0.0 0.0 0.0	8/27/2015 213.5 -3.3 -3.3 204.9 -4.2 -4.2 199.0 0.0 0.0	7/6/2016 213.5 0.0 -3.3 204.8 -0.1 -4.3 199.8	8/24/2017 213.5 0.0 -3.3 204.8 0.0 -4.3	8/24/2018 210.9 -2.6 -5.9 204.8 0.0 -4.3	8/13/2019 209.5 -1.4 -7.3 204.8 0.0 -4.3	Description Baseline Offset (In Feet) Incremental Change Cumulative Change Baseline Offset (In Feet) Incremental Change Cumulative Change
10+00 2 11+00 2 11+00 1 12+00 1	209.1 199.0	216.8 0.0 0.0 209.1 0.0 0.0 199.0 0.0 0.0	213.5 -3.3 -3.3 204.9 -4.2 -4.2 -4.2 -199.0 0.0 0.0	213.5 0.0 -3.3 204.8 -0.1 -4.3 199.8	213.5 0.0 -3.3 204.8 0.0 -4.3	210.9 -2.6 -5.9 204.8 0.0 -4.3	209.5 -1.4 -7.3 204.8 0.0 -4.3	Baseline Offset (In Feet) Incremental Change Cumulative Change Baseline Offset (In Feet) Incremental Change Cumulative Change
11+00 2	209.1	0.0 0.0 209.1 0.0 0.0 199.0 0.0 0.0	-3.3 -3.3 -3.3 204.9 -4.2 -4.2 -4.2 199.0 0.0 0.0	0.0 -3.3 204.8 -0.1 -4.3	0.0 -3.3 204.8 0.0 -4.3	-2.6 -5.9 204.8 0.0 -4.3	-1.4 -7.3 204.8 0.0 -4.3	Incremental Change Cumulative Change Baseline Offset (In Feet) Incremental Change Cumulative Change
11+00 2 12+00 1	209.1	0.0 209.1 0.0 0.0 199.0 0.0 0.0	-3.3 204.9 -4.2 -4.2 199.0 0.0 0.0	-3.3 204.8 -0.1 -4.3 199.8	-3.3 204.8 0.0 -4.3	-5.9 204.8 0.0 -4.3	-7.3 204.8 0.0 -4.3	Cumulative Change Baseline Offset (In Feet) Incremental Change Cumulative Change
11+00 2 12+00 1	209.1	209.1 0.0 0.0 199.0 0.0 0.0	204.9 -4.2 -4.2 199.0 0.0 0.0	204.8 -0.1 -4.3 199.8	204.8 0.0 -4.3	204.8 0.0 -4.3	204.8 0.0 -4.3	Baseline Offset (In Feet) Incremental Change Cumulative Change
11+00 2 12+00 1	209.1	209.1 0.0 0.0 199.0 0.0 0.0	204.9 -4.2 -4.2 199.0 0.0 0.0	204.8 -0.1 -4.3 199.8	204.8 0.0 -4.3	204.8 0.0 -4.3	204.8 0.0 -4.3	Baseline Offset (In Feet) Incremental Change Cumulative Change
12+00 1	199.0	209.1 0.0 0.0 199.0 0.0 0.0	204.9 -4.2 -4.2 199.0 0.0 0.0	204.8 -0.1 -4.3	204.8 0.0 -4.3	204.8 0.0 -4.3	204.8 0.0 -4.3	Baseline Offset (In Feet) Incremental Change Cumulative Change
12+00 1	199.0	0.0 0.0 199.0 0.0 0.0	-4.2 -4.2 199.0 0.0 0.0	-0.1 -4.3 199.8	-4.3	-4.3	-4.3	Cumulative Change
12+00 1	199.0	199.0 0.0 0.0	199.0 0.0 0.0	199.8	400.0	-1.0	-1.0	oundative onange
12+00 1	199.0	199.0 0.0 0.0	199.0 0.0 0.0	199.8	100.0			
12+00 1	199.0	199.0 0.0 0.0	199.0 0.0 0.0	199.8	100.0			
	192.1	0.0 0.0	0.0	0.0	189.8	189.7	187.0	Baseline Offset (In Feet)
	192.1	0.0	0.0	0.8	-10.0	-0.1	-2.7	Incremental Change
	192.1			0.8	-9.2	-9.3	-12.0	Cumulative Change
	192.1	-						
12+00 1	102.1	102.1	102.1	102.1	100.2	100.2	109.8	Baseline Offset (In East)
13100	I	0.0	0.0	0.0	-3.8	0.0	0.3	Incremental Change
		0.0	0.0	0.0	-3.8	-3.8	-3.5	Cumulative Change
14+00 2	200.9			198.8	193.7	193.7	194.4	Baseline Offset (In Feet)
				-2.1	-5.1	0.0	0.7	Incremental Change
				-2.1	-1.2	-1.2	-0.5	Cumulative Change
15+00 1	190.0			190.0	186.2	186.2	184.8	Baseline Offset (In Feet)
				0.0	-3.8	0.0	-1.4	Incremental Change
				0.0	-3.8	-3.8	-5.2	Cumulative Change
16+00 2	211.0			209.5	203.3	203.3	202.3	Baseline Offset (In Feet)
				-1.5	-0.2	-7.7	-1.0	Cumulative Change
				1.0	11.1	19.44		e entre entre griefige
17+00 2	204.0			204.0	202.9	200.6	200.8	Baseline Offset (In Feet)
				0.0	-1.1	-2.3	0.2	Incremental Change
				0.0	-1.1	-3.4	-3.2	Cumulative Change
18+00 3	212.0			208.3	208.3	208.3	208.6	Baseline Offset (In Feet)
10.00 2	212.0			-3.7	0.0	0.0	0.3	Incremental Change
				-3.7	-3.7	-3.7	-3.4	Cumulative Change
19+00 2	221.9			221.9	221.9	221.9	222.0	Baseline Offset (In Feet)
				0.0	0.0	0.0	0.1	Incremental Change
				0.0	0.0	0.0	0.1	Cumulative Change
20+00 2	232.9			232.9	232.9	232.9	230.1	Baseline Offset (In Feet)

Doc LCMF-155 Nigliq Streambank Monitor Rev9.xlsx 2 of 4

West Bank Monitor

Calc/d By: SZ Date: 11/05/2019 RPT-CE-CD-112 REV8

Alpine AP00 West Bank Nigliq Streambank Monitor

Doc.LCMF-155 REV8

		West	Bank Monit	tor - Top of	f Bank Loc	ations		
Baseline	See	e Drawing C	tion					
Station	8/21/2013	8/24/2014	Description					
				0.0	0.0	0.0	-2.8	Incremental Change
				0.0	0.0	0.0	-2.8	Cumulative Change
21+00	233.9			227.5	227.5	227.5	227.7	Baseline Offset (In Feet)
				-6.4	0.0	0.0	0.2	Incremental Change
				-6.4	-6.4	-6.4	-6.2	Cumulative Change

Doc LCMF-155 Nigliq Streambank Monitor Rev9.xlsx 3 of 4

West Bank Monitor

11.27.19 PAGE E.8

Calc/d By: Date: 11/05 RPT-CE-CI	SZ (/2019 D-112 REV8			Doc.LCMF-155 REV8				
		West	Bank Monit	tor - Top of	f Bank Loc	ations		
Baseline	See	Drawing C	tion					
Station	8/21/2013 8/24/2014 8/27/2015 7/6/2016 8/24/2017 8/24/2018 8/13/2019							Description
22+00	237.8			233.3	233.3	233.3	233.4	Baseline Offset (In Feet)
				-4.5	0.0	0.0	0.1	Incremental Change
				-4.5	-4.5	-4.5	-4.4	Cumulative Change
23+00	237.9			233.0	233.0	233.0	233.4	Baseline Offset (In Feet)
				-4.9	0.0	0.0	0.4	Incremental Change
				-4.9	-4.9	-4.9	-4.5	Cumulative Change
24+00	229.9			229.9	229.9	229.9	230.5	Baseline Offset (In Feet)
				0.0	0.0	0.0	0.6	Incremental Change
				0.0	0.0	0.0	0.6	Cumulative Change
25+00	214.1			214.1	214.1	214.1	214.4	Baseline Offset (In Feet)
				0.0	0.0	0.0	0.3	Incremental Change
				0.0	0.0	0.0	0.3	Cumulative Change
25+11	213.9			213.9	213.9	213.9	214.1	Baseline Offset (In Feet)
				0.0	0.0	0.0	0.2	Incremental Change
				0.0	0.0	0.0	0.2	Cumulative Change
***Note: S /Cumulativ	Survey comp e Change.	pleted on 8/ Negative n	22/13 was u umbers indic	ised for bas cate erosior	eline data t n.	o compute	ncremental	

Doc LCMF-155 Nigliq Streambank Monitor Rev9.xlsx 4 of 4

West Bank Monitor

Calc/d By: SZ Date: 11/05/2019 RPT-CE-CD-112 REV8

Alpine AP00 East Bank Niglig Streambank Monitor

East Bank Monitor - Top of Bank Locations Baseline See Drawing CE-AP00-1126 Rev 7 for Survey Baseline Location 8/24/2014 8/27/2015 7/6/2016 8/24/2017 8/25/2018 Station 8/22/2013 8/13/2019 Description 0+00 169.9 169.9 169.9 169.9 169.8 Baseline Offset (In Feet) 0.0 0.0 0.0 -0.1 Incremental Change 0.0 0.0 0.0 -0.1 Cumulative Change 1+00 174.0 174.0 174.0 174.0 173.9 Baseline Offset (In Feet) 0.0 0.0 0.0 -0.1 Incremental Change 0.0 0.0 0.0 -0.1 Cumulative Change 2+00 178.9 178.9 178.9 178.9 179.0 Baseline Offset (In Feet) 0.0 0.0 0.0 0.1 Incremental Change 0.0 0.0 0.0 0.1 Cumulative Change 3+00 191.0 191.0 191.0 191.0 191.0 Baseline Offset (In Feet) 0.0 0.0 0.0 0.0 Incremental Change 0.0 0.0 0.0 0.0 Cumulative Change 188.0 188.0 188.0 188.0 4+00 188.0 Baseline Offset (In Feet) Incremental Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cumulative Change 5+00 196.1 196.1 196.1 196.3 Baseline Offset (In Feet) 196.1 0.0 0.0 0.2 0.0 Incremental Change 0.0 0.0 0.0 0.2 Cumulative Change 201.1 6+00 201.1 201.1 201.1 201.1 Baseline Offset (In Feet) 0.0 0.0 0.0 0.0 Incremental Change 0.0 0.0 0.0 0.0 Cumulative Change 7+00 208.1 208.1 208.2 208.2 208.3 Baseline Offset (In Feet) Incremental Change 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.2 Cumulative Change 8+00 199.8 199.8 199.9 199.9 199.8 Baseline Offset (In Feet) 0.0 0.1 0.0 -0.1 Incremental Change 0.0 0.1 0.1 0.0 Cumulative Change 9+00 406.2 406.2 406.0 406.0 406.0 Baseline Offset (In Feet) -0.2 0.0 0.0 0.0 Incremental Change 0.0 -0.2 -0.2 -0.2 Cumulative Change

Doc LCMF-155 Nigliq Streambank Monitor Rev9.xlsx 1 of 2

East Bank Monitor

ConocoPhillips Michael Baker

Alaska INTERNATIONAL

Calc/d By: SZ Date: 11/05/2019 RPT-CE-CD-112 REV8

Alpine AP00 East Bank Nigliq Streambank Monitor

Doc.LCMF-155 REV8

		East	Bank Moni	tor - Top o	f Bank Loc	ations		
Baseline	Sec	e Drawing C	E-AP00-11	26 Rev 7 fo	or Survey Ba	aseline Loca	ation	
Station	8/22/2013	8/24/2014	8/27/2015	7/6/2016	8/24/2017	8/25/2018	8/13/2019	Description
10+00	280.9			280.7	280.6	280.6	280.6	Baseline Offset (In Feet)
				-0.2	-0.1	0.0	0.0	Incremental Change
				-0.2	-0.3	-0.3	-0.3	Cumulative Change
11+00	192.2			192.0	192.0	192.0	192.1	Baseline Offset (In Feet)
				-0.2	0.0	0.0	0.1	Incremental Change
				-0.2	-0.2	-0.2	-0.1	Cumulative Change
			'					
12+00	100.1			107.9	107.6	107.6	107.6	Baseline Offset (In Feet)
				7.8	-0.3	0.0	0.0	Incremental Change
				7.8	7.5	7.5	7.5	Cumulative Change
13+00	192.0	192.0	192.0	192.0	191.8	191.8	191.8	Baseline Offset (In Feet)
		0.0	0.0	0.0	-0.2	0.0	0.0	Incremental Change
		0.0	0.0	0.0	-0.2	-0.2	-0.2	Cumulative Change
14+00	210.0	210.0	210.0	"Unable to	205.8	205.8	205.8	Baseline Offset (In Feet)
		0.0	0.0		-4.2	0.0	0.0	Incremental Change
		0.0	0.0		-4.2	-4.2	-4.2	Cumulative Change
15+00	192.0	192.0	192.0	192.0	192.0	192.0	192.0	Baseline Offset (In Feet)
		0.0	0.0	0.0	0.0	0.0	0.0	Incremental Change
		0.0	0.0	0.0	0.0	0.0	0.0	Cumulative Change
			<u> </u>					
***Note: 5	Survey com	pleted on 8/	/22/13 was/	used for ba	seline data /	to compute	Incrementa	I/Cumulative Change.

Negative numbers indicate erosion.

Positive numbers indicate erosion Sta 9+00 to 12+00.

Doc LCMF-155 Nigliq Streambank Monitor Rev9.xlsx 2 of 2

East Bank Monitor

ConocoPhillips Alaska INTERNATIONAL

E.2.2 NIGLIAGVIK CHANNEL WEST & EAST BANK TABULATED DATA

				Streamb	ank Monito	or		C	
Baseline)	West	Bank Moni	tor - Top o	f Bank Loc	ations		Description	
Station	See	e Drawing C	E-AP00-11	26 Rev 7 fo	or Survey Ba	aseline Loca	ation		
	8/21/2013	8/21/2014	8/28/2015	7/6/2016	8/24/2017	8/25/2018	8/13/2019	Date	
0+00	110.0			100.7	100.7	100.7	101.1	Baseline Offset (In Feet	
	110.0			-9.3	0.0	0.0	0.4	Incremental Change	
				-9.3	-9.3	-9.3	-8.9	Cumulative Change	
1+00	103.0			97.9	97.9	97.9	98.2	Baseline Offset (In Feet	
				-5.1	0.0	0.0	0.3	Incremental Change	
				-5.1	-5.1	-5.1	-4.8	Cumulative Change	
0+00	00.6			00.6	07.5	07.5	07.5	Pasalina Offsat /In East	
2700	99.0			99.0	97.5	97.5	97.5	Incremental Change	
				0.0	-2.1	-2.1	-2.1	Cumulative Change	
3+00	98.8			91.3	91.3	91.3	91.4	Baseline Offset (In Feet	
				-7.5	0.0	0.0	0.1	Incremental Change	
				-7.5	-7.5	-7.5	-7.4	Cumulative Change	
A±00	106.0	106.0	106.0	102.4	102.4	102.4	00.7	Pasalina Officat /In East	
4100	100.0	0.0	0.0	102.4	102.4	0.0	33.7	Incremental Change	
		0.0	0.0	-3.6	-3.6	-3.6	-2.7	Cumulative Change	
5+00	102.0	93.5	93.5	81.1	81.1	81.1	81.1	Baseline Offset (In Feet	
		-8.4	0.0	-12.4	0.0	0.0	0.0	Incremental Change	
		-8.4	-8.4	-20.9	-20.9	-20.9	-20.9	Cumulative Change	
6100	02.0	00.4	00.4	07.0	07.0	07.0		Pacalina Officat /In East	
0700	92.0	90.4 1.6	0.4	01.9 2.5	01.9	01.9		Incremental Change	
		-1.0	-1.6	-2.0	1_1	<u> </u>	-07.9	Cumulative Change	
		-1.0	-1.0	-7.1	-7.1	-7.1	-02.0	ounnuiauve onange	

ConocoPhillips Alaska INTERNATIONAL

11.27.19 PAGE E.15

Station See Drawing CE-AP00-11/26 Rev / for Survey Baseline Location 8/21/2013 8/21/2014 8/28/2015 7/6/2016 8/24/2017 8/25/2018 8/13/2019 Date 7+00 107.1 107.1 107.1 107.1 107.1 101.5 Baseline Offset (In Feet) 0.0 0.0 0.0 0.0 - - - 8+00 115.0 112.8 112.8 112.8 112.9 Baseline Offset (In Feet) - - - - - - - 9+00 96.1 91.8 91.8 92.0 Baseline Offset (In Feet) - - - - - - 9+00 96.1 91.8 91.8 92.0 Baseline Offset (In Feet) - - - - - - 9+00 96.1 91.8 91.8 92.0 Baseline Offset (In Feet) - - - - - - - -
8/21/2013 8/21/2014 8/28/2015 7/6/2016 8/24/2017 8/25/2018 8/13/2019 Date 7+00 107.1 107.1 107.1 107.1 101.5 Baseline Offset (In Feet) 0.0 0.0 0.0 0.0 -5.6 Incremental Change 0.0 0.0 0.0 0.0 -5.6 Cumulative Change 115.0 112.8 112.8 112.8 112.9 Baseline Offset (In Feet) -2.2 0.0 0.0 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.2 -2.2 -2.1 Cumulative Change -2.4 -3.3 0.0 0.0 0.2 Incremental Change -2.4 -4.3
7+00 107.1 107.1 107.1 107.1 107.1 101.5 Baseline Offset (In Feet) 0.0 0.0 0.0 0.0 -5.6 Incremental Change 0.0 0.0 0.0 0.0 -5.6 Cumulative Change 8+00 115.0 112.8 112.8 112.9 Baseline Offset (In Feet) -2.2 0.0 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.2 -2.2 9+00 96.1 91.8 91.8 92.0 Baseline Offset (In Feet) -4.3 0.0 0.0 0.2 Incremental Change -4.3 4.3 -4.3 -4.1 Cumulative Change -4.3 0.0 0.0 0.2 Incremental Change -4.3 -4.3 -4.3 -4.1 Cumulative Change -10+00 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0
0.0 0.0 0.0 -5.6 Incremental Change 0.0 0.0 0.0 0.0 -5.6 Cumulative Change 8+00 115.0 112.8 112.8 112.8 112.9 Baseline Offset (In Feet) -2.2 0.0 0.0 0.1 Incremental Change -2.2 0.0 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.1 Cumulative Change -2.2 -2.2 -2.2 -2.2 -2.1 Cumulative Change 9+00 96.1 91.8 91.8 92.0 Baseline Offset (In Feet) 4.3 0.0 0.0 0.2 Incremental Change 4.3 -4.3 -4.3 -4.1 Cumulative Change -4.3 -4.3 -4.3 -4.1 Cumulative Change 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 -0.9 0.3 Cumulative Change
0.0 0.0 0.0 -5.6 Cumulative Change 8+00 115.0 112.8 112.8 112.8 112.9 Baseline Offset (In Feet) -2.2 0.0 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.2 -2.1 Cumulative Change -2.3 -2.4.3 91.8 91.8 92.0 Baseline Offset (In Feet) -2.4.3 -4.3 -4.3 -4.3 -4.1 Cumulative Change -2.4.3 -4.3 -4.3 -4.3 -4.1 Cumulative Change -2.5 -2.5 106.4
8+00 115.0 112.8 112.8 112.8 112.9 Baseline Offset (In Feet) -2.2 0.0 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.2 -2.1 Cumulative Change 9+00 96.1 91.8 91.8 92.0 Baseline Offset (In Feet) -4.3 0.0 0.0 0.2 Incremental Change -4.3 -4.3 -4.3 -4.1 Cumulative Change -4.3 -4.3 -4.3 -4.1 Cumulative Change -10+00 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0
8+00 115.0 112.8 112.8 112.8 112.8 112.9 Baseline Offset (In Feet) -2.2 0.0 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.2 -2.1 Cumulative Change 9+00 96.1 91.8 91.8 91.8 92.0 Baseline Offset (In Feet) -4.3 0.0 0.0 0.2 Incremental Change -4.3 4.3 -4.3 -4.1 Cumulative Change -4.3 -4.3 -4.3 -4.1 Cumulative Change -4.3 -4.3 -4.3 -4.1 Cumulative Change
-2.2 0.0 0.1 Incremental Change -2.2 -2.2 -2.2 -2.1 Cumulative Change 9+00 96.1 91.8 91.8 91.8 92.0 Baseline Offset (In Feet) 4.3 0.0 0.0 0.2 Incremental Change 4.3 4.3 4.3 4.1 Cumulative Change 10+00 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 -0.9 0.3 Cumulative Change
9+00 96.1 91.8 91.8 91.8 92.0 Baseline Offset (In Feet) -4.3 0.0 0.0 0.2 Incremental Change -4.3 -4.3 -4.3 -4.1 Cumulative Change 10+00 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -2.1 Incremental Change -4.3 -4.3 -4.3 10+00 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 -0.9 0.3 Cumulative Change
9+00 96.1 91.8 91.8 91.8 92.0 Baseline Offset (In Feet) 4.3 0.0 0.0 0.2 Incremental Change 4.3 -4.3 -4.3 -4.3 -4.1 Cumulative Change 10+00 106.1 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 -0.9 0.3 Cumulative Change
-4.3 0.0 0.0 0.2 Incremental Change -4.3 -4.3 -4.3 -4.3 -4.1 Cumulative Change -4.3 -4.3 -4.3 -4.3 -4.1 Cumulative Change
-4.3 -4.3 -4.3 -4.1 Cumulative Change 10+00 106.1 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 -0.9 0.3 Cumulative Change
10+00 106.1 106.1 106.1 105.2 106.4 Baseline Offset (In Feet) 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 -0.9 0.3 Cumulative Change
100-10 100.1 100.1 100.2 100.4 Baseline Offset (in Feet) 0.0 0.0 0.0 -0.9 1.2 Incremental Change 0.0 0.0 0.0 -0.9 0.3 Cumulative Change
0.0 0.0 -0.9 0.3 Cumulative Change
completed on 8/21/13 was used for baseline data to compute Incremental/Cumulative Change. Negative numbers

