2020

Alpine Satellite Development Project Water Quality Monitoring

PREPARED BY:

MICHAEL BAKER INTERNATIONAL 3900 C STREET SUITE 900 ANCHORAGE, AK 99503 **PREPARED FOR:**

MSA Contract No. 2969377

Doc. #179852-MBI-HH-RPT-001

Table of Contents

1.	INTRODUCTION	3
2.	METHODS	5
2.1.	Sampling Locations	.6
2.2.	In-Situ Measurements	.9
	Instrument Calibration	
2.3.	Laboratory Sample Collection & Analysis1	0
	Sample Collection	0
3.	RESULTS1	2
3.1.	Sampling Locations (September 17, 2020)1	2
	Lake L93231	2
	LAKE L9324 1	
	Lake M93131	
3.2.	In-Situ Measurements1	
3.3.	Laboratory Analysis1	7
4.	REFERENCES	8
Арре	endix A. LABORATORY ANALYTICAL RESULTS A-	1

Figures

Figure 1: ASDP Water Quality Monitoring Lakes	4
Figure 2: Lakes L9323 & L9324	7
Figure 3: Lake M9313	8

Photos

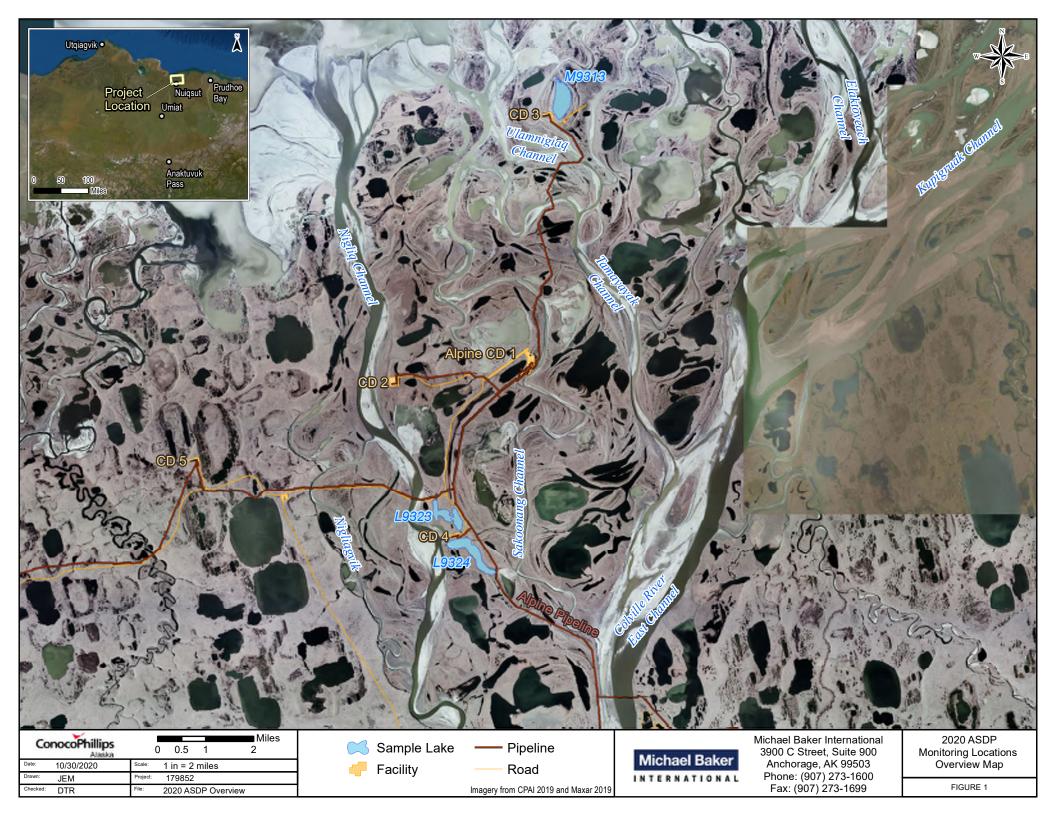
hoto 1: Equipment used to collect water quality data and samples; September 17, 20205)
hoto 2: Support raft towing sampling equipment; September 17, 2020)
hoto 3: Preparing for sampling at lake L9323; September 17, 202012	!
hoto 4: Lake L9323 during spring breakup, hydraulically connected to Lake 9324; looking Southwest; May	
9,2020	!
hoto 5: Kayaking to sample location at Lake L9324; September 17, 2020	;
hoto 6: Lake L9324 during spring breakup hydraulically connected to the Sakoonang Channel; looking South;	
13 Ay 29, 2020	;
hoto 7: Crew just after collecting in-situ measurements and samples for laboratory analysis on Lake M9313;	
eptember 17, 2020	ł
hoto 8: Flow confined within the banks of the West Ulamnigiaq Channel next to Lake M9313; looking South;	
14 Aay 29, 2020	r

Tables

Table 1: In-Situ Water Quality Parameters	9
Table 2: Instrument Accuracy	
Table 3: In-Situ Water Quality Results Summary	
Table 4: Laboratory Analytical Results Summary	17

Acronyms & Abbreviations

°C	Degrees Celsius
ADEC	Alaska Department of Environmental Conservation
Arctic Fox	Arctic Fox Environmental, Inc.
ASDP	Alpine Satellite Development Plan
СОРА	ConocoPhillips Alaska, Inc.
DO	Dissolved oxygen
DRO	Diesel range organics
FID	Flame ionization detector
GC	Gas chromatography
ICP	Inductively coupled plasma
MS	Mass spectrometry
μS/cm	Microsiemens per centimeter
mS/cm	MilliSiemens per centimeter
mg/L	Milligrams per liter
Michael Baker	Michael Baker International
NTU	Nephelometric Turbidity Units
рН	Potential of hydrogen
ppt	Parts per thousand
PSS	Practical Salinity Scale
RCRA	Resource Conservation and Recovery Act
RRO	Residual range organics
SG	Silica gel
SU	Standard units


1. INTRODUCTION

The 2020 Alpine Satellite Development Plan (ASDP) Water Quality Monitoring Report presents the results of lake monitoring conducted in September 2020 for ConocoPhillips Alaska, Inc. (COPA). This report includes monitoring results of lakes L9323, L9324, and M9313 which have been monitored annually since 2007. An overview of the study lakes relative to Alpine facilities is presented in Figure 1.

During the winter of 1998/1999, COPA initiated construction of the Alpine Facility, CD1 and CD2, in the Colville River Delta. Alpine operations expanded with the implementation of the ASDP during the 2004/2005 winter season. Construction included placement of gravel facilities for two satellite drill sites, CD3 and CD4. The CD3 development included an airstrip and pad/airstrip access road, apron, and taxiway adjacent to the south side of Lake M9313. The CD4 development included a gravel pad, access road connected to the CD2 access road, and pipeline parallel to the access road connecting to the existing Alpine Pipeline. The CD4 pad is located between Lake L9323 to the north and Lake L9324 to the south. Alpine operations expanded again with the construction of CD5, which included a gravel pad, access road connected to the CD4 access road, and pipeline parallel to the existing Alpine Pipeline.

The 2020 water quality monitoring program led by Michael Baker International (Michael Baker) included in-situ field sampling and laboratory water samples. The in-situ measurements were temperature, conductivity/specific conductance, dissolved oxygen (DO), salinity, turbidity, and pH. Laboratory analyses consisted of dissolved hydrocarbons: diesel range organics (DRO), residual range organics (RRO), and Resource Conservation and Recovery Act (RCRA) metals.

2. METHODS

Field investigations were conducted by a two-person team at lakes L9323, L9324, and M9313. Soloy Helicopters, LLC provided helicopter access to Lake M9313. A pickup truck was used to access lakes L9323 and L9324. The team used inflatable kayaks with a tethered support raft for transporting the sampling equipment to the sample locations (Photo 1 and Photo 2).

In-situ water quality data measurements and laboratory samples were collected at all three lakes on September 17, 2020. In-situ water quality instruments were provided by TTT Environmental. Laboratory analyses and sample collection bottles were provided by Arctic Fox Environmental, Inc. (Arctic Fox). Prior to sampling, aerial reconnaissance was conducted to identify possible inflow and outflow sources, and to determine if lakes were hydraulically connected to other nearby surface water sources. It was also confirmed that each lake was well-mixed and lacked definable stratums prior to analytic sample collection. Field sampling methods were based on U.S. Geological Survey (USGS 2006), Ward and Harr (1990), and U.S. Army Corps of Engineers (USACE 1987) methods.

Safety precautions were followed, as outlined in the North Slope Water Resources 2020 Health, Safety, and Environmental Plan (Michael Baker 2020a) and the 2020 Summer Hydrology Monitoring – Job Safety Analysis (Michael Baker 2020b). Michael Baker employees worked in groups of two. Employees checked in with Alpine security before and after field work. Personnel were equipped with dry suits and U.S. Coast Guard-approved Type III personal floatation devices during lake access.

Photo 1: Equipment used to collect water quality data and samples; September 17, 2020

Photo 2: Support raft towing sampling equipment; September 17, 2020

2.1. Sampling Locations

For this project, it is assumed data collected at specific locations are representative of conditions throughout the well-mixed water body and thus, water samples collected at a single location are representative of the lake. Selection of the appropriate location for samples was based on maximum lake depth and relative proximity to gravel facilities. The bathymetry of each lake was used to identify the deepest part of the water body, and a single representative sampling location was selected.

