
2014

ALPINE AREA LAKES RECHARGE STUDIES

139279-MBJ-RPT-001 | 8/26/2014 Michael Baker Jr., Inc. | 3900 C Street Suite 900 | Anchorage, AK 99503

TABLE OF CONTENTS

ConocoPhillips Alaska

1.0	Introduction	
1.1	1 Study Overview	6
1.2	2 Lake Recharge Background	
2.0	Permits and Water Use	
3.0	Study Methods	12
3.2	1 Catchment Basin Area Delineation (Detailed Study Lakes)	
3.2		
3.3	3 Snow Water Equivalent Surveys (Detailed Study Lakes)	
	3.3.1 Double Sampling Method	13
	3.3.2 Sampling Transects and Points	14
	3.3.3 Snow Density Sampling	14
	3.3.4 Snow Water Equivalent Lake Recharge Methods	
3.4	4 Lake Recharge Observations	
3.5	5 2013/2014 Ice Road Contributions	
4.0	Study Results	
	1 Detailed Study Lakes	
	4.1.1 Catchment Basin Delineation	
	4.1.2 Snow Survey and Snow Water Equivalent	23
	4.1.3 Water Surface Elevation	
	4.1.4 Lake Recharge	
	4.1.5 Historical Results	
4.2	2 General Study Lakes	
	4.2.1 Water Surface Elevation	
	4.2.2 Lake Recharge	
4.3	3 Summary	
5.0	References	
Арре	endix A Gage and TBM Locations	A.1
	endix B Lake Bathymetry: Lakes M9602 and M9605	
Арре	endix C Snow Survey Sheets: Lakes M9602 and M9605	
Арре	endix D Alpine Area Lakes Recharge Study Photos	D.1

FIGURES

Figure 1.1: 2014 Alpine Area Lakes	7
Figure 4.1: Lake M9602 Drainage Basin and Snow Survey Locations	21
Figure 4.2: Lake M9605 Drainage Basin and Snow Survey Locations	22

TABLES

Table 1.1: 2014 Alpine Area Detailed and General Study Lakes	6
Table 2.1: Summary of Permitted and Actual Withdrawal Volumes	
Table 4.1: Detailed Study Lakes Snow Survey Summary	
Table 4.2: WSE Data for Lake M9602	

Table 4.3: WSE Data for Lake M9605	
Table 4.4: Detailed Study Lakes Spring Breakup Recharge Summary	
Table 4.5: Comparison of Historical Results	
Table 4.6: WSE Data for Lake B8530	29
Table 4.7: WSE Data for Lake B8531/L9326	
Table 4.8: WSE Data for Lake L9323	31
Table 4.9: WSE Data for Lake L9324	
Table 4.10: WSE Data for Lake K209	
Table 4.11: WSE Data for Lake K214	
Table 4.12: WSE Data for Lake M9603	35
Table 4.13: WSE Data for Lake M9607	
Table 4.14: Summary of 2014 Hydrologic Recharge Observations	

EQUATIONS

Equation 1 - Terrain Specific Snow Depth of Catchment	.16
Equation 2 – Terrain Specific Snow Density of Catchment	.16
Equation 3 – Terrain Specific SWE of Catchment	.16
Equation 4 – Catchment Specific, Area Weighted SWE	.17
Equation 5 – Total Calculated Potential Snowmelt Contribution, per Lake	.17
Equation 6 – Estimated Recharge, per Lake	.18

Рнотоз

Photo 1: Staff gage at Lake M9607, pre breakup; May 5, 2014	12
Photo 2: Collecting core using Mt. Rose Snow Sampler (Model 3600); April 30, 2014	14
Photo 3: Weighing bucket of pooled snow samples; April 30, 2014	15
Photo 4: Field crew taking snow core with Mt Rose Sampler and depth measurements	15
Photo 5: Lake M9602 during breakup, looking south; June 6, 2014	19
Photo 6: Lake M9602 post-breakup, looking south; July 10, 2014	19
Photo 7: Lake M9605 during breakup receiving inflow, looking north; June 6, 2014	20
Photo 8: Snow berm located on the northern bank of Lake M9602, looking east; April 20,	
2014	23
Photo 9: Berms along west bank of M9605 pre-breakup, looking south; May 17 2014	23
Photo 10: Outflow from Lake M9602 into Lake M9601, looking southwest; July 10, 2014	27
Photo 11: Outflow from Lake M9605 to unnamed lake to the north, looking south; July 10,	
2014	27

APPENDIX D PHOTOS

Photo D.1: Lake B8530 pre-breakup, looking west; May 17, 2014	D 1
Photo D.2: Lake B8530 during breakup, looking northwest; June 6, 2014	D 1
Photo D.3: Lake B8530 post-breakup, looking northwest; July 11, 2014	
Photo D.4: Lake B8531/L9326 pre-breakup, looking southwest; May 16, 2014	D.2
Photo D.5: Lake B8531/L9326 during breakup, looking southeast; June 6, 2014	
Photo D.6: Lake B8531/L9326 post-breakup, looking southeast; July 11, 2014	
Photo D.7: Lake B8533 pre-breakup, looking east; May 17, 2014	
Photo D.8: Lake B8533 during breakup, looking northeast; June 7, 2014	
Photo D.9: Lake B8533 post-breakup, looking northeast; July 11, 2014	
Photo D.10: Lake L9132 pre-breakup, looking east; May 17, 2014	
Photo D.11: Lake L9132 during breakup, looking east; June 6, 2014	
Photo D.12: Lake L9132 post-breakup, looking southeast; July 10, 2014	
Photo D.13: Lake L9323 pre-breakup, looking southeast; May 17, 2014	
Photo D.14: Lake L9323 during breakup, looking northeast; June 8, 2014	
Photo D.15: Lake L9323 post-breakup, looking southeast; July 11, 2014	
Photo D.16: Lake L9324 during breakup, looking east; June 8, 2014	
Photo D.17: Lake L9324 post-breakup, looking west; July 11, 2014	
Photo D.18: Lake K209 pre-breakup, looking southwest; May 17, 2014	
Photo D.19: Lake K209 during breakup, looking south; June 6, 2014	
Photo D.20: Lake K209 post-breakup, looking south; July 10, 2014	
Photo D.21: Lake K214 pre-breakup, looking north; May 17, 2014	D.8
Photo D.22: Lake K214 during breakup, looking north; June 6, 2014	D.8
Photo D.23: Lake K214 post-breakup, looking northeast; July 10, 2014	D.8
Photo D.24: Lake M9602 pre-breakup, looking south; May 17, 2014	
Photo D.25: Lake M9602 during breakup, looking south; June 6, 2014	
Photo D.26: Lake M9602 post-breakup, looking southwest; July 10, 2014	D.9
Photo D.27: Lake M9603 pre-breakup, looking south; May 17, 2014	D.10
Photo D.28: Lake M9603 during breakup, looking southeast; June 6, 2014	
Photo D.29: Lake M9603 post-breakup, looking southeast; July 10, 2014	D.10
Photo D.30: Lake M9605 pre-breakup, looking south; May 17, 2014	
Photo D.31: Lake M9605 during breakup, looking north; June 6, 2014	D.11
Photo D.32: Lake M9605 post-breakup, looking south; July 10, 2014	D.11
Photo D.33: Lake M9607 pre-breakup, looking northwest; May 22, 2014	
Photo D.34: Lake M9607 during breakup, looking north; June 6, 2014	
Photo D.35: Lake M9607 post-breakup, looking northwest; July 11, 2014	
Photo D.36: Nanuq Lake during breakup, looking north; June 8, 2014	
Photo D.37: Nanuq Lake, post-breakup, looking north; July 11, 2014	D.13

ACRONYMS AND ABBREVIATIONS

ADF&G	Alaska Department of Fish and Game
ADNR	Alaska Department of Natural Resources
Baker	Michael Baker Jr., Inc.
BPMSL	British Petroleum Mean Sea Level
CPAI	ConocoPhillips Alaska, Inc.
CRD	Colville River Delta
GIS	Geographic information system
GPS	Global positioning system
HWM	High water mark
NAD83	North American Datum of 1983
NRCS	Natural Resources Conservation Service
Mgal	Million gallons
SWE	Snow water equivalent
TBM	Temporary benchmark
WSE	Water surface elevation

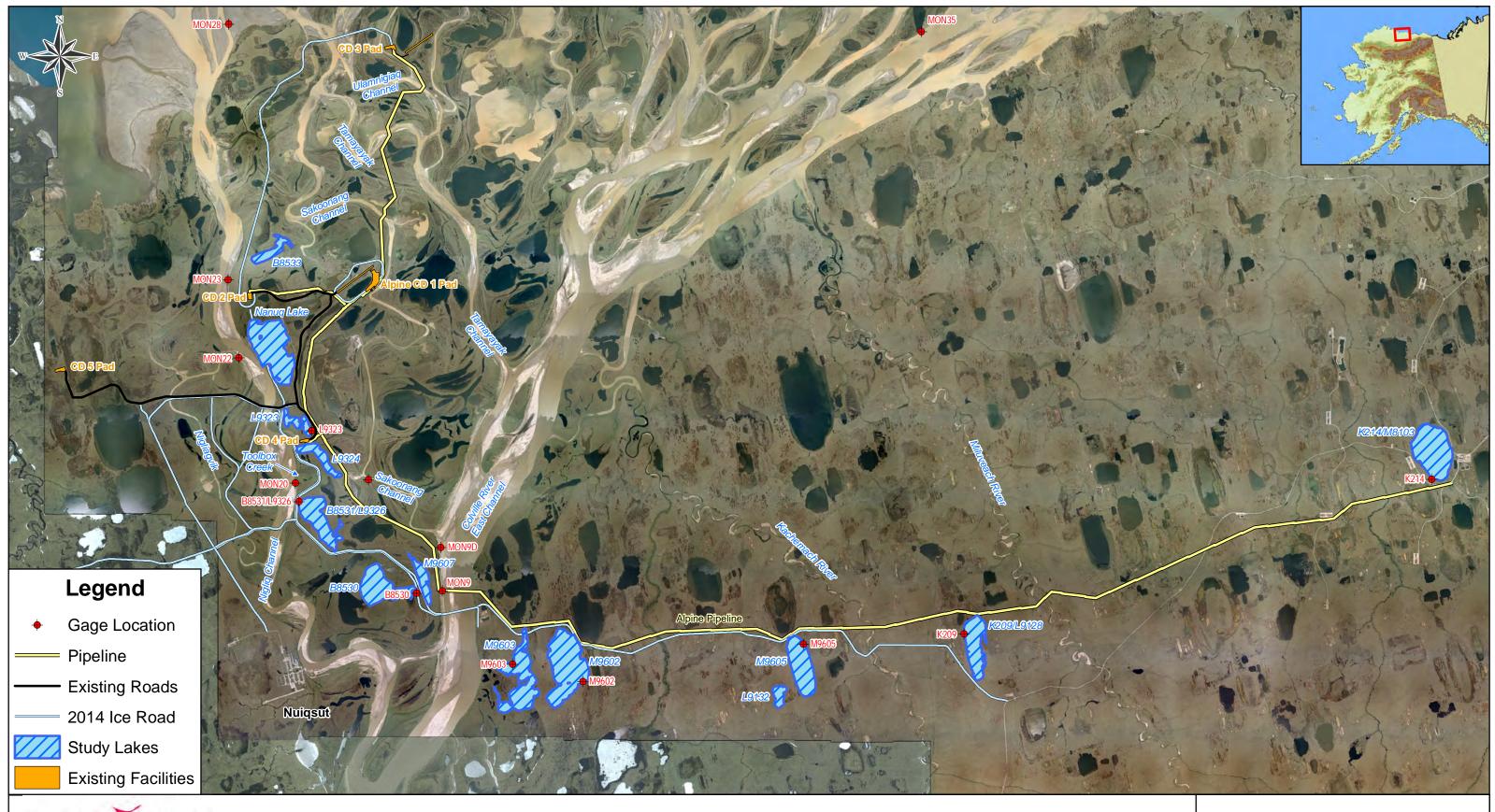
1.0 **INTRODUCTION**

Conoco Phillips Alaska, Inc. (CPAI) withdraws water and ice from lakes within the Colville River Delta (CRD) and near Kuparuk. The use of ice roads and pads during the winter months is necessary for maintenance and operations at the Alpine oil field. This temporary infrastructure supports overland transportation of resources. Winter seasonal construction of ice roads and pads requires withdrawal of millions of gallons of fresh water and ice chips from area lakes, typically between December and May.

To comply with stipulations of Alaska Department of Fish and Game (ADF&G) Fish Habitat Permits and Alaska Department of Natural Resources (ADNR) Temporary Water Use Permits, CPAI conducts studies at water withdrawal lakes to document seasonal recharge. Michael Baker Jr., Inc. (Baker) conducted late season snow surveys and spring lake recharge studies to monitor water levels and provide photo documentation for permit compliance. This report summarizes the hydrologic observations, measurements, and analyses undertaken for this project.

Baker was supported during field monitoring by CPAI Alpine Environmental Coordinators, Umiaq/LCMF, LLC, and Pathfinder Aviation. All Baker and support team crew members are recognized for their contribution to an incident-free field effort.

1.1 STUDY OVERVIEW


The objectives of the 2014 Alpine Area Lakes Recharge Studies include collection and analysis of spring breakup recharge data at thirteen water withdrawal lakes. Lake studies included observations and photos, gage water surface elevation (WSE) measurements, and late season snow surveys.

For the purposes of this report, the lakes are grouped as Detailed Study Lakes and General Study Lakes. The 2014 Detailed and General Study Lakes are listed in Table 1.1 and the locations are shown on Figure 1.1.

Detailed Study Lakes	M9602 and M9605
General Study	B8530, B8531/L9326, B8533, L9132, L9323, L9324,
Lakes	K209, K214, M9603, M9607, and Nanuq Lake

Table 1.1: 2014 Alpine Area Detailed and General Study Lakes

Conc	ocoPhillips			Miles	
	Alaska	0	2	4	
Date:	08/12/2014	Project:	13927	79	
Drawn:	MEA	File: Figure 1.1			
Checked:	SME	Scale:	1 in = 2 r	niles	

Michael Baker Jr., Inc. 3900 C Street, Suite 900 Anchorage, AK 99503 Phone: (907) 273-1600 Fax: (907) 273-1699

2014 ALPINE AREA LAKES RECHARGE STUDY

FIGURE: 1.1

(SHEET 1 of 1)

Lake recharge was determined using visual observations and photos focusing on key hydrologic features, including peak water levels, hydraulic connectivity with other bodies of water, and inflow/outflow locations. Existing staff gages were restored during spring breakup setup and data was collected when Baker field personnel were in the vicinity of these lakes.

Late-season snow surveys and calculation of available recharge volumes were conducted for lakes M9602 and M9605 prior to breakup. Catchment basins were delineated prior to field investigations using available topography and aerial imagery. Basin-specific snow water equivalent (SWE) was calculated using data collected during the snow surveys. Potential snowmelt contribution was calculated using SWE values and delineated catchment basin areas. Estimated recharge volumes were calculated using WSE data and delineated lake specific area.

1.2 LAKE RECHARGE BACKGROUND

Annual recharge of lakes in the CRD and Kuparuk River Unit occurs as a result of three primary mechanisms: spring breakup flooding, snow melt, and precipitation. Of these, spring breakup flooding and snow melt (considered overland flow) were investigated. Lake elevation, proximity to streams, and local topography typically dictate the recharge mechanism. Lakes located within annually inundated stream floodplains or hydraulically connected areas recharge primarily from spring breakup flood flows. Lakes not inundated because of distance or topographical limitations depend solely on snowmelt runoff and precipitation for recharge.

The magnitude of spring breakup flooding fluctuates from year to year in terms of stage and discharge. If flood stage is relatively low, bankfull recharge may not occur depending on topography and elevation. In addition, flow extents are affected by the unpredictable establishment and release of ice jams during breakup. Presence and location of ice jams can determine whether a lake becomes hydraulically connected to a stream recharge source regardless of flood magnitude.

The amount of snowmelt runoff a lake receives depends on terrain, topography, and the properties of the snow in the catchment basin. SWE of a basin can be determined by the depth and density of snow within a catchment in the spring when melting occurs; it is directly proportional to the quantity of potential snowmelt recharge. SWE will vary with the type of terrain and may be presented as a weighted, basin-specific value. For lakes sharing similar topographical and climatological features with those previously studied, average SWE values may be multiplied by catchment basin area to calculate a conservative estimate of potential snowmelt recharge. This method was previously used for lakes M9602 and M9605 (Baker 2010); a comparison of the 2010 thru 2014 results is included in Section 4.1.5.

In this study, the lake catchment basin terrain is designated as lake or tundra. Lake areas were assumed to contribute all snowmelt based on analysis of snow survey data and estimated recharge volumes. However, all tundra snowmelt will not directly contribute to lake recharge because of variations in vegetation and topography relative to the lake. The quantity of snowmelt retained in tundra areas differs for each lake catchment basin.

Kane et al. (1999) performed a study in the Kuparuk River Basin to determine an average quantity of snowmelt retained in tundra areas of lake catchment basins as a percentage of total potential

snowmelt contribution, based on estimated recharge quantities. Study findings suggest applying an average runoff coefficient of 0.67 to tundra SWE as a reduction factor to account for snowmelt retention.

In 2007, Baker performed a recharge monitoring study for lakes within the CRD. Results suggested an average tundra SWE runoff coefficient of 0.67, further validating the value obtained by Kane et al. (Baker 2007). Similar topography and proximity to the CRD and Kuparuk River basins justifies using a runoff coefficient of 0.67 for calculating the total estimated snowmelt contribution for lakes M9602 and M9605.

2.0 **PERMITS AND WATER USE**

CPAI requires water sources for building ice roads and ice pads, drilling, drinking water, and general operations. ADNR, ADF&G, or both agencies grant permits on the condition of CPAI compliance with temporary water use requirements to regulate water withdrawal and maintain conditions supportive of fish habitat. To maintain fish habitat, lakes must seasonally recharge water volumes borrowed during the winter season and lost naturally through evaporation. Fish Habitat and Temporary Water Use permits stipulate the water withdrawal quantities for each water year. Additionally, these permits specify the form of water that may be borrowed from each lake – liquid only, specific quantities of liquid and ice, or a total of both without designation of individual quantities. Ice aggregate removal is permitted over naturally grounded portions of the lake 4 feet deep or less. A water year is defined as one year beginning and ending with spring breakup (June through May). Actual withdrawal quantities are reported by CPAI per water year; these numbers are compared to the maximum water withdrawal allowed. If two permits are issued for one lake, the maximum water withdrawal by CPAI is less than or equal to the lesser allowable quantity.

Lakes M9602, M9603, M9605, and Nanuq Lake were permitted for specific borrow quantities of liquid and ice. The remaining nine lakes were permitted for a total of both borrow quantities without designation of individual quantities. Water and ice was withdrawn from all study lakes except Lake L9132 during the 2013/2014 ice road construction season; lakes M9602 and M9605 were used as both water and ice sources.

Table 2.1 summarizes the permits regulating water use, purpose, and permitted versus actual withdrawal volumes by form at the thirteen water withdrawal lakes. The permitted and actual withdrawal volumes are based on third and fourth quarter 2013 and first and second quarter 2014 water use reports (CPAI 2013a, 2013b, 2014a, and 2014b).