Doc LCMF-154 Nigliagvik Streambank Monitor Rev7.xlsx 2 of 2

Baseline		East	Bank Moni	tor - Top o	f Bank Loc	ations		Description
Station	See	Drawing C	E-AP00-11	26 Rev 5 fc	or Survey Ba	seline Loca	ation	Data
	0/21/2013	0/21/2014	0/20/2013	110/2010	0/24/2011	0/24/2010	0/13/2013	Date
0+00	165.1			165.1	165.3	165.3	165.4	Baseline Offset (In Feet)
				0.0	0.2	0.0	0.1	Incremental Change
				0.0	0.2	0.2	0.3	Cumulative Change
1+00	195.0			195.0	195.0	105.0	195.0	Raceline Offset (In Feet)
1100	100.0			0.0	0.0	0.0	0.0	Incremental Change
				0.0	0.0	0.0	0.0	Cumulative Change
2+00	165.0			165.0	165.1	165.1	165.0	Baseline Offset (In Feet)
2.00	100.0			0.0	0.1	0.0	-0.1	Incremental Change
				0.0	0.1	0.1	0.0	Cumulative Change
3+00	162.3			162.3	162.2	162.2	102.4	Baseline Offset (In Feet)
				0.0	-0.1	0.0	-59.8	Incremental Change
				0.0	-0.1	-0.1	-59.9	Cumulative Change
4+00	154.9	154.9	154.9	147.6	147.6	147.6	147.7	Baseline Offset (In Feet)
		0.0	0.0	-7.3	0.0	0.0	0.1	Incremental Change
		0.0	0.0	-7.3	-7.3	-7.3	-7.2	Cumulative Change
5+00	141.0	141.0	138.4	Under	143.7	143.7	143.7	Baseline Offset (In Feet)
		0.0	-2.7	Bridge	5.3	0.0	0.0	Incremental Change
		0.0	-2.7		2.7	2.7	2.7	Cumulative Change
6+00	120.9	120.9	120.9	120.9	121.1	121.1	121.0	Baseline Offset (In Feet)
		0.0	0.0	0.0	0.2	0.0	-0.1	Incremental Change
		0.0	0.0	0.0	0.2	0.2	0.1	Cumulative Change

			E	Alpir ast Ban _{Streamb}	ne AP00 k Niglia ank Monito	gvik ^{or}		Doc.L	KUUKPIK UMIAQ ALPINE SURVEY OFFICE NORE: MOTOR OFFICE CMF-154 REV7
Baseline East Bank Monitor - Top of Bank Locations								Description	
Station	See	Drawing C	E-AP00-11	26 Rev 5 fo	r Survey Ba	aseline Loca	ation		
	8/21/2013	8/21/2014	8/28/2015	7/6/2016	8/24/2017	8/24/2018	8/13/2019	Date	
7+00	119.0			119.0	119.5	119.5	119.3	Baseline Offset (In Feet)	
1.00	110.0			0.0	0.5	0.0	-0.2	Incremental Change	
				0.0	0.5	0.5	0.3	Cumulative Change	
8+00	120.9			120.9	121.3	121.3	121.2	Baseline Offset (In Feet)	
				0.0	0.4	0.0	-0.1	Incremental Change	
				0.0	0.4	0.4	0.3	Cumulative Change	
IUCAUUTI AI	nd the 2013	top of bank	was reposi	itioned to al	ign with the	2016 top o	f bank.		
iocation ai	nd the 2013	top of bank	was reposi	tioned to al	ign with the	: 2016 top o	f bank.		
IOCAUON AI	nd the 2013	top of bank	was reposi	tioned to al	ign with the	: 2016 top o	f bank.		
IOCAUON AI	nd the 2013	top of bank	was reposi	tioned to al	ign with the	: 2016 top o	f bank.		
IOCAUON AI	nd the 2013	top of bank	was reposi	tioned to al	ign with the	: 2016 top o	f bank.		

- E.3 BATHYMETRY
- E.3.1 TRANSECT PROFILES

CE-CD20-1004	—	402-20	
ок эимаял	:ON BON BAS	IOB NO:	

CD5 2017 TRANSECT CONTROL

NORTHING	EASTING	ELEV	DESCRIPTION	NORTHING	EASTING	ELEV	DESCRIPTION
5,971,410.079	1,507,156.531	8.39	01—LB200 Al Cap Flush	5,963,972.572	1,503,814.158	7.59	20-RB50 Al Cap Flush
5,971,437.609	1,507,304.061	8.37	01-LB50 Al Cap Flush	5,963,970.131	1,503,127.991	24.55	21-LB100 Al Cap Flush
5,9/1,895.666	1,509,763.389	9.13	01-RB200 Al Cap Flush	5,963,929.997	1,503,157.807	20.75	21-LB50 Al Cap Flush
5,971,868.384	1,509,615.796	9.20	02 - 18200 Al Cap Flush	5 963 602 552	1,503,430.606	0.83 0.12	21-RBIOU AI Cap Flush
5,969,127,986	1.508.253.629	7.65	02-1850 Al Cap Flush	5.963.540.635	1.502.578.236	26.09	22 - 1 B110 Al Cap Flush
5,970,206.007	1,510,386.350	9.26	02-RB200 Al Cap Flush	5,963,500.929	1,502,623.041	24.05	22-LB50 Al Cap Flush
5,970,138.188	1,510,252.432	8.96	02-RB50 Al Cap Flush	5,963,224.550	1,502,936.061	8.70	22-RB100 Al Cap Flush
5,967,032.227	1,509,538.697	9.67	03—LB200 Al Cap Flush	5,963,257.784	1,502,898.581	9.16	22-RB50 Al Cap Flush
5,967,145.969	1,509,636.499	10.13	03-LB50 Al Cap Flush	5,962,989.540	1,502,198.702	25.27	23-LB100 Al Cap Flish
5,900,000.005	1,511,117.092	9.41	03-RB50 AL Cap Flush	5 962,973.331	1,502,240.070	25.15	23-RB100 AL Cap Flush
5,965.610.351	1.510.661.003	12.54	04-LB200 Al Cap Flush	5.962.844.993	1.502.624.671	7.92	23-RB50 Al Cap Flush
5,965,716.677	1,510,772.064	13.71	04-LB50 Al Cap Flush	5,962,728.640	1,502,095.594	26.44	24-LB100 Al Cap Flush
5,967,272.750	1,512,396.862	10.36	04-RB200 Al Cap Flush	5,962,717.858	1,502,144.429	26.95	24-LB50 Al Cap Flush
5,967,169.020	1,512,288.51/	10.23	04-RB50 Al Cap Flush	5,962,617.871	1,502,598.118	9.07	24-RB100 Al Cap Flush
5 964 413 665	1,511,209.807	1314	05-LB200 Al Cap Flush	5 962 627 134	1,502,549.442	27.30	25-1 B100 AL Cap Flush
5,966,013.940	1,513,463.318	8.66	05-RB200 Al Cap Flush	5,962,619.297	1,502,127.805	26.17	25-LB50 Al Cap Flush
5,965,922.233	1,513,344.473	8.66	05-RB50 Al Cap Flush	5,962,548.009	1,502,575.213	8.35	25-RB100 Al Cap Flush
5,963,381.239	1,512,373.965	11.39	06-LB200 Al Cap Flush	5,962,555.885	1,502,525.978	8.2	25-RB50 Al Cap Flush
5,963,439.930	1,512,511.976	9.79	06-RB250 AL Cap Flush	5,962,545.552	1,502,059.146	27.26	26-LBTIU AL Cap Flush
5,964.233.822	1.514.375.381	10.19	06-RB50 Al Cap Flush	5.962.498.526	1.502.585.637	9.40	26-RB100 Al Cap Flush
5,962,644.628	1,513,005.197	10.58	07–LB200 Al Cap Flush	5,962,502.417	1,502,535.991	8.29	26-RB50 Al Cap Flush
5,962,683.997	1,513,149.917	12.40	07-LB50 Al Cap Flush	5,962,409.840	1,502,047.832	26.75	27-LB100 Al Cap Flush
5,963,144.351	1,514,844.945	10.50	07-RB200 Al Cap Flush	5,962,406.393	1,502,097.689	27.08	27-LB50 Al Cap Flush
5,965,105.246	1,514,700.397	9.02	08-18200 Al Cap Flush	5 962 375 576	1,502,567.565	9.00	27-RB50 AL Cap Flush
5,961,851.284	1,513,282.157	10.33	08-LB50 Al Cap Flush	5,961,986.379	1,502,006.081	20.98	28-LB100 Al Cap Flush
5,961,442.295	1,513,168.264	10.42	09-LB200 Al Cap Flush	5,961,983.603	1,502,055.994	21.16	28-LB50 Al Cap Flush
5,961,424.719	1,513,317.431	10.13	09-LB50 Al Cap Flush	5,961,957.194	1,502,536.500	9.11	28-RB100 Al Cap Flush
5,961,244.647	1,514,849.158	9.12	09-RB200 AI Cap Flush	5,961,959.887	1,502,486.585	8.59	28-RB50 AI Cap Flush
5,961,200.902	1.513.133.902	10.18	10-1B200 Al Cap Flush	5.961.457.481	1.502.122.198	23.74	29-1850 Al Cap Flush
5,961,195.839	1,513,282.747	10.25	10–LB50 Al Cap Flush	5,961,559.094	1,502,596.981	9.95	29-RB100 Al Cap Flush
5,961,004.269	1,514,808.574	7.14	10-RB200 Al Cap Flush	5,961,548.539	1,502,547.942	8.74	29-RB50 Al Cap Flush
5,961,023.112	1,514,659.873	8.32	10-RB50 Al Cap Flush	5,960,727.323	1,502,515.764	23.70	30-LB100 Al Cap Flush
5,900,175.615	DESTROYED	10.07	11-LB200 AL Cap Flush	5 961 239 638	1,502,544.715	10.09	30-RB100 Al Cap Flush
5,959,731.052	1,514,682.745	9.82	11-RB200 Al Cap Flush	5,961,198.817	1,502,848.288	9.62	30-RB50 Al Cap Flush
5,959,767.242	1,514,537.080	9.00	11-RB50 Al Cap Flush	5,960,124.411	1,503,193.299	8.62	31-LB100 Al Cap Flush
5,958,209.440	1,512,625.576	11.02	<u>12–LB200 Al Cap Flush</u>	5,960,172.274	1,503,207.266	9.61	<u>31–LB50 Al Cap Flush</u>
5,958,254.040 5,959,260,219	1,512,715.127	9.87	12-RB200 AL Cap Flush	5 960 848 125	1,503,418.951	10.76	31-RB50 AL Cap Flush
5,959,193.533	1,514,611,494	8.71	12-RB50 Al Cap Flush	5.959.762.546	1,504,523,242	8.41	32-LB100 Al Cap Flush
5,955,329.125	1,512,738.208	11.43	13-LB200 Al Cap Flush	5,959,810.524	1,504,537.152	7.89	32-LB50 Al Cap Flush
5,955,412.750	1,512,862.609	12.06	13-LB50 Al Cap Flush	5,960,406.267	1,504,711.424	10.85	32-RB100 Al Cap Flush
5,958,195.963	1,51/,009.///	10.14	13-RB200 Al Cap Flush	5,960,358.129	1,504,697.371	11.51	32-RB50 AI Cap Flush
5,953,908,305	1,514,359,013	13.31	14-18215 AL Cap Flush	5,959,138,921	1,505,458,863	8.59	33-LB50 AL Cap Flush
5,953,965.587	1,514,513.819	15.69	14–LB50 Al Cap Flush	5,959,403.885	1,506,064.808	10.64	33-RB120 Al Cap Flush
5,954,950.427	1,517,166.196	9.37	14-RB200 Al Cap Flush	5,959,375.851	1,506,000.615	10.61	33-RB50 Al Cap Flush
5,954,898.227	1,517,025.567	9.62	14-RB50 Al Cap Flush	5,957,567.999	1,505,617.468	12.62	34-LB100 Al Cap Flush
5,952,688,785	1 515 404 124	16.65	15-1850 AL Cap Flush	5 957 615 360	1,505,007.234	10 14	34-RB100 AL Cap Flush
5,952,691.528	1,517,195.155	12.55	15-RB100 Al Cap Flush	5,957,612.187	1,506,316.238	10.73	34-RB50 Al Cap Flush
5,952,691.504	1,517,145.172	12.62	15-RB50 Al Cap Flush	5,955,603.337	1,506,200.646	12.56	35-LB100 Al Cap Flush
5,967,852.411	1,508,476.570	9.97	<u>16–LB100 Al Cap Flush</u>	5,955,624.160	1,506,246.181	13.00	35-LB50 Al Cap Flush
5,967,804.830	1,508,492.228	9.22	16-RB100 AL Cap Flush	5 955 880 833	1,506,854.754	9.42	35-RB50 AL Cap Flush
5,967,455.156	1,508,606,495	8.81	16-RB50 Al Cap Flush	5.962.713.562	1.510.877.357	8.07	36-LB100 Al Cap Flush
5,966,795.092	1,507,822.806	8.49	17-LB100 Al Cap Flush	5,962,690.396	1,510,921.695	8.07	36-LB50 Al Cap Flush
5,966,786.414	1,507,872.068	8.36	17-LB50 Al Cap Flush	5,962,479.473	1,511,322.888	9.50	36-RB100 Al Cap Flush
5,966,720,004	1,508,294.932	0.55 2.57	17-RB50 AL Cap Flush	5 962,502.709	1,511,278.659	8.95 8.51	37-1 B100 AL Cap Flush
5,965.609.736	1,507,451.191	8.67	18-LB100 Al Cap Flush	5,962,580.899	1,510.851.601	8.30	37–LB50 Al Cap Flush
5,965,566.246	1,507,475.943	8.64	18-LB50 Al Cap Flush	5,962,382.914	1,511,254.351	9.43	37-RB100 Al Cap Flush
5,965,103.321	1,507,739.424	7.92	18-RB100 AI Cap Flush	5,962,405.072	1,511,209.390	8.82	37-RB50 Al Cap Flush
5,965,146.872	1,50/,/14.623	/.65 8 71	18-RB50 Al Cap Flush	5,962,540.247	1,510,/38.266	/.55	38-LB100 Al Cap Flush
5.965.073.146	1.505.592.274	8.72	19-1850 Al Cap Flush	5.962.311.243	1,511,215,086	7.94 8.87	38-RB100 AL Cap Flush
5,964,684.662	1,505,750.583	8.18	19-RB100 Al Cap Flush	5,962,332.728	1,511,169.935	8.96	38-RB50 Al Cap Flush
5,964,730.844	1,505,731.763	8.59	19-RB50 Al Cap Flush	5,962,367.922	1,510,674.689	8.40	39-LB100 Al Cap Flush
5,964,307.555	1,503,508.766	13.76	20-LB100 Al Cap Flush	5,962,346.127	1,510,719.731	7.44	39-LB50 Al Cap Flush
5963935619	1 503 847 844	7.68	20-RB100 AL Can Flush	5 962 176 176	1 511 074 056	9.32	39-RB50 Al Cap Flush
_,,,,,,	,,	,		,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.20	

REV DATE

REVISIONS

REFERENCE DWG NO/SHT NO:

					5	09/02/19	UPDATED PER K190003ACS	S
					4	08/20/18	UPDATED PER K180003ACS	S
					3	10/9/17	UPDATED PER K170003ACS	K
					2	7/29/16	UPDATED PER K160003ACS	C
					1	10/22/13	ISSUED PER K130003ACS	A
BY	СНК	JOB ENGR	PROJ ENGR	CUST APP	REV	DATE	REVISIONS	B

					есм NO: К1600	03ACS		C	
SZ	CZ				CC NO:				UNOCOPHIII
SZ	CZ					_			Alask
KD	CZ				13-08-07-1	_	DRAWN:	07	DESIGN:
CZ	DB				SCALE:	DATE:	REDRAWN FROM	62	_
ΒY	СНК	JOB ENGR	PROJ ENGR	CUST APP	1" = 200'	7/01/2016		_	

					ECM NO:			_		_
					KIOUL	JUJAUS		С	onocoDhi	1
SZ	CZ				CC NO:			C	UNUCUPIN	
SZ	CZ				CADD FILE NO				Alas	3
KD	CZ				13-08-07-1	_	DRAWN:	C7	DESIGN:	-
CZ	DB				SCALE:	DATE:		02	_	
BY	СНК	JOB ENGR	PROJ ENGR	CUST APP	1" = 200'	7/01/2016	REDICATION.	-		

0+00 1+00 2+00 3+00 4+00 5+00 6+00 7+00 8+00 9+00 10+00 11+00 12+00 13+00 14+00 15+00 16+00 17+00 18+00 19+00

<u>LEG</u> view	<u>END:</u> looking d	OWNSTREA
 2013	TRANSECT	PROFILE
 2014	TRANSECT	PROFILE
 2015	TRANSECT	PROFILE
 2016	TRANSECT	PROFILE
2017	TRANSECT	PROFILE
 2018	TRANSECT	PROFILE
 2019	TRANSECT	PROFILE

					ECM NO:				`	
					K160	003ACS			Conoce	Dhil
SZ	CZ				CC NO:			2		JEIII
SZ	CZ				CADD FILE NO		-			Alask
KD	CZ				13-08-07-2	1 —	DRAWN:	07	DESIGN:	
CZ	DB				SCALE:	DATE:		<u> </u>		
BY	СНК	JOB	PROJ	CUST	VARIES	7/01/2016		····		

				ECM NO: K160003ACS		C		hil
SZ	CZ			CC NO:			UNUCUPI	
SZ	CZ			CADD FILE NO			A	\las
KD	CZ			13-08-07-1 -	DRAWN:	7	DESIGN:	
CZ	DB			SCALE: DATE:			_	
BY	СНК	JOB	PROJ	1'' = 200' 7/01/2016		_		

					ECM NO:						$\overline{\mathbf{V}}$
					K160	003ACS	-		С	onoc	Dh i
SZ	CZ				CC NO:					UNUC	UPII
SZ	CZ				CADD FILE NO	_	-				Ala
KD	CZ				13-08-07-1	1 —	DRAWN:	07		DESIGN:	
CZ	DB				SCALE:	DATE:					_
ΒY	СНК	JOB ENGR	PROJ ENGR	CUST APP	1" = 200'	7/01/2016		<u> </u>			

E.3.2 NIGLIQ CHANNEL & BRIDGE TABULATED DATA (TRANSECTS 1 – 15)

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 I		CD-8 Bri	5 Michael B idge Transe Transect 1	Baker ects				
						DOCI	LCMF-156 REV7	
	STA	2013	2016	2017	2018	2019	Description	
	0+00	8.4	8.2	8.3	8.5	8.3	Ground Shot	
	1+00	8.4	8.5	8.4	8.3	8.1	Ground Shot	
	1+50	8.1		8.1	8.5	8.4	Ground Shot	
	1+91					7.7	Top of Bank	
	2+00		7.3	7.3	-	-	Top of Bank (2017)	
	2+05	7.5	-	-	-	-	Top of Bank (2013)	
	1+98					2.9	Toe of Bank	
	2+06		1.9	1.6	1.5	-	Toe of Bank (2018)	
	Varies	0.0	0.3	-0.8	1.5	1.1	Edge of Water	
	2+24	-5.5	-6.4	-5.5	-3.1	-6.7	River Bottom	
	2+73	-24.2	-24.2	-24.9	-25.7	-28.9	River Bottom	
	3+22	-25.0	-23.2	-24.7	-27.9	-25.7	River Bottom	
	3+71	-21.3	-22.1	-21.9	-25.2	-25.0	River Bottom	
	4+27	-19.0	-21.7	-20.1	-22.0	-19.1	River Bottom	
	4+82	-15.5	-14.2	-15.8	-16.5	-14.9	River Bottom	
	5+31	-10.0	-13.1	-13.1	-13.9	-11.0	River Bottom	
	5+70	-3.7	-6.8	-4.1	-4.6	-3.0	River Bottom	
	Varies	0.1	0.3	-0.1	1.3	0.7	Edge of Water	
	7+00	4.2	4.6	4.4	4.5	4.5	Sand Bar	
	8+00	5.6	5.0	5.0	5.0	4.9	Sand Bar	
	9+00	6.4	7.0	6.6	6.6	6.6	Sand Bar	
	10+00	6.8	7.2	6.9	6.9	6.9	Sand Bar	
	11+00	7.2	7.5	7.3	7.2	7.2	Sand Bar	
	12+00	6.7	7.1	6.7	6.8	6.7	Sand Bar	
	13+00	5.9	5.9	5.7	5.8	5.7	Sand Bar	
	14+00	2.7	2.3	2.2	2.1	2.2	Sand Bar	
	15+00	2.7	2.9	2.8	2.9	1.9	Sand Bar	
	16+00	2.4	2.2	2.1	2.5	2.5	Sand Bar	
	17+00					0.8	River Bottom	
	17+00	1.5	1.0	0.9	0.9	-	Sand Bar (2018)	
						0.1	River Bottom	
	18+00	0.6	0.1	0.1	0.1	-	Sand Bar (2018)	
	Varies	0.3	0.3	0.1	1.5	1.0	Edge of Water	
	20+98	-2.9	-2.1	-2.5	-2.3	-1.2	River Bottom	
	21+53	-2.6	-2.6	-3.0	-1.9	-1.0	River Bottom	
	21+96	-2.8	-2.3	-1.9	-1.5	-0.9	River Bottom	
	22+55	-2.8	-2.0	-2.1	-1.1	-1.0	River Bottom	
	23+00	-2.6	-2.0	-1.7	-1.1	-0.8	River Bottom	
	23+59	-2.6	-2.1	-2.0	-1.5	-0.9	River Bottom	
	24+05	-3.4	-1.3	-1.9	-1.3	-1.1	River Bottom	
	Varies	0.3	0.3	0.1	1.4	1.4	Edge of Water	
	24+58					7.9	Top of Bank	
	24+50	7.3	7.3	7.2	6.7	-	Top of Bank (2018)	
	25+02			9.1	9.2	9.1	Ground Shot	
	25+50	8.9	9.2	9.2	9.0	9.0	Ground Shot	
	26+51	9.1	9.3	9.1	9.2	9.1	Ground Shot	