Sampling locations were identified in the field using a handheld global positioning system Garmin Oregon 650t referenced to the World Geodetic System of 1984 coordinate system. The sampling locations for lakes L9323 and L9324 are shown in Figure 2, and Lake M9313 is shown in Figure 3.

2.2. In-Situ Measurements

In-situ water quality was measured at 1- and 2-foot intervals throughout the water column. A list of water quality parameters collected is presented in Table 1.

Parameter	Units					
Total Depth	ft feet					
Temperature	°C degrees Celsius					
Turbidity	NTU Nephelometric Turbidity Un					
Conductivity	µS/cm microsiemens per centimet					
Specific Conductance	µS/cm microsiemens per centime					
Discolud Ovugon	mg/L	milligrams per liter				
Dissolved Oxygen	% saturation	percent saturation				
Salinity	ppt parts per thousand					
рН	SU standard units					

Table 1: In-Situ Water Quality Parameters

Turbidity refers to the cloudiness of a fluid caused by suspended solids that tend to be invisible to the naked eye. As particles in a fluid will scatter light focused on them, turbidity can be measured by the quantity of reflected light for a given amount of particulates. A Nephelometer is equipped with a detector next to the light beam and is used to measure turbidity. When using a calibrated Nephelometer, the units of turbidity are Nephelometric Turbidity Units (NTU).

Conductivity is a measurement of the water's ability to carry an electrical current. Dissolved salts (ions) are conductors of electrical current, and conductivity is proportional to the ion concentration (salinity) in an aqueous solution. The salinity is calculated using the in-situ conductivity and temperature, and the conversions defined by the Practical Salinity Scale (PSS) of 1978 (YSI 2012). The PSS is derived for standard seawater with a known ion composition; therefore, using the PSS for freshwater with unknown ion composition provides an estimate of the salinity.

Specific conductance is a metric commonly used to report the concentration of salts in freshwater. Conductivity measurements are temperature dependent. Specific conductance is calculated from in-situ conductivity and temperature using a site-specific temperature correction coefficient. The correction coefficient is determined for a site by relating the conductivity of a sample at the in-situ temperature and the conductivity of the same sample at 25 degrees Celsius (°C). Michael Baker completed this analysis for the Colville River in 2005 resulting in a correction coefficient of 0.0196 (Michael Baker 2006). The recharge of lakes from the Colville River flood waters during spring break-up justifies using the same correction coefficient for the lake measurements.

INSTRUMENT CALIBRATION

A YSI 650 handheld unit with YSI 6920V2 sensor was calibrated by TTT Environmental according to the manufacturer's specifications. The morning of sampling, the YSI 650/6920V2 meter was calibrated for conductivity and pH and checked for DO by Michael Baker field team members as directed by the manufacturer. An optical DO sensor was used for the DO sampling. Prior to each field sampling event, the meter was thoroughly rinsed with lake water.

INSTRUMENT ACCURACY

The accuracies of the YSI 650/6920V2 sensors are presented in Table 2 (YSI 2012).

су

Parameter	Accuracy						
Temperature	+/- 0.15°C						
Turbidity	+/- 2% of the reading or 0.3 NTU (whichever is greater)						
Conductivity	+/- 0.5% of reading + 0.001 mS/cm						
Disselved Owners	+/-1% of the reading or 0.1 mg/L (whichever is greater)						
Dissolved Oxygen	+/-1% of the reading or 1% air saturation (whichever is greater)						
Salinity	+/- 1.0% of reading or 0.1 ppt (whichever is greater)						
рН	+/- 0.2 units						

2.3. Laboratory Sample Collection & Analysis

SAMPLE COLLECTION

Samples were collected from lakes using a 1.6" x 12" disposable polyethylene bailer (350 milliliter capacity). Nitrile gloves were worn during sample collection and changed between samples. A new bailer was used for each lake and discarded after use.

Sample bottles provided by Arctic Fox were stored in the provided cooler before, during, and after sample collection to maintain adequate storage temperature and ensure chain of custody procedures were followed. Field samples were transported to Artic Fox within 24 hours of initial sample collection.

LABORATORY ANALYSES

The laboratory analyses performed for each water sample included RCRA metals, DRO, and RRO.

SW6020 (RCRA METALS)

The RCRA metals laboratory analysis method SW6020, developed by the U.S. Environmental Protection Agency Office of Solid Waste, employs inductively coupled plasma– mass spectrometry (ICP-MS) to determine trace elements, including metals in solution (EPA 2006). Elements tested for include: arsenic, barium, cadmium, chromium, lead, selenium, and silver. This method measures ions produced by a radio frequency ICP. High temperatures are used to produce ions, which are then entrained in a plasma gas and extracted. The ions are separated on the basis of their mass-to-charge ratio with a mass spectrometer.

AK 102 (DIESEL RANGE ORGANICS)

The AK 102 method for DRO, developed by the Alaska Department of Environmental Conservation (ADEC), is based on a solvent extraction, gas chromatography (GC) procedure for the detection of semi-volatile petroleum products such as diesels. Other non-petroleum compounds of similar characteristics may be detected with this method. Samples spiked with a surrogate (o-Terphenyl) are extracted with methylene chloride. The GC is temperature programmed to facilitate separation of organic compounds detected by a flame ionization detector (FID). Quantification is based on FID response compared to a diesel calibration standard.

AK 103 (RESIDUAL RANGE ORGANICS)

The AK 103 method for RRO, developed by ADEC, was originally designed to measure lubricating or motor oils and other heavy petroleum products in soils. The *Underground Storage Tanks Procedures* (ADEC 2009) identifies the method as adequate for determining such compounds in solution. The method is an extension of ADEC AK 102, employing solvent extractions and GC to identify heavier RRO. Quantification is based on FID response compared to a residual's calibration standard.

SILICA GEL CLEANUP FOR DRO & RRO

Laboratory samples containing organic plant material are especially susceptible to background biogenic interference and may result in false positive results for DRO or RRO defined petroleum hydrocarbon ranges (ADEC 2006). The silica gel (SG) procedure is recommended by the ADEC in *Technical Memorandum 06-001, Biogenic Interference and Silica Gel Cleanup* (ADEC 2006) to evaluate the presence and degree of biogenic interference. This procedure is used to preferentially remove biogenic compounds from a sample leaving the non-biodegraded petroleum hydrocarbon compounds. The remaining sample, presumably free of biogenic interference, is then tested for DRO and RRO according to AK 102 and AK 103, respectively.

3. RESULTS

3.1. Sampling Locations (September 17, 2020)

LAKE L9323

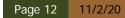

Lake L9323 is located east of the Nigliq Channel. The lake has the CD5 road is to the north and the CD4 road is to the east. This lake can become hydraulically connected to the Nigliq and/or Sakoonang Channels during flooding, as was the case during the 2020 spring breakup flood (Photo 4). A bridge in the CD5 road allows for the passage of overbank flow out of the lake. At the time of sampling, the lake was not hydraulically connected to adjacent rivers based on aerial visual inspection. No odor or film was observed while sampling the lake (Photo 3).

Photo 3: Preparing for sampling at lake L9323; September 17, 2020

Photo 4: Lake L9323 during spring breakup, hydraulically connected to Lake 9324; looking Southwest; May 29,2020

LAKE L9324

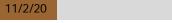

Lake L9324 is located east of the Nigilq Channel. The CD4 pad is to the north of the lake. This lake can become hydraulically connected to the Nigilq and Sakoonang channels during flooding, as was the case during the 2020 spring breakup flood (Photo 6). At the time of sampling, Lake L9324 was hydraulically connected to the Sakoonang Channel to the east via a paleolake. The Alpine Sales pipeline crosses the connection between Lake L9324 and the south paleo lake. No odor or film was observed while sampling the lake (Photo 5).

Photo 5: Kayaking to sample location at Lake L9324; September 17, 2020

Photo 6: Lake L9324 during spring breakup hydraulically connected to the Sakoonang Channel; looking South; May 29, 2020

Page 13

LAKE M9313

Lake M9313 is located north of the CD3 pad and runway and east of the Ulamnigiaq Channel. This lake can become hydraulically connected to the Ulamnigiaq Channel during flooding. During the 2020 spring breakup flood, there was no visible evidence that Lake M9313 was hydraulically connected to the Ulamnigiaq Channel (Photo 8). At the time of sampling it was not, based on aerial visual inspection, hydraulically connected to any streams or distinct water bodies. No odor or film was observed while sampling the lake (Photo 7).

Photo 7: Crew just after collecting in-situ measurements and samples for laboratory analysis on Lake M9313; September 17, 2020

Photo 8: Flow confined within the banks of the West Ulamnigiaq Channel next to Lake M9313; looking South; May 29, 2020

3.2. In-Situ Measurements

In-situ measurements were collected throughout the water column at the deepest part of each lake. The in-situ measurements for the water quality results are in Table 3.

Average turbidity for lakes L9323, L9324, and M9313 was 0.1 NTU, 5.7 NTU, and 0.2 NTU, respectively. According to the meter manufacturer, a used instrument can contaminate a zero standard to almost 1.0 NTU. The higher NTU value for Lake L9324 has been observed in previous years of sampling and is likely the result of the hydraulic connection to the South Paleo Lake and Sakoonang Channel during sampling.

