

YEAR 2000 LAKE STUDIES IN THE PHILLIPS EXPLORATION AREA, NATIONAL PETROLEUM RESERVE - ALASKA

- 2000 -

by Richard E. Reanier, Ph.D. REANIER & Associates

for PHILLIPS ALASKA, INC.

November 29, 2000

Note

This lake study and report were completed by Richard E. Reanier, Ph.D., principal investigator (Reanier & Associates), as a consultant to PHILLIPS Alaska, Inc. This report contains proprietary information belonging to PHILLIPS Alaska, Inc. Neither this report nor information contained herein may be released without the express permission of PHILLIPS Alaska, Inc.

Any comments or requests for additional information may be addressed to:

Richard E. Reanier, Ph.D.

REANIER & ASSOCIATES 1807 – 32nd Avenue Seattle, Washington 98122

(206) 323-8450

reanier@eskimo.com

Executive Summary

This study of lakes in the Phillips Exploration Area of the National Petroleum Reserve – Alaska has evaluated 32 lakes that might potentially be used for water withdrawals to construct ice roads and ice pads. Field methods included taking measurements from a helicopter on fixed floats that allowed data to be collected rapidly. Lake volume calculations were made using maximum lake depth and lake area according to the cone-method of Moulton and Lobdell. The cone-method was modified to provide an estimate of the free-water volume below the ice, in order to comply with the BLM stipulations for exploration activities. Of the 32 lakes studied, 19 have depths great enough to allow some water withdrawal even if fish are present in the lake. Water quality data indicate that all of the 32 lakes studied have salinities low enough for their water to be used in ice road and ice pad construction.

TABLE OF CONTENTS

Note	i	
Exec	utive Summaryii	
	e of Contents	
List c	f Inclusionsiv	
I.	Introduction 1	
II.	Acknowledgements1	
III.	Purpose of Study 1	
IV	Materials and Methods 2	
V.	Results and Discussion4	
VI.	Conclusions	
Refe	erences	
App	endix 1A-1	

LIST OF INCLUSIONS

- Figures -

Figure 1.	The Modified Cone-Method for NPR-A Lakes4
Figure 2.	Map of Lakes Included in this Study5

•

- Tables -

Table 1.	Summary of Results of I	PR-A Lake Study6
----------	-------------------------	------------------

I. Introduction

On August 5, 2000 Reanier & Associates was tasked by Phillips Alaska, Inc. to conduct lake studies to include depth and water quality measurements for lakes in the National Petroleum Reserve – Alaska (NPR-A) that had been identified as potential water sources for ice road and ice pad construction. A map was provided by Phillips that indicated the lakes to be studied. These lakes were examined on August 6, 2000. After these lakes were measured, additional lakes were identified for study by Phillips, and the new lakes were examined on August 7, 2000. Preliminary data from the lake study were provided to Phillips on August 6 and August 7, 2000. This report discusses the purpose, methods and results of the lake survey, and provides the final lake survey data.

II. Acknowledgements

The advice of Mike Joyce (Phillips) was greatly appreciated during the fieldwork phase of this study. Lisa Pekich (Phillips) was instrumental in providing logistical planning and support for the project. Rick Overstreet (Phillips) provided field maps and helpful support in the field. I am grateful to A.J. Rookus (Lounsbury & Associates) for helping identify potential lakes in a very tight time frame. Pilot Jim Fitzpatrick (Air Logistics) provided his superb flying skills and helpful advice during the fieldwork. Support personnel at KOC did their usual fine job of helicopter and logistical support. I am especially thankful to George Johnston (Phillips) and Kelli Thibodeau (Phillips) for their assistance at KOC. Larry Moulton (MJM Research) kindly provided details of the cone-method for lake volume calculations. Mark Major (Phillips), Caryn Rea (Phillips), and Sally Rothwell (Phillips) have provided helpful advice during the analysis phase of this project.

III. Purpose of Study

Lake studies are required as a result of Bureau of Land Management (BLM) stipulations for exploration in the NPR-A (Babbitt 1998). The stipulations for ice roads and water use require that:

- 1. Water withdrawal is prohibited during winter from lakes less than 7 feet (2.1 m) deep if they are interconnected with or subject to seasonal flooding by a fishbearing stream (Stipulation 20).
- 2. Water may be withdrawn from isolated lakes that are less than 7 feet (2.1 m) deep that lack connection to or are not subject to seasonal flooding by a fish-bearing stream. (Stipulation 20).
- 3. After consultation with the appropriate Federal, State, and NSB regulatory and resource agencies, the AO may authorize withdrawals from any lake less than 7 feet (2.1 m) deep, if the proponent demonstrates that no fish exist in the lake (Stipulation 20).
- 4. Generally, water withdrawal drawdown during winter from lakes 7 feet (2.1 m) deep or deeper shall be limited to 15 percent of the estimated free-water volume (i.e. excluding the ice) (Stipulation 20).