			2014 Alpine	Area Lakes Rechar	ge Study					
	Permit				Permitted Volume ¹			Withdrawal Volume ³		
Lake	ADF&G	ADNR	Permit Expiration	Water Use Purpose	Liquid	lce	Total Water ²	Liquid	lce	Total Water
							(Mg	al)	l	
B8530	FG03-III- 0383	TWUP A2013- 145	12/15/2018	Ice Road/Pad	:::	:::	32.00	17.26	0.00	17.26
B8531/L9326	FG03-III- 0382	TWUP A2008- 180/TWUP A2013-145	12/16/2013 12/15/2018	Ice Road/Pad	:::	:::	6.59	5.32	0.00	5.32
B8533	FH03-III- 0377	TWUP A2011- 153	12/5/2016	Ice Road/Pad/DS/ Wells SPT/Drilling Make-Up			32.22			27.72
L9132	Non Fish Bearing	TWUP A2011- 153	12/5/2016		:::	:::	12.04	0.00	0.00	0.00
L9323	FH03-III- 0380	TWUP A2008- 181/TWUP A2013-146	12/15/2018	Ice Road/Pad			8.51			8.15
L9324	FG03-III- 0381	TWUP A2013- 146	12/15/2018	Ice Road/Pad			1.65	1.08	0.00	1.08
K209	FH11-III- 0302	LAS 23900	Permanent	Ice Road Pad	:::	:::	11.00	:::	:::	7.64
K214	FH11-III- 0299	LAS 2762	Permanent	Ice Road/Pad/Drilli ng Make- Up/Other/DS/ Wells SPT			37.80			4.87
M9602	FH05-III- 0327	TWUP A2010- 119	12/2/2015	Ice Road/Pad	0.76	30.63	31.39	0.16	4.81	4.97
M9603	FH05-III- 0338	TWUP A2011- 154	12/8/2016	Ice Road/Pad	8.72	14.53	23.25		:::	5.04
M9605	FH05-III- 0328	TWUP A2010- 119	12/2/2015	Ice Road/Pad	8.52	13.62	22.14	5.55	2.62	8.17
M9607	FH03-III- 0384	TWUP A2008- 180/TWUP A2013-145	12/15/2018	Ice Road/Pad			5.47	4.54	0.00	4.54
Nanuq Lake	FH06-III- 0150	TWUP A2011- 51	12/11/2016	Ice Road/Pad	0.13	13.43	13.56	0.00	10.28	10.28
Notes	2 Total pe 3 Total wi	rmitted withdraw	al may be either between June 1,	llate specific liquid/ ice, water, or a com 2013 and May 31, 2	bination		/ice withdra	wal volum	es not av	ailable

Table 2.1: Summary of Permitted and Actual Withdrawal Volumes

3.0 **STUDY METHODS**

3.1 CATCHMENT BASIN AREA DELINEATION (DETAILED STUDY LAKES)

The catchment basins for lakes M9602 and M9605, including lake and tundra areas, were delineated using satellite imagery, topographic maps, and visual assessment of the local topography prior to the field study. Topographic data for this area is limited and as a result, the catchment basin delineation for both lakes is subjective. In addition to limited topography, seasonal data about nearby water bodies such as wetlands and ponds, with potential to contribute to recharge, is lacking. These areas have additional capacity and were not included within the catchment basin delineation.

3.2 WATER SURFACE ELEVATIONS SURVEYS

To estimate lake water recharge, changes in WSE were measured at each study lake except B8533, L9132, and Nanuq Lake. Gages were rehabilitated for 2014. WSE monitoring was conducted at ten study lakes during the pre-breakup, breakup, and post-breakup periods.

Photo 1: Staff gage at Lake M9607, pre breakup; May 5, 2014

A staff gage assembly consists of a metal gage faceplate mounted on a two-by-four timber. The timber is attached with U-bolts to a 1.5-inch wide angle iron driven approximately 2 feet into the ground. All gages installed are indirect-read staff gages; meaning, the values read on the gage faceplate do not directly correspond to a known elevation. Photo 1 shows the gage setup at Lake M9607. A tabulated list of gage and temporary benchmark (TBM) locations is included in Appendix A.

Standard differential leveling techniques were used to establish staff gage elevations with local TBMs. A single new TBM was installed when a preexisting TBM was farther than ¼ mile from the study lake. New TBMs were all given an arbitrary elevation of 100.00 feet. An arbitrary elevation of 100.00 feet is typically used to avoid confusion with actual British Petroleum Mean Sea Level (BPMSL) elevations which are much lower in the surrounding terrain.

Elevations of the staff gages at lakes L9323 and L9324 were based on preexisting TBMs tied to BPMSL elevations. Elevations of gages at the remaining eleven lakes were based on TBMs established in 2011, 2012, and 2014 with arbitrary elevations of 100.00 feet. WSE recorded at staff gages tied to arbitrary elevations are relative to

each other and used to illustrate a change in WSE for the specific lake; they are not tied to BPMSL elevations.

Pre-breakup WSE was located at all lakes, except lakes M9602 and M9605, by using an electric drill to auger a 2-inch sampling hole in the ice covering the lake. Because ice was grounded in the sample area at lakes M9602 and M9605, top of ice elevations were substituted for pre-breakup WSE for analysis. Top of ice elevations vary from actual WSE depending on ice thickness and density, snow cover, and location and are used as a conservative approximation (Baker 2002). Ice surface elevation was determined through differential leveling. WSE was calculated by subtracting measured freeboard from the ice surface elevation at the sample location. Freeboard was measured using a pocket rod.

During site visits, the observed water level on the gage faceplates was recorded. Chalk was applied to the angle iron during each site visit to capture high water marks (HWM). Subsequent HWMs were recorded during site visits when floodwaters removed the chalk. In some cases, HWMs were not evident.

When water levels were not sufficiently high to be recorded on the staff gage face plates, standard differential leveling techniques were used to measure WSE. The horizontal position of each staff gage and TBM was recorded using a handheld global positioning system (GPS) in North American Datum of 1983 (NAD83). Gage readings associated with local ponding were recorded, but were not used to generate the lake recharge hydrograph.

3.3 SNOW WATER EQUIVALENT SURVEYS (DETAILED STUDY LAKES)

3.3.1 DOUBLE SAMPLING METHOD

A double sampling method snow survey was conducted on lakes M9602 and M9605, as recommended in various industry papers and the 2007 CRD lakes recharge report (Baker 2007). Prior to fieldwork, snow sampling points were identified along predetermined transects.

Each snow survey transect was positioned to align across or perpendicular to snow features such as drifts and local topography (Woo 1997). For the double sampling method, measurements were recorded by measuring snow depth and mass at a smaller number of sample points, and by measuring snow depth at a larger number of sample points. While vegetation is not a major factor affecting snow distribution in the arctic, terrain has a major effect. Terrain-based snow surveys allow for more accurate determinations of mean catchment snow values and produces sufficient spatial snow information for most hydrological studies (Woo 1997). For the purposes of this study, terrain was identified in the field as either lake (based on the presence of ice) or tundra (based on the presence of vegetation) for each sample collected. Terrain was verified using existing maps in geographic information system (GIS) format.

3.3.2 SAMPLING TRANSECTS AND POINTS

Aerial imagery and topographic contours were used to delineate the lake catchment basins. Transects were aligned radiating outwards from the estimated center of the lake to the edge of the drainage basin to account for variability of drifted snow across the ice and at and over banks. Additional transects were selected to capture irregularities, including basin arms or other departures from a classic bowl shape.

Sampling points were then established along transects at a uniform spacing of approximately 200 feet. The total number of sampling points was dependent on the length of each transect and the anticipated variability in snow within the terrain unit. By placing a sampling point at the intersection of transects and spacing sampling points at a uniform distance along transects, random sampling was accomplished. Each terrain type covered by a single transect included at least one snow mass sampling point. Sampling points were stored in two GPS units.

At lakes M9602 and M9605, isolated mechanically disturbed areas of snow of various size and shapes were encountered. Berms were formed by snow clearing to access lake surface ice for aggregate removal, and by the accumulation of snow drifts. Prior to the survey, additional snow had re-covered previously cleared lake surfaces though not necessarily to the median natural depth. Snowmelt contribution from the berms was considered an additional lake recharge source. To estimate berm quantities, snow mass and depths were sampled along representative transects and berm areas were found by recording circumnavigation tracks in a GPS unit. Berm snowmelt contribution calculations were performed assuming natural median snow depth on the cleared areas was reached at the time of investigation.

3.3.3 SNOW DENSITY SAMPLING

Density measurements were conducted according to procedures outlined in *National Resource Conservation Service (NRCS) Snow Survey Sampling Guide* (NRCS 2006) and *British of Columbia Snow Survey Manual* (BC Ministry of Environment 1981), using a $1^5/_8$ -inch ID Model 3600 Mt. Rose (Standard Federal) snow sampling tube and scale (Photo 3.2). This sampler was chosen based on its common acceptance and use by the NRCS. Snow depth alone was sampled using a graduated snow pole.

If shallow snow was encountered having a SWE of less than 2 inches, estimated by having a depth of less than twelve inches, bulk sampling was

Photo 2: Collecting core using Mt. Rose Snow Sampler (Model 3600); April 30, 2014

conducted (NRCS 2006). Bulk sampling is a grouping of multiple samples collected in the

immediate area of the sample point, recording sample depth of each sample and averaging, then weighing pooled core samples (Photo 3.3). Bulk samples are then divided by the number of samples collected to determine an average weight for the sample location (Baker 2007).

Photo 3: Weighing bucket of pooled snow samples; April 30, 2014

3.3.4 SNOW WATER EQUIVALENT LAKE RECHARGE METHODS

The methods and equations used in this report for calculating SWE and the potential recharge contribution are the same used in the Baker 2007 report. Terrain-specific average snow depths were collected by field crews using the graduated snow pole (Photo 3.4) and snow sampler. To calculate the terrain specific snow depth for each lake catchment, Equation 1 was used.

Photo 4: Field crew taking snow core with Mt Rose Sampler and depth measurements with a graduated snow pole; April 30, 2014

Equation 1 - Terrain Specific Snow Depth of Catchment

$$d_i = \left[\sum_{l=1}^p d_l\right] / p$$

d_i = Terrain Specific Snow Depth of Catchment (in)
l = Individual Sample
p = Total Number of Terrain Specific Depth Samples
d₁ = Measured Snow Depth (in)

Terrain specific average snow densities were then calculated using the snow sampler's cross sectional area, core depth, and the weights of the snow samples using Equation 2.

Equation 2 – Terrain Specific Snow Density of Catchment

$$\rho_i = \left[\sum_{k=1}^m \left(\frac{M_{snow}}{A_{core}d_{snow}}\right)_k\right] / m$$

 $\rho_{i} = Terrain \ Specific \ Snow \ Density \ of \ Catchment \ (lb/in^{3})$ $k = Individual \ Sample$ $m = Total \ Number \ of \ Terrain \ Specific \ Core \ Samples$ $M_{snow} = Measured \ Mass \ of \ Snow \ Sample \ (lb)$ $A_{core} = Area \ of \ Sampling \ Tube \ (in^{2})$ $d_{snow} = Depth \ of \ Snow \ Sample \ (in)$

Using the terrain specific snow densities, terrain specific SWE were then calculated using Equation 3.

Equation 3 – Terrain Specific SWE of Catchment

$$SWE_i = \frac{(\rho_i d_i)}{\rho_w}$$

 $SWE_{i} = Terrain Specific Snow Water Equivalent of Catchment (in)$ $\rho_{i} = Terrain Specific Snow Density (lb/in^{3})$ $d_{i} = Terrain Specific Snow Depth (in)$ $\rho_{w} = Density of Fresh Water (lb/in^{3})$

An area weighted SWE was calculated for the catchment basins using Equation 4. This calculation is based on Woo (1997) and Rovansek, Kane, and Hinzman (1993).

Equation 4 – Catchment Specific, Area Weighted SWE

$$SWE_{C} = \frac{\left(\sum_{i=1}^{n} \rho_{i} d_{i} A_{i} / \sum_{i=1}^{n} A_{i}\right)}{\rho_{w}}$$

 $SWE_{c} = Catchment Specific Snow Water Equivalent (in)$ i = Terrain n = Total Terrains Sampled in Catchment $\rho_{i} = Terrain Specific Snow Density (lb/in^{3})$ $d_{i} = Terrain Specific Snow Depth (in)$ $A_{i} = Terrain Specific Area (ft^{2})$ $\rho_{w} = Density of Fresh Water (lb/in^{3})$

Total calculated potential snowmelt contribution (V_P) and estimated recharge (V_0) were calculated for each lake using Equation 5 and Equation 6. The 2007 delta-wide runoff coefficient of 0.67 was applied to snowmelt contributed from tundra areas to account for reduced tundra contribution.

Equation 5 – Total Calculated Potential Snowmelt Contribution, per Lake

 $V_{P} = C_1 \left(SWE_l A_l + 0.67 SWE_t A_t \right)$

 $V_P = Total \ Calculated \ Potential \ Snowmelt \ Contribution \ (gal)$ $C_1 = Gallons \ of \ Water \ / \ ft^3 \ / \ in$ $SWE_l = Lake \ Specific \ Average \ Snow \ Water \ Equivalent \ (in)$ $SWE_t = Tundra \ Specific \ Average \ Snow \ Water \ Equivalent \ (in)$ $A_l = Lake \ Specific \ Area \ (ft^2)$ $A_t = Tundra \ Specific \ Area \ (ft^2)$ $0.67 = 2007 \ Delta - wide \ Runoff \ Coefficient$

Equation 6 – Estimated Recharge, per Lake

 $V_{O} = C_2 A_l WSE_{\Delta}$

 $V_{o} = Estimated \operatorname{Re} ch \operatorname{arg} e (gal)$ $C_{2} = Gallons of Water / ft^{3}$ $A_{l} = Lake Specific Area (ft^{2})$ $WSE_{\Delta} = Difference Between \operatorname{Pr} e - Breakup and Peak WSE (ft)$

3.4 LAKE RECHARGE OBSERVATIONS

Throughout breakup, each lake was monitored for changes in WSE. Aerial photographs were taken from a helicopter using a GPS camera. Photos were taken from various perspectives to capture the extent of snow melt, flow pattern, potential lake water recharge sources, and hydraulic connectivity with other water bodies. Written documentation of visual observations combined with time-stamped GPS photos support identification of each lake's recharge mechanism(s), extent, and timeline.

Hydrographs showing change in WSE over time were used to determine estimated lake recharge. Recession of floodwaters is evident in a negative slope after peak stage, indicating a lake has recharged over bankfull conditions and is discharging excess water by means of overbank flow.

3.5 2013/2014 ICE ROAD CONTRIBUTIONS

As-built drawings for the 2013/2014 ice road construction season were used to estimate the volume of ice road melt water recharge that contributed to lakes M9602 and M9605 catchment basins. Ice road contributions to local hydrology were determined using an estimated value of one million gallons of water per mile of ice road (ASCG 2005).

4.0 **STUDY RESULTS**

4.1 DETAILED STUDY LAKES

The catchment basin delineations, snow surveys, SWE calculation results, WSE observations, lake recharge observations, and historical comparison for the detailed study lakes, M9602 and M9605, are presented in this section.

4.1.1 CATCHMENT BASIN

DELINEATION

Catchment basin delineations for lakes M9602 and M9605 are presented in Figure 4.1 and Figure 4.2. Lake areas were taken from bathymetry reports (Appendix B) and GIS layers provided by CPAI.

Above average temperatures in late April and early May initialized melting of snow and ice within the catchment basin of lakes M9602 and M9605. By mid-May, most of the tundra in the catchment basin was exposed with areas of patchy snow cover. Temperatures dropped below average between mid-May and early June, delaying further melting in the catchment basins.

On June 6, only local melt was present around the Lake M9602 boundary with no flow passing into

Photo 5: Lake M9602 during breakup, looking south; June 6, 2014

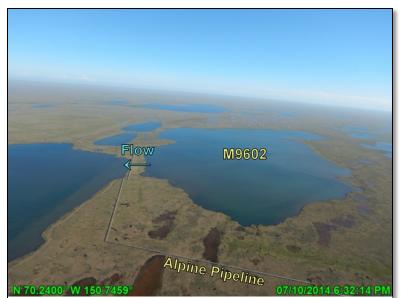


Photo 6: Lake M9602 post-breakup, looking south; July 10, 2014

Lake M9601 (Photo 5). During breakup monitoring, no overland flow sources were identified as contributing to the recharge of Lake M9602 aside from local snowmelt. During the final visit on July 10, outflow was observed into Lake M9601 (Photo 6).

Recharge processes during the 2014 season for Lake M9605 were comparable to the 2013 breakup (Baker 2013). On June 6, inflow was identified from a wetland to the southeast, and outflow was identified through a channel into an unnamed lake to the north (Photo 7). The catchment basin includes only a portion of this southern wetland and therefore the area of the basin is likely conservative.

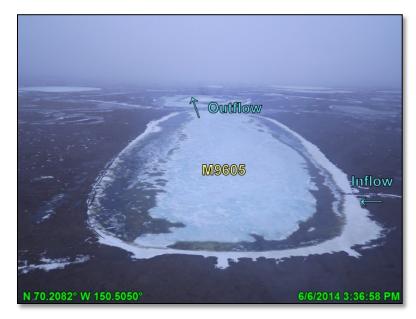
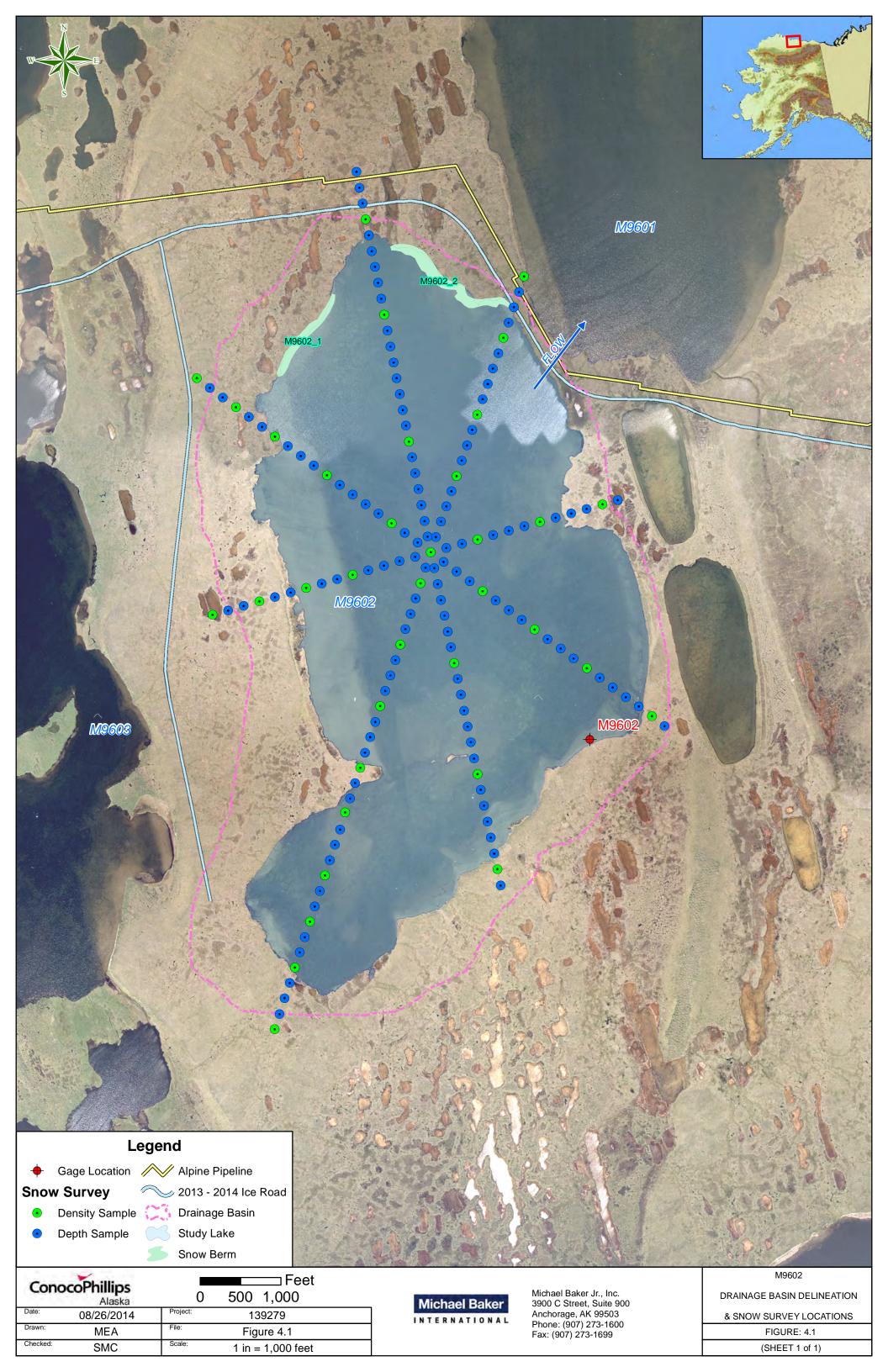
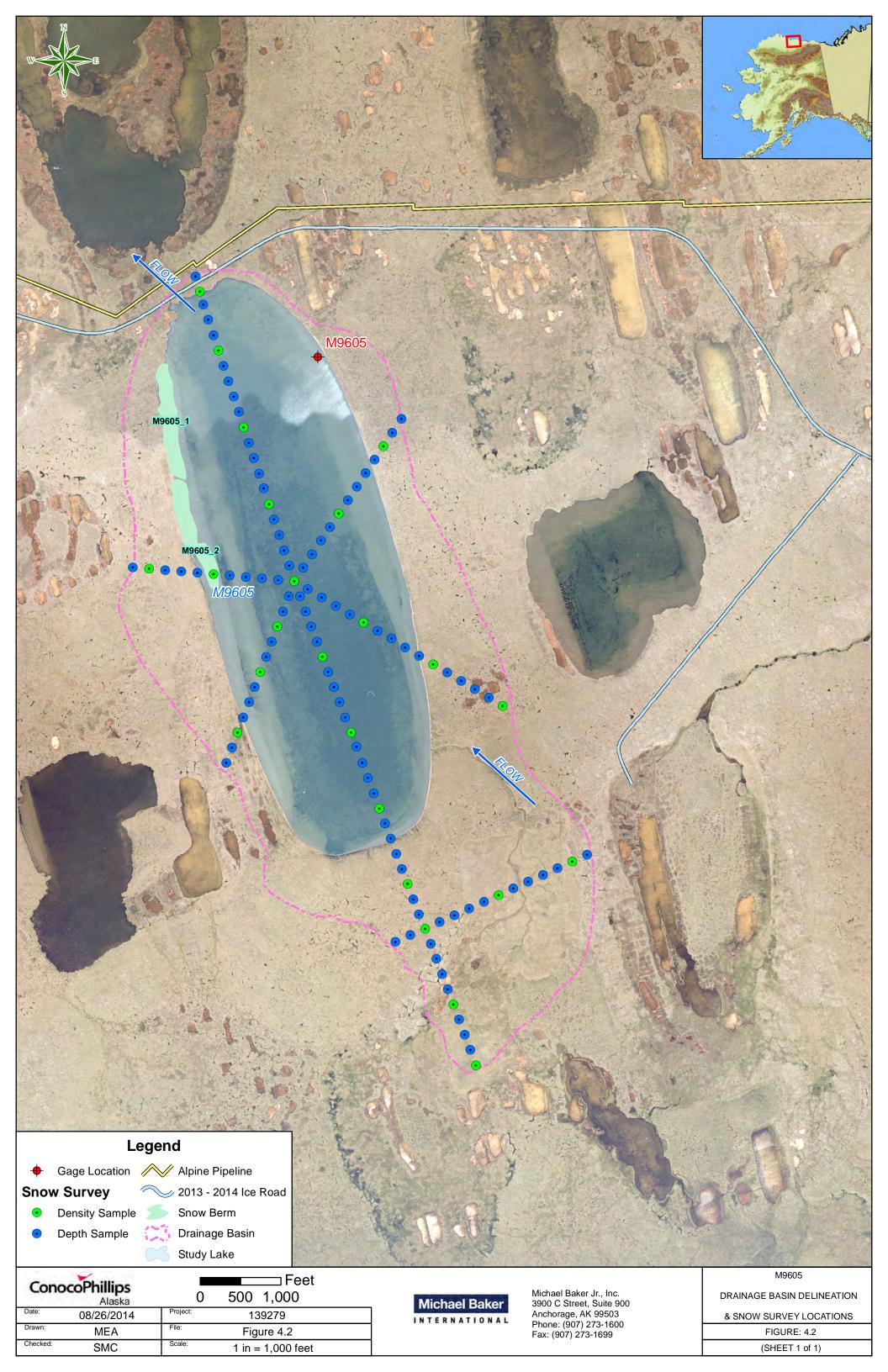