Temperatures in all lakes ranged from a maximum of 4.5° C in Lake L9323 to a minimum of 3.9° C in Lake M9313. The temperature in all three lakes remained consistent with depth. Specific conductance was homogenous throughout the water column at all sample locations but was notably different between lakes. Specific conductance was 100 µS/cm in Lake L9323, and 145 µS/cm in Lake L9324. The highest specific conductance value was measured in Lake M9313, located nearest to the coast, at 642 µS/cm. Measured specific conductance values exceeding 500 µS/cm are indicative of saline environments which are regularly observed in lakes near the coast (ADF&G 2008).

Concentrations of DO were relatively homogenous throughout the water column at all sample locations. The average DO in Lake L9323 was 13.31 mg/L, in Lake L9324 was 13.26 mg/L, and in Lake M9313 was 13.26 mg/L. A 100% saturation level is based on standard temperature and pressure conditions. The average percent-saturation in Lake L9323 was 102.9%, in Lake L9324 was 102.2%, and in Lake M9313 was 101.1%.

Salinity remained consistent with water column depth at all sampling locations. The greatest concentration was measured in Lake M9313 at 0.31 ppt, likely due to its coastal proximity. Lakes L9323 and L9324 had concentrations of 0.05 and 0.07, respectively.

Average pH was 7.8 in Lake L9323, 7.5 in Lake L9324, and 7.6 in Lake M9313. PH was relatively consistent with depth at all sampling locations.

ConocoPhillips

Alaska INTERNATIONAL

Lake, Location &	Total Depth	Turbidity	Depth	Temp	emp Conductivity Specific Conductance		DO	DO	Salinity	рН
Time	(ft)	(NTU)	(ft)	(°C)	(µS/cm)	(µS/cm)	(mg/L)	(% Saturation)	(ppt)	SU
			2	4.5	60	100	13.30	102.8	0.05	7.8
			3	4.5	60	100	13.30	102.8	0.05	7.8
			4	4.5	60	100	13.30	102.8	0.05	7.8
L9323			5	4.5	60	100	13.30	102.8	0.05	7.8
N70.2960°	12.0	0.1	6	4.5	60	100	13.31	102.8	0.05	7.8
W150.9887° 14:30	12.0	0.1	7	4.5	60	100	13.31	102.8	0.05	7.8
14:30			8	4.5	60	100	13.31	102.9	0.05	7.8
			9	4.5	60	100	13.32	102.9	0.05	7.8
			10	4.5	60	100	13.32	103.0	0.05	7.7
			11	4.5	60	100	13.32	102.9	0.05	7.8
	7.0	5.7	2	4.4	87	145	13.24	102.1	0.07	7.5
L9324 N70.2902°			3	4.4	87	145	13.25	102.1	0.07	7.5
W150.9827°			4	4.4	87	145	13.26	102.3	0.07	7.5
13:25			5	4.4	87	145	13.28 102.4		0.07	7.5
			6	4.4	87	145	13.28	102.3	0.07	7.5
			2	3.9	376	642	13.28	101.1	0.31	7.6
			3	3.9	376	641	13.27	101.2	0.31	7.6
			4	3.9	376	642	13.27	101.1	0.31	7.6
			5	3.9	377	642	13.26	101.2	0.31	7.6
M9313			6	3.9	377	642	13.26	101.1	0.31	7.6
N70.4217° W150.8999°	12.5	0.2	7	3.9	377	642	13.25	101.1	0.31	7.6
10:10			8	3.9	377	642	13.26	101.1	0.31	7.6
			9	3.9	377	642	13.25	101.1	0.31	7.6
			10	3.9	377	642	13.25	101.1	0.31	7.6
			11	3.9	377	642	13.25	101.1	0.31	7.6
			12	4.0	377	642	13.24	101.1	0.31	7.5

Table 3: In-Situ Water Quality Results Summary

Notes:

1. Sample depth is measured from the water surface.

2. Turbidity, temperature, conductivity, dissolved oxygen, and salinity were measured using a YSI 650-6920V2 meter.

3. Turbidity is presented as an average of the sampled values in the water column.

4. Negative turbidity is typically traced to minute contamination of the zero calibration standard. According to the meter manufacturer, a used instrument can contaminate a zero standard to almost 1.0 NTU.

5. Specific conductance (referenced to 25°C) was obtained using a conversion coefficient of 0.0196 based on empirical data.

3.3. Laboratory Analysis

Lakes L9323, L9324, and M9313 were sampled on September 17, 2020. All samples were analyzed using standard methods.

With the exception of barium, analytical results from sampling event show that RCRA targeted metals were not detected above the laboratory detection limit. Barium was detected in all lakes at concentrations below the ADEC cleanup level of 3800 μ g/L. The highest measured concentration of barium was 203 μ g/L in Lake M9313. Barium is not uncommon in arctic waters at concentrations similar to those measured at the three lakes (Guay and Falkner 1998).

The DRO and RRO were not detected above the laboratory detection limit in lakes L9323, L9324 and M9313.

The ADEC updated the cleanup levels in 2019. Most of the threshold levels have increased in sensitivity as the units have changed from mg/L to μ g/L, but some remain unchanged or decreased in sensitivity. Laboratory analytical results and changes in ADEC cleanup level are presented in Table 4 and are provided in Appendix A.

Parameter	2009 ADEC Cleanup Level ³	2019 ADEC Cleanup Level ¹	Lake L9323	Lake L9323 Duplicate	Lake L9324	Lake M9313	
			(µg/l	.)			
Arsenic	10	0.52	ND	ND	ND	ND	
Barium	2,000	3,800	46	38	63	203	
Cadmium	5	9.2	ND	ND	ND	ND	
Chromium	100	22,000 (III) 0.35 (VI)			ND	ND	
Lead	15	15	ND	ND	ND	ND	
Mercury	2	0.52	ND	ND	ND	ND	
Selenium	50	100 ND		ND	ND	ND	
Silver	100	94	ND	ND	ND	ND	
DRO (water)	1,500	1,500	ND	ND	ND	ND	
RRO (water)	1,100	1,100	ND	ND	ND	ND	
DRO (silica gel)	1,500	1,500	ND	ND	ND	ND	
RRO (silica gel)	1,100	1,100	ND	ND	ND	ND	

Table 4: Laboratory Analytical Results Summary

Notes:

1. ADEC Water Quality Standards 18 AAC 75.345 Table C Groundwater Cleanup Levels (ADEC 2019)

2. ND indicates analyte was not detected above the laboratory detection limit

3. ADEC Water Quality Standards from 2009

4. REFERENCES

- Alaska Department of Environmental Conservation (ADEC). 2006. Biogenic Interference and Silica Gel Cleanup. Technical Memorandum – 06-001. Division of Spill Prevention and Response, Contaminated Sites Remediation Program.
- —— 2009. Water Quality Standards. 18 AAC 70. Underground Storage Tanks Procedures. Division of Spill Prevention and Response, Contaminated Sites Remediation Program.
- 2019. Oil and Other Hazardous Substances Pollution Control. 18 AAC 75. Groundwater and surface water cleanup levels. 18 AAC 75.345 Table C.
- Alaska Department of Fish and Game (ADF&G). 2008. Fish Habitat Permit FH04-111-0135 Amendment #1.
- Guay, C.K. and K.K. Falkner (Guay and Falkner). 1998. A Survey of Dissolved Barium in the Estuaries of Major Arctic Rivers and Adjacent Seas. Continental Shelf Research 18:8859-882.
- Michael Baker International (Michael Baker) 2020a. North Slope Water Resources 2020 Health, Safety, and Environment Plan. Prepared for ConocoPhillips Alaska, Inc.
- 2020b. 2020 Summer Hydrology Monitoring Programs Job Safety Analysis. Prepared for ConocoPhillips Alaska, Inc.
- 2006. Colville River Ice Bridge Monitoring. April.
- North Slope Borough (NSB). 2004 North Slope Borough Ordinance Serial No. 75-6-46
- United States Army Corps of Engineers (USACE). 1987. Reservoir Water Quality Analysis. Engineering Manual EM- 1110-2-1201.
- United States Environmental Protection Agency (EPA). 2006. 2006 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-06-013.
- United States Geological Survey (USGS). 2006. National Field Manual for the Collection of Water-Quality Data. Book 9 Handbooks for Water-Resources Investigations. Chapter A4 Collection of Water Samples.
- Ward, J.R. and C.A. Harr eds. 1990. Methods for Collection and Processing Surface-Water and Bed-Material Samples for Physical and Chemical Analyses. Open-File Report 90-147.

YSI Incorporated. 2012. YSI 6-Series Multiparameter Water Quality Sonde User Manual. https://www.ysi.com/File%20Library/Documents/Manuals/069300-YSI-6-Series-Manual-RevJ.pdf Appendix A. LABORATORY ANALYTICAL RESULTS

Analytical Services Order and Chain of Custody Form 90085

Arctic Fox Environmental, Inc.