- 5. After consultation with the appropriate Federal, State, and NSB regulatory and resource agencies, the AO may authorize drawdown exceeding 15 percent from a lake greater than 7 feet (2.1 m) deep, if the proponent of the additional drawdown demonstrates that no fish exist in the lake (Stipulation 20).
- 6. The AO, in consultation with appropriate Federal, State, and NSB regulatory and resource agencies, may allow water extraction from any lake used by molting geese, if it is determined that the withdrawal is consistent with Stipulation 20 and will not adversely affect identified goose-feeding habitat along lakeshore margins (Stipulation 21).

These stipulations require that lake depths be measured, and that studies of fish be conducted if proponents desire to withdraw water from lakes less than 7 feet in depth, or to withdraw more than 15 percent of the free-water from lakes more than 7 feet deep. Additionally, studies of geese and their habitats are needed if water is to be withdrawn from lakes used by molting geese. The stipulations also require that free-water volumes of lakes be estimated.

Additionally, in order to protect the tundra, water to be used for ice roads cannot be saline. Generally a conductivity limit of 4,000 μ mhos/cm is used, and water less saline than this can be used for ice roads.

This study primarily addresses lake depths, volume estimates, and water quality measurements. It does not address the presence or absence of fish in lakes, except indirectly by noting possible indications of fish observed on depth sounders while recording lake depths, and it does not address the question of goose habitat.

IV. Materials and Methods

For this study a rapid method of obtaining lake depth and water quality data was required. The remoteness of the lakes to be studied necessitated the use of a helicopter to reach them. It was decided that depth and water quality measurements could be obtained directly from the helicopter, avoiding the more time consuming use of a separate watercraft for data collection. A Bell 206L Long Ranger on fixed floats was provided by Air Logistics, Inc. of Fairbanks, and was flown to the North Slope. The fixed floats permitted direct landings on lakes. Navigation was facilitated by a Garmin III+ Global Positioning System (GPS) receiver fitted with an external antenna mounted in the helicopter, and a moving high resolution map approximately equivalent in detail to the USGS 1:63.360 scale topographic series maps. This allowed for easy identification of lakes by shape and location, and for precision positioning of the depth measurement locations within a lake. On April 2, 2000, the Air Force disabled the so-called Selective Availability (SA) feature of the GPS satellites, which had degraded the signal used by civilians. Without SA, GPS locations are thought to be within 10 m of actual locations 95% of the time, though experiments by Reanier & Associates on the North Slope indicate substantially greater accuracy than this.

In this study lake depths were recorded with a Garmin 100 depth sounder, which provides a digital readout of depth and can indicate possible images of fish in the water column. Water quality was measured with a Horiba Model U-10 water checker. The water quality measurements recorded were salinity, temperature, and conductivity.

The field methods for this project were straightforward. After locating a lake to be studied, a landing was made in the approximate center of the lake, and a depth measurement was made. Simultaneously, the position was recorded with the GPS receiver. Depending on the size and depth of the lake, additional depth measurements might be made at other points in the lake. If the depth sounder indicated the possible image of fish in the water column, that was also recorded. At one of the points selected for a depth measurement water quality measurements were also made. These procedures were followed for all of the lakes studied in this project. A total of 139 depth readings were made in 32 lakes, requiring a total of 12 hours of field time – an average of 2.6 lakes per hour.

After the fieldwork, data were transferred a spreadsheet so volume estimates could be made. There are many approaches to calculating the volume of lakes. The most detailed method is to gather a large amount of depth data for a given lake, and then create a bathymetric map of the lake from which volumes can be calculated. The older methods of using strip-chart fathometers and reducing data graphically (e.g. Reanier 1991) have given way to digital fathometers and the use of surface modeling software to calculate basin shape (e.g. Wilson et al. 1997). Surface modeling software has the advantage of being able to calculate volumes automatically once the model has been created. This method, however, is very time-consuming, requiring large amounts of field time to acquire enough data. Efforts to create more simple models of basin shape and volume that require less data but still provide reliable estimates have resulted in a number of different models. One model that has been developed for use with North Slope thaw lakes and has become a standard method is the cone-model.