Photo 7: Lake M9605 during breakup receiving inflow, looking north; June 6, 2014

4.1.2 SNOW SURVEY AND SNOW WATER EQUIVALENT

Photo 8: Snow berm located on the northern bank of Lake M9602, looking east; April 20, 2014

Snow surveys were conducted prior to CRD spring breakup setup at Lake M9602 on April 29 and at Lake M9605 on April 30.

Seasonal snow cover conditions at the lakes varied from the Baker 2013 results (Baker 2013). Snow cover on the lakes was thinner, denser, and comprised less SWE than on nearby tundra. Overall snow depths were less than in 2013, except the lake snow depth average for Lake M9605, which was the same as that measured in 2013.

Snow density was generally greater over both lake and tundra,

except the tundra surrounding Lake M9605 where the 2014 average density was the same as the 2013 average density. The catchment basin of Lake M9602 contained the same overall SWE, and the basin of Lake M9605 contained less overall SWE than in 2013.

Snow berms and drifts were present at lakes M9602 and M9605, and are shown in Photo 8 and Photo 9, respectively. Both lakes had two berms; those on Lake M9602 were located along the north bank while berms on Lake M9605 were located along the west bank.

Berm snowmelt contribution calculations were performed assuming natural median snow depth on the cleared areas was reached at the time of investigation. Overall depth and density of the berms was greater than adjacent naturally

Photo 9: Berms along west bank of M9605 pre-breakup, looking south; May 17 2014

accumulated snow resulting in an increased SWE for these features. The SWE summaries for lakes

M9602 and M9605 and their respective berms are presented in Table 4.1. Comprehensive snow survey data sheets are included in Appendix C.

Lake	Area ¹ (ft ²)		Average Sr (ii	now Depth n)	0	Density /in)	Average	SWE (in)	Catchment Basin Weighted
	Lake	Tundra	Lake	Tundra	Lake	Tundra	Lake	Tundra	SWE ² (in)
M9602	28,426,616	14,677,378	8.3	15.8	0.011	0.010	2.55	4.45	3.19
M9605	14,841,964	17,865,930	8.0	15.4	0.011	0.008	2.48	3.49	3.03
Notes:	 Calculated from delineated drainage basins determined from aerial imagery minus the area encompassed by berms Specific to feature per lake and tundra contribution based on respective areas. 								

Table 4.1: Detailed Study Lakes Snow Survey Summary

4.1.3 WATER SURFACE ELEVATION

WSE was measured during and after spring breakup at lakes M9602 and M9605. Multiple attempts to measure pre-breakup WSE through holes drilled into the lake ice were unsuccessful. Only grounded ice was encountered at the drilled locations and therefore WSEs were not acquired. Top of ice elevations were measured at lakes M9602 and M9605 and were used as a conservative approximation for analysis purposes.

Melting of ice and snow at lakes M9602 and M9605 occurred slower than other study lakes because they are located outside of the CRD and lack significant channelized and overland flow. During breakup monitoring, substantial ice and snow covered the lake surfaces and no flow was observed into or out of Lake M9602, while two small channels transmitted flow into and out of Lake M9605.

Final WSEs for Lakes M9602 and M9605 were measured on July 10, at which point all snow and ice in the catchment basins had melted. WSE data and graphic representations for the Detailed Study Lakes are presented in Table 4.2 and Table 4.3.

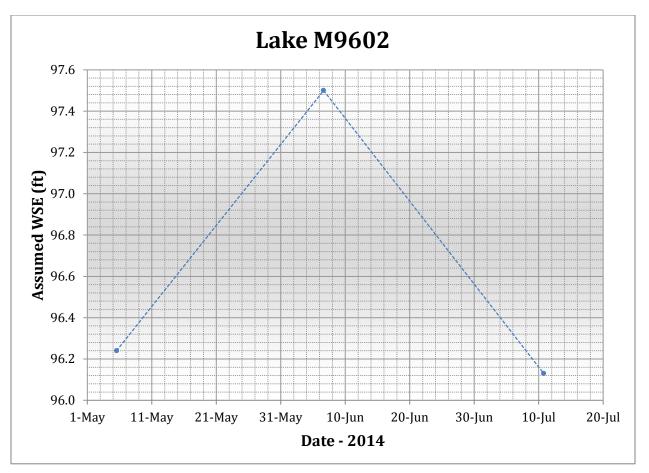


Table 4.2:	WSE	Data	for	Lake	M9602
------------	-----	------	-----	------	-------

Date and time	WSE (feet)	Observations
5/5/14 1:00 PM	96.24	Grounded ice observed, elevation represents top of ice elevation
6/6/14 3:27 PM	97.50	No outflow observed
7/10/14 6:20 PM	96.13	Outflow into Lake M9601 to the northeast

Notes:

1. Elevations are assumed based on TBM M9602-X at 100.00 feet, installed by Baker in May 2011

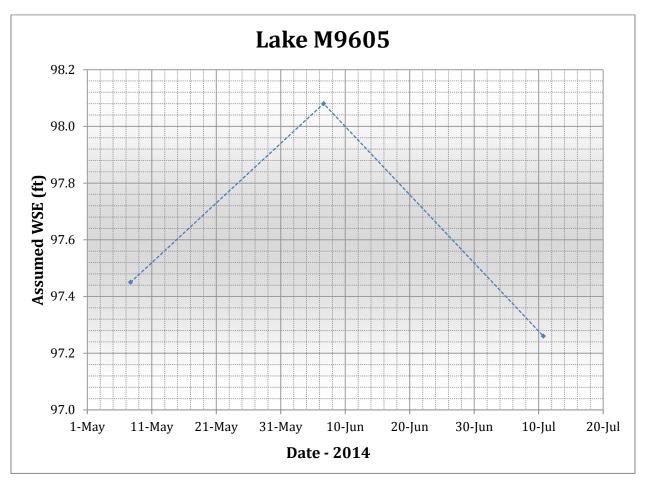


Table 4.3: WSE Data for Lake M9605

Date and time	WSE (feet)	Observations
5/7/14 5:00 PM	97.45	Grounded ice observed, elevation represents top of ice elevation
6/6/14 3:41 PM	98.08	Inflow from a wetland to the southeast
7/10/14 5:35 PM	97.26	Outflow north into unnamed lake

Notes:

1. Elevations are assumed based on TBM M9605-X at 100.00 feet, installed by Baker in May 2011

4.1.4 LAKE RECHARGE

During the 2014 monitoring season, Lake M9602 recharged over bankfull conditions as observed by channelized outflow to Lake M9601 (Photo 10), and is verified by a rise and recession of WSE presented in the hydrograph (Table 4.2). Lake M9605 recharged over bankfull conditions as observed by channelized outflow to an unnamed lake to the north (Photo 11), and is verified by a rise and recession of WSE presented in the hydrograph (Table 4.3).

Potential snowmelt contributions were calculated for lakes M9602 and M9605 based on SWE and lake areas, including areas of mechanically formed berms and their associated drifted snow accumulation.

Estimated recharge volume was determined by multiplying the lake surface area by the difference between the observed HWM elevation and pre-breakup top of ice elevation for lakes M9602 and M9605. The actual pre-breakup WSE is likely below the top of ice

elevation; therefore, using the top of ice elevation provides a conservative estimate of recharge volume. The values are presented with calculated potential snowmelt contributions along with permitted and actual water use quantities for lakes M9602 and M9605 in Table 4.4.

Photo 10: Outflow from Lake M9602 into Lake M9601, looking southwest; July 10, 2014

Photo 11: Outflow from Lake M9605 to unnamed lake to the north, looking south; July 10, 2014

	Calculat	ed Potential S	Snowmelt Cont	ribution ¹	Estimated	stimated Permitted Annual Actua		
Lake	Lake	Tundra	Ice Road	Total	Recharge ²	Water Use ³	Use ⁴	
					(Mgal)			
M9602	45.1	27.3	0.3					
M9602 Berm 1	0.6	0.3	-	75.7	270.2	31.39	4.97	
M9602 Berm 2	1.9	0.3	-					
M9605	23.0	26.0	0.1					
M9605 Berm 1	2.2	0.3	-	53.9	71.6	22.14	8.17	
M9605 Berm 2	1.8	0.4	-					
	1. Using the 2007 delta-wide runoff coefficient (0.67) and 2014 SWE.							
Notes:	 Area of lake surface multiplied by the difference between peak WSE and the pre-breakup top of ice elevation. As a result, the estimated recharge quantities are likely lower than actual recharge. Per AK DNR Fish Habitat Permit FH05-III-0327 Amendment #2 for Lake M9602, and FH05-III-0328 							
	Amendment #2 for Lake M9605. 4. Total combined liguid and ice as water equivalent per CPAI water use report.							
	4. 10tal 0	upil beniamo:	nd and ice as w	ater equiva	lient per CPAI water	use report.		

Table 4.4: Detailed Study Lakes Spring Breakup Recharge Summary

4.1.5 HISTORICAL RESULTS

Historical potential snowmelt contributions to lakes M9602 and M9605 are shown in Table 4.5. The catchment basin of Lake M9602 contained the same overall SWE, and the basin of Lake M9605 contained less overall SWE than in 2013. Drainage basin delineations were refined in 2011 (Baker 2011); these delineations were used in the succeeding years, including 2014.

Table 4.5: Comparison of Historical Results

Comparison of Historical Calculated Potential Snowmelt						
Lake	2010 ¹	2011	2012	2013	2014	
Lake	(Mgal)					
M9602	48.3	101.1	77.5	75.1	75.7	
M9605	40.6	61.8	67.6	61.1	53.9	
Note:	1. Determined based on empirical data					

4.2 GENERAL STUDY LAKES

The lake recharge results and WSE data for the General Study Lakes are presented in this section.

4.2.1 WATER SURFACE ELEVATION

WSE was measured before, during, and after spring breakup at lakes B8530, B8531/L9326, L9323, L9324, K209, K214, M9603, and M9607. Only aerial observations were performed at lakes B8533 and L9132 and Nanuq Lake. Throughout the study period, photos were taken to document changes at the lakes (Appendix D).

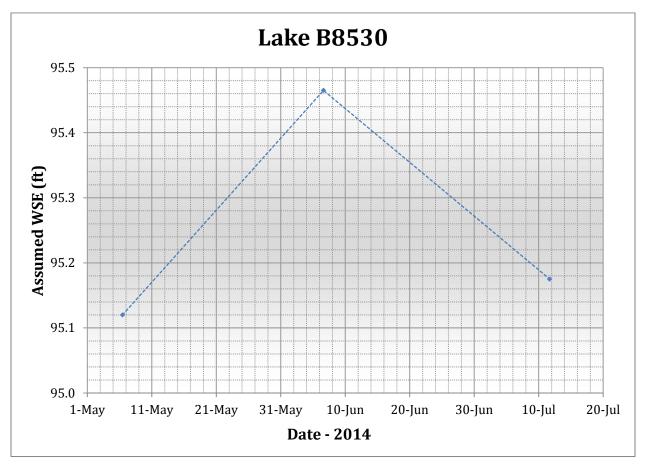

In general, WSE at the General Study Lakes increased during the breakup flood event and then decreased because of outflow as water levels subsided. The WSE data and hydrographs are presented in Table 4.6 through Table 4.13.

Table 4.6: WSE Data for Lake B8530

Date and Time	WSE (feet)	Observations
5/6/14 11:00 AM	95.12	
6/6/14 3:05 PM	95.47	No hydraulic connections
7/11/14 4:55 PM	95.18	No hydraulic connections

Notes:

1. Elevations are assumed based on TBM B8530-X at 100.00 feet, installed by Baker in May 2012

Date and Time	WSE (feet)	Observations
5/7/14 1:00 PM	90.61	
6/6/14 2:54 PM	92.65	No hydraulic connections
7/10/14 5:25 PM	90.91	Hydraulically connected to Lake M9606 via swale

Table 4.7: WSE Data for Lake B8531/L9326

Notes:

1. Elevations are assumed based on TBM B8531/L9326-X at 100.00 feet, installed by Baker in May 2011

Table 4.8: WSE Data for Lake L9323

Date and Time	WSE (feet BPMSL)	Observations
5/6/14 4:00 PM	8.20	No hydraulic connections
5/23/14 2:35 PM	8.58	
6/1/14 4:02 PM	8.50	
6/2/14 11:39 AM	8.62	
6/3/14 11:38 AM	8.80	No hydraulic connections
6/8/14 12:04 PM	8.65	
7/10/14 1:27 PM	8.40	No hydraulic connections

Notes:

1. Elevations are based on Monument NANUQ 4 at 12.758 feet BPMSL, surveyed by LCMF in May 2011

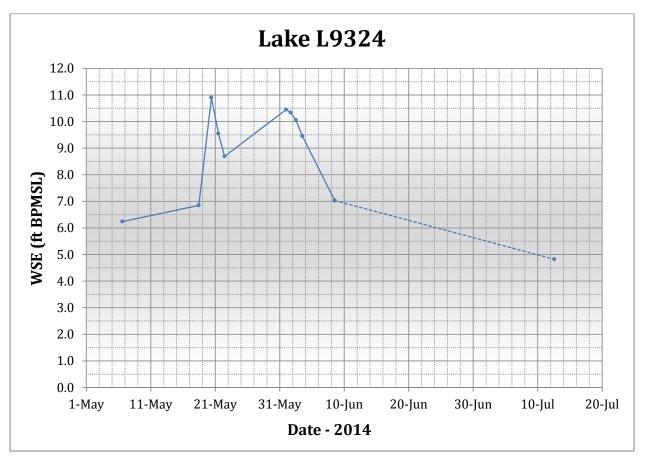


Table 4.9:	WSE	Data for	Lake	L9324	
------------	-----	----------	------	-------	--

Date and Time	WSE (feet BPMSL)	Observations
5/6/14 2:30 PM	6.24	
5/18/14 10:22 AM	6.85	Inflow from Sakoonang Channel through southern paleolake
5/20/14 9:30 AM	10.90	
5/21/14 11:43 AM	9.55	
5/22/14 10:37 AM	8.69	
6/1/14 12:00 AM	10.45	High water mark – time approximated
6/1/14 4:37 PM	10.34	
6/2/14 12:12 PM	10.06	
6/3/14 12:09 PM	9.46	
6/4/14 3:25 PM	-	Connect to Nigliq Channel via Silas Slough
6/8/14 12:42 PM	7.03	
7/12/14 2:06 PM	4.82	Hydraulically connected to paleolake, no active drainage

Notes:

1. Elevations are based Monument NANUQ 5 at 17.461 feet BPMSL, surveyed by LCMF in May 2011

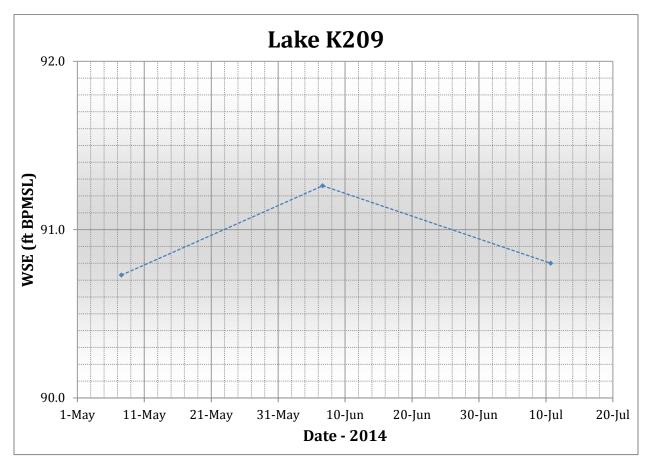
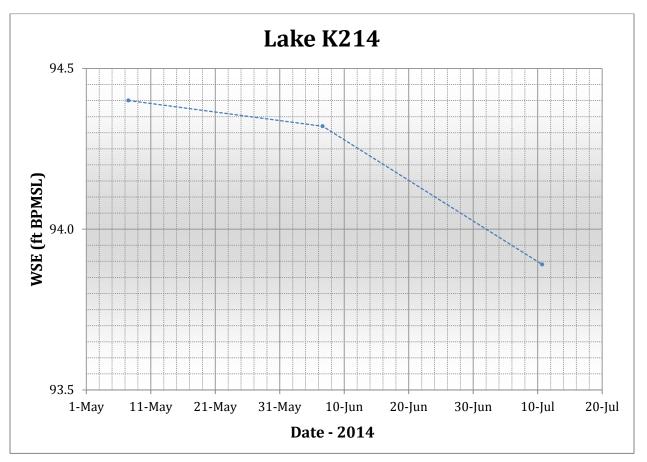


Table 4.10: WSE Data for Lake K209

Date and Time	WSE (feet BPMSL)	Observations
5/7/14 2:19 PM	90.73	
6/6/14 3:50 PM	91.26	No hydraulic connections
7/10/14 5:05 PM	90.80	Outflow north into unnamed lake