PO Box 340043 | Prudhoe Bay, AK 99734 | PHONE: (907) 659-2145 | FAX: (907) 659-2146 | www.arcticfoxenv.com

					0	920	- 46	,69					
Client Name and Address:			Account	Number:									Preservative
MBI 3900 C St.													
Anchorage,	P.O. or C	Contract Number:											
Contact Person: Kieran D Bi	raun			ation Number:						5			
Phone Number 907 575.8512 Fax 1	Number: Get w/	times!	Sampled	By: SAO	Vum			_	-	netal			
E-mail: Kieran, Braun Emb			PWS Nu		ber of			Sel	501	Z			
Project Name: 2020 ASDP L					Cor			Silica	Silica	24			
Data Deliverables:				sults to ADEC:	Number of Containers			ŝ	õ	RCIZA		in a star	en e provent de la
Requested Turnaround Time and Special Instructions:					0	02	rno	020	02/2	T			
Client Sample ID	Date Sampled	Time Sampled	Matrix	AF Sample ID		20	21	C	2	5			Remarks
8×1 L bottles J	91												
4 X 250 mL bottles L9323													
L9323	9/17/20	1430	L	AF72037	3	Y	×	×	Y	X			
L9323 - D.P		1440		AF 72038	3	×	×	×	×	×			
L9324		1325		AF 72039	3	×	×	×	×	×			
M 9313	1	1010	+	AF72040	3	×	×	×	×	¥			
			1					3					
			1										
											1		
Relinquished By (1):	Date:	Time:	Received	d By:				TO BE	COMPLE	ETED BY	LABORA	TORY	
Bieran Brann 9/17/2020 2930				Location Received/ ANC°C FBK°C PB1) ^{'L} °C							1,1 ° °C		
Relinquished By (2):	Date:	Time:	Received	d By:	Te	mp on A	rrival:						1118958 70
Relinquished By (3): Date: Time: 9/19/20 0850		Received for lab by: Chain of Custody Seal X INTACT BROKI Anno 1000 Shipping Bill Number:		BROKE		ABSENT							
	1 1	-	-	Un MM								S. Second	

🚬 PO Box 340043 | Prudhoe Bay, АК 99734 | PHONE: (907) 659-2145 | FAX: (907) 659-2146 | www.arcticfoxenv.com

Michael Baker International 3900 C St Ste 900 Anchorage, AK 99503

Attn:	Devon Roe / Haley Runa / Kieran Brawn
Phone:	(907) 273-1666 / (907) 575-8652

Email: <u>Devon.Roe@mbakerintl.com</u> <u>Haley.Runa@mbakerintl.com</u> <u>Kieran.Brawn@mbakerintl.com</u>

AF Lab #:AF72037Client Sample ID:L9323Location/Project:2020 ASDP WQCOC#:90085Sample Matrix:Liquid

Report Date:	10/10/2020
Date Arrived:	9/19/2020
Date Sampled:	9/17/2020
Time Sampled:	1430
Collected By:	SAO

Flag Definitions

MDL = Method Reporting Limit
B = Below Regulatory Minimum
H = Above Regulatory Maximum
M = Matrix Interference
J = Best Available Estimate
U = Less Than Detection Limit
D = Lost to Dilution

Comments: Attached are the results for analyses of your samples. Some samples were analyzed by Eurofins in Tacoma, Washington. Tracking information is as follows:

Michael Baker Intl Sample ID: L9323 Analyses Requested: DRO RRO with Silica Gel cleanup Arctic Fox ID: AF72037 Time Sampled: 1430 Matrix: Liquid Eurofins Lab ID: 580-97631-1

				RCRA		Analysis	Analysis
Parameter	Result	Units	RL	Limits	Flag	Method	Date
6020A Total Metals							9/26/2020
Arsenic	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Barium	0.046	mg/l	0.050	100.0		6020A	
Cadmium	<mrl< td=""><td>mg/l</td><td>0.004</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.004	1.0		6020A	
Chromium	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Lead	<mrl< td=""><td>mg/l</td><td>0.008</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.008	5.0		6020A	
Mercury	<mrl< td=""><td>mg/l</td><td>0.003</td><td>0.200</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.003	0.200		6020A	
Selenium	<mrl< td=""><td>mg/l</td><td>0.080</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.080	1.0		6020A	
Silver	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	

new. Min

🚬 PO Box 340043 | Prudhoe Bay, АК 99734 | PHONE: (907) 659-2145 | FAX: (907) 659-2146 | www.arcticfoxenv.com

Michael Baker International 3900 C St Ste 900 Anchorage, AK 99503

Attn:	Devon Roe / Haley Runa / Kieran Brawn
Phone:	(907) 273-1666 / (907) 575-8652

Email: <u>Devon.Roe@mbakerintl.com</u> <u>Haley.Runa@mbakerintl.com</u> <u>Kieran.Brawn@mbakerintl.com</u>

AF Lab #:AF72038Client Sample ID:L9323-DupLocation/Project:2020 ASDP WQCOC#:90085Sample Matrix:Liquid

Report Date:10/10/2020Date Arrived:9/19/2020Date Sampled:9/17/2020Time Sampled:1440Collected By:SAO

Flag Definitions

MDL = Method Reporting Limit B = Below Regulatory Minimum H = Above Regulatory Maximum M = Matrix Interference J = Best Available Estimate U = Less Than Detection Limit D = Lost to Dilution

Comments: Attached are the results for analyses of your samples. Some samples were analyzed by Eurofins in Tacoma, Washington. Tracking information is as follows:

Michael Baker Intl Sample ID: L9323-Dup Analyses Requested: DRO RRO with Silica Gel cleanup Arctic Fox ID: AF72038 Time Sampled: 1440 Matrix: Liquid Eurofins Lab ID: 580-97631-2

				RCRA		Analysis	Analysis
Parameter	Result	Units	RL	Limits	Flag	Method	Date
6020A Total Metals							9/26/2020
Arsenic	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Barium	0.038	mg/l	0.050	100.0		6020A	
Cadmium	<mrl< td=""><td>mg/l</td><td>0.004</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.004	1.0		6020A	
Chromium	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Lead	<mrl< td=""><td>mg/l</td><td>0.008</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.008	5.0		6020A	
Mercury	<mrl< td=""><td>mg/l</td><td>0.003</td><td>0.200</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.003	0.200		6020A	
Selenium	<mrl< td=""><td>mg/l</td><td>0.080</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.080	1.0		6020A	
Silver	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	

new. Min

🛫 PO Box 340043 | Prudhoe Bay, АК 99734 | PHONE: (907) 659-2145 | FAX: (907) 659-2146 | www.arcticfoxenv.com

Michael Baker International 3900 C St Ste 900 Anchorage, AK 99503

Attn:	Devon Roe / Haley Runa / Kieran Brawn
Phone:	(907) 273-1666 / (907) 575-8652

Email: <u>Devon.Roe@mbakerintl.com</u> <u>Haley.Runa@mbakerintl.com</u> <u>Kieran.Brawn@mbakerintl.com</u>

AF Lab #:AF72039Client Sample ID:L9324Location/Project:2020 ASDP WQCOC#:90085Sample Matrix:Liquid

Report Date:	10/10/2020
Date Arrived:	9/19/2020
Date Sampled:	9/17/2020
Time Sampled:	1325
Collected By:	SAO

Flag Definitions

MDL = Method Reporting Limit B = Below Regulatory Minimum H = Above Regulatory Maximum M = Matrix Interference J = Best Available Estimate U = Less Than Detection Limit D = Lost to Dilution

Comments: Attached are the results for analyses of your samples. Some samples were analyzed by Eurofins in Tacoma, Washington. Tracking information is as follows:

Michael Baker Intl Sample ID: L9324 Analyses Requested: DRO RRO with Silica Gel cleanup Arctic Fox ID: AF72039 Time Sampled: 1325 Matrix: Liquid Eurofins Lab ID: 580-97631-3

				RCRA		Analysis	Analysis
Parameter	Result	Units	RL	Limits	Flag	Method	Date
6020A Total Metals							9/26/2020
Arsenic	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Barium	0.063	mg/l	0.050	100.0		6020A	
Cadmium	<mrl< td=""><td>mg/l</td><td>0.004</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.004	1.0		6020A	
Chromium	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Lead	<mrl< td=""><td>mg/l</td><td>0.008</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.008	5.0		6020A	
Mercury	<mrl< td=""><td>mg/l</td><td>0.003</td><td>0.200</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.003	0.200		6020A	
Selenium	<mrl< td=""><td>mg/l</td><td>0.080</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.080	1.0		6020A	
Silver	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	

new. Min

🛫 РО Вох 340043 | Prudhoe Bay, АК 99734 | PHONE: (907) 659-2145 | FAX: (907) 659-2146 | www.arcticfoxenv.com

Michael Baker International 3900 C St Ste 900 Anchorage, AK 99503

Attn:	Devon Roe / Haley Runa / Kieran Brawn
Phone:	(907) 273-1666 / (907) 575-8652

Email: <u>Devon.Roe@mbakerintl.com</u> <u>Haley.Runa@mbakerintl.com</u> <u>Kieran.Brawn@mbakerintl.com</u>

AF Lab #:AF72040Client Sample ID:M9313Location/Project:2020 ASDP WQCOC#:90085Sample Matrix:Liquid

Report Date:	10/10/2020
Date Arrived:	9/19/2020
Date Sampled:	9/17/2020
Time Sampled:	1010
Collected By:	SAO