ConocoPhillips Alaska INTERNATIONAL

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114)	REV7			CD-4 Bri	5 Michael B idge Transe Transect 2	Baker ects	DOC LCMF-156 RE		
	STA	2013	2016	2017	2018	2019	Description		
	0+00	8.9	8.5	8.5	8.7	8.6	Ground Shot		
	1+00	8.7	8.6	8.6	8.3	8.3	Ground Shot		
	1+50			7.5	7.5	7.5	Ground Shot		
	1+82					7.3	Top of Bank		
	1+93		6.9	5.9	-	-	Top of Bank (2017)		
	1+95	7.2	-	-	-	-	Top of Bank (2013)		
	Varies	0.7	0.1	0.7	1.5	0.8	Edge of Water		
	2+12	-2.8	-2.7	-3.0	-1.8	-1.8	River Bottom		
	2+35	-3.4	-3.1	-3.9	-4.9	-4.9	River Bottom		
	2+58	-4.3	-4.7	-3.5	-5.7	-5.7	River Bottom		
	2+81	-5.4	-6.1	-5.6	-7.2	-7.2	River Bottom		
	3+10	-7.6	-8.4	-9.2	-10.2	-10.2	River Bottom		
	3+27	-8.1	-13.2	-18.0	-11.5	-11.5	River Bottom		
	3+47	-11.1	-25.2	-22.8	-11.5	-11.5	River Bottom		
	3+67	-21.7	-18.5	-18.1	-19.4	-19.4	River Bottom		
	3+87	-17.6	-16.7	-16.0	-16.7	-16.7	River Bottom		
	4+07	-14.3	-15.1	-14.9	-16.4	-16.4	River Bottom		
	4+27	-13.5	-13.3	-13.2	-16.1	-16.1	River Bottom		
	4+46	-12.2	-11.4	-12.4	-13.2	-13.2	River Bottom		
	4+78	-10.7	-10.7	-12.0	-11.8	-11.8	River Bottom		
	4+98	-9.7	-9.7	-10.4	-12.3	-12.3	River Bottom		
	5+18	-9.3	-8.5	-10.2	-11.8	-11.8	River Bottom		
	5+35	-8.7	-8.0	-9.3	-11.0	-11.0	River Bottom		
	5+55	-8.1	-7.6	-8.8	-10.3	-10.3	River Bottom		
	5+81	-7.6	-7.4	-8.1	-8.9	-8.9	River Bottom		
	6+01	-7.1	-6.8	-7.5	-8.0	-8.0	River Bottom		
	6+24	-6.3	-6.1	-7.2	-8.0	-8.0	River Bottom		
	6+44	-5.9	-5.5	-6.5	-7.0	-7.0	River Bottom		
	6+64	-5.5	-5.0	-5.9	-6.6	-6.6	River Bottom		
	6+83	-4.7	-4.4	-5.5	-6.8	-6.8	River Bottom		
	7+03	-4.9	-3.7	-5.5	-6.3	-6.3	River Bottom		
	7+23	-4.0	-3.9	-5.4	-5.5	-5.5	River Bottom		
	7+55	-3.4	-3.5	-4.3	-5.0	-5.0	River Bottom		
	7+75	-2.7	-2.4	-3.7	-4.5	-4.5	River Bottom		
	7+92	-2.5	-2.1	-3.7	-4.4	-4.4	River Bottom		
	8+09	-2.2	-1.8	-3.3	-4.0	-4.0	River Bottom		
	8+38	-1.9	-1.3	-2.6	-3.1	-3.1	River Bottom		
	8+55	-2.1	-1.0	-2.2	-2.0	-2.0	River Bottom		
	Varies	0.8	0.2	0.7	1.5	0.8	Edge of Water		
	10+00	1.8	1.3	1.3	1.3	1.2	Sand Bar		
	11+00	1.9	1.6	1.7	1.5	1.7	Sand Bar		
	12+00	2.0	2.6	2.3	2.2	2.5	Sand Bar		
	13+00	2.2	2.8	2.6	1.2	2.2	Sand Bar		
	14+00	2.0	2.8	2.7	2.5	2.4	Sand Bar		
	15+00	2.1	2.6	2.6	2.6	2.4	Sand Bar		
	16+00	1.9	2.3	2.2	2.5	2.1	Sand Bar		
	17+00	1.6	2.1	2.0	2.1	1.9	Sand Bar		
	18+00	13	01	0.5	1.0	1.5	Sand Bar		
	19+00	0.8	0.9	0.9	0.8	-	Sand Bar		
	Varies	0.8	0.0	-0.3	1.6	10	Edge of Water		
	20+84	-2.4	-1.6	-1.6	-0.7	0.8	River Bottom		
	21+07	-2.5	-2.0	-2.0	-17	1.6	River Bottom		
			2.0	2.0					

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

2 of 47

Transect_02

CD-5 Michael Baker Bridge Transects Transect 2

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
21+36	-2.1	-2.6	-2.5	-2.9	3.3	River Bottom
21+53	-2.5	-2.9	-3.6	-3.4	3.4	River Bottom
21+72	-2.9	-3.4	-3.5	-3.6	2.9	River Bottom
21+85	-2.9	-3.3	-3.0	-3.9	2.7	River Bottom
22+01	-4.1	-3.0	-3.0	-5.1	3.0	River Bottom
22+21	-4.7	-4.0	-3.4	-5.4	3.6	River Bottom
22+38	-5.6	-4.6	-4.2	-6.2	4.2	River Bottom
22+55	-6.2	-4.6	-5.0	-7.0	4.9	River Bottom
22+75	-4.6	-5.5	-5.6	-7.5	6.0	River Bottom
Varies	0.7	0.0	0.2	1.6	1.1	Edge of Water
23+13		0.8	0.5		-	Toe of Bank
23+16	1.8	-	-	-	-	Toe of Bank (2103)
23+24	7.8	7.8	-	-	-	Top of Bank (2016)
23+26			7.5	7.1	3.1	Top of Bank
23+90	8.6	8.7	8.9		8.9	Ground Shot
24+50	9.0	9.1	8.9	8.9	8.8	Ground Shot
25+40	9.3	9.4	9.2	9.0	9.2	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

3 of 47

Transect_02

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-8 Bri	5 Michael B idge Transe Transect 3		KUUKPIK UMIAQ ALPINE BURVEY OPPICE PROFE: 90/4004709	
	STA	2013	2016	2017	2018	2010	DOC	LCMF-156 REV7
	0.00	10.0	0.5		2010	-01/	Complete	
	0+00	10.0	9.5	9.0	9.0	9.0	Ground Shot	
	1+00	10.8	10.7	10.8	10.7	10.8	Ground Shot	
	2+00	11.4	11.5	11.4	11.5	11.2	Ground Shot	
	2+17	11.1	11.0	11.0	-	10.8	Top of Bank	
	2+47	0.4	0.0	0.5	0.2	0.2	Toe of Dank	
	3+00	0.4	0.0	0.0	0.0	0.0	Ground Shot	
	4+00	/.0	1.1	1.1	1.1	7.5	Ground Shot	
	5+00	0.8	7.0	6.9	7.0	0.8	Ground Shot	
	5+25	0.1	0.0	0.0	0.0	0.0	Top of Bank	
	5+74	1./	2.0	2.0	2.0	1.8	loe of Bank	
	0+00	1.5	2.0	1.7	1.9	1.7	Sand Dar	
	7+00	3.2	3.9	4.0	3.9	4.1	Sand Dar	
	8+00	4.8	4.0	4.0	4.6	4.7	Sand Bar	
	9+00	0.0	5.8	2.8	6.4	6.3	Sand Bar	
	9+27	5.7	5.1	4.9	4.9	5.0	Top of Bank	
	9+40	2.0	4.2	3.9	4.0	4.2	Toe of Bank	
	Varies	0.2	0.8	0.4	0.5	0.9	Edge of Water	
	10+85	-2.2	-1.0	-2.2	-0.8	-1.3	Kiver Bottom	
	10+95	-2.2	-1.3	-2.6	-2.9	-1.3	River Bottom	
	11+07	-2.3	-1.6	-3.1	-4.0	-1.3	River Bottom	
	11+17	-3.1	-1.9	-3.5	-4.6	-1.8	River Bottom	
	11+31	-3.8	-2.3	-4.1	-5.1	-3.0	River Bottom	
	11+44	-4.3	-3.9	-4.6	-5.9	-4.0	River Bottom	
	11+60	-5.0	-4.9	-5.8	-6.7	-5.0	River Bottom	
	11+85	-6.1	-5.6	-6.5	-7.8	-6.2	River Bottom	
	12+07	-6.8	- 6 .7	-7.7	-8.9	-7.2	River Bottom	
	12+23	-7.3	-7.0	-7.6	-9.0	-7.6	River Bottom	
	12+48	-7.4	-6.8	-7.4	-9.3	-7.9	River Bottom	
	12+72	-7.4	-6.7	-7.0	-8.8	-7.6	River Bottom	
	12+89	-7.4	-6.4	-6.7	-9.9	-7.2	River Bottom	
	13+15	-7.4	-6.3	-6.8	-8.6	-7.3	River Bottom	
	13+40	-7.3	-6.3	-7.6	-8.7	-7.5	River Bottom	
	13+64	-7.5	-6.3	-7.3	-8.1	-6.9	River Bottom	
	13+81	-7.4	-6.8	-6.9	-8.4	-7.1	River Bottom	
	14+07	-7.3	-6.7	-6.9	-7.6	-6.9	River Bottom	
	14+32	-6.9	-6.3	-7.2	-7.4	-6.6	River Bottom	
	14+48	-6.6	-7.0	-7.0	-8.9	-6.2	River Bottom	
	14+75	-7.9	-5.6	-7.3	-8.1	-6.6	River Bottom	
	14+99	-8.2	-6.0	-7.6	-7.5	-6.4	River Bottom	
	15+16	-8.2	-5.9	-7.2	-8.2	-6.6	River Bottom	
	15+42	-8.3	-7.2	-7.3	-9.3	-6.8	River Bottom	
	15+61	-8.0	-7.3	-7.6	-8.5	-7.8	River Bottom	
	15+86	-8.5	-7.0	-8.1	-9.3	-8.2	River Bottom	
	16+02	-8.6	-7.3	-8.7	-8.6	-8.2	River Bottom	
	16+27	-8.5	-7.6	-8.8	-9.1	-8.5	River Bottom	
	16+51	-8.9	-7.3	-8.6	-9.7	-8.1	River Bottom	
	16+75	-8.3	-7.9	-8.4	-9.6	-8.2	River Bottom	
	16+98	-8.6	-8.2	-8.8	-10.1	-8.9	River Bottom	
	17+14	-8.2	-8.8	-9.2	-10.7	-9.1	River Bottom	
	17+39	-7.7	-8.7	-9.8	-10.4	-9.2	River Bottom	
	17+63	-7.5	-8.7	-10.2	-10.7	-9.1	River Bottom	
	17+85	-7.6	-9.5	-10.5	-11.6	-9.9	River Bottom	
D. LOWENCE	DED. 1		7.1		4 6 4 7			T (02)

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

ConocoPhillips Alaska INTERNATIONAL 4 of 47

Transect_03

2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Calc'd By: MB Date: 8/20/19 RPT-CE-CD-114 REV7			CD E	-5 Michael bridge Trans Transect	Baker sects 3		KUUKPIK UMIAO ALPINE BURVEY OFFICE PROFESSION
S	ΓA 20	13 201	6 2017	2018	2019	Description	Lewis-150 KLV
18	+02 -7	71 -10	010.7	-11.8	-10.1	River Bottom	
18	+28 -7	17 -9.8	3 -10.4	-12.2	-10.1	River Bottom	
18	+53 -7	4 -8.8	-96	-11.2	-10.5	River Bottom	
18	+69 -7	.7 -8.3	-8.6	-10.3	-9.9	River Bottom	
18	+96 -8	3.0 -7.6	5 -8.0	-9.9	-9.1	River Bottom	
19-	+12 -6	5.9 -7.0	.7.4	-9.6	-8.8	River Bottom	
19-	+37 -6	5.6 -5.7	7 -6.6	-9.6	-8.7	River Bottom	
19	+53 -7	7.0 -6.1	-6.8	-8.8	-8.0	River Bottom	
19	+80 -7	7.1 -6.0) -7.0	-8.7	-7.4	River Bottom	
20	+04 -7	7.0 -5.8	3 -7.2	-7.9	-7.2	River Bottom	
20-	+19 -7	7.4 -5.6	5 -7.1	-7.9	-6.9	River Bottom	
20-	+43 -7	7.6 -7.0	.7.5	-8.3	- 6 .7	River Bottom	
20-	+60 -6	5.0 -6.9	-7.9	-8.4	-6.9	River Bottom	
20-	+82 -5	6.6 -6.0) -6.8	-7.6	-6.5	River Bottom	
21-	+04 -5	5.2 -5.4	4 -6.2	-6.8	-5.6	River Bottom	
21-	+19 -4	-5.4	4 -6.0	-7.0	-5.1	River Bottom	
21-	+31 -3	.8 -4.8	-6.0	-6.0	-5.1	River Bottom	
21-	+50 -2	2.2 -1.9	-4.1	-4.0	-5.1	River Bottom	
Va	nies -0).4 0.9	0.2	0.4	1.1	Edge of Water	
22-	+22	- 1.0	0.8	0.5	-	Toe of Bank	
22-	+35	- 9.0	8.8	8.8	8.6	Top of Bank	
23-	+00 8	.2 8.7	8.9	8.6	8.7	Ground Shot	
23	+22 9	.2 10.0	9.8	9.5	9.7	Top of Bank	
23	+36 8	.1 8.5	8.5	8.2	8.3	Toe of Bank	
23	+76 7	.9 8.9	8.7	8.4	8.5	Toe of Bank	
24	+15 10	0.7 11.5	5 11.5	11.3	11.3	Top of Bank	
24	+22 8	.9 9.4	9.3	9.4	9.5	Toe of Bank	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

5 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-4 Bri	5 Michael B idge Transe Transect 4	laker ects			
	CT A	2012	2016	2017	2019	2010	DOC	LCMF-156 REV7	
	51A	2013	2010	2017	2010	2019	Description		
	0+00	12.2	12.6	12.4	12.5	12.5	Ground Shot		
	1+00	12.8	13.0	13.0	12.9	12.9	Ground Shot		
	2+00	14.2	14.4	14.5	14.0	14.0	Ground Shot		
	3+00	16.1	16.2	16.3	16.2	15.7	Ground Shot		
	3+91	14.7	15.2	15.2	15.0	14.9	Top of Bank		
	4+24	11.5	11.0	11.0	11.5	11.5	Toe of Bank		
	5+00	12.1	12.1	12.1	12.0	11.9	Ground Shot		
	5+12	9.6	0.7	12.5	12.2	0.7	Top of Bank		
	5+74	0.0	0./	0.0	0.0	0./	Toe of Bank		
	5:02	8.2	0.4	8.2	8.2	0.4	Toe of Bank		
	5+01	10.7	10.9	10.0	10.7	10.7	Top of Bank		
	6+04	8.2	9.6	0.5	0.0	0.5	Tee of Bank		
	6+47	0.2	8.0	0.0	0.7	0.7	Tee of Bank		
	6+50	97	0.0	0.1	0.2	0.5	Top of Bank		
	7+05	8.0	7.0	9.1	8.2	9.1	Top of Bank		
	7+03	5.3	5.0	5.9	5.2	5.0	Top of Bank		
	8+00	4.9	5.3	5.0	5.0	5.1	Sand Bar		
	0+00	4.2	10	4.7	4.5	4.2	Sand Bar		
	10+00	4.2	4.2	3.4	3.3	3.6	Sand Bar		
	11+00	4.5	3.8	3.6	3.6	3.5	Sand Bar		
	12+00	3.0	4.5	3.0	4.0	4.0	Sand Bar		
	12+00	3.0	3.3	3.3	3.2	3.4	Sand Bar		
	14+00	2.8	2.2	2.8	2.2	2.4	Sand Bar		
	15+00	3.1	3.0	2.0	3.0	3.0	Sand Bar		
	16+00	3.2	2.3	2.2	2.2	2.1	Sand Bar		
	Varies	-0.1	1.0	1.0	-0.3	10	Edge of Water		
	16+70	-3.1	-0.7	-1.6	-1.4	-0.6	River Bottom		
	16+84	-6.0	-1.7	-3.4	-4.0	-2.1	River Bottom		
	17+01	-8.6	-4.0	-8.6	-4.1	-4.3	River Bottom		
	17+18	-12.4	-5.8	-12.4	-8.6	-7.2	River Bottom		
	17+42	-15.3	-11.4	-12.4	-12.7	-11.4	River Bottom		
	17+63	-16.5	-14.5	-15.3	-14.5	-13.1	River Bottom		
	17+80	-15.7	-15.7	-16.2	-16.0	-13.9	River Bottom		
	18+00	-16.4	-15.5	-16.2	-17.4	-16.0	River Bottom		
	18+21	-17.6	-16.3	-17.3	-18.5	-18.5	River Bottom		
	18+36	-19.2	-17.4	-18.4	-19.5	-19.0	River Bottom		
	18+55	-19.3	-18.9	-19.9	-21.0	-21.0	River Bottom		
	18+79	-19.9	-19.7	-20.2	-23.3	-21.2	River Bottom		
	18+96	-20.3	-20.1	-20.7	-23.3	-21.5	River Bottom		
	19+13	-19.4	-20.8	-21.0	-23.3	-22.6	River Bottom		
	19+37	-20.2	-21.2	-21.6	-25.3	-23.0	River Bottom		
	19+54	-21.1	-22.1	-21.8	-24.0	-23.2	River Bottom		
	19+75	-21.3	-22.6	-22.6	-23.9	23.1	River Bottom		
	19+92	-20.9	-22.9	-22.9	-24.7	-23.1	River Bottom		
	20+12	-20.4	-22.4	-22.8	-24.3	-22.2	River Bottom		
	20+29	-20.2	-21.9	-22.3	-24.0	-22.1	River Bottom		
	20+48	-19.9	-21.8	-21.8	-23.8	-21.6	River Bottom		
	20+65	-19.7	-20.8	-20.8	-23.6	-21.7	River Bottom		
	20+84	-18.6	-19.3	-19.8	-21.9	-19.4	River Bottom		
	21+06	-15.1	-18.1	-18.0	-20.5	-17.8	River Bottom		
	21+15	-10.4	-15.9	-17.3	-18.8	-16.1	Kiver Bottom		

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

6 of 47

Transect_04

CD-5 Michael Baker Bridge Transects Transect 4

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
Varies	-0.2	1.1	0.2	-0.3	1.2	Edge of Water
21+91	2.1	1.5	2.0	0.9	-	Toe of Bank
21+98	10.1	9.3	9.3	9.3	-	Top of Bank (2018)
22+02					9.8	Top of Bank
22+53			10.2	10.2	10.2	Ground Shot
23+00	10.7	10.8	10.8	10.7	10.7	Ground Shot
24+03	10.4	10.3	10.4	10.4	10.4	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

7 of 47

Transect_04

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	B CD-5 Michael Baker) Bridge Transects -114 REV7 Transect 5							
	STA	2013	2016	2017	2018	2019	DOC LCM. Description	F-156 KEV7
	0+00	11.9	11.9	11.9	12.1	12.1	Ground Shot	
	1+00	12.0	12.1	12.0	11.9	11.9	Ground Shot	
	2+00	15.5	15.5	15.5	15.4	15.3	Ground Shot	
	3+00	16.1	16.0	16.0	15.8	16.0	Ground Shot	
	4+00	15.4	15.4	15.4	15.3	15.3	Ground Shot	
	4+56	17.2	17.1	17.0	16.9	17.0	Top of Bank	
	4+65	14.2	14.2	14.1	14.0	14.0	Toe of Bank	
	4+81	14.3	14.1	14.1	14.1	14.0	Toe of Bank	
	5+08	18.5	18.2	18.2	18.1	18.0	Top of Bank	
	5+36	13.6	13.4	13.3	13.3	13.2	Toe of Bank	
	5+82	15.9	15.7	15.6	15.5	15.4	Top of Bank	
	6+16	12.6	12.5	12.4	12.3	12.4	Toe of Bank	
	6+92	13.0	12.9	13.4	13.4	13.4	Top of Bank	
	7+20	7.8	7.8	7.5	7.7	7.6	Toe of Bank	
	8+00	5.9	6.3	6.5	6.3	6.3	Sand Bar	
	9+00	5.6	5.7	5.6	5.5	5.4	Sand Bar	
	10+00	6.1	5.6	5.6	5.6	5.6	Sand Bar	
	11+00	5.7	5.3	5.1	5.3	5.7	Sand Bar	
	12+00	4.4	3.7	3.7	3.7	3.4	Sand Bar	
	13+00	3.0	3.1	3.1	3.0	3.0	Sand Bar	
	14+00	2.5	2.3	2.2	1.9	2.2	Sand Bar	
	15+00	2.4	1.1	1.1	1.3	1.5	Sand Bar	
	16+00	1.9	1.4	1.3	1.5	1.5	Sand Bar	
	17+00	2.0	2.1	2.1	2.2	1.8	Sand Bar	
	18+00	1.6	2.3	2.3	2.5	2.3	Sand Bar	
	19+00	1.0	1.6	1.6	1.9	-	Sand Bar	
	19+00					1.7	River Bottom	
	20+00	1.2	0.5	0.3	0.6	-	Sand Bar (2018)	
	20+00					-1.0	River Bottom	
	21+00	0.6	0.8	0.8	-0.3	-0.4	Sand Bar (2018)	
	Varies	-0.5	0.8	0.8	-0.3	1.2	Edge of Water	
	21+62	-6.1	-3.5	-3.5	-3.6	-2.6	River Bottom	
	21+79	-8.2	-4.4	-4.8	-5.8	-3.8	River Bottom	
	21+96	-8.4	-6.8	-5.8	6.8	-4.6	River Bottom	
	22+17	-9.5	-8.3	-8.0	-7.5	-6.2	River Bottom	
	22+36	-11.3	-9.7	-10.7	-10.4	-8.0	River Bottom	
	22+53	-12.1	-11.0	-11.7	-12.1	-10.1	River Bottom	
	22+73	-15.1	-14.3	-13.4	-15.0	12.0	River Bottom	
	22+93	-16.8	-16.0	-15.6	-16.6	-15.5	River Bottom	
	23+13	-19.1	-17.5	-17.3	-19.5	-17.6	River Bottom	
	23+30	-21.4	-18.9	-18.8	-21.8	-19.2	River Bottom	
	23+49	-22.4	-20.2	-20.5	-23.2	-21.3	River Bottom	
	23+73	-22.5	-21.1	-22.2	-24.3	-22.6	River Bottom	
	23+93	-22.2	-23.4	-23.3	-24.7	-22.4	River Bottom	
	24+10	-22.4	-24.0	-23.1	-24.9	-22.4	River Bottom	
	24+29	-22.2	-23.7	-23.5	-25.4	-22.4	River Bottom	
	24+53	-23.4	-23.2	-23.2	-28.8	-25.1	River Bottom	
	24+70	-23.3	-24.3	-23.3	-25.8	-24.3	River Bottom	
	24+87	-20.5	-24.5	-23.9	-26.4	-24.7	River Bottom	
	25+04	-21.6	-24.0	-24.2	-26.4	-25.1	River Bottom	
	25+18	-20.5	-24.1	-23.8	-27.0	-25.1	River Bottom	
	25+30	-16.9	-23.6	-23.4	-25.4	-24.4	River Bottom	
		•	•	•	•			