Notes:

1. Elevations are assumed on TBM K209-X at 100.00 feet BPMSL, installed by Baker in 2014



Date and Time	WSE (feet BPMSL)	Observations
5/7/14 12:37 PM	94.40	Grounded ice observed, elevation represents top of ice elevation
6/6/14 4:06 PM	94.32	Inflow from culverts on the south bank
7/10/14 4:50 PM	93.89	Hydraulically isolated

Table 4.11: WSE Data for Lake K214

Notes:

1. Elevations are assumed on TBM K214-X at 100.00 feet BPMSL, installed by Baker in 2014

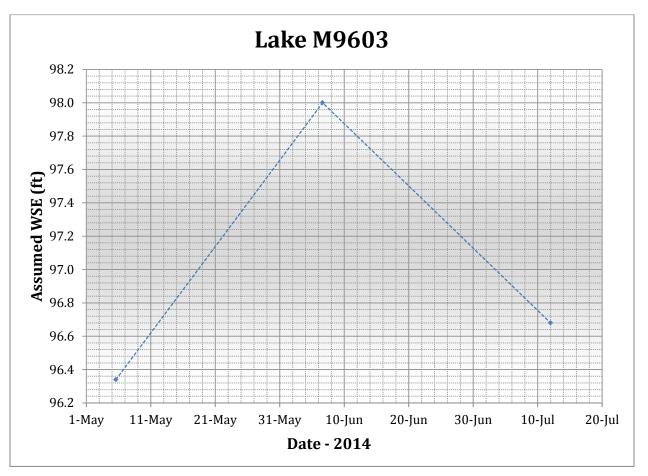
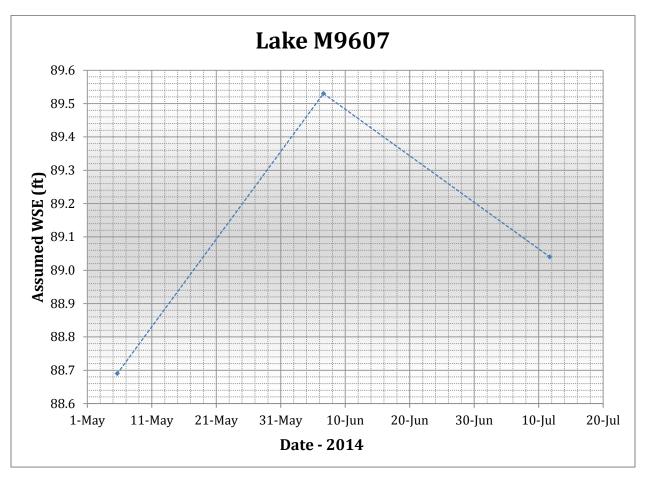


Table 4.12:	WSE	Data	for	Lake	M9603
-------------	-----	------	-----	------	-------

Date and Time	WSE (feet)	Observations
5/5/14 2:00 PM 96.34		
6/6/14 3:20 PM 98.00		No hydraulic connections
7/12/14 12:00 AM 96.68		Outflow north into Lake L9334/M9506

Notes:

1. Elevations are assumed based on TBM M9603-X at 100.00 feet, installed by Baker in May 2011


Table 4.13: WSE Data for Lake M9607

Date and Time	WSE (feet)	Observations
5/5/14 3:25 PM	88.69	
6/6/14 3:11 PM	89.53	No hydraulic connections
7/11/14 5:05 PM	89.04	No hydraulic connections

Notes:

1. Elevations are assumed based on TBM M9607-X at 100.00 feet, installed by Baker in May 2011

2. Dashed line indicates a greater time interval between observations and that the change in WSE is not likely direct

4.2.2 LAKE RECHARGE

Most General Study Lakes were observed to fully recharge over bankfull during the 2014 monitoring season. This was evident by visual observations and the rise and recession of WSE in the hydrographs. Lake L9132 is the only lake where it is not clear if hydraulic connections draining into the low lying wetlands to the southeast existed.

All General Study Lakes, except Lake B8530, should be considered hydraulically isolated during the remainder of the year. Lake B8530 is hydraulically connected to Lake M9608 during the open water season.

4.3 SUMMARY

A compilation of 2014 hydrologic observations, including whether the lake recharged to bankfull, the primary recharge mechanism, additional hydraulic connections, and estimated bankfull WSE is provided in Table 4.14.

	Recharge to	Primary	Additional Hydra	ulic Connection ¹	Estimated Bankfull	
Study Lake	Bankfull	Recharge Mechanism	Flow In	Flow Out	WSE ³ (feet BPMSL)	
		•	•			
M9602	V	Local melt	No channelized drainage into lake	Lake M9601 (northeast) via small drainage.	95.7 ⁴	
M9605	J	Local melt	Small drainages from wetlands (southeast and southwest)	Unnamed lake (north) via small drainage across ice road	91.2 ^{4, 5}	
			General Study Lakes			
B8530 ²	J	Local melt	No channelized drainage into lake	No channelized drainage out of lake	95.1 ⁴	
B8531/L9326	J	Local melt	No channelized drainage into lake	Lake M9606 (south) via swale	90.9 ^{4,5}	
B8533	J	Local melt	Channelized flow from L9278 (east)	Flow into marshy area (north)		
L9132	Inconclusive	Local melt	No channelized drainage into lake	No channelized drainage out of lake		
L9323	J	Local melt	No channelized drainage into lake	No channelized drainage out of lake	8.3	
L9324	J	Sakoonang via paleolake (southeast)	Sakoonang via paleolake (southeast), Nigliq Channel (northwest)	Channelized drainage into southeastern paleolake.	4.8	
K209	V	Local melt	No channelized drainage into lake	Unnamed lake (north) via small drainage	*	
K214	V	Road culverts (south)	Road culverts (south)	No channelized drainage out of lake	*	
M9603	J	Local melt	No channelized drainage into lake	Channelized flow into Lake L9334/M9506 (north)	96.6 ^{4,5}	
M9607	J	Local melt	No channelized drainage into lake	No channelized drainage out of lake	89.0 ⁴	
Nanuq Lake	J	Nigliq Channel (west)	Nigliq Channel (west)	M9524 (northwest)		
Notes:	 Observations only. Additional an WSE estimate WSE based on 	nual connection with ed based on gage rea n assumed elevation	July 12, 2014. Unless specified		kely seasona	

Michael Baker

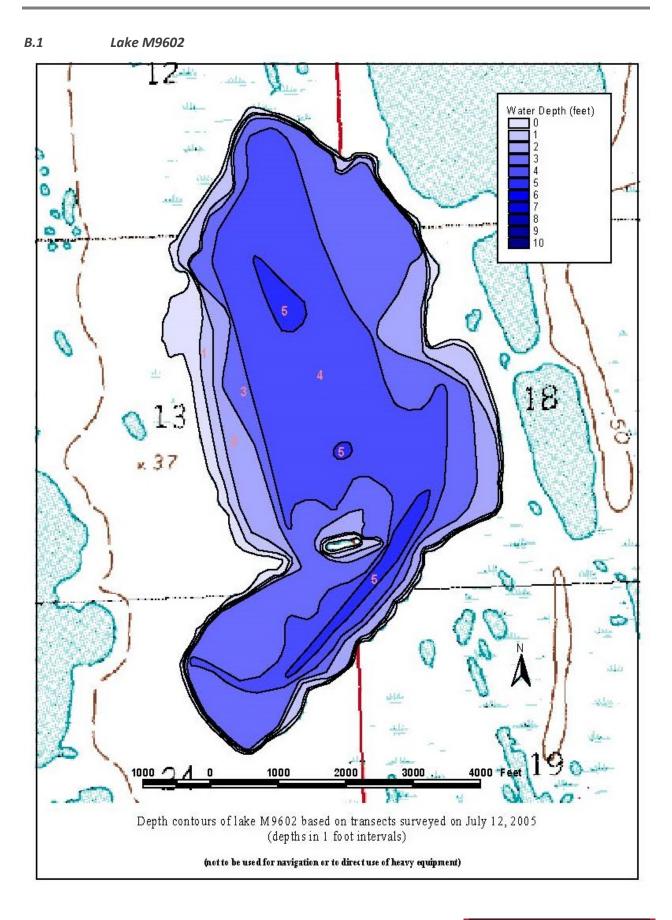
* Additional data required to estimate WSE

5.0 **REFERENCES**

- ASCG Incorporated (ASCG). 2005. North Slope Borough Comprehensive Transportation Plan. Prepared for The North Slope Borough.
- BC Ministry of Environment. 1981. British Columbia Snow Survey Manual.
- ConocoPhillips AK, Inc. (CPAI). 2013a. Alaska Department of Natural Resources Alpine 3rd Quarter 2013 Water Use Report.
- 2013b. Alaska Department of Natural Resources Alpine 4th Quarter 2013 Water Use Report.
- 2014a. Alaska Department of Natural Resources Alpine 1st Quarter 2014 Water Use Report.
- 2014b. Alaska Department of Natural Resources Alpine 2nd Quarter 2014 Water Use Report.
- Kane, D.L., L.D. Hinzman, J.P. Namara, Z. Zhang, and C.S. Benson. 1999. Kuparuk River Basin, Arctic Alaska. Northern Research Basins Twelfth International Symposium and Workshop. Iceland University Press. J. Eliasson (Ed), pp. 182-196.
- Michael Baker Jr., Inc. (Baker). 2002. Alpine Facility and Vicinty 2002 Lake Monitoring and Recharge Study. Prepared for ConocoPhillips Alaska, Inc. 25288-MBJ-DOC-002. November 2002.
- ——2007. Colville River Delta Lakes Recharge Monitoring and Analysis. Prepared for ConocoPhillips Alaska, Inc. 110919-MBJ-RPT-001. October 26, 2007.
- ——2010. Project Note: Additional Ice Aggregate Withdrawal Lakes M9602 and M9605. Prepared for ConocoPhillips Alaska, Inc. 119863. December 13, 2010.
- ——2011. Alpine Ice Road Recharge Studies. Prepared for ConocoPhillips Alaska, Inc. 123593-MBJ-RPT-001. July 2011.
- ——2012. Alpine Area Lakes Recharge Studies. Prepared for ConocoPhillips Alaska, Inc. 127660-MBJ-RPT-001. July 2012.
- ——2013. Alpine Area Lakes Recharge Studies. Prepared for ConocoPhillips Alaska, Inc. 135205-MBJ-RPT-001. July 2013.
- National Resources Conservation Services (NRCS), United States Department of Agriculture. 2006. Snow Survey Sampling Guide. Website accessed 2014. (http://www.wcc.nrcs.usda.gov/factpub/ah169/ah169.htm)
- Rovansek, R.J., D.L. Kane, and L.D. Hinzman. 1993. Improving Estimates of Snowpack Water Equivalent Using Double Sampling, Proceedings of the Eastern and Western Snow Conference, Quebec City.
- Woo, Ming-ko. 1997. Arctic Snow Cover Information for Hydrological Investigations as Various Scales, Proceedings of the Northern Res. Basin Symposium/Workshop. Nordic Hydrology, 29 (4/5), 245 – 266.

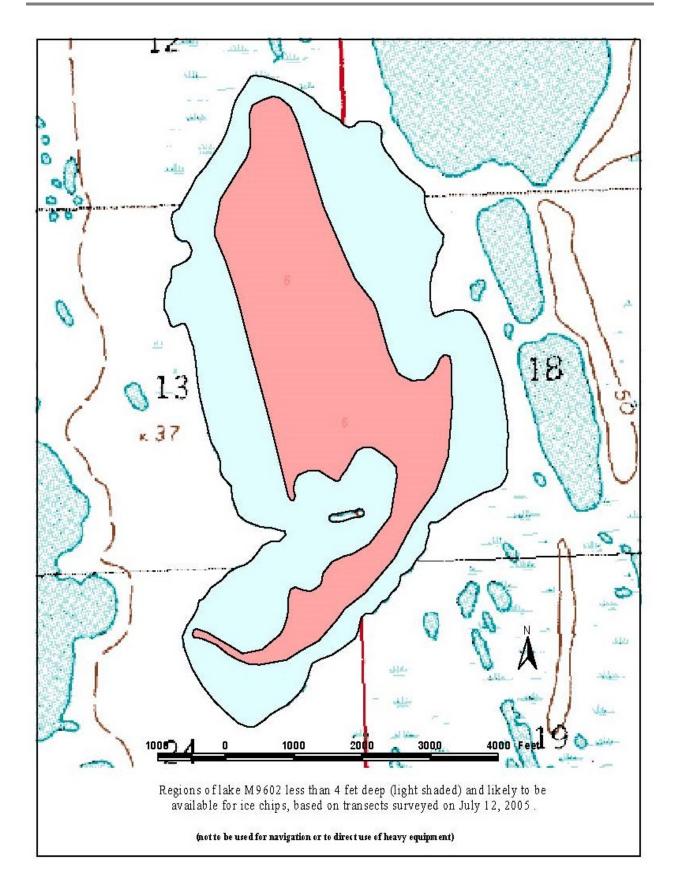
Appendix A Gage and TBM Locations

Monitoring Location	Site Name	Туре	Latitude ¹	Longitude ¹
00520	B8530-A	Gage	70.2437°	-150.8819°
B8530	B8530-X	TBM	70.2436°	-150.8816°
B8531/L9326	B8531/L9326-A	Gage	70.2727°	-150.9947°
D0331/L9320	B8531/L9326-X	TBM	70.2726°	-150.9948°
B8533	Lake B8533/L9315	Aerial Photos	70.3512°	-151.0314°
L9132	Lake L9132	Aerial Photos	70.2119°	-150.5365°
10222	L9323-A	Gage	70.2956°	-150.9840°
L9323	NANUQ 4	TBM	70.2954°	-150.9814°
L9324	L9324-A1	Gage	70.2914°	-150.9813°
	L9324-B	Gage	70.2914°	-150.9814°
	NANUQ 5	TBM	70.2917°	-150.9807°
K200	K209-A	Gage	70.2324°	-150.3611°
К209	K209-X	TBM	70.2324°	-150.3626°
K214	K214-A	Gage	70.2825°	-149.9169°
K214	K214-X	TBM	70.2826°	-149.9177°
MOCOO	M9602-A1	Gage	70.2160°	-150.7229°
M9602	M9602-X	TBM	70.2160°	-150.7204°
M9603	M9603-A	Gage	70.2212°	-150.7897°
1015005	M9603-X	TBM	70.2213°	-150.7896°
M9605	M9605-A1	Gage	70.2305°	-150.5174°
1019005	M9605-X	TBM	70.2291°	-150.5128°
M9607	M9607-A1	Gage	70.2440°	-150.8684°
1019007	M9607-X	TBM	70.2443°	-150.8665°
Nanuq Lake	Nanuq Lake	Aerial Photos	70.3225°	-151.0129°
Note 1: Location	as are referenced to NA	D 83 datum in de	cimal degree	25.

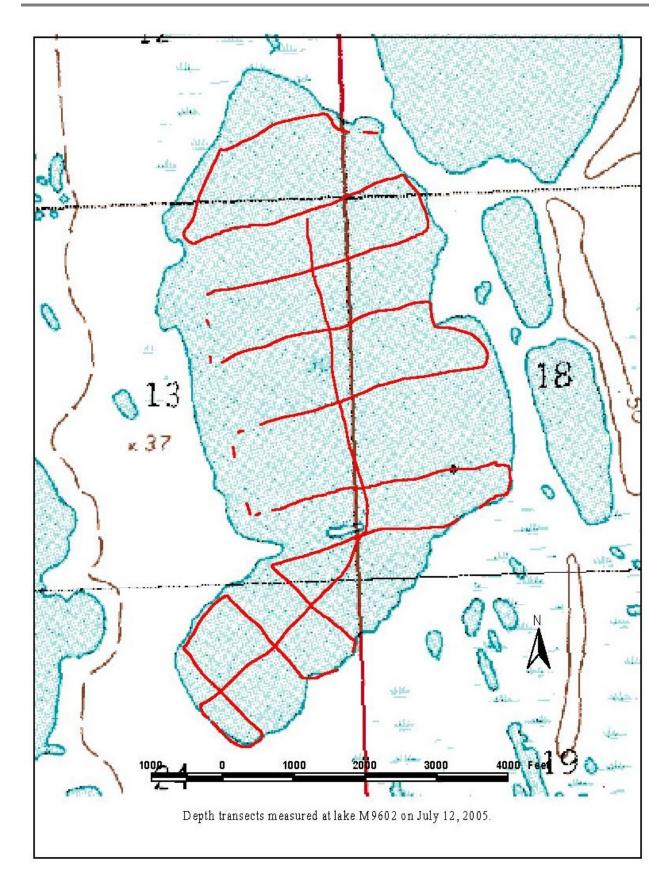


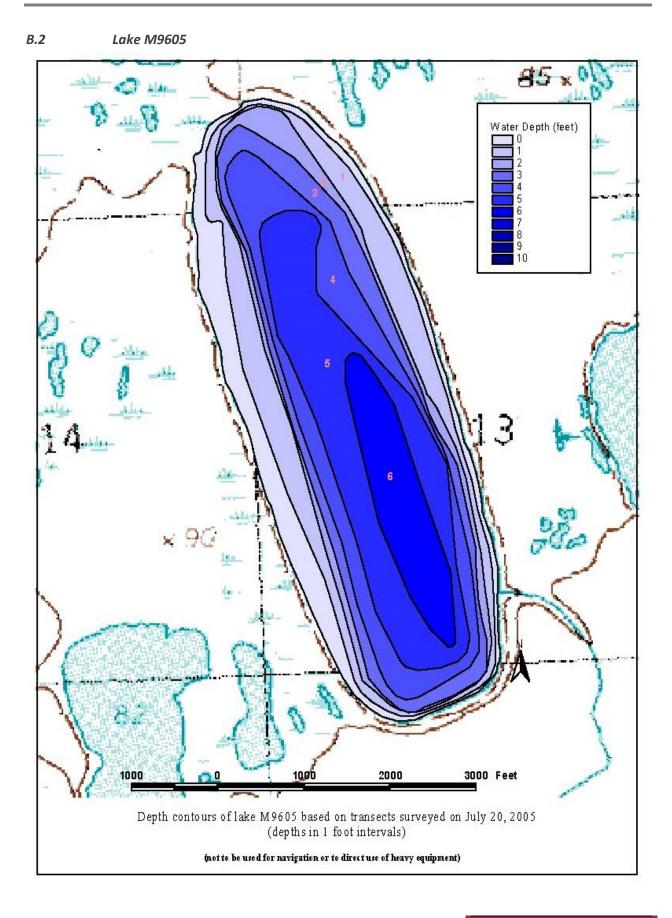
Appendix B Lake Bathymetry: Lakes M9602 and M9605