Flag Definitions

MDL = Method Reporting Limit B = Below Regulatory Minimum H = Above Regulatory Maximum M = Matrix Interference J = Best Available Estimate U = Less Than Detection Limit D = Lost to Dilution

Comments: Attached are the results for analyses of your samples. Some samples were analyzed by Eurofins in Tacoma, Washington. Tracking information is as follows:

Michael Baker Intl Sample ID: M9313 Analyses Requested: DRO RRO with Silica Gel cleanup Arctic Fox ID: AF72040 Time Sampled: 1010 Matrix: Liquid Eurofins Lab ID: 580-97631-4

				RCRA		Analysis	Analysis
Parameter	Result	Units	RL	Limits	Flag	Method	Date
6020A Total Metals							9/26/2020
Arsenic	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Barium	0.203	mg/l	0.050	100.0		6020A	
Cadmium	<mrl< td=""><td>mg/l</td><td>0.004</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.004	1.0		6020A	
Chromium	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	
Lead	<mrl< td=""><td>mg/l</td><td>0.008</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.008	5.0		6020A	
Mercury	<mrl< td=""><td>mg/l</td><td>0.003</td><td>0.200</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.003	0.200		6020A	
Selenium	<mrl< td=""><td>mg/l</td><td>0.080</td><td>1.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.080	1.0		6020A	
Silver	<mrl< td=""><td>mg/l</td><td>0.010</td><td>5.0</td><td></td><td>6020A</td><td></td></mrl<>	mg/l	0.010	5.0		6020A	

new. Min

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-97631-1

Client Project/Site: 0920-4669/2020 ASDPWQ

For:

Arctic Fox Environmental, Inc Pouch 340043 Prudhoe Bay, Alaska 99734

Attn: Arctic Fox

Shuid cum-

Authorized for release by: 10/8/2020 2:15:22 PM

Sheri Cruz, Project Manager I (253)922-2310 Sheri.Cruz@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

Expert

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	9
Chronicle	12
Certification Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

Job ID: 580-97631-1

Laboratory: Eurofins TestAmerica, Seattle

Narrative

Job Narrative 580-97631-1

Comments

No additional comments.

Receipt

The samples were received on 9/22/2020 2:30 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.6° C.

GC Semi VOA

Method AK102 & 103: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 580-338918 and analytical batch 580-340091 recovered outside control limits for the following analyte: RRO (nC25-nC36).

Method AK102 & 103: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 580-338918 and 580-338989 and analytical batch 580-339212 recovered outside control limits for the following analytes: DRO (nC10-<nC25). The associated samples were re-prepared and re-analyzed within holding time. Both sets of data have been reported.

Method AK102 & 103: The laboratory control sample duplicate (LCSD) associated with preparation batch 580-338918 and analytical batch 580-340091 recovered below control limits for DRO (nC10-<nC25). The re-extraction of associated samples AF72037 (580-97631-1), AF72038 (580-97631-2), AF72039 (580-97631-3), AF72040 (580-97631-4), (LCS 580-338918/2-A), (LCSD 580-338918/3-A) and (MB 580-338918/1-A) was silica-gel cleaned during prep, but not split before cleaning. Therefore, the re-extraction for these samples was not able to be analyzed without cleanup. Silica gel cleaned data is reported for both extraction batches and non silica gel is reported in AB 340091 and prep batch of 338918

Method AK102 & 103: Surrogate recovery for the following sample was outside control limits: AF72039 (580-97631-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method AK102 & 103: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) associated with preparation batch 580-339767 and 580-339832 and analytical batch 580-340091 recovered outside control limits for the following analytes: DRO (nC10-<nC25). This batch was a re-extraction for DRO below control limits in the LCS/LCSD of the original extraction, therefore both data sets are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with all samples in this batch so LCS and LCSD were used instead.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 580-339767.

Method 3510C: The emulsions were broken up using sodium sulfate and rinsed with solvent.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Qualifiers

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

GC Semi VO	
Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*1	LCS/LCSD RPD exceeds control limits.
X	Surrogate recovery exceeds control limits
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Client Sample ID: AF72037 Date Collected: 09/17/20 14:30 Date Received: 09/22/20 14:30

Lab Sample ID: 580-97631-1 Matrix: Water

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
RRO (nC25-nC36)	ND	*1	0.28		mg/L		09/23/20 12:00	10/06/20 12:16	1
DRO (nC10- <nc25)< td=""><td>ND</td><td>* *1</td><td>0.12</td><td></td><td>mg/L</td><td></td><td>09/23/20 12:00</td><td>10/06/20 12:16</td><td>1</td></nc25)<>	ND	* *1	0.12		mg/L		09/23/20 12:00	10/06/20 12:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	70		50 - 150				09/23/20 12:00	10/06/20 12:16	1
	88 esel Range Organ	iics & Res	50 - 150 idual Range (Organic	s with Si	ilica G	09/23/20 12:00	10/06/20 12:16	1
n-Triacontane-d62 Method: AK102/103 - Die	esel Range Organ		idual Range	-			el Clean-Up		1
Method: AK102/103 - Die Analyte	esel Range Organ Result	Qualifier	idual Range (RL	Drganic: MDL	Unit	ilica G	el Clean-Up Prepared	Analyzed	1 Dil Fac
Method: AK102/103 - Die Analyte DRO (nC10- <nc25)< td=""><td>esel Range Organ Result ND</td><td></td><td>idual Range (RL 0.12</td><td>-</td><td>Unit mg/L</td><td></td><td>el Clean-Up Prepared 09/23/20 12:00</td><td>Analyzed 09/26/20 15:08</td><td>1 Dil Fac 1</td></nc25)<>	esel Range Organ Result ND		idual Range (RL 0.12	-	Unit mg/L		el Clean-Up Prepared 09/23/20 12:00	Analyzed 09/26/20 15:08	1 Dil Fac 1
Method: AK102/103 - Die Analyte DRO (nC10- <nc25)< td=""><td>esel Range Organ Result</td><td>Qualifier</td><td>idual Range (RL</td><td>-</td><td>Unit</td><td></td><td>el Clean-Up Prepared</td><td>Analyzed 09/26/20 15:08</td><td>1 1 1 1</td></nc25)<>	esel Range Organ Result	Qualifier	idual Range (RL	-	Unit		el Clean-Up Prepared	Analyzed 09/26/20 15:08	1 1 1 1
Method: AK102/103 - Die Analyte	esel Range Organ Result ND	Qualifier *	idual Range (RL 0.12	-	Unit mg/L		el Clean-Up Prepared 09/23/20 12:00	Analyzed 09/26/20 15:08	1 Dil Fac 1 1 Dil Fac
Method: AK102/103 - Die Analyte DRO (nC10- <nc25) RRO (nC25-nC36)</nc25) 	esel Range Organ Result ND ND	Qualifier *	idual Range (<u>RL</u> 0.12 0.28	-	Unit mg/L		Prepared 09/23/20 12:00 09/23/20 12:00	Analyzed 09/26/20 15:08 09/26/20 15:08 Analyzed	1

Analyte DRO (nC10- <nc25)< th=""><th>Result</th><th>Qualifier</th><th>RL</th><th>MDL</th><th>Unit mg/L</th><th><u> </u></th><th>Prepared</th><th>Analyzed</th><th>Dil Fac</th></nc25)<>	Result	Qualifier	RL	MDL	Unit mg/L	<u> </u>	Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Limits		ing/E		Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				10/01/20 13:14	10/06/20 09:36	1
n-Triacontane-d62	92		50 - 150				10/01/20 13:14	10/06/20 09:36	1

Job ID: 580-97631-1

5

Lab Sample ID: 580-97631-2 Matrix: Water

Date Collected: 09/17/20 14:40 Date Received: 09/22/20 14:30

Client Sample ID: AF72038

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
RRO (nC25-nC36)	ND	*1	0.26		mg/L		09/23/20 12:00	10/06/20 12:36	1
DRO (nC10- <nc25)< td=""><td>ND</td><td>* *1</td><td>0.11</td><td></td><td>mg/L</td><td></td><td>09/23/20 12:00</td><td>10/06/20 12:36</td><td>1</td></nc25)<>	ND	* *1	0.11		mg/L		09/23/20 12:00	10/06/20 12:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	75		50 - 150				09/23/20 12:00	10/06/20 12:36	1
n-Triacontane-d62	92		50 - 150				09/23/20 12:00	10/06/20 12:36	1
_ Method: AK102/103 - D	iesel Range Orgar	nics & Res	idual Range (Organic	s with S	ilica G	iel Clean-Up		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td></td><td>*</td><td>0 11</td><td></td><td>ma/l</td><td></td><td>09/23/20 12.00</td><td>09/26/20 15:29</td><td>1</td></nc25)<>		*	0 11		ma/l		09/23/20 12.00	09/26/20 15:29	1

DRO (nC10- <nc25)< th=""><th>ND ^</th><th>0.11</th><th>mg/L</th><th>09/23/20 12:00</th><th>09/26/20 15:29</th><th>1</th><th></th></nc25)<>	ND ^	0.11	mg/L	09/23/20 12:00	09/26/20 15:29	1	
RRO (nC25-nC36)	ND	0.26	mg/L	09/23/20 12:00	09/26/20 15:29	1	
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac	
Surrogate o-Terphenyl	<u>%Recovery</u> <u>Qualifier</u> 70	Limits 50 - 150			Analyzed 09/26/20 15:29	Dil Fac	
	(<i>/</i>					RRO (nC25-nC36) ND 0.26 mg/L 09/23/20 12:00 09/26/20 15:29	RRO (nC25-nC36) ND 0.26 mg/L 09/23/20 12:00 09/26/20 15:29 1