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

8 of 47

Transect_05

2019

COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 REV7

CD-5 Michael Baker Bridge Transects Transect 5

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
25+47	-8.2	-21.3	-23.6	-25.5	-22.7	River Bottom
Varies	-0.5	0.8	-0.5	-0.3	1.4	Edge of Water
25+87	8.5	-	-	-	-	Top of Bank (2013)
26+11		8.6	-	-	-	Top of Bank (2016)
26+17			8.5	8.1	-	Top of Bank (2018)
26+23					8.4	
27+00	8.6	8.5	8.5	8.5	8.4	Ground Shot
27+70	8.7	8.7	8.6	8.6	8.6	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

9 of 47

Transect_05

Cale'd By: MB

CD-5 Michael Baker

Date: 8/20/19 Bridge Transects UMIAQ PHONE: 907-0704725 RPT-CE-CD-114 REV7 Transect 6 DOC LCMF-156 REV7 2013 2016 20172018 2019 STA Description 0+0011.4 11.6 11.5 11.5 11.5 Ground Shot 1+00 11.1 11.0 11.1 11.1 11.0 Ground Shot 2+00 14.0 13.9 14.0 13.9 13.8 Ground Shot 3+00 15.3 15.2 15.4 15.2 15.3 Ground Shot 3+42 16.9 16.8 16.8 171 16.8 Top of Bank 3+59 12.5 12.3 12.4 12.5 12.2 Toe of Bank 4 + 0814.8 14.6 14.7 14.6 Top of Bank (2018) -Top of Bank 4+2311.0 4+2311.0 11.0 11.0 Toe of Bank (2018) 11.1 11.1 4+96 12.3 12.212.212.112.0 Top of Bank 5+11 9.8 9.8 9.8 9.8 9.8 Toe of Bank 5+81 7.8 7.7 7.7 7.7 7.5 Top of Bank 6+31 1.1 0.4 0.5 0.4 1.2Edge of Water/Toe of Bank 7+00 -0.3 -0.5 -0.5 -0.8 -0.8 River Bottom 8+00 0.5 0.0 0.1 0.3 Edge of Water -9+00 1.0 0.0 0.0 0.0 Sand Bar -9+00 -0.3 River Bottom 10+00 1.4 0.3 0.4 0.1 Sand Bar 10+00 -0.4 River Bottom 11+00 1.8 1.0 1.1 1.2 Sand Bar 11+00 -0.9 River Bottom 12 + 002.3 1.1 0.8 0.9 Sand Bar . 12+00 -0.8 River Bottom 13 + 002.0 0.5 0.4 -0.3 -1.5 Sand Bar Varies -0.2 0.5 0.4 -0.4 Edge of Water . -3.2 -2.714+68 -3.3 -1.5 -2.1River Bottom -2.1 14 + 78-3.1 -1.7 -2.2 -2.0 River Bottom 14+94 -2.8 -1.9 -2.3 -2.3 -2.0 River Bottom -2.5 -2.8 15 + 14-2.4 -2.1 -2.3 River Bottom 15+34 -2.8 -2.3 -2.7 -3.0 -1.7 River Bottom -2.6 15 + 49-2.5 -2.9 -3.3 -1.6 River Bottom -2.7 15 + 72-2.9 -2.8 -3.1 -1.8 River Bottom 15+95 -3.5 -2.6 River Bottom -3.1 33 -1.8 -3.3 -3.5 -3.5 -3.2 -1.4 16+15 River Bottom 16+38 -3.8 -3.5 -3.7 -3.1 -1.3 River Bottom -4.1 -4.4 -3.9 -4.3 -2.2 16+61 River Bottom 16+87 -4.1 -5.4 -7.3 7.3 -5.6 River Bottom -7.7 -8.0 17+06 -4.8 -5.6 -6.7 River Bottom -7.9 -9.2 -7.5 17+29 -5.3 -5.6 River Bottom -72 -9.0 17+55 -8.0 -9.1 -8.3 River Bottom -12.5 17+82 -12.0 -9.8 -10.0 -10.2River Bottom -15.7 -12.9 18+08 -13.4 -12.2-14.6 River Bottom -19.7 18 + 31-17.8-16.2-16.5 -15.0River Bottom 18 + 57-19.9 -17.4-20.8 -19.2 -18.4 River Bottom 18+80 -20.3 -19.8 -22.0 -21.5 -20.9 River Bottom -23.1 -23.0 -22.0 19+02 -20.8 -20.4 River Bottom -23.3 -24.7 19 + 28-24.5 -24.7-24.0 River Bottom 19+51 -24.1 -23.5 -26.4 -26.6 -25.3 River Bottom 19 + 74-20.4 -23.1 -26.8 -25.0 -26.0 River Bottom 19+93 -12.5 -16.2 -24.0 -26.5 -23.8 River Bottom -20.7 -19.1 20 + 10-8.6 -4.1 -6.6 River Bottom Varies -0.3 0.6 1.6 -0.3 1.3 Edge of Water

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

10 of 47

Transect_06

KUUKPIK

Michael Baker

CD-5 Michael Baker Bridge Transects Transect 6

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
20+63	-	9.4	9.0	8.5	-	Top of Bank (2018)
					9.5	Top of Bank
21+50	9.8	10.0	9.9	9.9	10.0	Ground Shot
22+50	9.3	9.5	9.4	9.5	9.5	Ground Shot
23+24	9.8	9.8	9.7	9.8	9.9	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

11 of 47

Transect_06

ConocoPhillips Alaska INTERNATIONAL

Calc'd By: MB Date: 8/20/19 RPT-CE-CD-114 F	REV7			CD-6 Bri				
STA	2013	2014	2015	2016	2017	2018	2010	DOC LCMF-156 REV7
	1015	10.0	2010	10.0	2017	2010	1012	Description
0+00	10.6	10.9	10.7	10.7	10.5	10.6	10.7	Ground Shot
1+00	10.1	10.4	10.4	10.3	10.3	10.3	10.4	Ground Shot
1+50	12.2	12.4	12.4	12.5	12.3	12.4	12.4	Ground Shot
1+77	13.4	13.7	13.7	13.5	13.5	13.5	13.6	Grade Break
2+00	11.3	11.6	11.7	11.6	11.6	11.6	11.6	Ground Shot
2+15							9.0	Top of Bank
2+20			8.4	8.3	8.0	8.1	-	Top of Bank (2018)
2+23	8.1	8.1	-	-	-	-	-	Top of Bank (2014)
2+24							3.4	Toe of Bank
2+30	2.8	3.0	3.7	3.3	2.9	3.1	-	Toe of Bank (2018)
Vanes	0.6	0.5	0.8	0.3	1.0	-0.3	1.3	Edge of Water
4+93	-2.5	-4.1	-4.2	-4.0	-4.0	-3.9	-3./	River Bottom
5+06	-2.5	-4.4	-4.6	-4.0	-4.5	-4.4	-4.1	Kiver Bottom
5+25	-2.6	-3.0	-5.0	-4.3	-5.0	-5.0	-4.9	Kiver Bottom
5+45	-2.7	-3.7	-5.3	-4.7	-5.0	-5.2	-5.2	Kiver Bottom
5+68	-3.7	-3.8	-6.6	-5.6	-6.2	-6.8	-6.5	River Bottom
5+91	-4.5	-5.2	-7.0	-7.0	-7.0	-7.1	-7.1	River Bottom
6+17	-5.8	-7.6	-7.3	-7.5	-7.6	-7.6	-7.5	River Bottom
6+42	-7.4	-7.2	-7.7	-7.3	-7.7	-7.7	-7.8	River Bottom
6+65	-7.7	-7.4	-1.1	-7.2	-7.2	-8.0	-8.0	River Bottom
6+88	-7.2	-6.3	-7.7	-6.4	-6.7	-7.6	-8.2	River Bottom
7+11	-6.8	-6.0	-7.6	-6.6	-6.7	-8.2	-8.3	River Bottom
7+37	-5.4	-5.5	-7.6	-6.8	-6.9	-7.8	-7.7	River Bottom
7+56	-5.1	-6.3	-7.6	-7.2	-7.3	-7.9	-7.5	River Bottom
7+82	-4.9	-7.1	-7.6	-7.3	-7.7	-7.7	-8.0	River Bottom
8+02	-4.3	-7.1	-7.6	-6.7	-7.3	-7.8	-7.8	River Bottom
8+25	-3.6	-5.6	-7.6	-7.5	-6.9	-7.9	-7.5	River Bottom
8+50	-4.2	-5.9	-7.5	-7.0	-6.8	-7.1	-7.3	River Bottom
8+74	-5.6	-6.2	-7.5	-7.2	-7.5	-7.0	-7.0	River Bottom
9+03	-5.9	-6.1	-7.4	-7.5	-7.9	-8.0	-0.6	River Bottom
9+32	-7.6	-5.5	-7.2	-7.8	-7.6	-7.8	-6.2	River Bottom
9+58	-7.0	-6.7	-7.0	-7.3	-7.6	-6.6	-7.0	River Bottom
9+84	-9.8	-7.4	-6.9	-8.2	-7.9	-6.2	-7.1	River Bottom
10+10	-9.9	-10.8	-7.4	-7.8	-8.0	-6.2	-7.2	River Bottom
10+39	-9.5	-10.5	-8.0	-8.2	-8.5	-6.7	-7.6	River Bottom
10+68	-8.7	-9.2	-7.8	-7.5	-7.9	-7.9	-7.3	River Bottom
10+91	-8.3	-9.3	-7.6	-7.8	-7.9	-9.6	-8.2	River Bottom
11+21	-8.9	-9.4	-7.4	-7.8	-8.4	-9.3	-8.5	River Bottom
11+50	-9.2	-9.7	-9.4	-7.5	-8.4	-8.6	-8.3	River Bottom
11+76	-9.4	-10.5	-10.3	-7.2	-7.7	-9.0	-8.2	River Bottom
12+02	-11.0	-10.7	-9.9	-8.4	-8.6	-8.6	-8.7	River Bottom
12+31	-11.6	-10.7	-9.5	-8.1	-8.4	-8.6	-8.7	River Bottom
12+57	-10.4	-9.4	-9.1	-7.5	-8.0	-8.6	-8.2	River Bottom
12+83	-9.0	-9.5	-8.8	-7.7	-7.9	-8.4	-8.2	River Bottom
13+09	-8.4	-8.7	-8.0	-7.2	-7.4	-7.9	-7.8	River Bottom
13+35	-7.6	-8.1	-7.6	-6.8	-6.8	-7.0	-6.9	River Bottom
13+64	-6.7	-7.2	-7.2	-6.4	-6.5	-6.5	-6.4	River Bottom
13+87	-6.3	-6.7	-6.5	-6.1	-6.3	-6.4	-6.0	River Bottom
14+17	-5.7	-6.5	-6.3	-5.6	-5.7	-5.7	-5.8	River Bottom
14+40	-5.9	-6.2	-6.2	-5.4	-5.5	-5.6	-5.5	River Bottom
14+69	-6.6	-6.5	-6.3	-5.7	-5.7	-5.4	-5.4	River Bottom
14+98	-7.8	-7.9	-7.8	-6.5	-6.4	-6.1	-6.0	Kiver Bottom

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 12 of 47

Transect_07

CD-5 Michael Baker **Bridge Transects** Transect 7

DOC LCMF-156 REV7 STA 2013 2014 2015 2016 2017 2018 2019 Description 15+24 -10.7 -10.6 -9.2 -7.8 -8.6 -7.9 -7.6 River Bottom 15+53 -13.6 -13.3 -11.8 -10.9 -10.9 -10.5 -10.0 River Bottom 15 + 79-14.7 -13.9 -12.6 -12.2 -11.9 -11.5 -10.7 River Bottom 16+02 -11.1 -12.3 -12.3 -12.3 -12.2 -11.8 -9.4 River Bottom Varies 0.7 0.5 0.2 0.3 1.0 -0.2 1.3 Edge of Water Top of Bank (2016) 16+95 8.5 8.4 8.4 8.3 ---16+97 8.7 7.9 Top of Bank (2018) -17+00 8.9 Top of Bank 17+00 9.2 9.5 9.4 9.3 9.2 8.9 8.9 Ground Shot 17+57 10.1 10.3 10.0 9.7 9.6 9.8 9.9 Ground Shot 18+00 9.4 9.6 9.6 9.5 9.4 9.5 9.7 Ground Shot Ground Shot 19+00 10.2 10.5 10.6 10.4 10.2 10.3 10.4 19+07 10.8 10.9 10.7 10.5 10.3 10.5 10.6 Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

13 of 47

Transect 07

Alaska INTERNATIONAL

Cale'd By: MB Date: 8/20/19								
RPT-CE-CD-114	REV7			51	Transect 8	ecto		ALPINE BURNEY OPPICE PROFIL: 907407429
								DOC LCMF-156 REV7
STA	2013	2014	2015	2016	2017	2018	2019	Description
0+00	10.6	10.8	10.3	10.3	10.1	10.1	10.1	Ground Shot
1+00	10.1	10.2	10.3	10.2	10.1	10.1	10.2	Ground Shot
2+00	9.8	10.0	10.1	10.0	9.9	10.0	9.8	Ground Shot
2+00							9.8	Top of Bank
2+08	8.9	9.0	9.0	9.0	8.9	8.7	-	Top of Bank (2018)
Varies	0.9	0.2	-0.4	0.2	1.3	-0.2	1.8	Edge of Water
2+99	-5.8	-5.5	-7.3	-6.6	-6.6	-3.7	-6.6	River Bottom
3+20	-7.1	-7.7	-8.7	-8.3	-8.3	-7.8	-7.4	River Bottom
3+40	-7.4	-8.8	-9.7	-8.6	-8.8	-8.4	-8.1	River Bottom
3+61	-8.2	-9.6	-10.4	-9.2	-9.8	-9.1	-8.9	River Bottom
3+85	-9.7	-10.5	-11.2	-9.9	-10.6	-10.4	-10.0	River Bottom
4+09	-9.9	-10.8	-12.1	-11.2	-11.6	-11.5	-11.3	River Bottom
4+33	-9.9	-11.3	-13.1	-13.6	-13.5	-12.9	-12.9	River Bottom
4+57	-10.3	-11.9	-14.1	-15.2	-15.6	-16.5	-15.8	River Bottom
4+85	-10.0	-10.9	-14.3	-15.3	-15.2	-15.3	-15.2	River Bottom
5+09	-10.6	-10.4	-15.0	-14.4	-14.6	-14.9	-15.1	River Bottom
5+33	-11.5	-10.3	-15.2	-14.0	-14.4	-14.5	-14.4	River Bottom
5+60	-11.9	-10.7	-14.7	-13.8	-14.0	-13.6	-13.7	River Bottom
5+87	-12.4	-10.3	-14.2	-13.2	-13.5	-13.2	-13.1	River Bottom
6+19	-11.8	-10.8	-14.9	-14.3	-14.6	-14.6	-14.5	River Bottom
6+46	-11.1	-10.8	-15.4	-15.6	-15.6	-15.4	-15.3	River Bottom
6+73	-11.2	-11.6	-15.6	-15.5	-15.6	-15.3	-15.7	River Bottom
7+01	-10.3	-10.6	-15.3	-14.4	-14.7	-14.5	-14.5	River Bottom
7+28	-10.0	-10.3	-13.9	-13.5	-13.5	-13.6	-13.3	River Bottom
7+53	-11.8	-11.0	-12.5	-12.4	-12.2	-12.4	-12.8	River Bottom
7+80	-11.6	-11.0	-11.1	-10.5	-10.7	-11.3	-12.0	River Bottom
8+08	-12.1	-9.5	-9.4	-9.7	-9.8	-9.1	-8.9	River Bottom
8+36	-11.6	-8.2	-9.4	-9.1	-9.0	-8.2	-8.0	River Bottom
8+59	-11.0	-7.8	-8.5	-8.6	-8.4	-8.3	-7.8	River Bottom
8+79	-11.1	-7.1	-7.2	-7.5	-7.6	-7.2	-7.4	River Bottom
9+04	-9.1	-7.9	-6.8	-7.1	-6.5	-5.6	-6.4	River Bottom
9+28	-8.3	-7.7	-6.3	-5.0	-5.5	-4.8	-5.0	River Bottom
9+53	-8.1	-7.2	-6.4	-5.2	-5.5	-5.4	-5.3	River Bottom
9+76	-7.7	-6.6	-6.5	-4.6	-4.9	-4.1	-4.5	River Bottom
9+96	-7.6	-6.7	-6.4	-5.6	-5.0	-5.1	-4.1	River Bottom
10+17	-7.2	-6.2	-6.2	-6.2	-5.8	-5.2	-4.3	River Bottom
10+42	-5.6	-5.6	-6.0	-4.8	-4.3	-3.3	-3.5	River Bottom
10+62	-3.1	-3.9	-3.4	-3.1	-3.1	-2.5	-2.2	River Bottom

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 14 of 47

Transect_08

Cale'd By Date: 8/2	y: MB 20/19				CD-8 Bri	5 Michael B idge Transe			
KPT-CE-	-CD-114 I	ŒV/				I ransect 9			DOC I CME 156 REV7
Г	STA	2013	2014	2015	2016	2017	2018	2019	Description
F	0+00	10.6	10.6	10.6	10.6	10.3	10.4	10.5	Ground Shot
	1+00	9.9	10.0	10.0	9.9	10.0	9.8	9.8	Ground Shot
	1+50	10.5	10.5	10.3	10.1	10.0	10.1	10.0	Ground Shot
	1+89							8.9	Top of Bank
	1+92	9.6	9.6	9.7	9.6	9.4	9.2	-	Top of Bank (2018)
	Varies	0.6	0.0	0.9	0.7	0.8	-0.2	2.0	Edge of Water
	2+48	-5.7	-10.5	-7.1	-5.7	-7.0	-5.5	-5.2	River Bottom
	2+62	-7.7	-13.4	-13.8	-15.3	-14.6	-14.3	-14.0	River Bottom
	2+78	-10.5	-18.8	-18.7	-19.2	-17.4	-19.1	-17.7	River Bottom
	2+92	-14.5	-18.8	-21.6	-20.6	-20.2	-20.1	-19.5	River Bottom
	3+13	-15.5	-19.2	-23.5	-21.8	-21.9	-22.0	-21.0	River Bottom
	3+33	-15.2	-20.1	-24.9	-23.0	-23.2	-23.0	-21.2	River Bottom
	3+58	-14.8	-20.7	-21.4	-23.5	-23.5	-23.3	-21.7	River Bottom
	3+79	-13.9	-16.2	-19.2	-19.4	-21.7	-19.8	-19.5	River Bottom
	4+03	-13.9	-16.2	-21.4	-21.5	-20.8	-21.4	-21.1	River Bottom
	4+26	-13.4	-16.9	-22.1	-22.0	-20.0	-22.0	-21.0	River Bottom
	4+54	-12.9	-19.9	-22.2	-19.8	-19.5	-18.4	-17.5	River Bottom
	4+78	-13.4	-20.5	-22.3	-20.2	-19.4	-18.8	-17.8	River Bottom
	5+02	-13.0	-19.3	-22.4	-19.0	-19.0	-18.8	-17.9	River Bottom
	5+30	-13.2	-18.4	-21.5	-19.0	-18.6	18.1	-17.5	River Bottom
	5+54	-13.9	-17.9	-20.9	-18.5	-18.5	-17.9	-17.5	River Bottom
	5+79	-13.7	-18.3	-21.3	-18.8	-19.4	-18.6	-18.0	River Bottom
	6+02	-12.6	-17.8	-19.7	-20.6	-20.3	-19.7	-19.0	River Bottom
	6+30	-12.2	-15.4	-17.7	-20.7	-21.0	-20.2	-18.8	River Bottom
	6+55	-12.2	-13.3	-167	-16.0	-15.5	-14.0	-12.6	River Bottom
	6+79	-15.2	-12.4	-16.8	-16.5	-16.3	-14.5	-16.5	River Bottom
	7+06	-14.0	-12.7	-17.0	-16.7	-16.6	-15.3	-13.6	River Bottom
F	7+30	-13.3	-13.2	-16.8	-15.7	-15.6	-14.6	-12.3	River Bottom
	7+57	-11.9	-14.8	-17.0	-15.3	-14.8	-13.2	-11.7	River Bottom
	7+84	-11.5	-14.6	-17.0	-15.5	-14.0	-14.0	-12.1	River Bottom
H	8+08	-11.0	-15.8	-16.6	-14.5	-13.9	-13.5	-10.8	River Bottom
F	8+33	0.0	10.3	15.1	10.5	15.0	-11.0	-61	River Bottom
	8458	-2.2	-10.5	-13.1	-10.5	-15.5	4.2	0.1	River Bottom
	8+78	-0.9	-6.4	-0.2	-3.5	-0.1	-4.2	-0.1	River Bottom
	8+01	-3.2	6.1	2.0	-5.5	2.0	-1.5	-0.5	River Bottom
F	Varies	-5.5	-0.1	-2.0	-2.4	-2.0	-0.3	2.0	Edge of Water
	10+00	2.3	2.5	4.0	4.1	4.0	4.4	4.6	Sand Bar
\vdash	11+00	2.5	4.1	4.0	4.1	4.0	51	51	Sand Bar
	11+52	5.0	5.2	4.2	5.6	5.4	5.8	57	Edge of Vegetation
\vdash	12+00	5.0	5.5	60	6.0	5.7	5.0	60	Ground Shot
	13+00	4.2	1.5	5.0	5.0	5.0	5.2	5.1	Ground Shot
\vdash	14+00	3.0	4.0	4.5	4.5	10	4.5	4.4	Ground Shot
\vdash	14+30	37	3.0	4.0	4.0	4.9	4.5	4.0	Edge of Water
\vdash	14+92	3.1	3.7	3.0	2.0	2.0	4.1	4.0	Edge of Water
\vdash	14+02	3.4	J./ 4.1	4.2	3.8	3.8	4.2	4.0	Too of Bank
	15+00	5.0		4.2	4.0	4.0	4.2	5.0	Top of Bank
\vdash	15+52	2.1	9.9	2.7	7.0	70	2.0	0.7	Crownd Shet
	16+00	0.0	0.2	0.0	9.1	7.8	a.0 7.0	0.2	Ground Shet
⊢	16+00	0.2	0.3	0.1	0.1	0.0	7.9	0.1	Ground Shot
1	10+92	2.4	2.4	2.3	2.2	9.0	1.0	7.4	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 15 of 47