ConocoPhillips Alaska

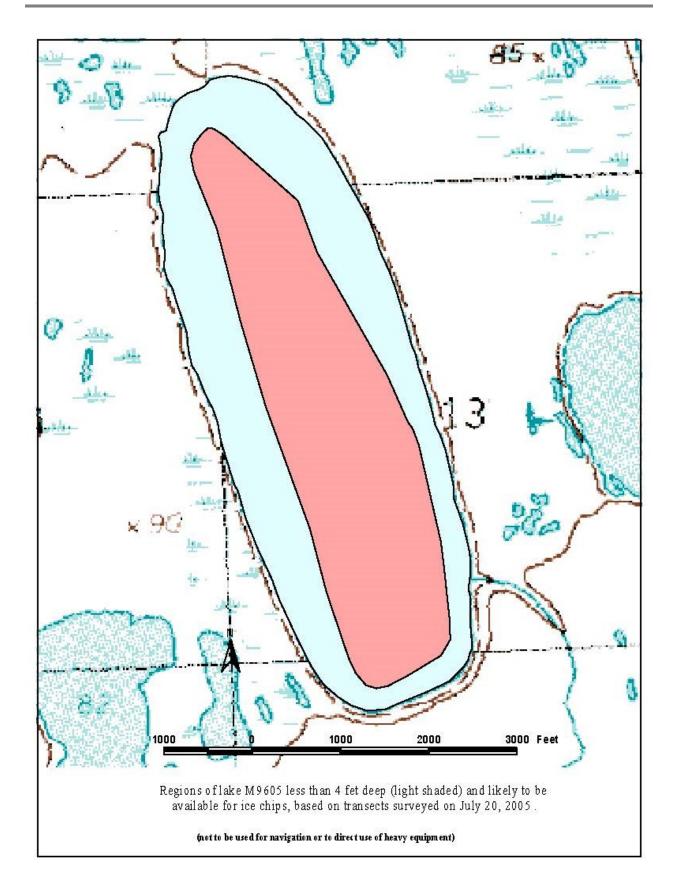


Catch Record: Effort Number Gear Date (hours) Species Caught			7/18/19			
Active Outlet: No Total Lake Volume: 734.9 million gallons (2005 data) Volume Under 5 ft of ice: 2.6 million gallons Volume Under 7 ft of ice: 0.0 million gallons Potential Aggregate: 391.5 acres (water depth 4 ft or less) Maximum Recommended Winter Removal: 0.78 million gallons (30% of volume under 5 feet of ice) (does not include volume associated with ice aggre Water Use History: Water Removed (all sources) Year (mill. Gats) 1998/1999 3.03 2000/2001 7.96 2001/2002 2.84 2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Water Chemistry: Year Hardness Specific of Calcium Magnesium Chloride Sodium (CaCO3) Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (microS/cm) (NTU) pH 1996 15.9 13.5 2.9 31.5 90 1997 8.00 2002 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Gear Date (hours) Species Caught						
Total Lake Volume: 734.9 million gallons (2005 data) Volume Under 4 ft of ice: 42.9 million gallons Volume Under 5 ft of ice: 0.0 million gallons Volume Under 7 ft of ice: 0.0 million gallons 0.0 million gallons Volume Under 5 ft of ice: 0.0 million gallons Potential Aggregate: 391.5 acres (water depth 4 ft or less) 0.78 million gallons (30% of volume under 5 feet of ice) Maximum Recommended Winter Removal: 0.78 million gallons (30% of volume under 5 feet of ice) (does not include volume associated with ice aggre Water Use History:						
Volume Under 7 ft of ice: 0.0 million gallons Potential Aggregate: 391.5 acres (water depth 4 ft or less) Maximum Recommended Winter Removal: 0.78 million gallons (30% of volume under 5 feet of ice) (does not include volume associated with ice aggre Water Use History:	f ice: 734.9 millio 42.9 millio	on gallons	(2005 data)			
(30% of volume under 5 feet of ice) (does not include volume associated with ice aggre water Use History:	fice: 0.0 millio	on gallons	ft or less)			
(does not include volume associated with ice aggre Water Use History:	nded Winter Removal:					
Water Removed (all sources) Year (mill. Gals) 1998/1999 1998/1999 3.03 2000/2001 7.96 2001/2002 2.84 2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Total Hardness Specific Year Total Hardness of Calcium Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) 1996 15.9 13.5 2.9 2002 209 2002 209 2002 209 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 <td>(doe</td> <td></td> <td></td> <td></td> <td>ggrega</td> <td>te)</td>	(doe				ggrega	te)
Water Removed (all sources) Year (mill. Gals) 1998/1999 1998/1999 3.03 2000/2001 7.96 2001/2002 2.84 2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Total Hardness Specific Year Total Hardness of Calcium Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) 1996 15.9 13.5 2.9 2002 209 2002 209 2002 209 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Year (mill. Gals) 1998/1999 3.03 2000/2001 7.96 2001/2002 2.84 2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Water Chemistry: Total Year Total of Calcium Magnesium Chloride Sodium [CaCC03] Conductance Turbidity Test (mg/l) (mg/l) 1996 15.9 13.5 2.9 1997 2002 209 0.8 2002 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00						
Igg8/1999 3.03 2000/2001 7.96 2001/2002 2.84 2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Total Hardness Specific of Calcium Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (microS/cm) (NTU) pH 1996 15.9 13.5 2.9 31.5 90 1997 2002 209 0.8 8.02 2002 209 0.8 8.02 2002 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Effort (hours) Species Number						
2001/2002 2.84 2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Water Chemistry: Total Hardness Specific Conductance Turbidity Year Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) pH 1996 15.9 13.5 2.9 31.5 90 8.04 2002 2002 209 0.8 8.02 2002 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Caught Caught 1.5 8.00						
2002/2003 13.69 2003/2004 3.65 2004/2005 7.83 Water Chemistry: Total Hardness Specific Conductance Turbidity Year Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (ml/l) PH 1996 15.9 13.5 2.9 31.5 90 8.04 2002 2002 209 0.8 8.02 2002 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Caught Caught 1.5 8.00						
2003/2004 3.65 2004/2005 3.65 7.83 Water Chemistry: Total Hardness Specific Conductance Turbidity Year Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mlossical conductance Turbidity 1996 15.9 13.5 2.9 31.5 90 8.04 2002 2002 209 0.8 8.02 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Effort Number Gear Date (hours) Species Caught Caught						
Water Chemistry: Total Hardness Specific Conductance Turbidity Year Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) pH 1996 15.9 13.5 2.9 31.5 90 8.04 2002 2002 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Effort Number Gear Date (hours) Species Caught						
Total Hardness Specific Year Total Hardness Specific of Calcium Magnesium Chloride Sodium [CaCO3] Conductance Turbidity Test (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (microS/cm) (NTU) pH 1996 15.9 13.5 2.9 31.5 90 8.04 2002 202 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Gear Date (hours) Species Caught						
of Test Calcium (mg/l) Magnesium (mg/l) Chloride (mg/l) Sodium (mg/l) [CaCO3] (mg/l) Conductance (microS/cm) Turbidity (NTU) 1996 15.9 13.5 2.9 31.5 90 8.04 2002 209 0.8 8.02 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Gear Date (hours) Species Caught			Specific			
1996 15.9 13.5 2.9 31.5 90 1997 8.04 2002 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Gear Date (hours) Species Caught	Magnesium Chloride So		Conductance T			
1997 8.04 2002 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Gear Date (hours) Species Caught			(microS/cm) ((NTU)	pН	Source
2002 209 0.8 8.02 2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Gear Date (hours) Species Caught	13.5 2.9 3	1.5 90			0.04	J. Lobde
2005 25.0 2.3 14.8 4.9 72 142 1.5 8.00 Catch Record: Effort Number Gear Date (hours) Species Caught			209			
Effort Number Gear Date (hours) Species Caught	2.3 14.8 4	1.9 72			8.00	
Effort Number Gear Date (hours) Species Caught						
Gear Date (hours) Species Caught			_			
Gill Net Jul 26 96 10.7 None 0	6 10.7 None	C	<u>,</u>			
Observed Jul 15 02 Ninespine stickleback many	2 Ninespine sticklebad	ck many	<u>/</u>			


Last Revised: September 30, 2005

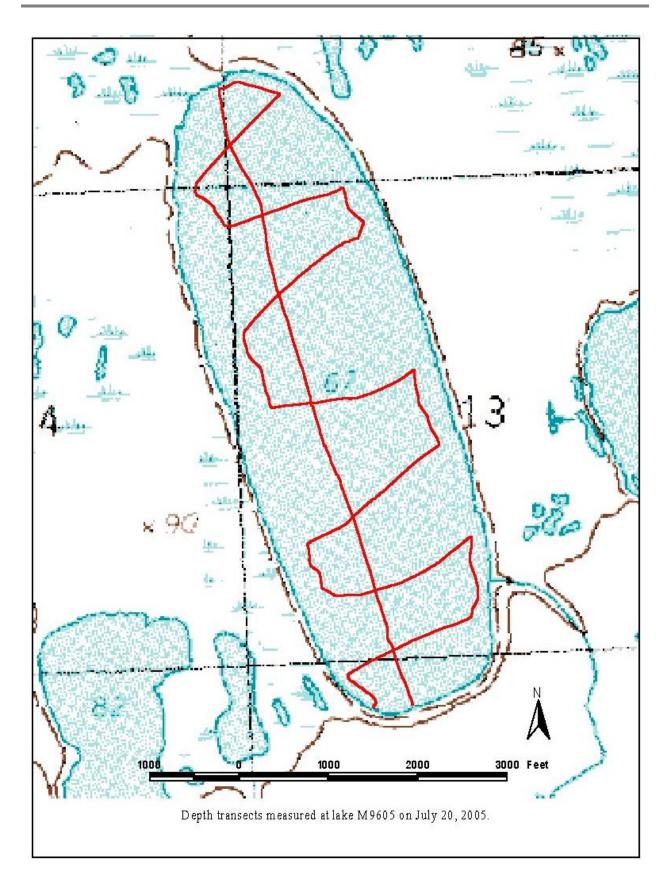


ConocoPhillips Alaska


ConocoPhillips Alaska

Location:		AA14.1							
			I 150.51572°W			<i></i>			
USGS Quad S	sheet:	Harrison Bay A-1: T10N R6E, Sec 11/12/13/14/24							
Habitat: Area:		Tundra Lak	e acres						
Maximum Dep	oth:		feet						
Active Outlet:		No							
Total Lake Vo				million gall		(2005 data)			
Volume Unde				million gall					
Volume Unde Volume Unde				million gall million gall					
Potential Agg					er depth 4 f	t or less)			
Maximum Red	commende	d Winter Re	emoval:		8.52	million gallo	ns		
						ume under 5		∋)	
						ime associate			gate)
Water Use History:									
			Water Removed						
		Year	(all sources) (mill. Gals)						
		1998/1999	6.13						
		2000/2001	18.26						
		2001/2002	9.22						
		2002/2003	17.34						
	2003/2004 2004/2005	5.89 12.82							
	a								
Water Chemistry:					Total				
Year			<u></u>	o "	Hardness	Specific	-		
of Test	Calcium (mg/l	Magnesium (mg/l)	Chloride (mg/l)	Sodium (mg/l)	[CaCO3] (mg/l)	Conductance (microS/cm)	Turbidity (NTU)	pН	Sourc
1996	9.8	9.8	2.9	31.2	90	(million ocaronny	(1110)	- 19	J. Lobo
2005	21.0	1.7	8.9	3.3	59	137	0.7	8.10	
2000 21.0 1.7 0.0									
	Catch Record:				Number				
Catch Record			Species						
Gear	Date	Effort (hours)	Species		Caught				
	Date Jul 18 96		Species None						
Gear		(hours)			Caught				
Gear Gill Net	Jul 18 96	(hours) 4.3	None		Caught 0				

Last Revised: September 30, 2005



Appendix C Snow Survey Sheets: Lakes M9602 and M9605

C.1 Lake M9602

C.1.1 POOLED SNOW SURVEY DATA

			Poo	led Snow Surve	y Data Sheet		
Date:	4/29/2014	Start Time:	11:00	End Time:	17:45	Observers: GCY, SN	W, MNU
Catchment	Basin:	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow	Pooled	Terrain	Snow De	epth (in)			
Sample No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug		Calculations	
	1	ļ	7.5	7.4		Bucket & Core Weight (lb) =	1.18
	2		8.0	7.8		Empty Bucket Weight (lb) =	0.68
PS023	3	Lake	8.0	7.6		Average Mass (lb) =	0.17
	4	_				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2223	Sum (in) =	22.8		Average Density (lb/in ³) =	0.011
Longitude	W 150	0.7389	Average (in) =	7.6		Average SWE (in) =	2.23
	1	1	11.5	11.5		Bucket & Core Weight (lb) =	1.78
	2		13.0	12.6		Empty Bucket Weight (lb) =	0.68
PS024	3	Lake	12.0	12.0		Average Mass (lb) =	0.37
-	4	_				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2249	Sum (in) =	36.1		Average Density (lb/in ³) =	0.015
Longitude	W 150	0.7364	Average (in) =	12.0		Average SWE (in) =	4.90
	1		13.0	12.4		Bucket & Core Weight (lb) =	1.36
	2	_	13.5	13.5		Empty Bucket Weight (lb) =	0.68
PS025	3	Lake				Average Mass (lb) =	0.34
	4	1				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2269	Sum (in) =	25.9		Average Density (lb/in ³) =	0.013
Longitude		0.7344	Average (in) =	13.0		Average SWE (in) =	4.54
PS026	1	_	3.3	3.2		Bucket & Core Weight (lb) =	0.98
	2	-	3.3	3.3		Empty Bucket Weight (lb) =	0.68
	3	Lake	3.5	3.3		Average Mass (lb) =	0.06
	4		3.5	3.5		Core Area (in ²) =	2.0739
	5		3.5	3.5		Freshwater Density (lb/in ³) =	0.0361
Latitude	-	.2296	Sum (in) =	16.7		Average Density (lb/in ³) =	0.009
Longitude		0.7319	Average (in) =	3.3		Average SWE (in) =	0.80
	1	-	44.3	44.3		Bucket & Core Weight (lb) =	3.12
	2		43.0	43.0		Empty Bucket Weight (lb) =	0.68 1.22
PS027	3	Tundra				Average Mass (lb) =	2.0739
		-				$\frac{\text{Core Area (in}^2)}{1} = \frac{1}{2}$	
	5	0016				Freshwater Density (lb/in ³) =	0.0361
Latitude		.2316	Sum (in) =	87.3		Average Density (lb/in ³) =	0.013
Longitude		0.7299	Average (in) =	43.6		Average SWE (in) = Bucket & Core Weight (lb) =	16.29
	<u>1</u> 2	1	6.3 5.5	6.2 5.4		Empty Bucket Weight (lb) =	1.30 0.68
DCODO	3	Lako	5.0	5.0		Average Mass (lb) =	0.08
PS028	4	Lake	5.0	5.0		Core Area (in ²) =	2.0739
	5	4	5.0	4.8		Freshwater Density (lb/in ³) =	0.0361
Latitude		.2227	Sum (in) =	26.4		Average Density (lb/in ³) =	0.0301
Longitude		0.7342	Average (in) =	5.3		Average Density (Ib/In) = Average SWE (in) =	1.66
-		J.7542 I to NAD 83 datur		5.5		Average Sive (III) =	1.00

Note 1: Locations are referenced to NAD 83 datum

Longitude W 1 2 PS030 3 4 5 Latitude N Longitude W 1 2 PS031 3 4 5 Latitude N Longitude W 5 Latitude N 4 5 Latitude N 4 5 Latitude S 4 5 Latitude S 4 5 Latitude S 4 5 Latitude S 4 5 Latitude S 4 5 Latitude S 5 Latitude S 4 5 5 Latitude S 5 Latitude S 5 S S S S S S S S S S S S S	M9602			17:45 Mt. Rose	Observers: GCY, SNW Tube Section Used: O Calculations O Bucket & Core Weight (lb) = C Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Empty Bucket Weight (lb) =	, MNU .62" 1.08 0.68 0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.0361 0.007 1.98 1.26 0.64
Snow Sample No.Pooled Sample SampleNo.123423445LatitudeW12PS030345LatitudeWJ345LatitudeNLongitudeW12PS031345LatitudeNLongitudeW932345LatitudeNLongitudeW3423423445142344534534515345163173183193103103113123133145153163173183193193103103113123133143153163173183193<	Terrain Type Lake 0.2233 150.7280 Tundra 70.2240 150.7218	Snow De w/ Dirt Plug 5.0 5.0 3.5 4.5 Sum (in) = Average (in) = 14.5 15.0 14.5 7.0 Sum (in) = Average (in) = 15.0	w/o Dirt Plug 5.0 4.8 3.2 4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0	Mt. Rose	Calculations Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Bucket & Core Weight (lb/in ³) =	1.08 0.68 0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
Sample No. Pooled Sample Sample Sample Sample Sample 1 2 93 3 4 5 Latitude W Jatitude W PS0300 1 Image: Sample 3 PS0310 3 Image: Sample 3 Image: Sample 1 Image: Sample 3 Image:	# Type Lake 70.2233 150.7280 Tundra 70.2240 150.7218	Snow De w/ Dirt Plug 5.0 5.0 3.5 4.5 Sum (in) = Average (in) = 14.5 15.0 14.5 7.0 Sum (in) = Average (in) = 15.0	w/o Dirt Plug 5.0 4.8 3.2 4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.68 0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
Sample No.SampleNo.123423445LatitudeW41234343434343129030311231112903131313131313131111231295032333334343333333434353435343535363637383939393939393939393939393939393939393	# Type Lake 70.2233 150.7280 Tundra 70.2240 150.7218	5.0 5.0 3.5 4.5 4.5 5 4.5 5 4.5 5 4.5 15.0 14.5 15.0 14.0 12.5 7.0 5 8 4 5 15.0 14.0 12.5 7.0 5 8 4 5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	5.0 4.8 3.2 4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.68 0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
No. 1 2 3 4 5 Latitude N Longitude W 4 5 Latitude N Longitude W 1 2 PS030 3 4 5 Latitude N Longitude W PS031 3 4 5 Latitude N Longitude W PS031 3 4 5 Latitude N Longitude W S 1 2 3 4 5 Latitude N Longitude W 3 4 5 3 4 5 4 5 4 5	Lake 70.2233 150.7280 Tundra 70.2240 150.7218	5.0 5.0 3.5 4.5 4.5 5 4.5 5 4.5 5 4.5 15.0 14.5 15.0 14.0 12.5 7.0 5 8 4 5 15.0 14.0 12.5 7.0 5 8 4 5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	5.0 4.8 3.2 4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Empty Bucket Weight (lb) =	0.68 0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
1 3 4 5 Latitude W Longitude W A 3 PS030 3 PS030 3 Latitude N Latitude N Longitude W PS031 3 I 2 PS031 3 I 3 I 5 Latitude N Longitude W S 3 I 3 I 3 I 1 I 2 S 3 I 1 I 2 S 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3 I 3	70.2233 150.7280 Tundra 70.2240 150.7218	5.0 3.5 4.5 Sum (in) = Average (in) = 14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	4.8 3.2 4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Empty Bucket Weight (lb) =	0.68 0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
3 4 5 Latitude N Longitude W 1 2 PS030 3 4 5 Latitude N Longitude W Latitude N Longitude W PS031 3 4 5 Latitude N Longitude W S 1 4 5 Latitude N Longitude W S 3 4 5 Latitude N Longitude W 9 3 4 5	70.2233 150.7280 Tundra 70.2240 150.7218	3.5 4.5 4.5 Sum (in) = Average (in) = 14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	3.2 4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.08 2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
4 5 Latitude N Longitude W 1 2 PS030 3 4 5 Latitude N Longitude W PS030 3 1 2 PS031 1 2 3 4 5 Latitude N Longitude W S 4 1 2 PS031 3 4 5 Latitude N Longitude W PS032 3 4 5 S 4 5 3	70.2233 150.7280 Tundra 70.2240 150.7218	4.5 4.5 Sum (in) = Average (in) = 14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	4.2 4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	2.0739 0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
	150.7280 Tundra 70.2240 150.7218	4.5 Sum (in) = Average (in) = 14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	4.3 21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.0361 0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
Latitude N Longitude W 1 2 PS0300 3 Image: Comparison of the system 3 Latitude N Longitude W Image: Comparison of the system 1 PS031 1 Image: Comparison of the system 3 Image: Comparison of the system 1 Image: Comparison of the system 3 Image: Comparison of the system 1 Image: Comparison of the system 3 Image: Comparison o	150.7280 Tundra 70.2240 150.7218	Sum (in) = Average (in) = 14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	21.5 4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.009 1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
Longitude W 1 PS030 3 4 3 4 5 Latitude N Longitude W 1 2 5 Latitude N 4 5 Latitude N 4 5 Latitude N 4 5 Latitude 3 4 5 Latitude 3 4 5 Latitude 4 5 Latitude 5 Latitude 4 5 Latitude 5 Latitude 5 Latitud	150.7280 Tundra 70.2240 150.7218	Average (in) = 14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	4.3 9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	1.07 1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
1 2 3 4 5 Latitude N Longitude W 95031 1 2 3 4 5 Latitude N A 5 Latitude N Longitude W S 1 PS032 3 4 5 A 5 A 5 A 5 A 5 A 5	Tundra 70.2240 150.7218	14.5 15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	9.0 11.5 13.5 10.0 6.5 50.5 10.1 15.0		Bucket & Core Weight (lb) = Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	1.42 0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
2 3 4 5 Latitude N Longitude W 95031 3 4 5 Latitude N Longitude W 1 2 95031 3 1 5 Latitude N Longitude W 95032 3 4 5 4 5 5 3 4 5	70.2240	15.0 14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	11.5 13.5 10.0 6.5 50.5 10.1 15.0		Empty Bucket Weight (lb) = Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.68 0.15 2.0739 0.0361 0.007 1.98 1.26
3 4 5 Latitude N Longitude W 1 2 PS031 3 4 5 Latitude N Longitude W Latitude N Longitude W PS032 3 4 5 4 2 A 4 5 3 4 4 5 3 4 5	70.2240	14.0 12.5 7.0 Sum (in) = Average (in) = 15.0	13.5 10.0 6.5 50.5 10.1 15.0		Average Mass (lb) = Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.15 2.0739 0.0361 0.007 1.98 1.26
	70.2240	12.5 7.0 Sum (in) = Average (in) = 15.0	10.0 6.5 50.5 10.1 15.0		Core Area (in ²) = Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	2.0739 0.0361 0.007 1.98 1.26
	150.7218	7.0 Sum (in) = Average (in) = 15.0	6.5 50.5 10.1 15.0		Freshwater Density (lb/in ³) = Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.0361 0.007 1.98 1.26
Latitude N Longitude W 1 2 PS031 3 4 5 Latitude N Longitude W Latitude N Longitude 3 1 2 PS032 3 4 5	150.7218	Sum (in) = Average (in) = 15.0	50.5 10.1 15.0		Average Density (lb/in ³) = Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	0.007 1.98 1.26
Longitude W 1 2 PS031 3 4 5 4 5 Latitude N Longitude W 1 2 5 4 3 4 5 4 5 4 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 6 8 8 8 8 9 9 8 8 9 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	150.7218	Average (in) = 15.0	10.1 15.0		Average SWE (in) = Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	1.98 1.26
Latitude N Latitude W 1 2 3 4 5 5 Latitude W 1 2 PS032 3 4 5		15.0	15.0		Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	1.26
PS031 2 A 3 4 5 Latitude N Longitude W 1 2 PS032 3 4 4 5	Lake				Empty Bucket Weight (lb) =	
PS031 3 4 5 Latitude N Longitude W PS032 1 2 3 4 5	Lake	15.5	15.5			0.64
4 5 Latitude N Longitude W 1 2 PS032 3 4 5	Lake				Average Mass (lb) =	
5 Latitude N Longitude W 1 2 PS032 3 4 5						0.31
Latitude N Longitude W 1 2 PS032 3 4 5					Core Area (in ²) =	2.0739
Longitude W 1 2 PS032 3 4 5					Freshwater Density (lb/in ³) =	0.0361
PS032 1 2 3 4 5	70.2210	Sum (in) =	30.5		Average Density (lb/in ³) =	0.010
PS032 2 3 4 5	150.7336	Average (in) =	15.3		Average SWE (in) =	4.14
PS032 3 4 5		3.0	3.0		Bucket & Core Weight (lb) =	0.94
4	_	2.5	2.5		Empty Bucket Weight (lb) =	0.64
5	Lake	2.5	2.5		Average Mass (lb) =	0.06
		2.5	2.5		Core Area (in ²) =	2.0739
I atitude N		2.5	2.5		Freshwater Density (lb/in ³) =	0.0361
	70.2197	Sum (in) =	13.0		Average Density (lb/in ³) =	0.011
Longitude W	150.7284	Average (in) =	2.6		Average SWE (in) =	0.80
1		6.3	6.3		Bucket & Core Weight (lb) =	1.04
2		6.0	6.0		Empty Bucket Weight (lb) =	0.64
PS033 3	Lake	6.0	6.0		Average Mass (lb) =	0.13
4					Core Area (in ²) =	2.0739
5					Freshwater Density (lb/in ³) =	0.0361
	70.2184	Sum (in) =	18.3		Average Density (lb/in ³) =	0.011
	150.7231	Average (in) =	6.1		Average SWE (in) =	1.78
1		12.0	12.0		Bucket & Core Weight (lb) =	1.38
2		14.0	13.8		Empty Bucket Weight (lb) =	0.64
PS034 3	Tundra	12.5	12.5		Average Mass (lb) =	0.25
4					Core Area (in ²) =	2.0739
5	1				Freshwater Density (lb/in ³) =	0.0361
		Sum (in) =	38.3		Average Density (lb/in ³) =	0.009
Longitude W Note 1: Locations are referen	70.2168	Average (in) =	12.8		Average SWE (in) =	3.29