Method: AK102/103 - Die	sel Range Orgar	nics & Res	idual Range	Organic	s with S	ilica G	el Clean-Up	- RE	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>ND</td><td>*</td><td>0.12</td><td></td><td>mg/L</td><td></td><td>10/01/20 13:14</td><td>10/06/20 09:56</td><td>1</td></nc25)<>	ND	*	0.12		mg/L		10/01/20 13:14	10/06/20 09:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150				10/01/20 13:14	10/06/20 09:56	1

Client Sample ID: AF72039 Date Collected: 09/17/20 13:25 Date Received: 09/22/20 14:30

Lab Sample ID: 580-97631-3 Matrix: Water

: Water

5

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
RRO (nC25-nC36)	ND	*1	0.28	mg/L		09/23/20 12:00	10/06/20 12:56	1
DRO (nC10- <nc25)< td=""><td>ND</td><td>* *1</td><td>0.12</td><td>mg/L</td><td></td><td>09/23/20 12:00</td><td>10/06/20 12:56</td><td>1</td></nc25)<>	ND	* *1	0.12	mg/L		09/23/20 12:00	10/06/20 12:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	73		50 - 150			09/23/20 12:00	10/06/20 12:56	1
n-Triacontane-d62 Method: AK102/103 - Die			-	-				Dil Fac
n-Triacontane-d62 Method: AK102/103 - Die Analyte	esel Range Organ Result	Qualifier	idual Range	MDL Unit	n Silica G	Gel Clean-Up Prepared	Analyzed	Dil Fac
n-Triacontane-d62 Method: AK102/103 - Die Analyte DRO (nC10- <nc25)< td=""><td>esel Range Organ Result</td><td></td><td>idual Range RL 0.12</td><td>MDL Unit mg/L</td><td></td><td>Gel Clean-Up Prepared 09/23/20 12:00</td><td>Analyzed 09/26/20 15:49</td><td>Dil Fac</td></nc25)<>	esel Range Organ Result		idual Range RL 0.12	MDL Unit mg/L		Gel Clean-Up Prepared 09/23/20 12:00	Analyzed 09/26/20 15:49	Dil Fac
<i>n-Triacontane-d</i> 62 Method: AK102/103 - Die Analyte DRO (nC10- <nc25)< td=""><td>esel Range Organ Result</td><td>Qualifier</td><td>idual Range</td><td>MDL Unit</td><td></td><td>Gel Clean-Up Prepared</td><td>Analyzed</td><td>1 1 1 1</td></nc25)<>	esel Range Organ Result	Qualifier	idual Range	MDL Unit		Gel Clean-Up Prepared	Analyzed	1 1 1 1
n-Triacontane-d62 Method: AK102/103 - Die Analyte DRO (nC10- <nc25) RRO (nC25-nC36)</nc25) 	esel Range Organ Result	Qualifier *	idual Range RL 0.12	MDL Unit mg/L		Gel Clean-Up Prepared 09/23/20 12:00	Analyzed 09/26/20 15:49	Dil Fac
n-Triacontane-d62 Method: AK102/103 - Die	esel Range Organ Result ND ND	Qualifier *	idual Range (<u>RL</u> 0.12 0.28	MDL Unit mg/L		Gel Clean-Up Prepared 09/23/20 12:00 09/23/20 12:00	Analyzed 09/26/20 15:49 09/26/20 15:49 Analyzed	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>ND</th><th>*</th><th>0.12</th><th></th><th>mg/L</th><th></th><th>10/01/20 13:14</th><th>10/06/20 10:16</th><th>1</th></nc25)<>	ND	*	0.12		mg/L		10/01/20 13:14	10/06/20 10:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
		V	50 450				10/01/00 10.11	10/06/00 10:16	
o-Terphenyl	36	X	50 - 150				10/01/20 13:14	10/06/20 10.16	1

Lab Sample ID: 580-97631-4 Matrix: Water

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
RRO (nC25-nC36)	ND	*1	0.28		mg/L		09/23/20 12:00	10/06/20 13:16	1
DRO (nC10- <nc25)< td=""><td>ND</td><td>* *1</td><td>0.12</td><td></td><td>mg/L</td><td></td><td>09/23/20 12:00</td><td>10/06/20 13:16</td><td>1</td></nc25)<>	ND	* *1	0.12		mg/L		09/23/20 12:00	10/06/20 13:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	71		50 - 150				09/23/20 12:00	10/06/20 13:16	1
n-Triacontane-d62 : Method: AK102/103 - Diese	⁸⁷ <mark>el Range Orga</mark> r	ics & Res	50 - 150 idual Range (Organic	s with Si	ilica G	09/23/20 12:00	10/06/20 13:16	1
n-Triacontane-d62 Method: AK102/103 - Diese	el Range Orgar		idual Range	-			el Clean-Up		1
n-Triacontane-d62 Method: AK102/103 - Diese Analyte	el Range Organ Result	Qualifier	idual Range (RL	Drganic MDL	Unit	ilica G	el Clean-Up Prepared	Analyzed	1 Dil Fac
n-Triacontane-d62 Method: AK102/103 - Dieso Analyte DRO (nC10- <nc25)< td=""><td>el Range Organ Result</td><td></td><td>idual Range (RL 0.12</td><td>-</td><td>Unit mg/L</td><td></td><td>el Clean-Up Prepared 09/23/20 12:00</td><td>Analyzed 09/26/20 16:09</td><td>Dil Fac</td></nc25)<>	el Range Organ Result		idual Range (RL 0.12	-	Unit mg/L		el Clean-Up Prepared 09/23/20 12:00	Analyzed 09/26/20 16:09	Dil Fac
n-Triacontane-d62 Method: AK102/103 - Diese Analyte DRO (nC10- <nc25)< td=""><td>el Range Organ Result</td><td>Qualifier</td><td>idual Range (RL</td><td>-</td><td>Unit</td><td></td><td>el Clean-Up Prepared</td><td>Analyzed</td><td></td></nc25)<>	el Range Organ Result	Qualifier	idual Range (RL	-	Unit		el Clean-Up Prepared	Analyzed	
n-Triacontane-d62 Method: AK102/103 - Diese Analyte DRO (nC10- <nc25) RRO (nC25-nC36)</nc25) 	el Range Organ Result	Qualifier *	idual Range (RL 0.12	-	Unit mg/L		el Clean-Up Prepared 09/23/20 12:00	Analyzed 09/26/20 16:09	Dil Fac
n-Triacontane-d62 Method: AK102/103 - Diese Analyte DRO (nC10- <nc25)< td=""><td>el Range Organ Result ND ND</td><td>Qualifier *</td><td>idual Range (<u>RL</u> 0.12 0.28</td><td>-</td><td>Unit mg/L</td><td></td><td>Prepared 09/23/20 12:00 09/23/20 12:00</td><td>Analyzed 09/26/20 16:09 09/26/20 16:09</td><td>Dil Fac</td></nc25)<>	el Range Organ Result ND ND	Qualifier *	idual Range (<u>RL</u> 0.12 0.28	-	Unit mg/L		Prepared 09/23/20 12:00 09/23/20 12:00	Analyzed 09/26/20 16:09 09/26/20 16:09	Dil Fac

Analyte DRO (nC10- <nc25)< th=""><th>• •</th><th>Qualifier</th><th>RL 0.13</th><th>•</th><th>Unit mg/L</th><th><u> </u></th><th>Prepared</th><th>Analyzed 10/06/20 10:36</th><th>Dil Fac</th></nc25)<>	• •	Qualifier	RL 0.13	•	Unit mg/L	<u> </u>	Prepared	Analyzed 10/06/20 10:36	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		50 - 150				10/01/20 13:14	10/06/20 10:36	1
n-Triacontane-d62	94		50 - 150				10/01/20 13:14	10/06/20 10:36	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 580-3 Matrix: Water												nt Samp	Prep Ty		
Analysis Batch: 340091													Prep Ba		
Analysis Baton. 040001		мв	мв										Пор Вс		0001
Analyte	Re		Qualifier		RL		MDL	Unit		D	Pr	repared	Analyz	zed	Dil Fa
RRO (nC25-nC36)		ND).25			mg/L		_		3/20 12:00			
DRO (nC10- <nc25)< td=""><td></td><td>ND</td><td></td><td>0</td><td>).11</td><td></td><td></td><td>mg/L</td><td></td><td></td><td>09/23</td><td>3/20 12:00</td><td>10/06/20</td><td>10:55</td><td></td></nc25)<>		ND		0).11			mg/L			09/23	3/20 12:00	10/06/20	10:55	
		ΜВ	МВ												
Surrogate	%Recov		Qualifier	Limits	s						Pi	repared	Analyz	zed	Dil Fa
p-Terphenyl		97			-							3/20 12:00	-		
n-Triacontane-d62		127		50 - 15	50						09/2	3/20 12:00	10/06/20	10:55	
Lab Sample ID: LCS 580-	338918/2-A								Cli	ent	San	nple ID:			
Matrix: Water													Prep Ty	-	
Analysis Batch: 340091				• •									Prep Ba	atch: 3	3891
A				Spike		LCS			11		-	0/ D = =	%Rec.		
				Added		Result 0.590	Qua	litier	Unit		<u>D</u>	<u>%Rec</u>	Limits 60 - 120		
RRO (nC25-nC36)									mg/L						
DRO (nC10- <nc25)< td=""><td></td><td></td><td></td><td>0.500</td><td></td><td>0.386</td><td></td><td></td><td>mg/L</td><td></td><td></td><td>77</td><td>75 - 125</td><td></td><td></td></nc25)<>				0.500		0.386			mg/L			77	75 - 125		
	LCS	LCS	5												
Surrogate	%Recovery	Qua	lifier	Limits											
o-Terphenyl	95			50 - 150											
n-Triacontane-d62	100			50 - 150											
Lab Sample ID: LCSD 58	0-338018/3-4							· ·	liont S	am	nlo	ID: Lab	Control	Samul	
Matrix: Water	0-330310/3-A									am	ipie		Prep Ty		
Analysis Batch: 340091													Prep Ba		
Analysis Baten. 040001				Spike		LCSD	LCS	D					%Rec.		RPI
Analyte				Added		Result			Unit		D	%Rec	Limits	RPD	Limi
RRO (nC25-nC36)				0.500		0.466	*1		mg/L			93	60 - 120	24	2
DRO (nC10- <nc25)< td=""><td></td><td></td><td></td><td>0.500</td><td></td><td>0.304</td><td>* *1</td><td></td><td>mg/L</td><td></td><td></td><td>61</td><td>75 - 125</td><td>24</td><td>2</td></nc25)<>				0.500		0.304	* *1		mg/L			61	75 - 125	24	2
	LCSD	100	20												
Surrogate	%Recovery			Limits											
o-Terphenyl	82	Qua		50 - 150											
n-Triacontane-d62	87			50 - 150 50 - 150											