Cale'd H Date: 8/ RPT-CI	By: MB /20/19 E-CD-114 F	REV7			CD-4 Bri	5 Michael E idge Transe Transect 10			
									DOC LCMF-156 REV7
ļ	STA	2013	2014	2015	2016	2017	2018	2019	Description
[0+00	10.3	10.4	10.3	10.3	10.2	10.1	10.2	Ground Shot
[1+00	10.4	10.7	10.3	10.3	9.6	9.3	8.7	Ground Shot
[1+50	10.5	10.6	10.4	10.3	10.1	10.1	10.1	Ground Shot
[1+67							9.7	Top of Bank
[1+90	9.9	9.7	9.5	9.4	8.9	8.2	-	Top of Bank (2018)
	2+00	6.7	7.0	6.5	6.4	5.3	5.1	4.0	Ground Shot
	Varies	0.5	-0.8	-0.3	0.7	1.2	-0.2	2.0	Edge of Water
	2+67	-7.8	-14.3	-20.4	-19.5	-19.9	-20.2	-19.7	River Bottom
	2+87	-20.7	-21.4	-21.3	-22.3	-21.6	-22.6	-21.7	River Bottom
	3+09	-21.3	-22.5	-23.8	-23.3	-23.2	-24.0	-22.3	River Bottom
	3+30	-20.0	-21.2	-23.8	-22.6	-23.1	-22.8	-23.1	River Bottom
	3+55	-19.4	-20.3	-23.7	-22.7	-22.4	-22.3	-22.2	River Bottom
[3+76	-19.0	-20.7	-23.7	-22.6	-21.1	-22.3	-22.1	River Bottom
	4+00	-17.8	-18.6	-20.8	-18.8	-18.3	-18.9	-18.5	River Bottom
	4+21	-18.0	-19.2	-21.1	-19.0	-18.9	-18.8	-18.8	River Bottom
	4+45	-18.7	-19.2	-21.5	-19.1	-19.1	-18.6	-18.0	River Bottom
	4+70	-19.0	-19.9	-21.9	-20.9	-20.3	-19.3	-18.2	River Bottom
	4+94	-18.4	-20.6	-22.3	-21.9	-21.2	-20.3	-20.4	River Bottom
	5+21	-17.3	-20.4	-23.0	-22.0	-22.0	-21.3	-19.8	River Bottom
ļ	5+45	-16.1	-19.2	-23.7	-22.3	-22.2	-21.3	-20.4	River Bottom
	5+69	-14.6	-19.1	-23.2	-22.0	-21.5	-21.3	-20.4	River Bottom
ļ	5+96	-13.5	-17.7	-22.4	-21.2	-20.1	-20.4	-19.6	River Bottom
ļ	6+20	-13.7	-16.8	-21.5	-20.5	-19.8	-19.1	-18.5	River Bottom
	6+47	-12.5	-15.3	-19.7	-18.2	-17.9	-17.4	-16.5	River Bottom
	6+71	-12.1	-14.7	-17.4	-16.2	-16.2	-15.4	-14.0	River Bottom
ļ	6+99	-11.9	-14.2	-15.2	-13.8	-13.2	-11.8	-11.0	River Bottom
	7+23	-12.4	-15.4	-14.8	-11.4	-10.8	-9.5	-8.8	River Bottom
ļ	7+48	-12.2	-17.6	-14.4	-10.7	-9.7	-8.3	-7.1	River Bottom
ļ	7+70	-12.9	-25.5	-14.1	-11.3	-10.5	-9.1	-7.1	River Bottom
	7+94	-11.2	-21.7	-14.8	-14.6	-12.7	-10.6	-9.1	River Bottom
ļ	8+15	-6.8	-15.9	-10.8	-12.8	-7.9	-6.5	-6.3	River Bottom
ļ	Varies	0.4	1.2	2.6	0.8	1.1	-0.3	1.9	Edge of Water
ļ	9+00	1.6	2.1	3.7	3.8	3.5	3.6	3.6	Sand Bar
ļ	10+00	3.6	3.2	4.3	4.3	4.4	4.6	4.6	Sand Bar
ļ	11+00	5.4	5.6	5.8	5.9	5.9	6.1	6.0	Edge of Vegetation
ļ	12+00	5.1	5.4	5.7	5.7	5.7	5.9	5.8	Ground Shot
	13+00	4.8	5.0	5.4	5.4	5.3	5.5	5.6	Ground Shot
ļ	14+00	4.6	4.8	5.0	5.1	5.0	4.7	4.8	Ground Shot
ļ	14+84	3.7	3.8	3.7	3.7	3.8	3.9	4.0	Toe of Bank
ļ	14+96	7.7	7.7	6.8	7.5	7.4	7.5	7.5	Top of Bank
ļ	15+00	7.8	8.0	7.9	7.8	7.7	7.8	7.7	Ground Shot
ļ	15+38	8.6	8.5	8.4	8.8	8.4	8.2	8.2	Ground Shot
ļ	15+53	9.1	9.4	9.4	9.2	9.1	9.2	9.2	Grade Break
ļ	15+71	7.2	7.4	7.3	7.2	7.2	7.1	6.8	Grade Break
ļ	16+00	6.7	7.0	6.8	6.7	6.4	6.6	6.4	Ground Shot
	16+88	7.2	7.4	7.2	7.2	6.9	7.1	7.3	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 16 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-6 Bri	Michael B idge Transe Transect 11	laker ects			
	STA	2012	2016	2017	2019	2010	DOC 1	LCMF-156 REV7	
	51A	2013	2010	2017	2010	2019	Description		
	0+00	10.9	10.9	10.7	10.7	10.8	Ground Shot		
	1+00	10.4	10.7	10.5	10.7	10.6	Ground Shot		
	1+42					9.3	Top of Bank		
	1+47			9.1	8.8	-	Top of Bank (2018)		
	1+50	8.7		-	-	-	Ground Shot		
	1+55		8.8	-	-	-	Top of Bank (2016)		
	1+79	8.6	-	-	-	-	Top of Bank (2013)		
	Varies	0.6	0.8	0.9	-0.2	2.2	Edge of Water		
	2+01	-10.6	-28.3	-25.0	-26.9	27.0	River Bottom		
	2+16	-19.0	-33.1	-31.0	-32.5	-33.4	River Bottom		
	2+36	-30.7	-36.7	-36.1	-36.2	-37.5	River Bottom		
	2+59	-33.6	-36.6	-36.4	-36.7	-37.0	River Bottom		
	2+82	-35.3	-36.7	-36.4	-36.9	-36.6	River Bottom		
	3+08	-32.7	-35.9	-35.5	-35.5	-34.7	River Bottom		
	3+28	-31.4	-34.0	-33.3	-33.6	-32.6	River Bottom		
	3+54	-30.9	-31.8	-31.8	-31.4	-31.0	River Bottom		
	3+77	-30.0	-29.7	-29.2	-28.2	-28.8	River Bottom		
	4+00	-30.0	-25.0	-25.8	-25.1	-24.3	River Bottom		
	4+23	-27.8	-22.5	-22.5	-22.1	-21.0	River Bottom		
	4+48	-25.6	-18.3	-19.2	-17.3	-17.0	River Bottom		
	4+68	-22.7	-16.0	-16.4	-14.6	-13.4	River Bottom		
	4+94	-20.1	-13.7	-13.3	-10.7	-9.4	River Bottom		
	5+16	-17.5	-12.3	-11.5	-8.6	-7.6	River Bottom		
	5+40	-14.9	-11.1	-10.8	-7.9	-6.7	River Bottom		
	5+62	-13.5	-9.1	-9.1	-7.3	-6.0	River Bottom		
	5+82	-10.5	-5.6	-6.1	-4.9	-3.2	River Bottom		
	6+02	-6.1	-3.6	-3.8	-4.5	-0.9	River Bottom		
	Varies	0.2	0.8	0.9	-0.3	1.5	Edge of Water		
	7+00	2.9	3.4	3.4	3.5	3.6	Sand Bar		
	7+90	4.9	5.1	5.0	5.1	5.1	Edge of Vegetation		
	8+00	4.9	5.1	5.0	5.2	5.2	Ground Shot		
	9+00	5.5	5.6	5.6	5.7	5.7	Ground Shot		
	10+00	5.1	5.2	5.2	5.3	5.4	Ground Shot		
	11+00	5.6	5.7	5.7	5.8	5.8	Ground Shot		
	12+00	5.8	5.9	5.9	6.1	6.0	Ground Shot		
	13+00	5.5	5.8	5.7	5.8	5.6	Ground Shot		
	14+00	6.2	6.3	6.3	6.4	6.3	Ground Shot		
	15+00	6.1	6.2	6.1	6.1	6.0	Ground Shot		
	16+00	6.3	6.5	6.5	6.6	6.4	Edge of Vegetation		
	16+52	6.7	6.8	6.8	6.9	6.7	Grade Break		
	16+62	8.0	8.2	8.1	8.2	8.1	Grade Break		
	16+89	9.1	8.9	8.8	8.8	8.9	Ground Shot		
	17+00	8.9	9.1	9.1	9.3	9,1	Ground Shot		
	18+00	9.0	9.0	9.2	9.3	9.0	Ground Shot		
	18+39	10.2	10.2	9.8	9.4	9.5	Ground Shot		
						- 12			

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 17 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-4 Bri	5 Michael B idge Transe Transect 12	aker ects			
	STA	2013	2016	2017	2018	2019	DOC LCMF-1: Description	6 REV7	
	0+00	11.0	11.0	10.8	10.9	11.0	Ground Shot		
	1+00	11.3	11.2	10.8	10.8	11.0	Ground Shot		
	2+00	9.9	10.4	10.2	10.0	10.2	Ground Shot		
	2+08	10.0	10.0	9.9	9.9	9.8	Top of Bank		
	2+22	4.9	5.6	5.6	5.7	5.7	Toe of Bank		
	3+00	2.2	3.1	31	3.3	33	Sand Bar		
	4+00	1.5	2.5	2.5	2.6	2.5	Sand Bar		
	5+00	1.8	2.3	2.2	2.5	2.3	Sand Bar		
	Varies	0.4	0.4	0.6	0.6	1.6	Edge of Water		
	5+79	-4.7	0.4	-1.7	-0.1	-0.2	River Bottom		
	5+85	-5.1	-2.6	-2.1	-2.2	-0.6	River Bottom		
	6+10	-9.0	-5.6	-3.9	-2.5	-3.0	River Bottom		
	6+36	-17.5	-11.1	-11.3	-10.0	11.7	River Bottom		
	6+54	-24.6	-20.7	-18.4	-16.5	-17.1	River Bottom		
	6+85	-28.6	-24.0	-25.9	-22.3	-23.3	River Bottom		
	7+08	-32.0	-29.3	-28.6	-26.5	-26.0	River Bottom		
	7+31	-33.5	-29.7	-29.8	-27.8	-28.4	River Bottom		
	7+57	-33.9	-31.9	-31.6	-30.0	-31.0	River Bottom		
	7+83	-33.0	-32.6	-32.6	-32.7	-33.1	River Bottom		
	8+06	-32.1	-31.7	-32.2	32.4	-32.3	River Bottom		
	8+29	-31.0	-31.2	-31.1	-31.9	-31.7	River Bottom		
	8+56	-31.1	-31.1	-29.6	-31.6	-31.6	River Bottom		
	8+79	-31.3	-31.1	-30.8	-31.3	-31.6	River Bottom		
	9+02	-30.7	-30.4	-30.6	-31.2	-30.9	River Bottom		
	9+28	-29.9	-30.7	-30.6	-31.0	-31.4	River Bottom		
	9+51	-27.1	-30.7	-30.6	-31.3	-31.2	River Bottom		
	9+72	-23.2	-30.4	-28.1	-30.0	-28.9	River Bottom		
	10+00	-20.1	-22.9	-21.9	-23.0	-21.0	River Bottom		
	10+23	-3.0	-19.2	-19.1	-17.7	-17.5	River Bottom		
	10+43	-3.2	-18.3	-15.9	-15.9	-15.0	River Bottom		
	Varies	0.6	0.5	0.5	0.6	1.5	Edge of Water		
	11+05	9.5	-	-	-	-	Top of Bank (2013)		
	11+20		1.3	1.2	2.2	-	Toe of Bank (2018)		
	11+28		8.8	8.6	8.4	-	Top of Bank (2018)		
	11+35					3.1	Toe of Bank		
	11+36					8.6	Top of Bank		
	12+00	9.4	9.1	9.0	9.1	9.2	Ground Shot		
	13+00	7.9	8.0	8.0	8.1	8.2	Edge of Vegetation		
	14+01	6.9	7.0	7.0	7.2	7.1	Ground Shot		
	15+01	7.2	7.3	7.3	7.5	7.5	Ground Shot		
	16+00	7.8	8.0	8.0	8.1	8.1	Ground Shot		
	17+01	8.3	8.4	8.4	8.5	8.5	Ground Shot		
	18+00	7.0	7.1	7.0	7.1	7.0	Ground Shot		
	19+00	6.3	6.6	6.7	6.9	6.8	Ground Shot		
	20+00	6.7	7.0	7.0	7.0	6.7	Ground Shot		
	21+00	6.7	7.1	7.0	7.0	6.9	Ground Shot		
	21+85	7.0	7.4	7.3	7.4	7.3	Toe of Bank		
	22+00	8.2	8.5	8.3	8.3	8.2	Top of Bank		
	22+16	8.8	8.6	8.4	8.6	8.7	Ground Shot		
	23+00	9.7	10.0	9.9	9.8	9.8	Ground Shot		
	23+67	10.2	10.0	9.4	9.7	9.9	Ground Shot		

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 18 of 47

Transect_12

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-5 Bri	5 Michael E idge Transe Transect 13	Saker ects 3		
	STA	2013	2016	2017	2018	2019	DOC LCMF-156 REV7 Description	
	0+00	10.6	11.4	11.2	11.4	11.4	Ground Shot	
	1+00	11.7	11.4	11.2	11.4	11.4	Ground Shot	
	1+50	12.1	11.7	12.0	12.1	12.1	Ground Shot	
	2+00	12.1	11.2	11.7	11.1	12.1	Ground Shot	
	2+00	11.2	11.0	10.9	11.0	11.0	Edge of Vegetation	
	3+00	10.3	9.9	10.2	10.1	10.0	Ground Shot	
	4+00	10.3	10.6	10.2	10.1	10.0	Ground Shot	
	4+36	10.5	10.0	10.0	11.1	10.5	Edge of Vegetation	
	5+00	11.7	11.6	11.6	11.9	11.7	Ground Shot	
	6+00	13.2	13.0	13.1	11.0	11.7	Ground Shot	
	7+00	13.2	13.2	13.6	13.5	13.1	Ground Shot	
	7+00	14.1	14.6	14.6	14.7	14.6	Ground Shot	
	7+05	22.7	22.4	23.4	23.6	23.4	Grade Break	
	8+00	23.7	23.4	23.4	23.0	23.4	Grade Dreak	
	8+00	22.0	23.0	22.9	23.1	23.0	Tra of Back	
	9+00	22.4	22.4	22.4	22.0	22.8	Top of Bank	
	9+0/	11.2	11.1	11.5	11.5	11.5	loe of Dank	
	10+00	9.0	10.0	10.0	10.2	10.4	Sand Dar	
	11+00	/.3	/.0	1.1	1.1	7.4	Sand Bar	
	12+00	8.3	2.9	2.8	5.9	5.9	Sand Bar	
	13+00	5.0	4.8	4.8	5.0	5.0	Sand Dar	
	14+00	6.9	4.2	4.4	4./	4.8	Sand Bar	
	15+00	2.8	3.9	4.1	4.4	4.5	Sand Bar	
	16+00	4.9	3.7	3.7	3.9	3.9	Sand Bar	
	17+00	4.4	3.3	3.4	3.6	3.0	Sand Bar	
	18+01	4.2	2.8	2.9	3.2	3.1	Sand Bar	
	19+00	3.1	2.6	2.6	2.9	3.1	Sand Bar	
	20+00	2.5	2.4	2.5	2.7	2.7	Sand Bar	
	21+00	2.3	2.4	2.4	2.6	2.5	Sand Bar	
	22+00	2.1	2.5	2.4	2.7	2.5	Sand Bar	
	23+00	2.5	2.2	2.3	2.5	2.4	Sand Bar	
	24+00	1.8	2.3	2.4	2.6	2.5	Sand Bar	
	25+00	2.0	2.2	2.2	2.6	2.4	Sand Bar	
	26+00	2.3	2.1	2.1	2.4	2.1	Sand Bar	
	27+00	3.0	2.2	2.1	2.4	2.1	Sand Bar	
	28+00	3.7	2.9	2.7	2.7	2.5	Sand Bar	
	29+00	3.6	2.8	2.7	2.8	2.5	Sand Bar	
	30+00	3.1	2.7	2.5	2.6	2.4	Sand Bar	
	31+00	3.4	2.1	2.0	2.3	2.2	Sand Bar	
	32+00	2.9	2.0	2.1	2.2	2.0	Sand Bar	
	33+00	2.1	1.5	1.5	1.8	1.7	Sand Bar	
	34+00	1.6	0.9	1.6	1.4	1.2	Sand Bar	
	35+00	1.2	-	1.2	2.0	-	Sand Bar	
	Varies	0.5	1.4	1.6	0.4	1.1	Edge of Water	
	36+19	-3.2	-2.8	-4.6	-5.9	-6.7	River Bottom	
	36+39	-5.3	-4.4	-5.4	-7.0	-7.3	River Bottom	
	36+59	-7.8	-5.0	-7.0	-7.5	-7.8	River Bottom	
	36+79	-10.9	-5.8	-7.0	-8.0	-8.3	River Bottom	
	37+07	-13.3	-8.7	-7.3	-8.2	-8.5	River Bottom	
	37+30	-16.2	-9.0	-8.4	-8.7	-9.3	River Bottom	
	37+59	-18.8	-10.0	-10.1	-10.0	-10.6	River Bottom	
	37+84	-20.2	-11.5	-11.8	-11.2	-11.8	River Bottom	
	38+16	-20.8	-15.6	-14.1	-14.0	-13.0	River Bottom	
Doc LCMF-156 C	D5 Bridge 1	Fransects Re	ev7.xlsx		19 of 47		Transect_13	