			Poc	led Snow Surve	y Data Sheet		
Date:	4/29/2014	Start Time:	11:00	End Time:	17:45	Observers: GCY, SN	N, MNU
Catchment	Basin:	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow			Snow De	epth (in)			
Sample	Pooled	Terrain			Calculations		
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		5.5	5.5		Bucket & Core Weight (lb) =	1.46
	2		5.5	5.5		Empty Bucket Weight (lb) =	0.64
PS035	3	Lake	6.0	6.0		Average Mass (lb) =	0.16
	4		6.5	6.5		Core Area (in ²) =	2.0739
	5		6.0	6.0		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2212	Sum (in) =	29.5		Average Density (lb/in ³) =	0.013
Longitude	W 150).7398	Average (in) =	5.9		Average SWE (in) =	2.19
	1		2.5	2.5		Bucket & Core Weight (lb) =	0.86
	2		2.5	2.5		Empty Bucket Weight (lb) =	0.64
PS036	3	Lake	2.5	2.5		Average Mass (lb) =	0.04
	4		2.5	2.5		Core Area (in ²) =	2.0739
	5		3.0	3.0		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2191	Sum (in) =	13.0		Average Density (lb/in ³) =	0.008
Longitude	W 150).7418	Average (in) =	2.6		Average SWE (in) =	0.59
	1		23.0	23.0		Bucket & Core Weight (lb) =	1.74
	2		22.5	22.5		Empty Bucket Weight (lb) =	0.64
PS037	3	Lake				Average Mass (lb) =	0.55
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2170	Sum (in) =	45.5		Average Density (lb/in ³) =	0.012
Longitude	W 150).7437	Average (in) =	22.8		Average SWE (in) =	7.34
	1		15.0	15.0		Bucket & Core Weight (lb) =	1.68
	2		10.0	10.0		Empty Bucket Weight (lb) =	0.64
PS038	3	Tundra	18.0	18.0		Average Mass (Ib) =	0.35
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2149	Sum (in) =	43.0		Average Density (lb/in ³) =	0.012
Longitude	W 150).7457	Average (in) =	14.3		Average SWE (in) =	4.63
	1		3.5	3.5		Bucket & Core Weight (lb) =	1.10
	2		4.3	4.2		Empty Bucket Weight (lb) =	0.64
PS039	3	Lake	5.0	5.0		Average Mass (Ib) =	0.09
	4		5.0	5.0		Core Area (in ²) =	2.0739
	5		4.5	4.5		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2134	Sum (in) =	22.2		Average Density (lb/in ³) =	0.010
Longitude	W 150).7471	Average (in) =	4.4		Average SWE (in) =	1.23
	1		4.5	4.5		Bucket & Core Weight (lb) =	1.06
	2		4.0	4.0		Empty Bucket Weight (lb) =	0.64
PS040	3	Lake	4.0	4.0		Average Mass (lb) =	0.08
	4		3.5	3.5		Core Area (in ²) =	2.0739
	5		3.5	3.5		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2113	Sum (in) =	19.5		Average Density (lb/in ³) =	0.010
Longitude	W 150		Average (in) =	3.9		Average SWE (in) =	1.12
Note 1. Location	is are referenced	to NAD 83 datur					

			Poo	led Snow Surve	y Data Sheet		
Date:	4/29/2014	Start Time:	11:00	End Time:	17:45	Observers: GCY, SN	W, MNU
Catchment	Basin:	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow			Snow De				
Sample	Pooled	Terrain				Calculations	
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		2.5	2.5		Bucket & Core Weight (lb) =	0.94
	2		2.0	2.0		Empty Bucket Weight (lb) =	0.64
PS041	3	Lake	3.0	3.0		Average Mass (lb) =	0.06
	4		2.5	2.5		Core Area (in ²) =	2.0739
	5		2.5	2.3		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2097	Sum (in) =	12.3		Average Density (lb/in ³) =	0.012
Longitude	W 150).7505	Average (in) =	2.5		Average SWE (in) =	0.80
	1		14.0	13.5		Bucket & Core Weight (lb) =	1.96
	2		12.0	12.0		Empty Bucket Weight (lb) =	0.64
PS042	3	Lake	11.5	11.5		Average Mass (lb) =	0.33
	4		13.5	13.5		Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2082	Sum (in) =	50.5		Average Density (lb/in ³) =	0.013
Longitude	W 150).7519	Average (in) =	12.6		Average SWE (in) =	4.41
	1		20.0	18.0		Bucket & Core Weight (lb) =	1.62
	2		17.0	16.7		Empty Bucket Weight (lb) =	0.64
PS043	3	Lake	20.0	19.0		Average Mass (lb) =	0.33
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2061	Sum (in) =	53.7		Average Density (lb/in ³) =	0.009
Longitude	W 150).7539	Average (in) =	17.9		Average SWE (in) =	4.36
	1		5.3	5.3		Bucket & Core Weight (lb) =	1.26
	2		4.5	4.5		Empty Bucket Weight (lb) =	0.68
PS044	3	Lake	6.0	6.0		Average Mass (lb) =	0.12
	4	Lake	6.5	6.4		Core Area (in ²) =	2.0739
	5		7.3	7.3		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2215	Sum (in) =	29.4		Average Density (lb/in ³) =	0.010
Longitude	W 150).7466	Average (in) =	5.9		Average SWE (in) =	1.55
	1		9.0	9.0		Bucket & Core Weight (lb) =	1.22
	2	ļ	9.0	9.0		Empty Bucket Weight (lb) =	0.68
PS045	3	Lake	9.0	9.0		Average Mass (lb) =	0.18
	4	ļ				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2210	Sum (in) =	27.0		Average Density (lb/in ³) =	0.010
Longitude	W 150).7513	Average (in) =	9.0		Average SWE (in) =	2.40
	1		14.0	14.0		Bucket & Core Weight (lb) =	1.20
	2	ļ	14.5	14.5		Empty Bucket Weight (lb) =	0.64
PS046	3	Tundra				Average Mass (lb) =	0.28
	4	ļ				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2205	Sum (in) =	28.5		Average Density (lb/in ³) =	0.009
Longitude	W 150).7559	Average (in) =	14.3		Average SWE (in) =	3.74
Note 1: Location	is are referenced	to NAD 83 datur	n.				

			Poc	led Snow Surve	y Data Sheet		
Date:	4/29/2014	Start Time:	11:00	End Time:	. 17:45	Observers: GCY, SN	W, MNU
Catchment	· ·	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow			Snow De				
Sample	Pooled	Terrain				Calculations	
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		13.5	13.5		Bucket & Core Weight (lb) =	1.40
	2		13.5	13.3		Empty Bucket Weight (lb) =	0.64
PS047	3	Tundra				Average Mass (lb) =	0.38
	4				Core Area (in ²) =		2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2201	Sum (in) =	26.8		Average Density (lb/in ³) =	0.014
Longitude	W 150	.7606	Average (in) =	13.4		Average SWE (in) =	5.07
	1		4.5	4.4		Bucket & Core Weight (lb) =	1.26
	2		5.0	4.8		Empty Bucket Weight (lb) =	0.64
PS048	3	Lake	5.0	5.0		Average Mass (lb) =	0.12
	4		4.5	4.5		Core Area (in ²) =	2.0739
	5		4.5	4.5		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2232	Sum (in) =	23.2		Average Density (lb/in ³) =	0.013
Longitude	W 150).7428	Average (in) =	4.6		Average SWE (in) =	1.66
	1		10.0	10.0		Bucket & Core Weight (lb) =	1.18
	2		10.0	10.0		Empty Bucket Weight (lb) =	0.64
PS049	3	Lake	9.5	9.5		Average Mass (lb) =	0.18
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2248	Sum (in) =	29.5		Average Density (lb/in ³) =	0.009
Longitude	W 150).7494	Average (in) =	9.8		Average SWE (in) =	2.40
	1		17.0	17.0		Bucket & Core Weight (lb) =	1.26
	2		17.0	17.0		Empty Bucket Weight (lb) =	0.64
PS050	3	Tundra				Average Mass (lb) =	0.31
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2261	Sum (in) =	34.0		Average Density (lb/in ³) =	0.009
Longitude	W 150).7546	Average (in) =	17.0		Average SWE (in) =	4.14
	1		14.0	13.8		Bucket & Core Weight (lb) =	1.18
	2		12.5	12.5		Empty Bucket Weight (lb) =	0.64
PS051	3	Tundra				Average Mass (lb) =	0.27
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2271	Sum (in) =	26.3		Average Density (lb/in ³) =	0.010
Longitude	W 150).7585	Average (in) =	13.1		Average SWE (in) =	3.61
	1		15.5	14.5		Bucket & Core Weight (lb) =	1.06
	2		14.5	14.5		Empty Bucket Weight (lb) =	0.64
PS052	3	Tundra				Average Mass (lb) =	0.21
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude			Sum (in) =	29.0		Average Density (lb/in ³) =	0.007
Longitude	W 150).7625	Average (in) =	14.5		Average SWE (in) =	2.80
Note 1: Locatior	s are referenced	to NAD 83 datum	n.				

			Poo	oled Snow Surve	y Data Sheet		
Date:	4/29/2014	Start Time:	11:00	End Time:	. 17:45	Observers: GCY, SN	W, MNU
Catchment	Basin:	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow			Snow De				
Sample	Pooled	Terrain				Calculations	
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		7.5	7.5		Bucket & Core Weight (lb) =	1.48
	2		8.0	7.7		Empty Bucket Weight (lb) =	0.64
PS053	3	Lake	7.0	7.0		Average Mass (lb) =	0.21
	4		7.5	7.2		Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2260	Sum (in) =	29.4		Average Density (lb/in ³) =	0.014
Longitude	W 150).7412	Average (in) =	7.4		Average SWE (in) =	2.80
	1		4.0	4.0		Bucket & Core Weight (lb) =	1.26
	2		4.0	3.7		Empty Bucket Weight (lb) =	0.64
PS054	3	Lake	4.5	4.5		Average Mass (Ib) =	0.12
	4		4.5	4.5		Core Area (in ²) =	2.0739
	5		4.0	4.0		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2303	Sum (in) =	20.7		Average Density (lb/in ³) =	0.014
Longitude	W 150).7438	Average (in) =	4.1		Average SWE (in) =	1.66
	1		11.0	11.0		Bucket & Core Weight (lb) =	1.26
	2		12.0	12.0		Empty Bucket Weight (lb) =	0.64
PS055	3	Tundra	11.0	10.0		Average Mass (lb) =	0.21
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2335	Sum (in) =	33.0		Average Density (lb/in ³) =	0.009
Longitude	W 150).7458	Average (in) =	11.0		Average SWE (in) =	2.76
	1		5.5	5.5		Bucket & Core Weight (lb) =	1.34
	2	-	5.5	5.5		Empty Bucket Weight (lb) =	0.64
PS056	3	Lake	5.5	5.5		Average Mass (lb) =	0.14
	4]	6.0	6.0		Core Area (in ²) =	2.0739
	5		5.5	5.5		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2185	Sum (in) =	28.0		Average Density (lb/in ³) =	0.012
Longitude	W 150).7364	Average (in) =	5.6		Average SWE (in) =	1.87
	1		7.5	7.5		Bucket & Core Weight (lb) =	1.40
	2	ł	11.0	11.0		Empty Bucket Weight (lb) =	0.64
PS057	3	Tundra	11.0	11.0		Average Mass (lb) =	0.25
	4	ł				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.		Sum (in) =	29.5		Average Density (lb/in ³) =	0.012
Longitude	W 150).7339	Average (in) =	9.8		Average SWE (in) =	3.38
	1	ļ	16.5	15.0		Bucket & Core Weight (lb) =	1.26
	2		15.0	13.5		Empty Bucket Weight (lb) =	0.64
PS058	3	Tundra				Average Mass (lb) =	0.31
	4	ł				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2116	Sum (in) =	28.5		Average Density (lb/in ³) =	0.010
Longitude).7318	Average (in) =	14.3		Average SWE (in) =	4.14
Note 1: Location	ns are referenced	to NAD 83 datum	n.				

			Poo	oled Snow Surve	y Data Sheet		
Date:	4/30/2014	Start Time:	11:00	End Time:	17:45	Observers: GCY, SNW	/, MNU
Catchment	Basin:	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow			Snow De	epth (in)			
Sample	Pooled	Terrain				Calculations	
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		54.0	54.0		Bucket & Core Weight (lb) =	1.84
	2					Empty Bucket Weight (lb) =	0.66
B-PS16	3	Tundra				Average Mass (lb) =	1.18
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2313	Sum (in) =	54.0		Average Density (lb/in ³) =	0.011
Longitude	W 150).7365	Average (in) =	54.0		Average SWE (in) =	15.76
	1		53.0	53.0		Bucket & Core Weight (lb) =	2.02
	2					Empty Bucket Weight (lb) =	0.66
B-PS17	3	Lake				Average Mass (lb) =	1.36
	4	ļ				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2312	Sum (in) =	53.0		Average Density (lb/in ³) =	0.012
Longitude	W 150).7367	Average (in) =	53.0		Average SWE (in) =	18.16
	1		27.5	27.5		Bucket & Core Weight (lb) =	1.22
	2					Empty Bucket Weight (lb) =	0.66
B-PS18	3	Tundra				Average Mass (lb) =	0.56
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	2325	Sum (in) =	27.5		Average Density (lb/in ³) =	0.010
Longitude	W 150).7406	Average (in) =	27.5		Average SWE (in) =	7.48
	1		37.5	37.5		Bucket & Core Weight (lb) =	1.70
	2	+				Empty Bucket Weight (lb) =	0.66
B-PS19	3	Lake				Average Mass (lb) =	1.04
	4	-				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	-	Sum (in) =	37.5		Average Density (lb/in ³) =	0.013
Longitude	W 150).7407	Average (in) =	37.5		Average SWE (in) =	13.89
	1		30.0	29.5		Bucket & Core Weight (lb) =	1.20
	2					Empty Bucket Weight (lb) =	0.66
B-PS20	3	Tundra				Average Mass (lb) =	0.54
	4	-				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.		Sum (in) =	29.5		Average Density (lb/in ³) =	0.009
Longitude	W 150).7505	Average (in) =	29.5		Average SWE (in) =	7.21
	1	ł	35.0	35.0		Bucket & Core Weight (lb) =	1.60
	2					Empty Bucket Weight (lb) =	0.66
B-PS21	3	Lake				Average Mass (lb) =	0.94
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.		Sum (in) =	35.0		Average Density (lb/in ³) =	0.013
Longitude	W 150		Average (in) =	35.0		Average SWE (in) =	12.55
Note 1: Location	is are referenced	to NAD 83 datur	n.				

			Poo	led Snow Surve	y Data Sheet			
Date:	4/30/2014	Start Time:	11:00	End Time:	17:45	17:45 Observers: GCY, SNW		
Catchment	Basin:	M9602	Driving Wrench	Used:	Mt. Rose	Tube Section Us	ed:	Mt. Rose
Snow	Pooled	Terrain	Snow De	epth (in)				
Sample No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug	Calculations		tions	
	1		30.0	30.0		Bucket & Core	e Weight (lb) =	1.18
	2					Empty Bucke	t Weight (lb) =	0.66
B-PS22	3	Lake				Avera	ge Mass (lb) =	0.52
	4					Ca	ore Area (in ²) =	2.0739
	5					Freshwater De	nsity (lb/in ³) =	0.0361
Latitude	Latitude N 70.2300		Sum (in) =	30.0		Average Density (lb/in ³) =		0.008
Longitude	W 150).7503	Average (in) =	30.0	Average SWE (in) =		6.94	
Note 1: Location	is are referenced	to NAD 83 datum	۱.					