Lab Sample ID: MB 580-338 Matrix: Water Analysis Batch: 339212	918/1-B							le ID: Method Prep Type: To Prep Batch: 3	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
RRO (nC25-nC36)	ND		0.25		mg/L		09/23/20 12:00	09/26/20 14:08	1
DRO (nC10- <nc25)< td=""><td>ND</td><td></td><td>0.11</td><td></td><td>mg/L</td><td></td><td>09/23/20 12:00</td><td>09/26/20 14:08</td><td>1</td></nc25)<>	ND		0.11		mg/L		09/23/20 12:00	09/26/20 14:08	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	65		50 - 150				09/23/20 12:00	09/26/20 14:08	1
n-Triacontane-d62	83		50 - 150				09/23/20 12:00	09/26/20 14:08	1

Eurofins TestAmerica, Seattle

5

6

Method: AK102/103 - Diesel Range Organics & Residual Range Organics with Silica Gel Clean-Up (Continued)

Lab Sample ID: LCS 580-3 Matrix: Water Analysis Batch: 339212	338918/2-В					Cile	nt Sa	mpie iD	: Lab Cor Prep Ty Prep Ba	pe: Tot	al/NA
Analysis Datch. 555212			Spike	LCS	LCS				%Rec.		50510
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
RRO (nC25-nC36)	· · · · · · · · · · · · · · · · · · ·		0.500	0.541		mg/L		108	60 - 120		
DRO (nC10- <nc25)< th=""><th></th><th></th><th>0.500</th><th>0.355</th><th>*</th><th>mg/L</th><th></th><th>71</th><th>75 - 125</th><th></th><th></th></nc25)<>			0.500	0.355	*	mg/L		71	75 - 125		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	91		50 - 150								
n-Triacontane-d62	87		50 - 150								
•											
Matrix: Water)-338918/3-B	i -	Spike	LCSD	LCSD	Client Sa	ample	ID: Lat	D Control Prep Ty Prep Ba %Rec.	pe: Tot	al/NA
Matrix: Water Analysis Batch: 339212)-338918/3-B			-		Unit	ample D	ID: Lat	Prep Ty Prep Ba	pe: Tot	al/NA 38918
Matrix: Water Analysis Batch: 339212 Analyte)-338918/3-B		Spike	-	LCSD				Prep Ty Prep Ba %Rec.	pe: Tot atch: 33	al/NA 38918 RPD Limit
Matrix: Water Analysis Batch: 339212 Analyte RRO (nC25-nC36))-338918/3-B		Spike Added	Result	LCSD Qualifier	Unit		%Rec	Prep Ty Prep Ba %Rec. Limits	pe: Tot atch: 33	al/NA 38918 RPC Limit
Matrix: Water Analysis Batch: 339212 Analyte RRO (nC25-nC36)		LCSD	Spike Added 0.500	Result 0.449	LCSD Qualifier	Unit mg/L		%Rec 90	Prep Ty Prep Ba %Rec. Limits 60 - 120	pe: Tot atch: 33 RPD 19	al/NA 38918 RPD Limit
Matrix: Water Analysis Batch: 339212 Analyte RRO (nC25-nC36) DRO (nC10- <nc25)< td=""><td></td><td>LCSD</td><td>Spike Added 0.500</td><td>Result 0.449</td><td>LCSD Qualifier</td><td>Unit mg/L</td><td></td><td>%Rec 90</td><td>Prep Ty Prep Ba %Rec. Limits 60 - 120</td><td>pe: Tot atch: 33 RPD 19</td><td>al/NA 38918 RPD</td></nc25)<>		LCSD	Spike Added 0.500	Result 0.449	LCSD Qualifier	Unit mg/L		%Rec 90	Prep Ty Prep Ba %Rec. Limits 60 - 120	pe: Tot atch: 33 RPD 19	al/NA 38918 RPD
Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 339212 Analyte RRO (nC25-nC36) DRO (nC10- <nc25) Surrogate o-Terphenyl</nc25) 	LCSD	LCSD	Spike Added 0.500 0.500	Result 0.449	LCSD Qualifier	Unit mg/L		%Rec 90	Prep Ty Prep Ba %Rec. Limits 60 - 120	pe: Tot atch: 33 RPD 19	al/NA 38918 RPD Limit

Method: AK102/103 - Diesel Range Organics & Residual Range Organics with Silica Gel Clean-Up - RE

Lab Sample ID: MB 580-339 Matrix: Water Analysis Batch: 340091	9767/1-В МВ	MB						Clie	ent Samp	ole ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte		Qualifier	RL	1	MDL	Unit) Р	repared	Analyzed	Dil Fac
RRO (nC25-nC36) - RE			0.25			mg/L			1/20 13:14		1
DRO (nC10- <nc25) -="" re<="" td=""><td>ND</td><td></td><td>0.11</td><td></td><td></td><td>mg/L</td><td></td><td></td><td>01/20 13:14</td><td></td><td>1</td></nc25)>	ND		0.11			mg/L			01/20 13:14		1
	MB	B MB									
Surrogate	%Recovery	Qualifier	Limits					F	repared	Analyzed	Dil Fac
o-Terphenyl - RE	78	3	50 - 150					10/0	01/20 13:14	10/06/20 08:37	1
n-Triacontane-d62 - RE	91	1	50 - 150					10/0	01/20 13:14	10/06/20 08:37	1
Lab Sample ID: LCS 580-33 Matrix: Water Analysis Batch: 340091	39767/2-B		0	1.00			Clier	nt Sa		Lab Control S Prep Type: To Prep Batch:	otal/NA
Amelute			Spike	-	LCS		11		0/ D = =	%Rec.	
Analyte			Added	Result 0.427	Qua	Inter	Unit	D	85	Limits 60 - 120	
RRO (nC25-nC36) - RE					+		mg/L				
DRO (nC10- <nc25) -="" re<="" td=""><td></td><td></td><td>0.500</td><td>0.327</td><td>~</td><td></td><td>mg/L</td><td></td><td>65</td><td>75 - 125</td><td></td></nc25)>			0.500	0.327	~		mg/L		65	75 - 125	
	LCS LC	s									
Surrogate	%Recovery Qu	alifier	Limits								
o-Terphenyl - RE	81		50 - 150								
n-Triacontane-d62 - RE	89		50 - 150								

Method: AK102/103 - Diesel Range Organics & Residual Range Organics with Silica Gel Clean-Up - RE (Continued)

Lab Sample ID: LCSD 580 Matrix: Water Analysis Batch: 340091)-339767/3-B	i			C	Client Sa	ample	ID: Lat	Control S Prep Ty Prep Ba	pe: Tot	al/NA	
			Spike	LCSD	LCSD				%Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
RRO (nC25-nC36) - RE			0.500	0.449		mg/L		90	60 - 120	5	20	ī
DRO (nC10- <nc25) -="" re<="" td=""><td></td><td></td><td>0.500</td><td>0.357</td><td>*</td><td>mg/L</td><td></td><td>71</td><td>75 - 125</td><td>9</td><td>20</td><td></td></nc25)>			0.500	0.357	*	mg/L		71	75 - 125	9	20	
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
o-Terphenyl - RE	88		50 - 150									
n-Triacontane-d62 - RE	89		50 - 150									