ConocoPhillips Alaska INTERNATIONAL

Cale'd By: MB				CD-	5 Michael B	Baker		KUUKPIK
Date: 8/20/19				Br	idge Trans	ects		UMIAQ
RPT-CE-CD-1141	REV7				Transect 13	3		ALPINE SURVEY OFFICE PHONE: 9074704735
							DOC	LCMF-156 REV7
	STA	2013	2016	2017	2018	2019	Description	
	38+38	-21.1	-16.7	-13.5	-15.2	-14.5	River Bottom	
	38+70	-22.1	-19.2	-17.5	-17.7	-18.3	River Bottom	
	38+92	-24.2	-22.1	-19.8	-19.0	-19.6	River Bottom	
	39+21	-22.6	-24.4	-21.8	-22.6	-22.6	River Bottom	
	39+38	-3.7	-23.5	-22.9	-24.4	-24.7	River Bottom	
	Varies	0.1	1.1	0.3	0.4	1.2	Edge of Water	
	40+00	8.7	-	-	-	-	Ground Shot (2013)	
	40+12		9.1	-	-	-	Top of Bank (2016)	
	40+17			8.4			Top of Bank (2017)	
	40+26			-	8.2		Top of Bank (2018)	
	40+29					8.1	Top of Bank	
	41+00	8.1	8.6	8.6	8.7	8.7	Ground Shot	
	42+00	8.1	8.5	8.5	8.7	8.6	Ground Shot	
	43+00	8.0	8.4	8.3	8.4	8.4	Ground Shot	
	43+53	6.7	7.0	6.9	7.1	6.9	Edge of Vegetation	
	44+00	5.2	5.6	5.5	5.6	5.7	Top of Bank	
	Varies	0.2	1.4	1.4	0.5	1.3	Edge of Water	
	45+19	0.4	0.8	0.7	-0.5	-0.6	River Bottom	
	45+64	-1.5	-0.4	-1.4	-1.3	-1.6	River Bottom	
	46+13	-6.5	-5.7	-5.6	-6.6	-5.6	River Bottom	
	46+62	-10.0	-8.8	-9.4	-10.1	-9.7	River Bottom	
	47+14	-10.3	-9.5	-9.8	-10.4	-10.3	River Bottom	
	47+65	-7.8	-7.5	-7.9	-8.2	-8.1	River Bottom	
	48+13	-5.2	-4.8	-5.2	-5.6	-5.1	River Bottom	
	48+65	-1.5	-0.5	-2.2	-2.3	-2.2	River Bottom	
	Varies	-0.2	1.1	0.7	0.5	1.5	Edge of Water	
	49+22	6.8	6.9	6.6	6.4	6.2	Top of Bank	
	49+53	7.6	7.8	7.9	7.8	7.9	Grade Break	
	50+00	8.3	8.2	8.2	8.5	8.7	Ground Shot	
	50+14	11.7	11.5	11.4	11.4	11.6	Ground Shot	
	50+28	11.2	11.3	11.0	11.2	11.2	Grade Break	
	50+33	9.0	8.9	9.0	9.1	9.2	Grade Break	
	50+36	10.6	10.6	10.7	10.8	10.8	Grade Break	
	51+00	10.7	10.9	10.9	10.9	10.8	Ground Shot	
	51+30	10.5	10.7	11.0	11.0	10.9	Grade Break	
	51+34	9.2	9.3	9.4	9.4	9.2	Grade Break	
	51+44	10.1	10.0	10.1	10.1	10.1	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 20 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD- Br	5 Michael E idge Transø Transect 14	Baker ects 4	
	STA	2013	2016	2017	2018	2019	Description
	0+00	13.2	13.2	13.1	13.1	13.3	Ground Shot
	1+00	13.5	13.7	13.6	13.8	13.7	Ground Shot
	1+65	15.7	15.6	15.5	15.5	15.6	Ground Shot
	2+00	16.7	16.7	16.6	16.8	16.6	Ground Shot
	3+00	18.8	18.8	18.8	18.9	18.8	Ground Shot
	3+67	20.0	20.0	20.0	20.1	20.0	Grade Break
	4+00	19.2	19.3	19.4	19.4	19.4	Ground Shot
	4+76	19.3	19.3	19.2	19.5	19.4	Top of Bank
	5+19	12.2	12.2	12.2	12.4	12.3	Toe of Bank
	6+00	9.6	9.5	9.4	9.3	9.0	Edge of Vegetation
	7+00	6.1	6.2	6.1	6.2	6.2	Edge of Vegetation
	8+00	3.3	4.0	3.7	3.7	3.8	Sand Bar
	9+00	2.8	2.4	2.4	2.5	2.6	Sand Bar
	10+00	1.7	-	1.8	1.9	1.7	Sand Bar
	11+00	0.5	-	0.5	-	1.2	Sand Bar
	Varies	-0.1	1.7	1.8	1.5	1.2	Edge of Water
	13+87	-2.6	-1.2	-2.2	-1.6	-1.6	River Bottom
	14+03	-2.7	-0.5	-2.2	-1.9	-1.6	River Bottom
	14+20	-3.2	-1.0	-2.0	-1.0	-1.0	River Bottom
	14+36	-2.4	-1.1	-1.9	-1.7	-1.2	River Bottom
	14+52	-3.0	-0.7	-1.7	-1.9	-1.2	River Bottom
	14+68	-3.0	-0.5	-1.8	-2.0	-1.1	River Bottom
	14+88	-2.4	-0.6	-2.2	-2.1	-1.7	River Bottom
	15+04	-3.1	-0.6	-1.7	-1.5	-1.2	River Bottom
	15+24	-2.9	-0.6	-1.6	-1.2	-0.9	River Bottom
	15+36	-2.9	-0.6	-1.3	-1.0	-0.3	River Bottom
	15+53	-2.3	-0.5	-0.9	-1.0	-0.5	River Bottom
	15+66	-2.4	-0.3	-0.6	-0.9	-0.7	River Bottom
	15+76	-2.7	-0.1	-0.3	-0.3	-0.9	River Bottom
	15+89	-3.4	0.2	-0.4	0.2	-11	River Bottom
	16+05	-3.5	0.5	-0.8	0.2	-	River Bottom
	16+18	-3.8	0.7	-1.0	0.0		River Bottom
	16+18					15	Sand Bar
	16+38	-3.9	10	07	04	-	River Bottom
	16+54	-3.4	1.7	1.6	0.9	-	River Bottom
	Varies	-0.4	17	2.1	14	11	Edge of Water
	17+31	2.0	2.2	2.2	2.2	2.1	Sand Bar
	18+00	2.4	2.6	2.3	2.3	2.4	Sand Bar
	19+00	2.2	2.8	27	27	2.7	Sand Bar
	20+00	2.2	2.0	2.7	2.9	2.8	Sand Bar
	21+01	2.2	31	2.7	2.9	2.0	Sand Bar
	22+00	2.0	2.5	2.6	2.7	2.0	Sand Bar
	23+00	0.8	2.5	2.6	2.7	2.7	Sand Bar
	24+00	0.0	1.0	1.0	2.5	1.8	Sand Bar
	Varies	-1.3	1.6	1.6	1.4	1.0	Edge of Water
	24+48	.27	-4.3	-0.5	-19	-3.6	River Bottom
	24+40	-5.5	-6.5	-0.5	4.6	-6.2	River Bottom
	24+07	_0.0	-0.9	-2.5	-9.5	-0.2	River Bottom
	24+07	-9.0	-9.0	-2.5	-0.5	-9.1	River Bottom
	25+10	-9.0	-12.5	-3.0	-10.1	-11.0	Piner Bottom
	25+55	-9.9	-13.0	-4.8	-12.1	-11.4	River Dottom
	20+00	-9.9	-14.0	-0.9	-11.4	-12.0	River Dottom
Doc LCMF-156 (25+33 25+56 25+82	-9.9 -9.9 -10.2	-13.0 -14.0 -14.7	-4.8 -5.9 -10.5	-12.1 -11.4 -12.1 21 of 47	-11.4 -12.6 -12.8	River Bottom River Bottom River Bottom

CD-5 Michael Baker Bridge Transects Transect 14

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
26+01	-10.4	-15.2	-10.8	-11.9	-13.3	River Bottom
26+24	-10.0	-15.2	-12.2	-12.8	-14.3	River Bottom
26+50	-10.0	-16.5	-11.5	-13.5	-14.6	River Bottom
26+70	-10.6	-15.4	-11.6	-12.5	-13.1	River Bottom
26+89	-11.6	-15.1	-11.8	-12.5	-12.3	River Bottom
27+15	-11.1	-15.8	-11.5	-17.4	20.0	River Bottom
27+35	-10.8	-15.2	-13.0	-14.5	-13.7	River Bottom
Varies	0.3	1.6	0.6	1.3	1.0	Edge of Water
27+87	9.0	-	-	-	-	Top of Bank (2013)
27+95		8.7	-	-	-	Top of Bank (2016)
27+98			8.8	-	-	Top of Bank (2017)
28+00	9.8	9.3	9.1		9.0	Ground Shot
28+03	-	-	-	9.4	9.0	Top of Bank (2018)
28+44	10.0	9.6	9.6	9.5	9.6	Ground Shot
29+00	9.6	9.5	9.3	9.5	9.4	Ground Shot
29+94	9.7	9.4	9.1	9.4	9.4	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

22 of 47

Transect_14

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-4 Bri	5 Michael B idge Transe Transect 15	Baker ects 5			
	STA	2013	2016	2017	2018	2019	Doc LCMP-1	JUKEVI	
	0+00	13.8	13.6	13.6	13.7	14.0	Ground Shot		
	1+00	15.3	15.4	15.5	15.6	15.6	Ground Shot		
	1+50	16.7	16.4	16.6	15.6	16.6	Ground Shot		
	1+88		16.2	16.3	16.4	16.1	Top of Bank		
	1+95	15.1	-	-	-	-	Top of Bank (2013)		
	2+02					4.2			
	2+11	3.3	3.0	2.4	2.1	-	Toe of Bank		
	Varies	0.9	1.9	1.5	1.2	0.9	Edge of Water		
	2+88	-2.9	-5.4	-2.4	-2.3	-3.2	River Bottom		
	3+09	-3.3	-7.3	-3.0	-3.1	-4.1	River Bottom		
	3+30	-3.8	-7.6	-3.2	-4.4	-4.6	River Bottom		
	3+50	-4.0	-8.1	-4.0	-4.2	-5.1	River Bottom		
	3+71	-4.1	-8.3	-4.8	-4.7	-5.5	River Bottom		
	3+91	-4.4	-8.7	-4.5	-5.5	-5.9	River Bottom		
	4+12	-4.4	-9.0	-4.8	-6.9	-6.4	River Bottom		
	4+36	-4.2	-9.8	-4.8	-4.8	-6.5	River Bottom		
	4+57	-4.7	-9.5	-4.9	-5.4	-6.0	River Bottom		
	4+81	-3.9	-9.0	-4.3	-5.3	-5.5	River Bottom		
	5+01	-3.2	-7.6	-3.8	-5.0	-5.0	River Bottom		
	11+47	-2.4	-6.8	-2.7	-2.8	-1.1	River Bottom		
	11+64	-2.4	-7.1	-3.4	-3.0	-3.2	River Bottom		
	11+81	-2.5	-7.3	-4.0	-3.9	-3.8	River Bottom		
	11+98	-3.3	-7.8	-4.3	-4.6	-4.2	River Bottom		
	12+16	-3.6	-8.7	-4.6	-4.9	-5.2	River Bottom		
	12+36	-4.0	-8.8	-4.5	-5.2	-5.6	River Bottom		
	12+57	-4.6	-9.0	-5.7	-6.0	-6.0	River Bottom		
	12+77	-4.7	-9.1	-6.2	-6.8	-6.9	River Bottom		
	13+01	-4.9	-10.1	-6.7	-7.2	-8.0	River Bottom		
	13+29	-5.6	-10.2	-7.4	-8.5	-9.3	River Bottom		
	13+56	-5.8	-11.3	-8.1	-9.1	-9.4	River Bottom		
	13+80	-6.4	-11.5	-8.0	-8.9	-9.1	River Bottom		
	14+08	-6.5	-12.4	-8.3	-9.5	-9.7	River Bottom		
	14+35	-6.8	-11.8	-7.9	-9.8	-1.0	River Bottom		
	14+59	-6.5	-11.6	-7.9	-9.3	-10.0	River Bottom		
	14+87	-6.2	-12.2	-8.1	-10.0	-10.1	Kiver Bottom		
	15+14	-5.2	-11.3	-8.0	-10.0	-9.7	River Bottom		
	15+42	-5.4	-10.4	-8.4	-9.5	-8.4	Kiver Bottom		
	15+66	-5.1	-10.6	-7.0	-/.1	-1.5	Kiver Bottom		
	15+93	-0.1	-10.0	-6.2	-6.5	-6.4	Kiver Bottom		
	16+24	-8.3	-10.9	-0.0	-3.7	-4.5	River Bottom		
	10+32	-8.3	-11.7	-0./	-5.0	-3.5	Kiver Bottom		
	16+79	-5.1	-9.6	-3.3	-4.0	-2.5	Kiver Bottom		
	17+03	-2.8	-/.3	-3.0	-3.0	-1.0	Kiver Bottom		
	Varies	0.8	2.0	1.0	1.2	1.1	Edge of Water		
	17+79	1.9	2.8	2.1	1.5	2.2	Sand Bar		
	1/+9/	4.4	4.9	5.0	2.3	2.9	Sand Dar		
	18+19	3.0	2.0	2.6	0.6	5.7	Toe of Bank		
	18+35	11.9	11.8	11.8	12.0	11.9	Top of Bank		
	10+91	12.0	12.3	12.4	12.5	12.0	Ground Shot		
	19+41	12.3	12.2	12.3	12.4	12.5	Ground Shot		

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 23 of 47

Transect_15

ConocoPhillips Alaska INTERNATIONAL

E.3.3 NIGLIAGVIK CHANNEL & BRIDGE TABULATED DATA (TRANSECTS 16 - 35)

Calc'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD- Br	5 Michael B idge Transe Transect 16	aker ects	DOC LCMF-156 REV7		
	STA	2013	2016	2017	2018	2019	Description		
	0+00	10.0	9.7	9.6	9.8	10.0	Ground Shot		
	0+50	9.4	8.9	9.0	8.7	8.6	Ground Shot		
	1+00	8.4	8.6	8.4	8.2	8.2	Top of Bank		
	Varies	0.8	0.3	0.2	0.8	1.2	Edge of Water		
	1+28	-3.1	-3.4	-3.5	-3.5	-4.9	River Bottom		
	1+37	-4.2	-5.7	-3.8	-7.2	-4.9	River Bottom		
	1+46	-7.0	-6.8	-6.1	-7.4	-4.9	River Bottom		
	1+58	-6.5	-6.4	-6.8	-7.0	-4.9	River Bottom		
	1+70	-7.5	-8.2	-8.1	-8.8	-4.9	River Bottom		
	1+81	-10.7	-10.2	-9.6	-10.0	-4.9	River Bottom		
	1+91	-12.3	-12.2	-12.6	-13.0	-4.9	River Bottom		
	2+06	-8.3	-9.8	-10.1	-10.7	-4.9	River Bottom		
	2+17	-6.6	-8.1	-8.1	-8.9	-3.2	River Bottom		
	2+27	-5.0	-6.8	-4.9	-4.0	-1.6	River Bottom		
	2+37	-2.1	-3.3	-1.8	-0.9	-1.6	River Bottom		
	Varies	0.8	0.6	0.9	0.7	1.2	Edge of Water		
	2+68	3.4	3.6	2.0	3.5	3.0	Sand Bar		
	3+10	4.7	4.8	4.9	5.0	5.0	Edge of Vegetation		
	3+59	6.7	6.9	6.9	6.8	6.8	Edge of Vegetation		
	4+00	7.9	8.0	7.8	7.8	7.8	Ground Shot		
	4+18	8.9	8.6	8.5	8.6	8.7	Ground Shot		
	4+68	9.2	8.9	9.0	9.1	9.2	Ground Shot		

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

24 of 47

Transect_16

٦

B 114 I	REV7			CD- Br	5 Michael E idge Transe Transect 17		KUUKPIK UMIAQ ALFINE BURVEY OFFICE PROFE: 907420428	
							DOC	LCMF-156 REV7
	STA	2013	2016	2017	2018	2019	Description	
	0+00	8.6	8.2	8.1	8.3	8.5	Ground Shot	
	0+50	8.5	8.1	7.9	7.9	8.0	Ground Shot	
	1+16	8.0	8.1	8.1	8.0	8.1	Top of Bank	
	1+47	3.7	3.9	3.7	3.8	3.7	Edge of Vegetation	
	Varies	0.9	1.0	1.3	0.8	1.1	Edge of Water	
	1+93	-2.1	-1.9	-0.8	-2.0	-1.8	River Bottom	
	2+08	-2.2	-1.9	-1.4	-2.3	-2.2	River Bottom	
	2+19	-2.6	-2.3	-1.9	-2.4	-3.0	River Bottom	
	2+29	-2.9	-2.9	-2.3	-2.5	-3.2	River Bottom	
	2+39	-3.1	-3.3	-2.7	-3.0	-3.4	River Bottom	
	2+49	-3.2	-3.4	-3.1	-3.6	-3.4	River Bottom	
	2+66	-3.5	-3.6	-3.6	-3.8	-3.8	River Bottom	
	2+83	-3.5	-3.4	-3.5	-4.0	-3.7	River Bottom	
	2+91	-3.3	-3.3	-3.5	-4.0	-3.5	River Bottom	
	3+08	-3.1	-3.3	-3.3	-3.9	-3.4	River Bottom	
	3+27	-2.4	-2.9	-2.4	-3.1	-2.6	River Bottom	
	Varies	0.7	1.0	1.2	0.6	0.8	Edge of Water	
	3+82	6.3	6.5	6.3	6.1	6.3	Top of Bank	
	4+29	8.6	8.3	8.3	8.4	8.6	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

4+79

8.5

8.2

8.1

8.4

8.5

Ground Shot

25 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 REV7 STA 2013				CD- Br	5 Michael H idge Trans Transect 13	Baker ects B	DOC LCMF-156 RE		
	STA	2013	2016	2017	2018	2019	Description		
	0+00	8.6	8.5	8.7	8.6	8.7	Ground Shot		
	0+50	8.6	8.6	8.0	8.4	8.4	Ground Shot		
	1+00	7.9	8.2	8.0	8.0	8.0	Ground Shot		
	1+58	7.1	7.2	7.0	6.9	6.9	Top of Bank		
	1+76	6.3	6.2	6.0	6.0	6.0	Edge of Vegetation		
	2+14	3.7	3.8	3.6	3.6	3.6	Edge of Vegetation		
	Varies	1.0	1.2	1.4	1.1	1.1	Edge of Water		
	3+17	-2.6	-1.8	-1.2	-1.8	-1.5	River Bottom		
	3+26	-2.8	-1.8	-1.4	-2.4	-1.8	River Bottom		
	3+38	-3.2	-2.7	-1.8	-2.5	-2.7	River Bottom		
	3+52	-2.1	-3.4	-2.7	-3.2	-3.4	River Bottom		
	3+68	-3.6	-3.9	-3.6	-4.5	-4.0	River Bottom		
	3+80	-4.0	-3.6	-3.6	-4.7	-4.1	River Bottom		
	3+93	-3.9	-3.2	-3.1	-4.6	-3.7	River Bottom		
	4+01	-3.5	-2.8	-2.7	-4.1	-3.4	River Bottom		
	4+14	-3.0	-1.9	-2.1	-3.6	-3.0	River Bottom		
	4+22	-3.0	-1.6	-1.7	-3.0	-1.9	River Bottom		
	Varies	0.9	1.2	1.4	0.8	1.1	Edge of Water		
	4+68		1.8	1.3	1.2	-	Toe of Bank		
	4+76	7.1	7.0	6.8	6.7	6.6	Top of Bank		
	5+33	7.8	7.6	7.1	7.3	7.4	Ground Shot		
	5+83	8.0	7.8	7.6	7.7	7.8	Ground Shot		

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 26 of 47

Transect_18

ConocoPhillips Alaska INTERNATIONAL

CD-5 Michael Baker Bridge Transects Transect 19

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
0+00	8.6	8.5	8.36	8.7	8.8	Ground Shot
0+50	8.5	8.7	8.6	8.8	8.9	Ground Shot
0+95	7.9	8.1	8.0	8.3	8.0	Top of Bank
1+15	3.3	3.9	3.6	3.7	3.6	Edge of Vegetation
Varies	0.7	1.2	1.3	0.7	0.5	Edge of Water
1+88	-1.9	-1.3	-2.0	-2.3	-2.4	River Bottom
1+99	-2.2	-1.9	-2.4	-2.8	-2.0	River Bottom
2+19	-2.3	-2.4	-2.9	-3.3	-2.6	River Bottom
2+29	-2.5	-2.4	-3.1	-3.4	-3.0	River Bottom
2+40	-2.5	-2.4	-3.1	-3.5	-2.9	River Bottom
2+61	-2.4	-2.0	-2.8	-2.8	-2.5	River Bottom
2+75	-4.5	-2.0	-2.5	-5.5	-2.2	River Bottom
2+88	-4.1	-2.0	-2.3	-2.5	-2.0	River Bottom
2+96	-2.7	-1.3	-2.1	-2.5	-1.8	River Bottom
Varies	0.7	1.2	1.3	0.8	0.6	Edge of Water
3+69	7.0	7.3	7.4	7.0	7.2	Top of Bank
4+20	8.5	8.6	8.3	8.3	8.5	Ground Shot
4+70	8.1	8.0	7.9	8.2	8.3	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 27 of 47

Transect_19

CD-5 Michael Baker Bridge Transects Transect 20

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
0+00	13.8	13.8	13.8	13.7	13.7	Ground Shot
0+15	16.8	16.9	16.6	16.8	16.8	Grade Break
0+50	15.5	15.5	15.3	15.5	15.6	Ground Shot
1+13	11.4	11.7	11.7	11.5	11.6	Top of Bank
1+35	-	0.7	-	-	-	Toe of Bank
Varies	0.5	0.0	1.0	0.9	0.7	Edge of Water
1+63	-0.7	-0.8	-1.0	-	-1.0	River Bottom
1+99	-0.6	-1.3	-1.5	-1.0	-1.4	River Bottom
2+30	-0.8	-1.5	-1.6	-1.4	-1.3	River Bottom
2+50	-0.9	-1.3	-1.8	-1.2	-1.4	River Bottom
2+99	-1.3	-1.4	-1.6	-1.5	-1.6	River Bottom
3+30	-1.3	-1.1	-1.1	-0.8	-1.0	River Bottom
Varies	0.6	0.1	1.0	0.9	0.9	Edge of Water
3+64	-	1.1	1.08	0.9	-	Toe of Bank
3+93	6.6	6.9	6.9	6.7	7.0	Top of Bank
4+53	7.4	7.5	7.3	7.6	7.8	Ground Shot
5+03	7.5	7.6	7.3	7.6	7.8	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