C.1.2 SNOW DEPTH SURVEY DATA

	Snow	Depth Survey [Data Sheet	
Date:	4/29/2014	Start Time:	11:00	Observers: GCY
Catchment Basin:	M9602	End Time:	17:45	SNW, MNU
		Snow Depth	Loca	ation
Snow Sample No.	Terrain Type	(in)	Latitude	Longitude
SS085	Lake	12.6	N 70.2228	W 150.7384
SS086	Lake	13.4	N 70.2233	W 150.7379
SS087	Lake	16.1	N 70.2238	W 150.7374
SS088	Lake	6.7	N 70.2243	W 150.7369
SS089	Lake	11.0	N 70.2254	W 150.7359
SS090	Lake	18.5	N 70.2259	W 150.7354
SS091	Lake	8.3	N 70.2264	W 150.7349
SS092	Lake	3.5	N 70.2275	W 150.7339
SS093	Lake	11.0	N 70.2280	W 150.7334
SS094	Lake	3.5	N 70.2285	W 150.7329
SS095	Lake	4.3	N 70.2290	W 150.7324
	Lake	0.8	N 70.2301	W 150.7314
	Tundra	0.0	N 70.2306	W 150.7309
SS097	Tundra	13.0	N 70.2311	W 150.7304
	Lake	7.9	N 70.2224	W 150.7373
	Lake	4.3	N 70.2224	W 150.7358
		4.5	N 70.2229	ł
SS101	Lake			W 150.7327
SS102	Lake	12.2	N 70.2230	W 150.7311
SS103	Lake	11.8	N 70.2232	W 150.7295
SS104	Lake	15.4	N 70.2235	W 150.7264
SS105	Tundra	16.9	N 70.2237	W 150.7249
SS106	Tundra	18.5	N 70.2238	W 150.7233
SS107	Tundra	6.7	N 70.2241	W 150.7202
SS108	Lake	5.1	N 70.2219	W 150.7376
SS109	Lake	9.4	N 70.2216	W 150.7363
SS110	Lake	9.1	N 70.2213	W 150.7349
SS111 SS112	Lake Lake	11.0 9.8	N 70.2207	W 150.7323
	Lake	8.3	N 70.2203 N 70.2200	W 150.7310 W 150.7297
	Lake	0.5 7.5	N 70.2200	W 150.7297 W 150.7271
	Lake	5.9	N 70.2194	W 150.7271 W 150.7258
		8.7	N 70.2191	W 150.7245
	Lake Lake	4.3	N 70.2187	W 150.7245 W 150.7218
	Lake	7.1	N 70.2181	W 150.7218 W 150.7205
	Lake	7.1	N 70.2178	W 150.7203
	Lake	23.2	N 70.2171	W 150.7179
	Tundra	19.3	N 70.2171	W 150.7153
	Lake	19.3	N 70.2217	W 150.7394
	Lake	7.9	N 70.2207	W 150.7403
	Lake	6.3	N 70.2207	W 150.7408
	Lake	5.9	N 70.2197	W 150.7413
	Lance	0.0		39279-MBI-RPT-001

	Snow	v Depth Survey [Data Sheet	
Date:	4/29/2014	Start Time:	11:00 AM	Observers: GCY,
Catchment Basin:	M9602	End Time:	5:45 PM	SNW, MNU
		Snow Depth	Loca	ation
Snow Sample No.	Terrain Type	(in)	Latitude	Longitude
SS126	Lake	5.9	N 70.2186	W 150.7423
SS127	Lake	5.1	N 70.2181	W 150.7428
SS128	Lake	8.7	N 70.2176	W 150.7432
SS129	Lake	7.9	N 70.2165	W 150.7442
SS130	Lake	6.3	N 70.2160	W 150.7447
SS131	Lake	8.7	N 70.2155	W 150.7452
SS132	Tundra	10.6	N 70.2144	W 150.7461
SS133	Lake	12.2	N 70.2139	W 150.7466
SS134	Lake	8.3	N 70.2129	W 150.7476
SS135	Lake	8.7	N 70.2123	W 150.7481
SS136	Lake	5.9	N 70.2118	W 150.7486
SS137	Lake	2.0	N 70.2108	W 150.7495
SS138	Lake	3.1	N 70.2102	W 150.7500
SS139	Lake	7.9	N 70.2092	W 150.7510
SS140	Lake	23.6	N 70.2087	W 150.7515
SS141	Tundra	20.9	N 70.2076	W 150.7524
SS142	Tundra	13.4	N 70.2071	W 150.7529
SS143	Tundra	10.2	N 70.2066	W 150.7534
SS144	Lake	7.5	N 70.2221	W 150.7404
SS145	Lake	13.0	N 70.2220	W 150.7420
SS146	Lake	6.3	N 70.2218	W 150.7435
SS147	Lake	9.8	N 70.2216	W 150.7451
SS148	Lake	22.4	N 70.2213	W 150.7482
SS149	Lake	9.4	N 70.2212	W 150.7497
SS150	Lake	21.3	N 70.2209	W 150.7528
SS151	Tundra	8.7	N 70.2207	W 150.7544
SS152	Tundra	9.8	N 70.2204	W 150.7575
SS153	Tundra	15.4	N 70.2202	W 150.7590
SS154	Lake	6.7	N 70.2226	W 150.7402
SS155	Lake	5.9	N 70.2229	W 150.7415
SS156	Lake	9.1	N 70.2236	W 150.7441
SS157	Lake	5.9	N 70.2239	W 150.7454
SS158	Lake	5.9	N 70.2242	W 150.7467
SS159	Lake	11.4	N 70.2245	W 150.7480
SS160	Lake	12.2	N 70.2252	W 150.7507
SS161	Lake	0.0	N 70.2255	W 150.7520
SS162	Lake	0.0	N 70.2258	W 150.7533
SS163	Tundra	12.6	N 70.2265	W 150.7559
SS164	Tundra	15.0	N 70.2268	W 150.7572
SS165	Tundra	15.0	N 70.2274	W 150.7598
SS166	Tundra	15.7	N 70.2277	W 150.7611

	Snow	v Depth Survey [Data Sheet	
Date:	4/29/2014	Start Time:	11:00 AM	Observers: GCY,
Catchment Basin:	M9602	End Time:	5:45 PM	SNW, MNU
		Snow Depth		ation
Snow Sample No.	Terrain Type	(in)	Latitude	Longitude
SS167	Lake	13.8	N 70.2228	W 150.7392
SS168	Lake	2.8	N 70.2233	W 150.7395
SS169	Lake	7.9	N 70.2239	W 150.7399
SS170	Lake	8.3	N 70.2244	W 150.7402
SS171	Lake	4.7	N 70.2249	W 150.7405
SS172	Lake	7.1	N 70.2255	W 150.7408
SS173	Lake	5.9	N 70.2265	W 150.7415
SS174	Lake	8.3	N 70.2271	W 150.7418
SS175	Lake	5.5	N 70.2276	W 150.7422
SS176	Lake	5.9	N 70.2281	W 150.7425
SS177	Lake	2.4	N 70.2287	W 150.7428
SS178	Lake	10.2	N 70.2292	W 150.7431
SS179	Lake	14.6	N 70.2298	W 150.7435
SS180	Lake	4.7	N 70.2308	W 150.7441
SS181	Lake	4.7	N 70.2314	W 150.7445
SS182	Lake	0.0	N 70.2319	W 150.7448
SS183	Lake	9.1	N 70.2324	W 150.7451
SS184	Tundra	29.9	N 70.2330	W 150.7455
SS185	Tundra	14.2	N 70.2340	W 150.7461
SS186	Tundra	10.2	N 70.2346	W 150.7464
SS187	Tundra	13.0	N 70.2351	W 150.7468
SS188	Lake	6.3	N 70.2217	W 150.7385
SS189	Lake	2.4	N 70.2212	W 150.7381
SS190	Lake	13.8	N 70.2207	W 150.7378
SS191	Lake	5.1	N 70.2201	W 150.7374
SS192	Lake	10.2	N 70.2196	W 150.7371
SS193	Lake	8.7	N 70.2191	W 150.7367
SS194	Lake	7.1	N 70.2180	W 150.7360
SS195	Lake	5.9	N 70.2175	W 150.7357
SS196	Lake	8.3	N 70.2169	W 150.7353
SS197	Lake	15.7	N 70.2164	W 150.7350
SS198	Lake	7.9	N 70.2159	W 150.7346
SS199	Lake	4.7	N 70.2153	W 150.7343
SS200	Lake	4.3	N 70.2142	W 150.7336
SS201	Lake	4.7	N 70.2137	W 150.7332
SS202	Lake	5.5	N 70.2132	W 150.7329
SS203	Lake	8.7	N 70.2126	W 150.7325
SS204	Tundra	58.7	N 70.2121	W 150.7322
SS205	Tundra	15.7	N 70.2110	W 150.7315

C.2.1 POOLED SNOW SURVEY DATA										
		•	Poo	oled Snow Surve	ey Data Sheet					
Date:	4/30/2014	Start Time:	9:30	End Time:	16:00	Observers: SNV	N, MNU, GCY			
Catchment	Basin:	M9605	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"			
Snow	Pooled	Terrain	Snow De	epth (in)						
Sample No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug		Calculations				
	1		10.0	10.0		Bucket & Core Weight (
	2		9.0	8.5		Empty Bucket Weight (lb) = 0.64			
PS200	3	Tundra	7.5	7.5		Average Mass (lb) = 0.17			
	4		11.0	11.0		Core Area (i				
	5					Freshwater Density (lb/i				
Latitude		.2308	Sum (in) =	37.0		Average Density (lb/i				
Longitude	W 150	0.5254	Average (in) =	9.3		Average SWE (in) = 2.20			
	1		9.5	9.5		Bucket & Core Weight (lb) = 1.52			
	2		9.5	9.5		Empty Bucket Weight (-			
PS201	3	Lake	10.0	10.0		Average Mass (
	4		9.5	9.5		Core Area (i	n ²) = 2.0739			
	5					Freshwater Density (lb/i	n ³) = 0.0361			
Latitude	N 70	.2289	Sum (in) =	38.5		Average Density (lb/i	n ³) = 0.011			
Longitude	W 150	0.5235	Average (in) =	9.6		Average SWE (in) = 2.94			
	1		11.5	11.5		Bucket & Core Weight (lb) = 1.40			
	2		11.5	11.5		Empty Bucket Weight (lb) = 0.64			
PS202	3	Lake	11.0	11.0		Average Mass (lb) = 0.25			
	4					Core Area (i	n ²) = 2.0739			
	5					Freshwater Density (lb/i				
Latitude	N 70	.2263	Sum (in) =	34.0		Average Density (lb/i	n ³) = 0.011			
Longitude	W 150.	0.5209	Average (in) =	11.3		Average SWE (in) = 3.38			
	1		8.5	8.5		Bucket & Core Weight (lb) = 1.46			
	2		8.0	8.0		Empty Bucket Weight (
PS203	3	Lake	8.5	8.5		Average Mass (
	4		9.0	9.0		Core Area (i				
	5					Freshwater Density (lb/i				
Latitude	N 70	.2237	Sum (in) =	34.0		Average Density (lb/i				
Longitude	W 150	0.5183	Average (in) =	8.5		Average SWE (in) = 2.74			
	1		8.0	8.0		Bucket & Core Weight (lb) = 1.46			
	2		7.5	7.4		Empty Bucket Weight (-			
PS204	3	Lake	7.5	7.5		Average Mass (
	4		7.5	7.5		Core Area (i				
	5					Freshwater Density (lb/i	n ³) = 0.0361			
Latitude		.2211	Sum (in) =	30.4		Average Density (lb/i				
Longitude		0.5157	Average (in) =	7.6		Average SWE (
	1	ļ	2.5	2.5		Bucket & Core Weight (
	2	ļ	3.0	3.0		Empty Bucket Weight (-			
PS205	3	Lake	3.0	2.9		Average Mass (
	4	ļ	3.0	3.0		Core Area (i				
	5		3.0	3.0		Freshwater Density (lb/i	-			
Latitude		.2185	Sum (in) =	14.4		Average Density (lb/i				
Longitude	W 150	0.5128	Average (in) =	2.9		Average SWE (in) = 0.80			
Note 1: Location	is are referenced	to NAD 83 datur	n.							

			Poo	oled Snow Surve	ey Data Sheet		
Date:	4/30/2014	Start Time:	9:30	End Time:	16:00	Observers: SNW, MI	NU, GCY
Catchment	Basin:	M9605	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow			Snow De	epth (in)			
Sample	Pooled	Terrain				Calculations	
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		6.0	6.0		Bucket & Core Weight (lb) =	1.26
	2		6.0	5.8		Empty Bucket Weight (lb) =	0.64
PS206	3	Lake	6.5	6.5		Average Mass (lb) =	0.12
	4		6.0	6.0		Core Area (in ²) =	2.0739
	5		6.0	6.0		Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	.2160	Sum (in) =	30.3		Average Density (lb/in ³) =	0.010
Longitude	W 150	0.5099	Average (in) =	6.1		Average SWE (in) =	1.66
	1		6.5	6.5		Bucket & Core Weight (lb) =	1.20
	2		7.0	7.0		Empty Bucket Weight (lb) =	0.64
PS207	3	Lake	6.5	6.5		Average Mass (lb) =	0.14
	4		6.5	6.5		Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2134	Sum (in) =	26.5		Average Density (lb/in ³) =	0.010
Longitude	W 150	0.5070	Average (in) =	6.6		Average SWE (in) =	1.87
	1		18.0	16.5		Bucket & Core Weight (lb) =	1.46
	2		16.0	15.8		Empty Bucket Weight (lb) =	0.64
PS208	3	Tundra	17.0	17.0		Average Mass (lb) =	0.27
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	.2108	Sum (in) =	49.3		Average Density (lb/in ³) =	0.008
Longitude	W 150	0.5041	Average (in) =	16.4		Average SWE (in) =	3.65
	1		13.5	12.0		Bucket & Core Weight (lb) =	1.18
	2		12.5	12.5		Empty Bucket Weight (lb) =	0.64
PS209	3	Tundra	7.5	7.0		Average Mass (Ib) =	0.18
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70.	.2093	Sum (in) =	31.5		Average Density (lb/in ³) =	0.008
Longitude	W 150	0.5023	Average (in) =	10.5		Average SWE (in) =	2.40
	1		17.0	16.8		Bucket & Core Weight (lb) =	1.48
	2	ļ	17.0	16.0		Empty Bucket Weight (lb) =	0.64
PS210	3	Tundra	18.0	18.0		Average Mass (Ib) =	0.28
	4	ļ				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2068	Sum (in) =	50.8		Average Density (lb/in ³) =	0.008
Longitude	W 150).4995	Average (in) =	16.9		Average SWE (in) =	3.74
	1		12.5	12.5		Bucket & Core Weight (lb) =	1.24
	2	ļ	12.5	11.0		Empty Bucket Weight (lb) =	0.64
PS211	3	Tundra	11.5	9.5		Average Mass (lb) =	0.20
	4	ļ				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2047	Sum (in) =	33.0		Average Density (lb/in ³) =	0.009
Longitude		0.4971	Average (in) =	11.0		Average SWE (in) =	2.67
		to NAD 83 datur					

			Poo	oled Snow Surve	y Data Sheet			
Date:	ate: 4/30/2014 Start Time:		9:30	End Time:	16:00	Observers: SNW, MN	SNW, MNU, GCY	
Catchment	Basin:	M9605	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"	
Snow	Pooled	Terrain	Snow De	epth (in)				
Sample	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug		Calculations		
No.	Jampie #	туре	w/ Dirt Flug	W/O Dirt Flug				
	1		21.0	20.9		Bucket & Core Weight (lb) =	1.7	
	2		21.5	21.5		Empty Bucket Weight (lb) =	0.6	
PS212	3	Tundra	20.5	20.5		Average Mass (Ib) =	0.3	
	4					Core Area (in ²) =	2.073	
	5					Freshwater Density (lb/in ³) =	0.036	
Latitude	N 70.	.2105	Sum (in) =	62.9		Average Density (lb/in ³) =	0.00	
Longitude	W 150).4950	Average (in) =	21.0		Average SWE (in) =	4.9	
	1		22.5	22.5		Bucket & Core Weight (lb) =	1.5	
	2		22.5	21.5		Empty Bucket Weight (lb) =	0.6	
PS213	3	Tundra				Average Mass (Ib) =	0.4	
	4					Core Area (in ²) =	2.073	
	5					Freshwater Density (lb/in ³) =	0.036	
Latitude	N 70.	.2117	Sum (in) =	44.0		Average Density (lb/in ³) =	0.00	
Longitude	W 150).4877	Average (in) =	22.0		Average SWE (in) =	5.7	
	1		17.0	17.0		Bucket & Core Weight (lb) =	1.1	
	2		16.3	16.3		Empty Bucket Weight (lb) =	0.6	
PS214	3	Tundra				Average Mass (lb) =	0.2	
	4					Core Area (in ²) =	2.073	
	5					Freshwater Density (lb/in ³) =	0.036	
Latitude	N 70.	.2169	Sum (in) =	33.3		Average Density (lb/in ³) =	0.00	
Longitude	W 150).4948	Average (in) =	16.6		Average SWE (in) =	3.0	
	1		9.0	9.0		Bucket & Core Weight (lb) =	1.1	
	2		9.0	8.0		Empty Bucket Weight (lb) =	0.6	
PS215	3	Tundra	8.0	8.0		Average Mass (Ib) =	0.1	
	4		10.5	8.5		Core Area (in ²) =	2.073	
	5					Freshwater Density (lb/in ³) =	0.036	
Latitude	N 70	.2183	Sum (in) =	33.5		Average Density (lb/in ³) =	0.00	
Longitude	W 150	0.5018	Average (in) =	8.4		Average SWE (in) =	1.5	
	1		4.8	4.8		Bucket & Core Weight (lb) =	1.1	
	2		4.5	4.4		Empty Bucket Weight (lb) =	0.6	
PS216	3	Lake	4.5	4.5		Average Mass (Ib) =	0.0	
	4		4.5	4.4		Core Area (in ²) =	2.073	
	5		4.5	4.4		Freshwater Density (lb/in ³) =	0.036	
Latitude	N 70.	.2197	Sum (in) =	22.5		Average Density (lb/in ³) =	0.01	
Longitude	W 150).5087	Average (in) =	4.5		Average SWE (in) =	1.2	
	1		3.0	2.8		Bucket & Core Weight (lb) =	1.0	
	2		3.3	3.1		Empty Bucket Weight (lb) =	0.6	
PS217*	3	Lake	3.0	2.8		Average Mass (lb) =	0.0	
	4		2.8	2.8		Core Area (in ²) =	2.073	
	5		3.0	2.8		Freshwater Density (lb/in ³) =	0.036	
Latitude	N 70	.2213	Sum (in) =	14.2		Average Density (lb/in ³) =	0.01	
Longitude).5238	Average (in) =	2.8		Average SWE (in) =	0.9	

* Point located on snow berm, sample taken to the east on natural snow pack.