Eurofins TestAmerica, Seattle

Dilution

Factor

1

1

1

Run

RE

RE

RE

Batch

Number

338918

339767

Prepared

or Analyzed

09/23/20 12:00

339832 10/01/20 13:14 S1S

340091 10/06/20 09:36 T1W

338918 09/23/20 12:00 JBT

338989 09/23/20 18:36 RJL

339212 09/26/20 15:08 TL1

10/01/20 13:14 S1S

340091 10/06/20 12:16

Analyst

JBT

T1W

Lab

TAL SEA

Lab Sample ID: 580-97631-2

Batch

Туре

Prep

Prep

Prep

Analysis

Cleanup

Analysis

Cleanup

Analysis

Batch

Method

AK102 & 103

3510C

3510C

3630C

3510C

3630C

AK102/103

AK102/103

Client Sample ID: AF72037 Date Collected: 09/17/20 14:30 Date Received: 09/22/20 14:30

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sample ID: AF72038 Date Collected: 09/17/20 14:40

Date Received: 09/22/20 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			338918	09/23/20 12:00	JBT	TAL SEA
Total/NA	Analysis	AK102 & 103		1	340091	10/06/20 12:36	T1W	TAL SEA
Total/NA	Prep	3510C	RE		339767	10/01/20 13:14	S1S	TAL SEA
Total/NA	Cleanup	3630C	RE		339832	10/01/20 13:14	S1S	TAL SEA
Total/NA	Analysis	AK102/103	RE	1	340091	10/06/20 09:56	T1W	TAL SEA
Total/NA	Prep	3510C			338918	09/23/20 12:00	JBT	TAL SEA
Total/NA	Cleanup	3630C			338989	09/23/20 18:36	RJL	TAL SEA
Total/NA	Analysis	AK102/103		1	339212	09/26/20 15:29	TL1	TAL SEA

Client Sample ID: AF72039

Date Collected: 09/17/20 13:25 Date Received: 09/22/20 14:30

Lab Sample ID: 580-97631-3

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			338918	09/23/20 12:00	JBT	TAL SEA
Total/NA	Analysis	AK102 & 103		1	340091	10/06/20 12:56	T1W	TAL SEA
Total/NA	Prep	3510C	RE		339767	10/01/20 13:14	S1S	TAL SEA
Total/NA	Cleanup	3630C	RE		339832	10/01/20 13:14	S1S	TAL SEA
Total/NA	Analysis	AK102/103	RE	1	340091	10/06/20 10:16	T1W	TAL SEA
Total/NA	Prep	3510C			338918	09/23/20 12:00	JBT	TAL SEA
Total/NA	Cleanup	3630C			338989	09/23/20 18:36	RJL	TAL SEA
Total/NA	Analysis	AK102/103		1	339212	09/26/20 15:49	TL1	TAL SEA
_ Client Sam	ple ID: AF7	72040					Lab S	Sample ID: 580-97631-4

Client Sample ID: AF72040 Date Collected: 09/17/20 10:10 Date Received: 09/22/20 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			338918	09/23/20 12:00	JBT	TAL SEA
Total/NA	Analysis	AK102 & 103		1	340091	10/06/20 13:16	T1W	TAL SEA

Client Sample ID: AF72040 Date Collected: 09/17/20 10:10 Date Received: 09/22/20 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C	RE		339767	10/01/20 13:14	S1S	TAL SEA
Total/NA	Cleanup	3630C	RE		339832	10/01/20 13:14	S1S	TAL SEA
Total/NA	Analysis	AK102/103	RE	1	340091	10/06/20 10:36	T1W	TAL SEA
Total/NA	Prep	3510C			338918	09/23/20 12:00	JBT	TAL SEA
Total/NA	Cleanup	3630C			338989	09/23/20 18:36	RJL	TAL SEA
Total/NA	Analysis	AK102/103		1	339212	09/26/20 16:09	TL1	TAL SEA

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Matrix: Water

Lab Sample ID: 580-97631-4

Eurofins TestAmerica, Seattle

Client: Arctic Fox Environmental, Inc Project/Site: 0920-4669/2020 ASDPWQ Job ID: 580-97631-1

Laboratory: Eurofins TestAmerica, Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Alaska (UST)		State	17-024	01-14-22
The following analyte the agency does not o		report, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
AK102 & 103	3510C	Water	DRO (nC10- <nc25)< td=""><td></td></nc25)<>	
AK102 & 103	3510C	Water	RRO (nC25-nC36)	
			DRO (nC10- <nc25)< td=""><td></td></nc25)<>	
AK102/103	3510C	Water	DIG (1010- (1023)	

Eurofins TestAmerica, Seattle

Sample Summary

Client: Arctic Fox Environmental, Inc Project/Site: 0920-4669/2020 ASDPWQ

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-97631-1	AF72037	Water	09/17/20 14:30	09/22/20 14:30
580-97631-2	AF72038	Water	09/17/20 14:40	09/22/20 14:30
580-97631-3	AF72039	Water	09/17/20 13:25	09/22/20 14:30
580-97631-4	AF72040	Water	09/17/20 10:10	09/22/20 14:30

TestAmerica Seattle

phone 253.922.2310 fax 253.922.5047

2020

0420 .4669

Packing: Citizer

Cust. Seal: Yes<u>X_No___</u>

Blue Ice, Wet, Dry, None

Comments Section if the lab is to dispose of the sample.

Special Instructions/QC Requirements & Comments:

Flammable

Sample Identification

Client Contact

ASULWQ

19323

19324

119515

- Therm. ID: <u>A2</u> Cor: <u>2.6</u> ° Unc: <u>3.7</u> °-Cooler Dsc: <u>L.A</u> Packing: Gridder FedEx:_____

Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other

UPS:

Other:

Lab Cour: X

Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the

Skin Irritant

19623-1000

5755 8th Street East Tacoma, WA 98424

Arctic Fox Environmental

Prudhoe Bay, AK 99734

Phone 907-659-2145

AF72037

1772038

NF72039

NF7LOYD

Possible Hazard Identification:

Non-Hazard

FAX 907-659-2146

Project Name:

Site:

P O #

Pouch 340043

Chain of Custody Record

56 j.

11 ι, U

 \sim

 $\overline{\bigcirc}$

¥. 1

х 6

X X

X

Return to Client

3 ()2

 \simeq

Ω

of

Cont.

17

2

2

2

Regulatory Program: Dw NPDES RCRA Other:

WORKING DAYS

Matrix

L

*

Tel/Fax:907-659-2145

CALENDAR DAYS

团

L

 \Box

Π

Sample .

Date

41110

N.

Poison B

Analysis Turnaround Time

2 weeks

1 day Sample

1 week Standatd

Type

(C=Comn

G=Grab)

Unknown

3 days Rush

TAT if different from Below

Sample

Time

1430

1440

1325

1010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc. Project Manager: Tim Johnson/Lance Morris IrSite Contact: Tim J /Lance M. COC No: 9 008.5 Date: 9/21/20) of Y COCs Lab Contact: Tim J. /Lance M. Carrier: Sampler: SA-O For Lab Use Only: Walk-in Client: No No Lab Sampling: Job / SDG No. Sample Specific Notes: 10 580-97631 Chain of Custody Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Archive for____ Disposal by Lab Months

Custody Seals Intact: Yes No	Custody Seal No.:		Cooler Temp. ("C): Obs'd:	Corr'd:	Therm ID No.
Relinquished by: Low John	Company: Arctic Fox Env.	Pate/Time:	Received by: July Sh	Company: ETA SCA	Date/Time: 912212020 1430
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:

Pregisted of 97 LCS JLS 5122/200

Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013

Login Sample Receipt Checklist

Client: Arctic Fox Environmental, Inc

Login Number: 97631 List Number: 1 Creator: Blankinship, Tom X

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-97631-1

List Source: Eurofins TestAmerica, Seattle

Arctic Fox Environmental, Inc. PO Box 340043 | Prudhoe Bay, AK 99734 | PHONE: (907) 659-2145 | arcticfox@astacalaska.com | www.arcticfoxenv.com

			DOC 3.2.1-02 Sample Receiving Checklist	
Client	Name:		cheel Bale Int Date and Time: 9/1	9/20 0 0850
	Project:		o ASPP WCZ	TT F CAR
AF#		37-7	2040 Init	ials: TOJ-SAO
Cooler #(s)			8178 Traceable Thermometer: 111898870	
Temp.	1.1	I.R. Gun:	8178 Traceable Thermometer: 111898870	
DW Te	mp > 6° C	NA	Env Waste Sample Y	
Other Tem	np >10° C	N	Within 4 hrs of sample time	
N/A	Yes	No]	
	×		1. Were temp blanks received?	. It is a set of the s
	×		2. Cooler Seals intact? (N/A if hand delivered.)	
	×		3. Chain of Custody present?	
	×		4. Did C.O.C. agree with samples received?	
	X		5. Was C.O.C completely filled out by client?	
	×		6. Bottles received intact?	
	*		7. Proper Container and preservatives used?	
	× ×		8. Sufficient volume provided for analysis?	
			9. Sample is not multiphasic?	
X			10. Were VOA samples without headspace? 11. Were VOA vials preserved? Preservative	
~		×	11. Were VOA vials preserved? Preservative 12. Did samples require preservation with sodium thiosulfate?	
×		~	13. If "Yes" for # 12, is was there a residual chlorine recorded?	
			14. Are samples with short holding times for analysis received	
	X		within hold?	
	×		15. Was standard turn around (TAT) requested?	TAT
Record Di	screpancies:			