28 of 47

Transect_20

ConocoPhillips Alaska INTERNATIONAL

CD-5 Michael Baker Cale'd By: MB Date: 8/20/19 Bridge Transects Transect 21 RPT-CE-CD-114 REV7 STA 2013 2016 2017 2018 2019 Description 24.6 0+00 24.6 24.5 24.54 24.6 Ground Shot 0+50 20.8 20.7 20.8 20.7 20.7 Ground Shot 1+02 9.5 9.4 9.4 9.4 9.5 Ground Shot 1+24 7.2 7.3 7.3 7.2 7.1 Top of Bank 1+341.8 1.5 1.2 Toe of Bank --Varies 0.5 1.2 1.0 1.1 0.8 Edge of Water 1+46 -1.5 -1.3 -1.6 River Bottom -1.0 -1.3 1+58-2.1 -2.4 -2.4 -2.3 -2.1 River Bottom 1+75 -2.1-2.7 -2.7 -2.7 -2.5 River Bottom 2+00 -1.8 -2.3 -2.3 -2.3 -2.4 River Bottom 2+24-2.0 -2.0 -1.8 -1.8 River Bottom -1.6 2+50 -1.1 -1.1 -1.0 -0.8 -1.2 River Bottom Varies 0.5 1.2 1.1 1.1 0.7 Edge of Water 3+41 3.3 2.9 2.5 2.3 1.8 Grade Break 3+64 4.2 4.7 4.7 4.7 4.7 Toe of Bank

8.7

9.9

8.9

8.6

8.7

9.9

9.1

8.8

8.8

10.0

9.1

9.0

Top of Bank

Grade Break

Ground Shot

Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

3+79

4+04

4+58

5+08

8.6

9.7

9.1

8.7

8.7

9.9

9.0

8.7

29 of 47

Transect_21

Alaska INTERNATIONAL

CD-5 Michael Baker Bridge Transects Transect 22

DOC LCMF-156 REV7

0+00 26.0 26.0 26.07 26.1 26.1 Ground Shot 0+07 23.0 23.2 23.3 23.1 23.1 Ground Shot 0+60 24.0 24.1 23.9 24.0 24.1 Ground Shot 1+10 23.1 23.1 23.0 23.0 23.0 Top of Bank 1+36 2.6 2.5 2.1 2.2 2.4 Toe of Bank 1+36 2.6 2.5 2.1 2.2 2.4 Toe of Bank 1+36 2.6 0.3 1.2 1.1 0.8 Edge of Water 1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -2.0 River Bottom 2+24 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 <th>STA</th> <th>2013</th> <th>2016</th> <th>2017</th> <th>2018</th> <th>2019</th> <th>Description</th>	STA	2013	2016	2017	2018	2019	Description
0+07 23.0 23.2 23.3 23.1 23.1 Ground Shot 0+60 24.0 24.1 23.9 24.0 24.1 Ground Shot 1+10 23.1 23.1 23.0 23.0 23.0 Top of Bank 1+36 2.6 2.5 2.1 2.2 2.4 Toe of Bank Varies 0.6 0.3 1.2 1.1 0.8 Edge of Water 1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.1 0.8 Edge of Water 3+61 4.4 4.3 5	0+00	26.0	26.0	26.07	26.1	26.1	Ground Shot
0+60 24.0 24.1 23.9 24.0 24.1 Ground Shot 1+10 23.1 23.1 23.0 23.0 23.0 Top of Bank 1+36 2.6 2.5 2.1 2.2 2.4 Toe of Bank Varies 0.6 0.3 1.2 1.1 0.8 Edge of Water 1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.1 0.8 Edge of Water 3+61 4.4 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 <td>0+07</td> <td>23.0</td> <td>23.2</td> <td>23.3</td> <td>23.1</td> <td>23.1</td> <td>Ground Shot</td>	0+07	23.0	23.2	23.3	23.1	23.1	Ground Shot
1+10 23.1 23.0 23.0 23.0 Top of Bank 1+36 2.6 2.5 2.1 2.2 2.4 Toe of Bank Varies 0.6 0.3 1.2 1.1 0.8 Edge of Water 1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 <td>0+60</td> <td>24.0</td> <td>24.1</td> <td>23.9</td> <td>24.0</td> <td>24.1</td> <td>Ground Shot</td>	0+60	24.0	24.1	23.9	24.0	24.1	Ground Shot
1+36 2.6 2.5 2.1 2.2 2.4 Toe of Bank Varies 0.6 0.3 1.2 1.1 0.8 Edge of Water 1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7	1+10	23.1	23.1	23.0	23.0	23.0	Top of Bank
Varies 0.6 0.3 1.2 1.1 0.8 Edge of Water 1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 <td>1+36</td> <td>2.6</td> <td>2.5</td> <td>2.1</td> <td>2.2</td> <td>2.4</td> <td>Toe of Bank</td>	1+36	2.6	2.5	2.1	2.2	2.4	Toe of Bank
1+67 -1.1 -0.8 -1.1 -0.3 -0.6 River Bottom 2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7	Varies	0.6	0.3	1.2	1.1	0.8	Edge of Water
2+00 -1.1 -1.5 -1.7 -1.9 -1.3 River Bottom 2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	1+67	-1.1	-0.8	-1.1	-0.3	-0.6	River Bottom
2+24 -1.6 -1.9 -2.0 -1.9 -2.0 River Bottom 2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	2+00	-1.1	-1.5	-1.7	-1.9	-1.3	River Bottom
2+50 -1.6 -1.8 -2.0 -1.2 -1.7 River Bottom 2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	2+24	-1.6	-1.9	-2.0	-1.9	-2.0	River Bottom
2+75 -1.4 -1.6 -1.5 -1.4 -1.4 River Bottom 3+01 -0.7 -1.2 -1.4 -1.2 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	2+50	-1.6	-1.8	-2.0	-1.2	-1.7	River Bottom
3+01 -0.7 -1.2 -1.4 -1.2 -1.2 River Bottom Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	2+75	-1.4	-1.6	-1.5	-1.4	-1.4	River Bottom
Varies 0.6 0.2 1.2 1.1 0.8 Edge of Water 3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.7 8.8 Top of Bank 3+68 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	3+01	-0.7	-1.2	-1.4	-1.2	-1.2	River Bottom
3+61 4.4 4.3 4.3 5.3 5.2 Toe of Bank 3+68 8.6 8.7 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	Varies	0.6	0.2	1.2	1.1	0.8	Edge of Water
3+68 8.6 8.7 8.7 8.7 8.8 Top of Bank 3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	3+61	4.4	4.3	4.3	5.3	5.2	Toe of Bank
3+88 10.5 10.7 10.6 10.7 10.7 Ground Shot 4+27 9.1 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	3+68	8.6	8.7	8.7	8.7	8.8	Top of Bank
4+27 9.1 9.2 8.8 8.8 Ground Shot 4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	3+88	10.5	10.7	10.6	10.7	10.7	Ground Shot
4+77 8.6 8.6 8.7 8.7 8.9 Ground Shot	4+27	9.1	9.1	9.2	8.8	8.8	Ground Shot
	4+77	8.6	8.6	8.7	8.7	8.9	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

30 of 47

Transect_22

CD-5 Michael Baker Bridge Transects Transect 23

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
0+00	25.2	25.2	25.3	25.2	25.2	Ground Shot
0+50	25.1	25.1	25.2	25.1	25.1	Ground Shot
1+06	23.2	23.3	23.2	23.1	23.3	Top of Bank
1+34	3.2	3.4	2.8	3.1	3.2	Toe of Bank
Varies	0.5	0.5	1.4	1.2	0.8	Edge of Water
2+25	-1.1	-1.5	-1.5	-1.7	-1.7	River Bottom
2+51	-1.7	-1.7	-1.7	-1.4	-1.8	River Bottom
2+75	-1.7	-1.9	-1.7	-2.1	-2.1	River Bottom
3+00	-1.5	-2.3	-1.5	-1.8	-2.8	River Bottom
3+27	-1.2	-1.7	-1.7	-2.2	-2.6	River Bottom
Varies	0.7	0.4	1.4	1.3	0.8	Edge of Water
3+44	2.2	-	-	-	-	Grade Break (2013)
3+53	-	1.3	0.6	1.3	-	Toe of Bank
3+84	6.1	6.2	6.1	6.2	6.1	Edge of Vegetation
3+95	7.7	7.7	7.8	7.8	7.6	Top of Bank
4+50	7.9	7.8	7.9	7.8	7.8	Ground Shot
5+00	10.0	10.2	10.2	10.1	10.2	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 31 of 47

Transect_23

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 REV7		CD- Br	5 Michael E idge Transe Transect 24				
							DOC LCMF-156 REV7
STA 203	13 2014	2015	2016	2017	2018	2019	Description
0+00 26	.5 26.5	26.4	26.4	26.4	26.5	26.3	Ground Shot
0+50 27	.0 27.0	27.0	26.9	27.0	27.0	26.8	Ground Shot
0+94 27	.9 26.4	26.5	26.5	26.4	26.3	26.3	Ground Shot
1+13 25	.3 23.6	23.8	23.6	23.5	23.3	23.3	Top of Bank
1+45 2.	5 2.7	3.2	0.5	0.8	1.4	1.5	Toe of Bank
Varies 0.	2 0.5	1.5	0.5	1.4	1.2	0.8	Edge of Water
2+26 -1	7 -1.2	-1.9	-2.6	-2.7	-2.6	-2.5	River Bottom
2+39 -2	4 -1.8	-2.6	-3.3	-2.8	-2.7	-2.9	River Bottom
2+48 -2.	0 -2.2	-2.9	-2.9	-1.9	-3.2	-2.2	River Bottom
2+61 -2	1 -2.2	-2.6	-2.2	-1.8	-2.5	-1.7	River Bottom
2+74 -2.	2 -2.3	-2.3	-2.1	-1.7	-2.5	-1.8	River Bottom
2+90 -3.	0 -1.9	-2.1	-2.0	-2.0	-2.8	-1.8	River Bottom
3+00 -3.	0 -1.9	-2.1	-2.2	-1.9	-2.4	-1.8	River Bottom
3+17 -2	6 -2.0	-2.2	-2.1	-2.3	-2.2	-1.7	River Bottom
Varies 0.	3 0.2	1.5	0.6	1.4	1.3	0.7	Edge of Water
3+86 5.	9 5.7	5.8	5.8	5.7	5.6	5.7	Edge of Vegetation
3+96 7.	1 7.2	7.2	7.0	6.9	6.9	6.9	Top of Bank
4+65 8.	7 8.5	8.3	8.2	8.4	8.2	8.0	Ground Shot
5+15 9.	4 9.2	9.1	9.0	9.1	8.9	9.0	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 32 of 47

Transect_24

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 I		CD- Br	5 Michael E idge Transe Transect 28						
CT A	2012	2014	2015	2016	2017	2010	2010	DOC LCMF-156 RE	.V7
51A	2015	2014	2015	2010	2017	2018	2019	Description	
0+00	27.5	27.4	27.3	27.3	27.3	27.3	27.2	Ground Shot	
0+50	26.4	26.2	26.2	26.1	26.0	26.1	26.0	Ground Shot	
0+70	26.8	26.7	26.7	26.5	26.6	26.7	26.8	Grade Break	
0+89	21.8	21.3	21.3	21.2	21.2	21.1	21.1	Grade Break	
1+00	25.7	22.2	22.5	22.1	22.2	22.3	22.3	Top of Bank	
1+29					1.8	1.7	3.3	Toe of Bank	
1+31	2.8	2.8	2.7	1.3	-	-	-	Toe of Bank (2016)	
Varies	0.6	0.3	1.4	0.4	1.0	1.3	2.2	Edge of Water	
2+19	-2.6	-1.2	-3.4	-3.7	-3.0	-5.2	-3.9	River Bottom	
2+38	-2.2	-1.6	-3.5	-3.5	-3.6	-4.0	-3.2	River Bottom	
2+48	-2.2	-1.9	-3.5	-3.4	-3.2	-4.2	-2.8	River Bottom	
2+61	-2.4	-2.9	-3.2	-3.1	-2.6	-3.3	-2.2	River Bottom	
2+72	-2.8	-2.6	-2.8	-2.8	-2.1	-3.2	-2.0	River Bottom	
2+89	-2.7	-2.1	-2.3	-2.1	-1.7	-2.8	-1.2	River Bottom	
2+97	-2.6	-1.9	-2.1	-1.8	-1.7	-2.6	-1.6	River Bottom	
3+07	-2.7	-2.0	-1.8	-1.9	-1.3	-2.2	-1.2	River Bottom	
Varies	0.1	0.1	1.5	0.4	1.0	1.3	2.1	Edge of Water	
3+51	2.5	2.5	-	-	-	-	-	Ground Shot (2014)	
3+81	6.1	6.1	6.4	6.2	6.3	6.2	6.3	Edge of Vegetation	
3+91	7.8	7.5	7.7	7.5	7.4	7.4	7.5	Top of Bank	
4+53	8.5	8.3	8.1	8.2	8.2	8.3	8.0	Ground Shot	
5+03	8.4	8.4	8.3	8.4	8.5	8.4	8.5	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 33 of 47

Transect_25

.c'd By: MB te: 8/20/19 T-CE-CD-114 REV7				CD-3 Br	5 Michael I idge Trans Transect 20	Baker ects 6		
								DOC LCMF-156 RE
STA	2013	2014	2015	2016	2017	2018	2019	Description
0+00	24.0	27.5	27.3	27.3	27.3	27.3	27.2	Ground Shot
0+60	24.1	27.7	27.6	27.5	27.4	27.2	27.2	Ground Shot
0+85	24.0	27.3	27.5	27.3	27.2	27.2	27.4	Ground Shot
1+03	21.5	24.9	25.0	25.0	25.0	24.9	24.9	Top of Bank
1+36	2.7	2.4	3.1	1.8	1.9	1.9	2.4	Toe of Bank
Varies	0.4	0.2	1.5	0.5	1.0	1.4	1.5	Edge of Water
2+19	-2.5	0.2	-3.5	-3.5	-4.0	-3.0	-5.1	River Bottom
2+32	-2.6	-1.2	-3.5	-3.0	-4.4	-5.4	-5.0	River Bottom
2+43	-2.5	-2.1	-3.6	-1.7	-3.0	-4.0	-3.7	River Bottom
2+53	-2.4	-2.4	-3.6	-1.7	-2.6	-3.9	-3.8	River Bottom
2+63	-2.4	-2.6	-3.6	-2.1	-3.0	-4.2	-3.9	River Bottom
2+80	-2.3	-2.9	-2.8	-3.3	-2.6	-4.1	-3.8	River Bottom
2+91	-2.0	-2.9	-2.6	-4.0	-2.8	-3.9	-3.7	River Bottom
3+08	-2.2	-2.3	-2.2	-3.2	-1.7	-2.5	-3.0	River Bottom
Varies	0.2	0.0	1.4	0.5	0.9	1.4	1.5	Edge of Water
3+57	3.2	3.3		1.2	1.0	-	-	Ground Shot
3+89	6.1	6.6	7.0	6.6	6.6	6.5	6.7	Edge of Vegetation
3+97	7.1	7.5	7.7	7.2	7.6	7.5	7.3	Top of Bank
4+79	8.3	9.3	9.9	10.0	9.9	8.1	9.4	Ground Shot
5+29	9.8	9.8	9.5	9.4	9.4	9.4	9.5	Ground Shot
Station 4+7	9 falls in Sl	ope of Grav	el Road					

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 34 of 47

Calc'd By: Date: 8/20/ RPT-CE-C	MB /19 2D-114 R	EV7			CD- Br	5 Michael E idge Transe Transect 21				
									DOC LCMF-156	REV7
	STA	2013	2014	2015	2016	2017	2018	2019	Description	
(0+00	27.0	27.0	26.8	26.5	26.8	26.6	26.5	Ground Shot	
(0+50	27.1	27.1	27.0	27.0	27.1	26.7	26.8	Ground Shot	
(0+74	24.3	24.5	24.3	24.1	24.0	24.1	24.1	Grade Break	
(0+82	26.6	26.6	26.7	26.7	26.5	26.5	26.6	Grade Break	
(0+98	26.0	25.9	25.9	26.0	26.0	25.9	25.9	Top of Bank	
	1+30	2.5	2.1	2.5	2.2	2.3	2.3	2.3	Toe of Bank	
1	Varies	0.1	0.3	1.5	0.5	1.0	1.3	1.7	Edge of Water	
	2+20	-2.4	-0.8	-1.4	-2.2	-1.6	-3.1	-2.8	River Bottom	
	2+31	-2.3	-1.0	-1.5	-1.6	-1.6	-3.3	-2.8	River Bottom	
	2+41	-3.3	-1.6	-2.1	-1.9	-1.8	-3.3	-3.0	River Bottom	
	2+48	-2.0	-1.7	-2.5	-2.3	-2.2	-3.3	-3.7	River Bottom	
1	2+58	-2.7	-2.7	-3.0	-2.9	-2.7	-3.3	-3.8	River Bottom	
	2+65	-2.9	-2.7	-3.0	-3.2	-2.9	-3.0	-4.0	River Bottom	
1	2+72	-3.1	-2.8	-3.0	-3.4	-2.8	-3.0	-4.0	River Bottom	
1	2+78	-2.9	-2.8	-2.9	-3.3	-2.6	-3.0	-3.7	River Bottom	
	2+85	-2.5	-3.0	-2.9	-2.8	-2.3	-3.0	-3.2	River Bottom	
1	2+92	-2.1	-2.6	-2.4	-2.5	-2.0	-3.0	-	River Bottom	
1	Varies	-0.1	0.2	1.5	0.6	0.9	1.5	1.6	Edge of Water	
	3+39	1.9	2.0		1.3	1.4	-	-	Ground Shot	
	3+52	4.7	4.9	4.7	4.6	4.4	4.5	4.5	Ground Shot	
	3+76	5.9	6.1	6.2	6.3	6.2	6.2	6.2	Edge of Vegetation	
	3+89	7.0	7.2	7.2	7.1	7.0	7.2	6.9	Top of Bank	
4	4+10	8.0	8.1	8.0	8.1	8.0	8.0	7.9	Ground Shot	
4	4+71	8.0	8.0	7.8	7.7	7.4	7.3	7.2	Ground Shot	
	5+21	9.7	9.7	9.2	9.0	9.1	8.8	8.5	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 35 of 47

ConocoPhillips Alaska INTERNATIONAL
Cale'd By: MB

Date: 8/20/19

CD-5 Michael Baker **Bridge Transects** RPT-CE-CD-114 REV7 Transect 28 2013 2016 2019 STA 2017 2018 Description 0+00 20.9 21.0 20.8 20.9 Ground Shot 21.00+50 21.3 21.2 21.2 21.0 21.0 Ground Shot 0+83 21.5 21.4 21.4 21.4 21.5 Ground Shot 1+06 20.7 19.8 19.6 19.6 19.5 Top of Bank 1+31 1.0 0.6 0.8 2.0 2.0 Toe of Bank 1.6 Varies 0.0 0.8 0.9 1.2 Edge of Water 1+37 -3.0 -2.2 -3.1 -1.0 River Bottom -1+44-4.2 -4.2 -4.3 -6.1 -5.1 River Bottom 1+51 -4.4 -4.0 -4.5 -6.1 -6.7 River Bottom 1+61 -4.0 -3.5 -3.9 -6.1 -6.0 River Bottom 1+75 -3.6 -3.5 -4.8 -4.4 River Bottom -3.1 1+89 -3.4 -3.2 -3.4 -4.1 -4.7 River Bottom 1+99 -4.3 -3.0 -3.0 -3.3 -4.5 River Bottom 2+16 -3.2 -4.1 -3.2 -3.1 -4.6 River Bottom 2+33-3.2 -4.8 -4.6 -6.4 -4.6 River Bottom 2+44-2.6 -5.0 -4.9 -6.7 -5.7 River Bottom Edge of Water Varies 0.1 0.9 1.0 1.3 1.8 3+40 2.5 2.6 2.6 2.72.8 Ground Shot 3+65 Edge of Vegetation 5.7 5.8 5.7 5.8 5.7 3+81 7.6 8.0 7.7 7.9 7.9 Top of Bank 4 + 268.2 8.5 8.3 8.4 8.5 Ground Shot 8.4 Ground Shot 4+81 8.4 8.4 8.6 8.4

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

5+31

9.2

8.7

9.1

9.1

8.9

Ground Shot

36 of 47

KUUKPIK UMIAQ

ALPINE BURVEY OF PHONE: 907470-4719

DOC LCMF-156 REV7

ConocoPhillips

Michael Baker Alaska INTERNATIONAL

CD-5 Michael Baker Bridge Transects Transect 29

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
0+00	24.3	24.1	24.3	24.2	24.1	Ground Shot
0+50	23.6	23.7	23.7	23.7	23.6	Ground Shot
1+01	23.0	22.7	22.7	22.5	22.6	Top of Bank
1+27		0.7	0.9	2.2	2.6	Toe of Bank
Varies	0.2	0.1	0.9	1.4	1.8	Edge of Water
1+43	-8.1	-9.7	-9.4	-11.4	-10.5	River Bottom
1+89	-7.9	-8.5	-8.1	-8.7	-10.0	River Bottom
2+09	-5.2	-4.6	-4.4	-5.2	-6.2	River Bottom
2+24	-2.5	-2.7	-2.7	-2.9	-3.8	River Bottom
Varies	0.1	0.2	1.0	1.3	1.8	Edge of Water
2+82	2.6	2.8	2.8	3.0	3.1	Ground Shot
3+30	2.9	3.3	3.4	3.5	3.4	Ground Shot
3+88	5.8	6.0	6.0	6.0	6.0	Edge of Vegetation
4+01	8.0	8.4	8.2	8.2	8.2	Top of Bank
4+47	7.7	7.9	8.0	8.2	8.0	Ground Shot
4+85	8.4	8.6	8.8	8.5	8.5	Ground Shot
5+36	9.5	9.6	9.9	9.8	9.9	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