The cone-model was developed by Lawrence L. Moulton (MJM Research) and John E. Lobdell (Lobdell & Associates) for use on the North Slope. The model assumes that the lake has the shape of a shallow cone (Moulton 2000). The maximum depth of the lake is taken to be the height (or in this case, depth) of the cone, and the surface area of the lake is taken to be the area of the base of the cone (Figure 1). The surface area is calculated with a Geographic Information Systems (GIS) program that contains a map of the lake shape. In practice, this model has proven to provide a good first approximation to lake volume when compared to more detailed bathymetric map-derived results.

The BLM stipulations outlined above require calculation of the free-water volume existing below the ice in lakes used for water withdrawal. Unless a lake can be shown to contain no fish, no water can be withdrawn from lakes less than 7 feet deep, and 15 percent of the free-water volume below the ice can be withdrawn from lakes deeper than 7 feet. Since North Slope lakes generally freeze to a depth of about 7 feet, the 7-foot depth approximates the ice thickness on these lakes.

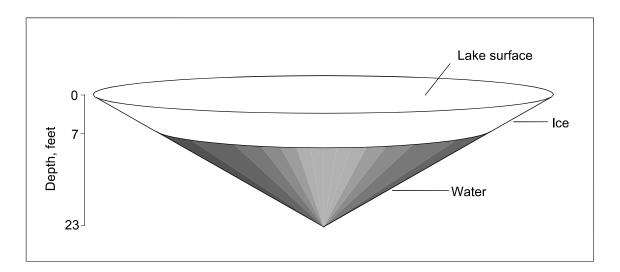


Figure 1. The modified cone-model for NPR-A Lakes. The lake volume is approximated by a cone with height equal to the maximum depth of the lake (here, 23 feet) and with a base area equal to the surface area of the lake. For the NPR-A, the volume of free-water beneath a 7-foot thick layer of ice is estimated by the volume of a new cone (shaded) with a height reduced by 7 feet and a base area equal to the surface of the free water beneath the ice.

For the NPR-A the cone-model must be modified to account for the 7 feet of ice on a lake in order to calculate the free-water volume. The modification requires that the volume of a new cone be calculated, a cone with the height (depth) reduced by 7 feet, and the base area equal to the area of the free-water surface (or equivalently, the area of the bottom surface of the ice) (Figure 1). To calculate the usable water for withdrawal one takes 15 percent of the volume of the free-water calculated by this method. In the example in Figure 1, approximately 2/3 of the lake volume is contained in the ice, and 1/3 remains in the free-water below the ice. Because 15 percent of the free-water can be withdrawn from the lake, only about 5 percent of the total lake volume is available for ice road construction.

V. Results and Discussion

The 32 lakes studied in this project are shown in Figure 2. Lakes in this study are numbered consecutively from R0050 to R0081 to denote the 50th through 81st lake studied by Reanier & Associates in the year 2000. Lakes with other labels are those studied by other investigators. The modified cone-model described above was applied to the depth and surface area data recorded for each lake, and a summary of the results is presented in Table 1. The entire dataset is provided in Appendix 1.

ALCONTRACTOR				H H H H H H H H H H H H H H H H H H H		HILLIPS Alaska, Inc. Subsidiary of PHILIPS PETROLEUM COMPANY	Figure 2. Map of lakes included in this study. Only those lakes labeled R00nn are part of this study. Precise locations of lakes are given in Appendix 1.
			Stripto 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Booder and Branch		ST CERTIFIC	Figure 2. Map Only those lake study. Precise lake Appendix 1.
	And	A COULD A COUL	NISA NOSZAIT NUSSB 20 MOOZAIT	ALL OF AL	REDORF	2 90 20 20 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	SE S
1 10 10 10 10 10 10 10 10 10 10 10 10 10	COUCH AND COUCH		Republic And	10000 100000 100000 100000 100000 100000 1000000 1000000 100000 100000		20 20 20 20 20 20 20 20 20 20 20 20 20 2	
	27 26 25 2 7 0 26 2 3 00006 2 3 00000 2 3 00000 2 3 00000 2 3 00000 2 3 000000 2 3 000000 2 3 000000 2 3 00000000000000000000000000000000000	9 2 10 7 1 Poloret	21 26 53 23 24 24 24 24 24 24 24 24 24 24 24 24 24	38 38 38 38 38 38 38 38 38 38 38 38 38 3	B B B B B B B B B B B B B B B B B B B	HOOR HOUSE MODIT	
8.2 0 6 0 02 0 6 0 02 0 6 0 02 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Contraction of the second	HUNTI	