			Poo	oled Snow Surve	y Data Sheet		
Date:	4/30/2014	Start Time:	9:30	End Time:	16:00	Observers: SNW, MN	IU, GCY
Catchment	Basin:	M9605	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
Snow	Dealed	Terrein	Snow De	epth (in)			
Sample	Pooled	Terrain				Calculations	
No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		16.0	16.0		Bucket & Core Weight (lb) =	1.22
	2	-	15.5	15.5		Empty Bucket Weight (lb) =	0.64
PS218	3	Tundra				Average Mass (Ib) =	0.29
	4	-				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2214	Sum (in) =	31.5		Average Density (lb/in ³) =	0.009
Longitude	W 15	0.5302	Average (in) =	15.8		Average SWE (in) =	3.87
	1		16.8	16.8		Bucket & Core Weight (lb) =	1.18
	2		17.0	17.0		Empty Bucket Weight (lb) =	0.66
PS219	3	Tundra				Average Mass (lb) =	0.26
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2257	Sum (in) =	33.8		Average Density (lb/in ³) =	0.007
Longitude	W 15	0.5069	Average (in) =	16.9		Average SWE (in) =	3.47
	1		9.5	9.5		Bucket & Core Weight (lb) =	1.28
	2		10.0	9.8		Empty Bucket Weight (lb) =	0.66
PS220	3	Lake	9.5	9.5		Average Mass (lb) =	0.21
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2234	Sum (in) =	28.8		Average Density (lb/in ³) =	0.010
Longitude	W 15	0.5113	Average (in) =	9.6		Average SWE (in) =	2.76
	1		7.8	7.8		Bucket & Core Weight (lb) =	1.42
	2		8.3	8.3		Empty Bucket Weight (lb) =	0.66
PS221	3	Lake	9.0	8.9		Average Mass (lb) =	0.25
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2195	Sum (in) =	24.9		Average Density (lb/in ³) =	0.015
Longitude	W 15	0.5174	Average (in) =	8.3		Average SWE (in) =	3.38
	1		10.5	10.5		Bucket & Core Weight (lb) =	1.40
	2		10.5	10.5		Empty Bucket Weight (lb) =	0.66
PS222	3	Lake	10.3	10.2		Average Mass (lb) =	0.25
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2180	Sum (in) =	31.2		Average Density (lb/in ³) =	0.011
Longitude	W 15	0.5190	Average (in) =	10.4		Average SWE (in) =	3.29
-	1		10.0	10.0		Bucket & Core Weight (lb) =	1.24
	2		9.5	9.5		Empty Bucket Weight (lb) =	0.66
PS223	3	Tundra	11.0	11.0		Average Mass (Ib) =	0.19
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2159	Sum (in) =	30.5		Average Density (lb/in ³) =	0.009
Longitude		0.5212	Average (in) =	10.2		Average SWE (in) =	2.58
		l to NAD 83 datu		·		ž . /	

			Pooled	Snow Survey Da	ata Sheet		
Date:	4/30/2014	Start Time:	9:30	End Time:	16:00	Observers: SNW, M	NU, GCY
Catchment Basin:		M9605 Berm	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
			Snow D	1			
Snow Sample No.	Pooled	Terrain		• • •		Calculations	
	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		15.0	15.0		Bucket & Core Weight (lb) =	1.64
	2	1	18.0	18.0		Empty Bucket Weight (lb) =	0.66
B-PS01	3	Lake				Average Mass (lb) =	0.49
	4	1				Core Area (in ²) =	2.0739
	5	1				Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2209	Sum (in) =	33.0		Average Density (lb/in ³) =	0.014
Longitude	W 150	0.5234	Average (in) =	16.5		Average SWE (in) =	6.54
	1		49.0	49.0		Bucket & Core Weight (lb) =	1.88
	2	1				Empty Bucket Weight (lb) =	0.66
B-PS02	3	Lake				Average Mass (lb) =	1.22
	4	1				Core Area (in ²) =	2.0739
	5	1				Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2209	Sum (in) =	49.0		Average Density (lb/in ³) =	0.012
Longitude	W 150	0.5237	Average (in) =	49.0		Average SWE (in) =	16.29
	1		37.5	37.5		Bucket & Core Weight (lb) =	1.56
	2	1				Empty Bucket Weight (lb) =	0.66
B-PS03	3	Lake				Average Mass (lb) =	0.90
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2209	Sum (in) =	37.5		Average Density (lb/in ³) =	0.012
Longitude	W 150	0.5241	Average (in) =	37.5		Average SWE (in) =	12.02
	1		45.0	45.0		Bucket & Core Weight (lb) =	1.44
	2					Empty Bucket Weight (lb) =	0.66
B-PS04	3	Lake				Average Mass (lb) =	0.78
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2225	Sum (in) =	45.0		Average Density (lb/in ³) =	0.008
Longitude	W 150	0.5267	Average (in) =	45.0		Average SWE (in) =	10.41
	1		49.0	49.0		Bucket & Core Weight (lb) =	1.54
	2					Empty Bucket Weight (lb) =	0.66
B-PS05	3	Lake				Average Mass (lb) =	0.88
	4]				Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
Latitude	N 70	.2225	Sum (in) =	49.0		Average Density (lb/in ³) =	0.009
Longitude	W 150	0.5263	Average (in) =	49.0		Average SWE (in) =	11.75
	1		37.0	37.0		Bucket & Core Weight (lb) =	1.62
	2]				Empty Bucket Weight (lb) =	0.66
B-PS06	3	Lake				Average Mass (lb) =	0.96
	4					Core Area (in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =	0.0361
	5						
Latitude		.2226	Sum (in) =	37.0		Average Density (lb/in ³) =	0.013

			Pooled	Snow Survey Da	ata Sheet		
Date:	4/30/2014	Start Time:	9:30	End Time:	16:00	Observers: SNW, MN	IU, GCY
Catchment Basin:		V19605 Berm	Driving Wrench	Used:	Mt. Rose	Tube Section Used:	0-62"
			Snow D				
Snow Sample No.	Pooled	Terrain		- p (,		Calculations	
	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug			
	1		20.0	20.0		Bucket & Core Weight (lb) =	1.0
	2					Empty Bucket Weight (lb) =	0.6
B-PS07	3	Lake				Average Mass (lb) =	0.4
	4					Core Area (in ²) =	2.073
	5					Freshwater Density (lb/in ³) =	0.036
Latitude	N 70	.2244	Sum (in) =	20.0		Average Density (lb/in ³) =	0.01
Longitude	W 150	0.5279	Average (in) =	20.0		Average SWE (in) =	5.3
	1		47.0	47.0		Bucket & Core Weight (lb) =	1.8
	2					Empty Bucket Weight (lb) =	0.6
B-PS08	3	Tundra				Average Mass (lb) =	1.2
	4					Core Area (in ²) =	2.073
	5					Freshwater Density (lb/in ³) =	0.036
Latitude	N 70	.2243	Sum (in) =	47.0		Average Density (lb/in ³) =	0.01
Longitude	-	0.5273	Average (in) =	47.0		Average SWE (in) =	16.0
Longhade	1	5.5275	22.0	22.0		Bucket & Core Weight (lb) =	1.1
	2		22.0	22.0		Empty Bucket Weight (lb) =	0.6
B-PS09	3	Lake				Average Mass (lb) =	0.5
D-1 305	4	Luke				Core Area (in ²) =	2.073
	5	•				Freshwater Density (lb/in ³) =	0.036
Latitude	-	.2244	Sum (in) =	22.0		Average Density (lb/in ³) =	0.030
Longitude).5269	Average (in) =	22.0		Average Density (ID/III) =	6.9
Longitude	1	5.5205	30.0	30.0		Bucket & Core Weight (lb) =	1.4
	2		30.0	30.0		Empty Bucket Weight (lb) =	0.6
B-PS10	3	Lake				Average Mass (lb) =	0.0
D-F310	4	Lake				Core Area (in ²) =	2.073
	5					Freshwater Density (lb/in ³) =	0.036
Latitude	-	.2252	Sum (in) =	30.0			0.030
	-					Average Density (lb/in ³) =	
Longitude		0.5283	Average (in) =	30.0		Average SWE (in) =	10.4
	1		47.0	47.0		Bucket & Core Weight (lb) = Empty Bucket Weight (lb) =	<u> </u>
D DC44	3	Turdus				Average Mass (lb) =	1.1
B-PS11	4	Tundra				Core Area (in ²) =	2.073
	-						
	5		a (')			Freshwater Density (lb/in ³) =	0.036
Latitude		.2252	Sum (in) =	47.0		Average Density (lb/in ³) =	0.01
Longitude		0.5278	Average (in) =	47.0		Average SWE (in) =	14.9
	1	ł	22.0	22.0		Bucket & Core Weight (lb) =	1.2
	2					Empty Bucket Weight (lb) =	0.6
B-PS12	3	Lake				Average Mass (lb) =	0.5
	4	ł				Core Area (in ²) =	2.073
	5					Freshwater Density (lb/in ³) =	0.036
Latitude		.2252	Sum (in) =	22.0		Average Density (lb/in ³) =	0.01
Longitude	W 150	0.5273	Average (in) =	22.0		Average SWE (in) =	7.4

			Pooled	Snow Survey D	ata Sheet			
Date:	4/30/2014	Start Time:	9:30	End Time:	16:00	Observers:	SNW, MNU	J, GCY
Catchment Basin:	1	v19605 Berm	Driving Wrench	Used:	Mt. Rose	Tube Section Used:		0-62"
	Pooled	Terrain	Snow De	epth (in)				
Snow Sample No.	Sample #	Туре	w/ Dirt Plug	w/o Dirt Plug		Calculation	s	
	1		38.0	38.0		Bucket & Core We	eight (lb) =	1.52
	2					Empty Bucket We	eight (lb) =	0.66
B-PS13	3	Tundra				Average I	Vlass (lb) =	0.86
	4					Core A	(in ²) =	2.0739
	5					Freshwater Density (lb/in ³) =		0.0361
Latitude	N 70	.2271	Sum (in) =	38.0		Average Density	/ (lb/in ³) =	0.011
Longitude	W 150	0.5291	Average (in) =	38.0			SWE (in) =	11.48
	1		55.0	55.0		Bucket & Core We	eight (lb) =	2.18
	2					Empty Bucket We	eight (lb) =	0.66
B-PS14	3	Lake				Average I	vlass (lb) =	1.52
	4					Core A	(in ²) =	2.0739
	5					Freshwater Densit	y (lb/in ³) =	0.0361
Latitude	N 70	.2271	Sum (in) =	55.0		Average Densit	/ (lb/in ³) =	0.013
Longitude	W 150	0.5286	Average (in) =	55.0		Average	SWE (in) =	20.30
	1		19.0	19.0		Bucket & Core We	eight (lb) =	1.10
	2					Empty Bucket We	eight (lb) =	0.66
B-PS15	3	Lake				Average I	vlass (lb) =	0.44
	4					Core A	Area (in ²) =	2.0739
	5					Freshwater Densit	y (lb/in ³) =	0.0361
Latitude	N 70	.2271	Sum (in) =	19.0		Average Densit	/ (lb/in ³) =	0.011
Longitude	W 150	0.5281	Average (in) =	19.0		-	SWE (in) =	5.88
Note 1: Locations are refer	enced to NAD 83	datum.						

C.2.2 **SNOW DEPTH SURVEY DATA** Snow Depth Survey Data Sheet Date: 4/30/2014 Start Time: 9:30 Observers: GCY, SNW, **Catchment Basin:** M9605 MNU End Time: 16:00 Location **Snow Depth Snow Sample No. Terrain Type** (in) Latitude Longitude SS400 Tundra 2.0 N 70.2314 W 150.5258 SS401 Lake 0.0 N 70.2304 W 150.5250 SS402 Lake 5.1 N 70.2299 W 150.5245 SS403 Lake 3.9 N 70.2294 W 150.5240 SS404 Lake 13.0 N 70.2283 W 150.5229 SS405 Lake 9.1 N 70.2278 W 150.5225 SS406 Lake 7.5 N 70.2273 W 150.5219 SS407 Lake 9.4 N 70.2268 W 150.5214 13.8 SS408 Lake N 70.2257 W 150.5204 SS409 Lake 5.9 N 70.2252 W 150.5198 SS410 Lake 8.3 N 70.2247 W 150.5193 SS411 Lake 9.4 N 70.2242 W 150.5188 SS412 Lake 9.8 N 70.2231 W 150.5178 SS413 Lake 5.1 N 70.2226 W 150.5173 SS414 Lake 9.8 N 70.2221 W 150.5167 SS415 Lake 6.3 N 70.2216 W 150.5162 SS416 Lake 2.4 N 70.2206 W 150.5151 SS417 Lake 4.3 N 70.2200 W 150.5145 5.5 W 150.5140 SS418 Lake N 70.2195 SS419 Lake 8.3 N 70.2190 W 150.5134 13.4 SS420 Lake N 70.2180 W 150.5122 SS421 Lake 3.5 N 70.2175 W 150.5116 SS422 Lake 1.6 N 70.2170 W 150.5111 8.3 N 70.2165 W 150.5105 SS423 Lake SS424 Lake 9.4 N 70.2155 W 150.5093 SS425 Lake 9.8 N 70.2149 W 150.5087 SS426 Lake 8.7 N 70.2144 W 150.5082 SS427 Lake 5.9 N 70.2139 W 150.5076 SS428 Lake 3.9 N 70.2129 W 150.5064 SS429 Lake 48.8 N 70.2124 W 150.5059 SS430 Tundra 13.4 N 70.2119 W 150.5053 14.2 SS431 Tundra W 150.5047 N 70.2114 SS432 Tundra 21.7 N 70.2103 W 150.5035 SS433 Tundra 20.1 N 70.2098 W 150.5030 SS434 Tundra 11.4 N 70.2088 W 150.5018 SS435 Tundra 17.7 N 70.2083 W 150.5012 SS436 Tundra 11.0 N 70.2078 W 150.5006 Tundra 17.7 SS437 N 70.2073 W 150.5000 Tundra 20.5 SS438 N 70.2063 W 150.4989 SS439 Tundra 15.4 N 70.2058 W 150.4983 SS440 Tundra 13.8 N 70.2053 W 150.4977 SS441 Tundra 13.8 N 70.2089 W 150.5053

Michael Baker

	Si	now Depth Sur	vey Data Sheet	
Date:	4/30/2014	Start Time:	9:30 AM	Observers: GCY, SNW,
Catchment Basin:	M9605	End Time:	4:00 PM	MNU
		Snow Depth	Loca	ation
Snow Sample No.	Terrain Type	(in)	Latitude	Longitude
SS442	Tundra	17.7	N 70.2091	W 150.5038
SS443	Tundra	11.8	N 70.2096	W 150.5009
SS444	Tundra	27.6	N 70.2098	W 150.4994
SS445	Tundra	19.3	N 70.2100	W 150.4979
SS446	Tundra	14.2	N 70.2103	W 150.4965
SS447	Tundra	13.8	N 70.2107	W 150.4935
SS448	Tundra	15.0	N 70.2110	W 150.4921
SS449	Tundra	13.0	N 70.2112	W 150.4906
SS450	Tundra	12.2	N 70.2112	W 150.4892
SS450	Tundra	11.0	N 70.2114	W 150.4862
	Tundra	13.0	N 70.2119	W 150.4962
	Tundra	13.4	N 70.2172	W 150.4902
	Tundra	15.4	N 70.2175	W 150.4990
	Tundra	14.6	N 70.2177	W 150.5004
	Tundra	14.0		W 150.5032
			N 70.2186	
SS457	Tundra	9.4	N 70.2188	W 150.5045
SS458	Lake	3.9	N 70.2192	W 150.5059
SS459	Lake	2.0	N 70.2194	W 150.5073
SS460	Lake	7.9	N 70.2200	W 150.5101
SS461	Lake	11.0	N 70.2202	W 150.5115
SS462	Lake	3.5	N 70.2205	W 150.5129
SS463	Lake	10.2	N 70.2208	W 150.5143
SS464	Lake	3.1	N 70.2211	W 150.5173
SS465	Lake	2.4	N 70.2212	W 150.5189
SS466	Lake	11.8	N 70.2212	W 150.5205
SS467	Lake	3.9	N 70.2212	W 150.5222
SS468	Tundra	35.4	N 70.2213	W 150.5254
SS469	Tundra	11.0	N 70.2214	W 150.5270
SS470	Tundra	11.0	N 70.2214	W 150.5286
SS471	Tundra	13.8	N 70.2215	W 150.5318
SS472	Tundra	12.6	N 70.2266	W 150.5051
SS473	Tundra	18.9	N 70.2261	W 150.5060
SS474	Tundra	26.8	N 70.2252	W 150.5078
SS475	Lake	15.4	N 70.2247	W 150.5087
SS476	Lake	5.9	N 70.2243	W 150.5095
SS477	Lake	13.4	N 70.2238	W 150.5104
SS478	Lake	9.1	N 70.2229	W 150.5122
SS479	Lake	5.9	N 70.2224	W 150.5131
SS480	Lake	7.5	N 70.2220	W 150.5139
SS481	Lake	5.9	N 70.2215	W 150.5148
SS482	Lake	6.7	N 70.2206	W 150.5163
SS483	Lake	2.8	N 70.2200	W 150.5168

Snow Depth Survey Data Sheet					
Date:	4/30/2014	Start Time:	9:30 AM	Observers: GCY, SNW,	
Catchment Basin:	M9605	End Time:	4:00 PM	MNU	
Snow Sample No.	Terrain Type	Snow Depth	Loca	Location	
		(in)	Latitude	Longitude	
SS484	Lake	8.7	N 70.2190	W 150.5179	
SS485	Lake	15.7	N 70.2185	W 150.5185	
SS486	Lake	8.3	N 70.2175	W 150.5196	
SS487	Lake	5.5	N 70.2170	W 150.5201	
SS488	Tundra	23.2	N 70.2164	W 150.5207	
SS489	Tundra	15.7	N 70.2154	W 150.5218	
SS490	Tundra	14.6	N 70.2149	W 150.5223	

Appendix D Alpine Area Lakes Recharge Study Photos

D.1 Lake B8530

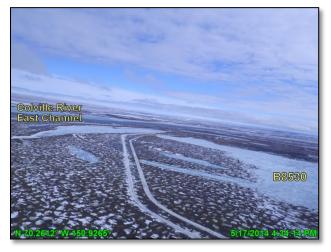


Photo D.1: Lake B8530 pre-breakup, looking west; May 17, 2014

Photo D.2: Lake B8530 during breakup, looking northwest; June 6, 2014

Photo D.3: Lake B8530 post-breakup, looking northwest; July 11, 2014

D.2 Lake B8531/L9326

Photo D.4: Lake B8531/L9326 pre-breakup, looking southwest; May 16, 2014

Photo D.5: Lake B8531/L9326 during breakup, looking southeast; June 6, 2014

Photo D.6: Lake B8531/L9326 post-breakup, looking southeast; July 11, 2014

D.3 Lake B8533

Photo D.7: Lake B8533 pre-breakup, looking east; May 17, 2014

Photo D.8: Lake B8533 during breakup, looking northeast; June 7, 2014

Photo D.9: Lake B8533 post-breakup, looking northeast; July 11, 2014

D.4 Lake L9132

Photo D.10: Lake L9132 pre-breakup, looking east; May 17, 2014

Photo D.11: Lake L9132 during breakup, looking east; June 6, 2014

Photo D.12: Lake L9132 post-breakup, looking southeast; July 10, 2014

D.5 Lake L9323

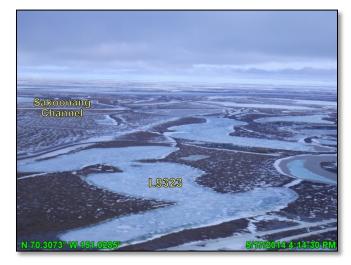


Photo D.13: Lake L9323 pre-breakup, looking southeast; May 17, 2014

Photo D.14: Lake L9323 during breakup, looking northeast; June 8, 2014

Photo D.15: Lake L9323 post-breakup, looking southeast; July 11, 2014

D.6 Lake L9324

Photo D.16: Lake L9324 during breakup, looking east; June 8, 2014

Photo D.17: Lake L9324 post-breakup, looking west; July 11, 2014

D.7 Lake K209

Photo D.18: Lake K209 pre-breakup, looking southwest; May 17, 2014

Photo D.19: Lake K209 during breakup, looking south; June 6, 2014

Photo D.20: Lake K209 post-breakup, looking south; July 10, 2014

D.8 Lake K214

Photo D.21: Lake K214 pre-breakup, looking north; May 17, 2014

Photo D.22: Lake K214 during breakup, looking north; June 6, 2014

Photo D.23: Lake K214 post-breakup, looking northeast; July 10, 2014

D.9 Lake M9602

Photo D.24: Lake M9602 pre-breakup, looking south; May 17, 2014

Photo D.25: Lake M9602 during breakup, looking south; June 6, 2014

Photo D.26: Lake M9602 post-breakup, looking southwest; July 10, 2014

D.10 Lake M9603

Photo D.27: Lake M9603 pre-breakup, looking south; May 17, 2014

Photo D.28: Lake M9603 during breakup, looking southeast; June 6, 2014

Photo D.29: Lake M9603 post-breakup, looking southeast; July 10, 2014

D.11 Lake M9605

Photo D.30: Lake M9605 pre-breakup, looking south; May 17, 2014

Photo D.31: Lake M9605 during breakup, looking north; June 6, 2014

Photo D.32: Lake M9605 post-breakup, looking south; July 10, 2014

D.12 Lake M9607

Photo D.33: Lake M9607 pre-breakup, looking northwest; May 22, 2014

Photo D.34: Lake M9607 during breakup, looking north; June 6, 2014

Photo D.35: Lake M9607 post-breakup, looking northwest; July 11, 2014

D.13 Nanuq Lake

Photo D.36: Nanuq Lake during breakup, looking north; June 8, 2014

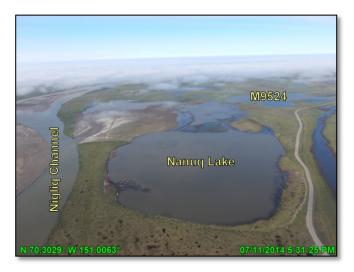


Photo D.37: Nanuq Lake, post-breakup, looking north; July 11, 2014

2014 Alpine Area Lakes Recharge Studies