37 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 I	REV7			CD-3 Br	5 Michael E idge Transe Transect 30	laker ects)		KUUKPIK UMIAQ ALPINE BURVEY OFFICE ALPINE BURVEY OFFICE
	STA	2013	2016	2017	2018	2019	Description	LCMP-156 KEV /
	0+00	23.7	23.3	23.69	23.6	23.5	Ground Shot	
	0+50		23.2	23.2	23.2	23.2	Ground Shot	
	0+69	21.7	21.5	21.4	21.6	19.2	Top of Bank	
	0+79	19.3	19.1	19.0	13.4	-	Grade Break	
	1+00	6.0	6.0	6.1	5.3	6.1	Toe of Bank	
	1+16	4.4	4.3	4.3	4.3	4.4	Top of Bank	
	1+17	3.3	2.7	2.8	4.3	3.0	Toe of Bank	
	Varies	0.2	0.3	1.0	1.0	1.2	Edge of Water	
	1+63	-2.9	-1.2	-2.5	-4.3	-3.0	River Bottom	
	1+75	-4.0	-2.8	-3.4	-4.3	-4.3	River Bottom	
	1+87	-5.9	-4.3	-4.6	-5.7	-5.2	River Bottom	
	1+99	-5.8	-5.5	-5.0	-6.8	-6.2	River Bottom	
	2+12	-6.4	-5.2	-5.5	-7.0	-	River Bottom	
	2+26	-5.7	-4.5	-5.5	-6.8	-6.5	River Bottom	
	2+36	-5.3	-4.6	-5.4	-6.7	-6.1	River Bottom	
	2+48	-3.4	-4.0	-4.5	-5.4	-5.1	River Bottom	
	2+61	-2.7	-3.1	-4.2	-4.5	-4.5	River Bottom	
	2+73	-2.1	-2.2	-3.5	-3.0	-3.1	River Bottom	
	2+81	-2.8	-2.2	-2.5	-2.1	-2.4	River Bottom	
	Varies	-0.5	0.3	1.0	1.2	1.1	Edge of Water	
	3+84	4.3	4.3	4.3	5.1	4.3	Sand Bar	
	3+94	5.9	5.8	5.8	5.9	5.8	Grade Break	
	4+30	6.1	6.0	6.0	6.1	6.0	Edge of Vegetation	
	4+67	8.8	8.8	8.8	8.9	8.9	Grade Break	
	5+22	8.1	7.9	7.7	7.8	7.9	Grade Break	
	5+58	9.4	9.3	9.4	9.4	9.4	Grade Break/Edge of Veg	
	5+77	9.6	9.5	9.6	9.3	9.6	Ground Shot	
	6+27	10.1	9.6	10.1	9.7	9.9	Ground Shot	

Transect_30

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 38 of 47

Date: 8/20/19	217			Br	idge Transe Transet 31	ects		
KP1-CE-CD-114 M					Transect 51		DOC LCMF-156 REV	7
]	STA	2013	2016	2017	2018	2019	Description	
	0+00	8.6	8.3	8.6	8.4	8.6	Ground Shot	
	0+50	9.6	9.6	9.6	9.6	9.5	Ground Shot	
	1+06	8.1	8.3	8.2	8.3	8.3	Edge of Vegetation	
	1+29	8.4	8.3	8.2	8.3	8.3	Top of Bank	
	1+40	5.7	5.7	5.9	5.9	6.2	Toe of Bank	
	1+85	5.7	6.0	5.7	6.2	6.1	Ground Shot	
	2+37	6.0	6.2	6.0	6.2	6.2	Ground Shot	
	2+89	6.9	6.8	6.7	6.8	6.8	Ground Shot	
	3+16	7.7	7.8	7.7	7.8	7.8	Ground Shot	
	3+70	8.0	8.1	8.1	8.1	8.0	Top of Bank	
	3+80	6.7	6.8	6.6	6.8	6.8	Grade Break/Edge of Veg	
	4+06	3.8	3.9	3.8	3.9	3.7	Sand Bar	
	4+43	1.4	0.9	1.0	1.2	-	Grade Break	
	Vaies	-0.2	1.1	1.4	1.1	1.3	Edge of Water	
	4+71	-2.6	-1.3	-1.1	-0.9		River Bottom	
	4+81	-2.8	-1.9	-1.9	-2.8		River Bottom	
	4+92	-2.1	-2.0	-2.3	-3.0	-3.1	River Bottom	
	5+02	-2.1	-2.2	-2.5	-3.1	-3.1	River Bottom	
	5+10	-2.6	-2.3	-2.5	-3.8	-3.6	River Bottom	
	5+20	-2.3	-2.4	-2.4	-3.5	-3.5	River Bottom	
	5+29	-2.2	-1.8	-2.3	-3.3	-3.4	River Bottom	
	5+39	-2.1	-1.8	-1.8	-3.2	-3.3	River Bottom	
	5+50	-2.2	-1.6	-2.0	-3.3	-3.2	River Bottom	
	5+60	-2.1	-1.7	-2.0	-3.4	-3.2	River Bottom	
	5+70	-2.5	-1.7	-1.7	-3.1	-2.2	River Bottom	
	5+79	-2.2	-1.5	-0.9	-3.1	-	River Bottom	
	Vaies	0.0	1.1	1.4	0.9	1.2	Edge of Water	
	6+20	2.6	2.6	2.4	2.4	2.8	Toe of Bank	
	6+32	8.4	8.3	8.2	8.2	8.2	Top of Bank	
	6+83	9.2	9.1	9.1	9.2	9.1	Grade Break	
	7+31	10.9	11.0	10.9	11.1	11.1	Edge of Vegetation	
	7+54	11.2	11.2	11.3	11.2	11.4	Ground Shot	
	8+04	10.7	10.3	10.7	10.5	10.4	Ground Shot	
·		•			•	·		

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 39 of 47

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114 I	REV7			CD-5 Michael Baker Bridge Transects Transect 32 DOC LC				KUUKPIK UMIAQ ALPINE BURVEY OFFICE ICME-156 REV7
	STA	2013	2016	2017	2018	2019	Description	Lenii -150 KLV/
	0+00	84	81	81	83	8.2	Ground Shot	
	0+50	7.8	7.8	7.9	7.6	8.1	Ground Shot	
	0+96	7.0	6.7	6.9	7.1	7.3	Ground Shot	
	1+50	7.2	7.3	7.1	7.1	7.1	Ground Shot	
	2+00	7.4	7.4	7.4	7.5	7.5	Ground Shot	
	2+50	8.0	8.0	8.0	8.0	8.0	Ground Shot	
	3+12	6.8	6.8	6.7	6.6	6.7	Edge of Vegetation	
	3+32	6.4	6.4	6.3	6.3	6.4	Top of Bank	
	3+54		3.1	2.2	2.2	2.5	Ground Shot	
	3+68		1.1	-	-	1.5	Ground Shot	
	Varies	0.1	0.9	1.4	1.0	1.3	Edge of Water	
	4+07	-0.8	-1.7	-1.6	-0.6	-2.3	River Bottom	
	4+16	-2.7	-1.7	-3.0	-1.4	-2.3	River Bottom	
	4+26	-2.5	-2.5	-2.9	-3.4	-2.3	River Bottom	
	4+36	-3.9	-4.1	-5.1	-7.1	-5.1	River Bottom	
	4+47	-5.4	-6.3	-6.7	-8.3	-6.2	River Bottom	
	4+57	-6.6	-6.9	-6.9	-7.6	-6.9	River Bottom	
	4+68	-7.0	-7.0	-6.0	-6.1	-8.2	River Bottom	
	4+79	-6.1	-5.8	-4.5	-3.3	-7.2	River Bottom	
	Varies	-0.4	0.9	1.4	0.9	1.3	Edge of Water	
	5+10	8.5	8.4	8.3	8.3	8.2	Top of Bank	
	5+40	10.4	10.3	10.4	10.4	10.5	Ground Shot	
	5+79	10.2	10.2	10.2	10.3	10.2	Ground Shot	
	6+21	11.5	11.5	11.5	11.4	11.4	Ground Shot	
	6+71	10.8	10.5	10.8	10.5	10.6	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 40 of 47

CD-5 Michael Baker Bridge Transects Transect 33

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
0+00	9.9	9.8	9.8	9.9	9.6	Ground Shot
0+50	8.6	8.6	8.6	8.5	8.6	Ground Shot
1+03	8.5	8.7	8.7	8.7	8.8	Edge of Vegetation
1+52	10.6	10.7	10.6	10.7	10.7	Grade Break
2+00	9.9	10.0	10.0	10.1	10.1	Ground Shot
2+57	7.9	7.8	7.8	7.9	7.9	Top of Bank
2+67	6.9	6.9	7.0	7.0	7.0	Edge of Vegetation
2+78	5.4	5.3	5.4	5.4	5.5	Sand Bar
2+87	3.5	3.2	3.2	3.2	3.2	Grade Break
Varies	0.0	0.5	1.5	0.7	1.5	Edge of Water
3+81	-3.2	-1.5	-1.1	-2.3	-2.5	River Bottom
4+04	-2.2	-2.3	-2.4	-2.5	-3.3	River Bottom
4+18	-3.5	-3.1	-3.4	-3.7	-4.7	River Bottom
4+38	-4.4	-7.5	-6.9	-6.8	-7.0	River Bottom
4+59	-3.1	-4.2	-2.7	-7.2	-7.4	River Bottom
Varies	-0.1	0.2	1.4	0.8	1.6	Edge of Water
4+99	9.1	8.9	8.9	9.0	8.9	Top of Bank
5+53	9.7	9.8	9.7	10.0	9.8	Edge of Vegetation
6+02	10.1	10.3	10.2	10.4	10.4	Ground Shot
6+41	10.5	10.6	10.6	10.3	10.6	Ground Shot
7+11	10.7	10.3	10.4	10.7	10.5	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx 41 of 47

ConocoPhillips Alaska INTERNATIONAL

Cale'd By: MB Date: 8/20/19 RPT-CE-CD-114	REV7			CD-8	5 Michael B idge Transe Transect 34	laker ects I		
	STA	2013	2016	2017	2018	2019	Description	.CMF-156 KEV/
	0+00	12.6	12.4	12.3	12.4	12.5	Ground Shot	
	0+50	12.6	12.5	12.5	12.6	12.5	Ground Shot	
	1+00	10.3	10.1	10.1	10.2	10.2	Ground Shot	
	1+50	9.2	9.2	9.2	9.3	9.2	Ground Shot	
	2+12	8.1	8.0	7.9	7.8	7.6	Top of Bank	
	2+15	3.5	1.9	2.0	1.8	3.1	Toe of Bank	
	Varies	-0.3	0.6	1.6	0.8	1.4	Edge of Water	
	2+30	-4.6	-3.7	-4.3	-4.5	-4.4	River Bottom	
	2+37	-7.2	-4.3	-5.9	-4.9	-5.8	River Bottom	
	2+48	-7.3	-5.8	-6.4	-7.1	-7.9	River Bottom	
	2+58	-6.9	-5.8	-6.3	-7.7	-7.9	River Bottom	
	2+72	-6.7	-6.0	-5.4	-7.4	-7.5	River Bottom	
	2+82	-3.2	-5.4	-5.0	-6.8	-6.8	River Bottom	
	2+96	-2.2	-3.1	-2.3	-5.4	-3.9	River Bottom	
	3+06	-1.9	-2.1	-0.8	-3.4	-2.3	River Bottom	
	Varies	0.1	0.3	1.6	0.7	1.4	Edge of Water	
	3+66	4.5	4.6	4.7	4.6	4.6	Grade Break	
	3+94	5.6	5.6	5.6	5.6	5.6	Sand Bar	
	4+29	7.1	7.1	7.1	7.2	7.1	Edge of Vegetation	
	4+39	8.4	8.5	8.4	8.4	8.5	Top of Bank	
	4+50	8.6	8.6	8.6	8.6	8.6	Ground Shot	
	5+00	9.0	9.0	8.9	9.0	8.9	Ground Shot	
	5+50	7.4	7.6	7.7	8.1	8.0	Ground Shot	
	6+00	9.7	9.7	9.6	9.7	9.7	Ground Shot	
	6+30	10.1	10.2	10.2	10.3	10.3	Edge of Vegetation	
	6+64	9.9	9.7	9.7	9.7	9.7	Ground Shot	
	7+00	10.6	10.6	10.5	10.4	10.9	Ground Shot	
	7+50	10.1	9.9	9.9	9.9	10.1	Ground Shot	

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

42 of 47

ConocoPhillips Alaska INTERNATIONAL

CD-5 Michael Baker Bridge Transects Transect 35

DOC LCMF-156 REV7

STA	2013	2016	2017	2018	2019	Description
0+00	12.6	12.5	12.5	12.4	12.4	Ground Shot
0+50	13.0	12.9	12.9	12.9	12.9	Ground Shot
1+00	11.2	11.3	11.4	11.3	11.3	Ground Shot
1+11	11.4	11.4	11.2	11.3	11.3	Grade Break
1+25	9.4	9.4	9.6	9.4	9.6	Grade Break
1+65	10.3	10.4	10.4	10.4	10.3	Grade Break
1+81	8.1	8.1	8.0	8.0	8.3	Grade Break
2+27	9.3	9.4	9.4	9.5	9.4	Grade Break
2+51	10.4	10.5	10.4	10.2	10.7	Grade Break
2+72	8.2	8.3	8.4	8.5	8.5	Grade Break
3+15	8.0	7.7	7.8	8.0	7.9	Grade Break
3+59	6.9	6.8	6.8	6.9	6.8	Edge of Vegetation
3+79	6.6	6.6	6.6	6.6	6.5	Top of Bank
3+92	3.5	3.4	3.4	3.4	3.4	Sand Bar
Varies	-0.1	0.1	1.7	0.8	1.4	Edge of Water
4+60	-2.3	-2.2	-2.4	-2.6	-2.5	River Bottom
4+86	-4.6	-3.9	-5.0	-4.6	-5.0	River Bottom
5+09	-5.1	-4.2	-4.2	-6.5	-5.8	River Bottom
5+26	-2.0	-3.3	-1.3	-4.1	-4.3	River Bottom
Varies	-0.2	0.0	1.7	0.8	1.1	Edge of Water
5+47	0.2	0.2	-	1.2	2.7	Toe of Bank
5+58	7.6	7.4	7.4	7.3	6.8	Top of Bank
5+72	9.7	9.7	9.7	9.8	9.8	Grade Break
5+86	9.2	9.3	9.3	9.4	9.4	Edge of Vegetation
6+28	9.4	9.3	9.3	9.4	9.2	Ground Shot
6+69	9.5	9.2	9.2	9.2	9.6	Ground Shot
7+19	10.3	10.1	10.1	10.1	10.1	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

43 of 47

Transect_35

LAKE L9341 BRIDGE TABULATED DATA (TRANSECTS 36 - 39) E.3.4

Cale'd I Date: 8 RPT-CI	d By: MB CD-5 Michael Baker : 8/20/19 Bridge Transects -CE-CD-114 REV7 Transect 36								
]	STA	2013	2014	2015	2016	2017	2018	2019	Doc Lemi-136 REV/
	0+00	8.3	8.4	8.2	7.9	7.9	7.9	8.0	Ground Shot
	0+50	8.0	8.2	8.0	7.9	7.8	7.8	7.8	Ground Shot
	0+81	7.2	7.3	7.4	7.4	7.3	7.2	7.3	Ground Shot
	1+17	7.2	7.2	7.2	7.1	7.1	6.9	6.4	Top of Bank
	1+23	6.3	6.5	6.5	6.6	6.4	6.2	-	Edge of Vegetation
[Varies	4.6	4.6	4.6	3.4	3.9	3.6	4.1	Edge of Water
	1+52	4.0	2.0	4.4	3.4	3.7	3.5	-3.7	River Bottom
	1+89	0.8	1.5	2.1	0.7	-0.5	0.8	-0.5	River Bottom
	2+20	-0.9	1.0	0.0	0.1	-0.6	-3.4	-0.9	River Bottom
	2+48	-1.7	-0.9	-1.8	-1.0	-1.9	-4.2	-2.1	River Bottom
	2+95	-3.0	-2.8	-3.2	-2.9	-3.2	-3.0	-2.1	River Bottom
[3+49	-2.1	-1.5	-1.5	-1.2	-1.2	-4.0	-3.1	River Bottom
	3+78	1.7	1.5	2.5	1.7	1.0	1.3	-2.0	River Bottom
	3+90	2.5	2.2	4.1	3.0	2.7	2.1	1.2	River Bottom
	Varies	4.8	4.7	4.8	3.5	4.0	3.7	4.3	Edge of Water
	4+06	8.6	8.6	8.7	8.5	8.4	8.3	8.4	Top of Bank
[5+03	9.5	9.6	9.5	9.4	9.4	9.3	9.3	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

44 of 47

Transect_36

CD-5 Michael Baker Bridge Transects Transect 37

								DOC LCMF-156
STA	2013	2014	2015	2016	2017	2018	2019	Description
0+00	8.0	8.1	8.5	8.3	8.3	8.3	8.4	Ground Shot
0+50	8.3	8.5	8.3	8.2	8.2	8.1	8.2	Ground Shot
0+92	7.0	7.1	7.2	7.3	7.1	6.9	7.1	Top of Bank
1+03	6.5	6.6	6.6	6.7	6.5	6.4	6.6	Edge of Vegetation
Varies	4.6	4.5	4.6	3.5	4.0	3.6	4.3	Edge of Water
1+59	2.2	1.7	3.1	3.0	2.2	1.9	2.2	River Bottom
2+01	0.5	1.1	0.0	1.1	0.7	-1.4	0.2	River Bottom
2+48	-2.4	-2.5	-1.4	-2.0	-2.8	-3.6	-2.7	River Bottom
2+99	-2.9	-2.5	-2.6	-2.6	-2.9	-3.0	-3.3	River Bottom
3+45	-1.6	-1.3	-1.3	-1.3	-1.7	-3.9	-2.2	River Bottom
3+84	2.1	1.4	3.0	2.5	1.6	1.7	1.9	River Bottom
Varies	4.6	4.7	4.8	3.5	4.1	3.6	4.2	Edge of Water
4+04	9.1	9.1	9.1	9.0	8.8	8.6	8.8	Top of Bank
4+49	8.8	8.9	8.8	8.7	8.7	8.7	8.7	Ground Shot
4+99	9.5	9.6	9.5	9.4	9.5	9.2	9.3	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

45 of 47

CD-5 Michael Baker Bridge Transects Transect 38

								DOC LCMF-156
STA	2013	2014	2015	2016	2017	2018	2019	Description
0+00	8.1	8.4	7.8	7.7	7.1	7.5	7.3	Ground Shot
0+50	7.9	8.3	8.0	7.8	7.7	7.8	7.5	Ground Shot
0+81	7.3	7.3	7.4	7.2	7.1	6.9	7.0	Ground Shot
1+22	6.1	6.4	6.3	6.3	6.1	6.1	6.2	Edge of Vegetation
Varies	4.6	4.5	4.6	3.5	4.0	3.6	4.2	Edge of Water
1+94	1.4	1.6	2.4	2.1	0.9	1.0	0.9	River Bottom
2+46	0.4	0.4	0.0	-0.2	-0.5	-0.5	-0.1	River Bottom
2+96	-2.6	-2.2	-1.6	-2.4	-2.7	-2.5	-2.4	River Bottom
3+47	-2.8	-2.5	-3.2	-3.0	-3.0	-3.0	-3.1	River Bottom
3+95	0.8	1.5	1.0	0.8	0.4	0.4	0.4	River Bottom
Varies	4.7	3.7	5.0	3.6	4.0	3.7	4.3	Edge of Water
4+31	9.3	9.3	9.3	9.1	8.9	8.8	8.9	Top of Bank
4+79	9.0	9.1	9.0	8.9	8.9	8.6	8.9	Ground Shot
5+29	9.2	9.3	9.3	9.2	9.0	9.0	9.1	Ground Shot

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

46 of 47

Transect_38

CD-5 Michael Baker Bridge Transects Transect 39

2019	2018	2017	2016	2015	2014	2013	STA
8.0	8.2	8.2	8.4	8.6	8.8	8.5	0+00
7.0	7.3	7.1	7.5	7.7	7.8	7.6	0+50
6.4	6.7	6.9	6.9	6.9	7.0	6.7	0+79
-	5.5	5.7	5.9	5.8	6.0	5.8	0+89
4.3	3.8	4.0	3.4	4.5	4.5	4.4	Varies
1.2	1.1	0.6	1.9	2.6	1.2	1.3	1+27
-0.3	-0.1	-0.1	0.6	0.6	0.7	0.1	1+54
-1.5	-1.3	-1.5	-1.4	-1.1	-0.8	-1.2	2+01
-1.9	-2.6	-2.4	-1.7	-2.0	-1.7	-1.7	2+47
-3.1	-3.3	-3.1	-3.1	-3.2	-2.5	-3.0	3+01
0.2	-1.0	-0.8	-0.3	-0.4	1.5	-0.3	3+55
-	1.6	1.6	1.5	1.7	2.6	1.8	3+71
4.2	3.7	3.9	3.4	4.8	4.3	4.6	Varies
9.2	9.1	9.2	9.4	9.5	9.5	9.3	4+03
9.2	9.1	9.1	9.2	9.5	9.5	9.4	4+43
9.2	9.3	9.3	9.3	9.5	9.7	9.6	4+93
	2019 8.0 7.0 6.4 - 4.3 1.2 -0.3 -1.5 -1.9 -3.1 0.2 - 4.2 9.2 9.2 9.2	2018 2019 8.2 8.0 7.3 7.0 6.7 6.4 5.5 - 3.8 4.3 1.1 1.2 -0.1 -0.3 -1.3 -1.5 -2.6 -1.9 -3.3 -3.1 -1.0 0.2 1.6 - 3.7 4.2 9.1 9.2 9.3 9.2	2017 2018 2019 8.2 8.2 8.0 7.1 7.3 7.0 6.9 6.7 6.4 5.7 5.5 - 4.0 3.8 4.3 0.6 1.1 1.2 -0.1 -0.1 -0.3 -1.5 -1.3 -1.5 -2.4 -2.6 -1.9 -3.1 -3.3 -3.1 -0.8 -1.0 0.2 1.6 1.6 - 3.9 3.7 4.2 9.2 9.1 9.2 9.1 9.1 9.2 9.3 9.3 9.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Doc LCMF-156 CD5 Bridge Transects Rev7.xlsx

47 of 47

Transect_39

ConocoPhillips Alaska INTERNATIONAL

2019 COLVILLE RIVER DELTA SPRING BREAKUP MONITORING & HYDROLOGICAL ASSESSMENT