								Usable volume
	Maximum			Fish	Surface	Lake	Volume	15% of Volume
	Depth	Conductivity	Temperature	on Depth	Area	Volume	Below 7 Feet	Below 7 feet
Lake	(feet)	(µmhos/cm)	(°C)	Sounder?	(acres)	(gallons)	(gallons)	(gallons)
R0050		264	10.5		8.787	3,340,581	0	0
R0051		215	10.7		8.405	5,842,944	0	0
R0052		381	11.8	Yes	44.469	49,266,835	1,521,262	228,189
R0053		161	11.7	Yes	25.995	23,999,701	131,893	19,784
R0054		240	10.7		70.354	23,689,288	0	0
R0055	6.3	158	11.6		41.808	28,608,661	0	0
R0056	6.6	170	11.4		473.827	339,675,071	0	0
R0057	7.3	166	11.8		114.383	90,695,109	6,295	944
R0058	6.5	245	11.5		570.173	402,550,325	0	0
R0059	8.2	46	11.8		31.244	27,827,456	87,212	13,082
R0060	8.2	116	11.7		113.854	101,405,205	317,806	47,671
R0061	7.9	142	11.6		540.269	463,593,579	685,462	102,819
R0062	3.4	225	11.1		48.822	18,029,855	0	0
R0063	5.8	142	11.3		5.742	3,617,499	0	0
R0064	7.1	207	11.9	Yes	1159.292	894,028,068	2,498	375
R0065	6.5	112	11.4		300.401	212,087,596	0	0
R0066	10.0	94	11.8		232.507	252,543,160	6,818,665	1,022,800
R0067	7.4	162	11.6		78.387	63,005,210	9,951	1,493
R0068	4.0	180	10.7		62.893	27,325,030	0	0
R0069	9.2	169	11.7	Yes	112.413	112,331,916	1,536,058	230,409
R0070	3.6	193	10.6		114.080	44,607,933	0	0
R0071	2.7	89	10.2		90.271	26,473,582	0	0
R0072	4.0	193	10.5		108.336	47,068,543	0	0
R0073	8.6	244	11.3		355.818	332,373,903	2,140,383	321,057
R0074	8.1	105	11.2		172.505	151,769,887	380,109	57,016
R0075	7.2	94	10.8		314.139	245,671,532	5,266	790
R0076	7.2	92	10.8		330.897	258,776,992	5,546	832
R0077	7.9	81	10.8		44.333	38,041,278	56,247	8,437
R0078	16.5	102	11.5	Yes	111.831	200,421,938	38,252,889	5,737,933
R0079	16.2	115	11.4		123.810	217,857,378	39,901,637	5,985,246
R0080	17.2	150	11.8		166.967	311,932,292	65,054,225	9,758,134
R0081	11.3	138	11.5		293.820	360,627,850	19,871,438	2,980,716

Table 1. Summary of results of lake studies in the Phillips exploration area, NPR-A.

A number of observations can me made on the lakes in this study. As expected for North Slope thermokarst or thaw lakes, most are shallow. The deepest lakes (R0079 – R0080) are not thaw lakes, but oxbow lakes formed in abandoned stream channels. The maximum conductivity in this dataset is 381μ mhos/cm, far below the 4,000 μ mhos/cm limit for water that can be used for ice roads. In five of the lakes the depth sounder indicated possible fish in the water column. This does not prove that fish are present in these lakes, or for that matter, that fish are absent from lakes where no indication was noted. The fish indications are only useful to help determine which lakes might merit detailed fish studies. The lake surface areas were derived from a NPR-A GIS database maintained by Phillips Alaska, Inc., and these data were provided by Phillips. Lake volume, lake volume below 7 feet, and usable lake volume were calculated according to the modified cone-model described above. Of the 32 lakes studied in this project, 19 have usable volumes that would allow water withdrawals even if fish were present in the

lakes. According to the BLM stipulations, proponents could apply for greater withdrawals if other studies demonstrate that fish are not present in a given lake.

VI. Conclusions

This study of lakes in the NPR-A has evaluated 32 lakes that might potentially be used for water withdrawals to construct ice roads and ice pads. Field methods included taking measurements from a helicopter on fixed floats that allowed data to be collected rapidly. Lake volume calculations were made using maximum lake depth and lake area according to the cone-method of Moulton and Lobdell. The cone method was modified to provide an estimate of the free-water volume below the ice, in order to comply with the BLM stipulations for exploration activities. Of the 32 lakes studied, 19 have depths great enough to allow some water withdrawal even if fish are present in the lake. Water quality data indicate that all of the 32 lakes studied have salinities low enough for their water to be used in ice road and ice pad construction.

References Cited

Babbitt, Bruce

1998 Appendix B, Stipulations. In, *Northeast National Petroleum Reserve-Alaska, Integrated Activity Plan/ Environmental Impact Statement, Record of Decision,* Bruce Babbitt, Secretary of the Interior, October 1998. Prepared by U.S. Department of the Interior Bureau of Land Management in cooperation with U.S. Department of the Interior Minerals Management Service. U.S. Department of Interior, Washington, D.C.

Moulton, Lawrence L.

2000 Written communication to Conce Rock, BPXA.

Reanier, Richard E.

1991 A Bathymetric Study of Nine Lakes in the South-central Brooks Range. In, *Cultural Resources Survey and Inventory: Gates of the Arctic National Park and Preserve, Alaska.* Research/Resources Management Report AR-18, Appendix III, pp. 211-234. National Park Service, Anchorage.

Wilson, John T., Morlock, Scott E., Baker, Nancy T.,

1997 Bathymetric Surveys of Morse and Geist Reservoirs in Central Indiana Made with Acoustic Doppler Current Profiler and Global Positioning System Technology, 1996. WRI 97-4099. U. S. Geological Survey, Reston, Virginia.

Appendix 1

Complete Data Tables from Lake Studies in the Phillips Exploration Area, National Petroleum Reserve - Alaska

												=	Lake v	olume	=		Usable volume
						Fish on		NA)-27		Surfac	ce Area			Volume	Volume	15% of Vol
	Depth	Conductivity	Conductivity T	emperature	Salinity	Depth	L	atitude		Longitude			Volume	Volume	Below 7 Feet	Below 7 Fee	t Below 7 feet
Lake	(feet)	(µmhos/cm)	(mS/cm)	(°C)	(%)	Sounder	dd	mm ss.ss	ddd	mm ss.ss	(acres)	(square ft)	(cubic ft)	(gallons)	(cubic ft)	(gallons)	(gallons)
R0050		004	0.004	10 5	0.04					14 03.59 W	0 7070	000 775	440 574	0.040.504			• •
R0050	3.5	264	0.264	10.5	0.01		70	06 56.63 N	152	13 51.19 W	8.7873	382,775	446,571	3,340,581	0		0 0
R0051	6.4						70	07 04 43 0	152	13 59.79 W	8 4053	366,135	781,088	5,842,944	• 0		0 0
R0051 R0051	0.4 5.6	215	0.215	10.7	0.00					13 59.79 W	0.4000	300,135	701,000	5,642,944	6 U		0 0
10001	5.0	215	0.215	10.7	0.00		10	07 04.231	152	14 05.25 W							
R0052	8.5					Yes	70	07 06.53 N	152	12 24.89 W							
R0052	9.0						70	07 04.73 N	152	12 30.50 W							
R0052	9.0	381	0.381	11.8	0.01		70	07 09.93 N	152	12 41.19 W							
R0052	9.6						70	07 12.03 N	152	12 14.09 W							
R0052	10.2						70	07 05.93 N	152	12 12.70 W	44.469	1,937,064	6,586,018	49,266,835	5 203,363	1,521,26	2 228,189
R0053						Yes				11 38.49 W	25.995	1,132,339	3,208,294	23,999,701	17,632	131,89	3 19,784
R0053		161	0.161	11.7	0.00					11 52.69 W							
R0053										11 56.29 W							
R0053	7.0						70	07 26.63 N	152	11 40.99 W							
R0054	3.1	240	0.240	10.7	0.00		70	06 10 22 1	150	07 55.02 W	70 254	2 064 642	2 166 707	23,689,288	3 0		0 0
R0054 R0054		240	0.240	10.7	0.00					07 55.02 W	70.554	3,004,043	3,100,797	23,009,200	5 0		0 0
110004	2.0						10	00 00.02 1	152	01 41.22 11							
R0055	6.3	158	0.158	11.6	0.00		70	07 21.02 N	152	06 50.60 W	41.808	1,821,153	3,824,422	28,608,661	0		0 0
R0056	6.0	170	0.170	11.4	0.00		70	06 34.62 N	152	03 08.92 W							
R0056	5.7						70	06 30.42 N	152	02 23.42 W							
R0056	5.2						70	06 16.22 N	152	03 37.53 W							
R0056	5.8						70	06 45.42 N	152	03 19.92 W							
R0056	6.6						70	06 45.72 N	152	04 03.42 W	473.83	20,639,980	45,407,955	339,675,071	0		0 0
R0056	5.1						70	06 39.82 N	152	04 14.92 W							
D 0057								0 7 00 00 N	450	00.05.04.14		4 000 507	40 404 470	00 005 400			
R0057										03 35.21 W	114.38	4,982,537	12,124,173	90,695,109	841	6,29	5 944
R0057		100	0.400							03 58.91 W							
R0057		166	0.166	11.8	0.00					03 58.51 W							
R0057										03 05.01 W							
R0057										03 22.11 W							
R0057	7.0						70	07 13.92 N	152	03 41.81 W							
R0058	6.0						70	07 06 20 1	151	55 47.42 W							
R0058										56 17.32 W							
110000	0.0						10	00.001	101	00 17.02 W							

													Lake v	olume	_		Usable volume
						Fish on		NA	D-27		Surfa	ce Area			Volume	Volume	15% of Vol
	Depth	Conductivity	Conductivity T	emperature	Salinity	Depth	L	atitude		Longitude			Volume	Volume	Below 7 Feet	Below 7 Fee	t Below 7 feet
Lake		(µmhos/cm)	(mS/cm)	(°C)	(%)	Sounder	dd r	nm ss.ss		mm ss.ss	(acres)	(square ft)	(cubic ft)	(gallons)	(cubic ft)	(gallons)	(gallons)
R0058	4.7						70	06 52.90 N		55 04.63 W							
R0058	6.1						70	06 46.20 N	I 151	55 46.13 W							
R0058	2.0						70	06 44.81 N	I 151	56 23.23 W							
R0058	1.8						70	06 26.80 M	I 151	54 49.04 W							
R0058	6.5	245	0.245	11.5	0.00		70	06 23.10 M	I 151	55 25.64 W	570.17	24,836,841	53,813,155	402,550,325	; C)	0 0
R0058	5.0						70	06 17.30 N	I 151	55 35.54 W							
D 0050							-0	~~ ~~ ~~ ~									
R0059	5.5	10	0.040							52 08.20 W		4 000 070	0 740 000	07 007 450	44.050		
R0059	8.2	46	0.046	11.8	0.00					52 23.29 W	31.244	1,360,972	3,719,990	27,827,456	11,659	87,21	2 13,082
R0059	7.7									52 48.19 W							
R0059	7.7						70	09 01.80 N	151	52 40.09 W							
R0060	7.6	116	0.116	11.7	0.00		70	08 46.89 1	151	49 48.40 W							
R0060	7.4		01110		0.00					49 51.50 W							
R0060	8.2									49 45.90 W	113.85	4.959.477	13.555.905	101.405.205	42,485	5 317,80	6 47,671
R0060	7.3									50 06.90 W		.,,	,,	,	,	,	,
R0060	7.9									49 30.60 W							
R0061	6.7						70	10 14.28 N	I 151	47 16.08 W							
R0061	7.9						70	10 12.79 N	I 151	47 40.08 W	540.27	23,534,222	61,973,451	463,593,579	91,633	685,46	2 102,819
R0061	7.0	142	0.142	11.6	0.00		70	10 04.38 N	I 151	46 35.48 W							
R0061	7.5						70	09 57.99 N	l 151	47 17.39 W							
R0061	6.5						70	10 27.38 N	l 151	46 46.98 W							
R0061	7.6						70	10 35.39 N	I 151	48 00.97 W							
R0062	3.3						70	10 11 07 1	1 1 5 1	36 44.69 W							
R0062		225	0.225	11.1	0.00					36 50.08 W							
R0062	3.4	225	0.225	11.1	0.00					36 47.99 W	18 822	2 126 683	2 / 10 2/ 1	18,029,855	. (h	0 0
110002	5.4						10	10 57.471	1 131	50 47.55 W	40.022	2,120,005	2,410,241	10,029,000)	0 0
R0063	5.8	142	0.142	11.3	0.00		70	10 26.06 M	I 151	35 30.39 W	5.7422	250,132	483,589	3,617,499) ()	0 0
R0063	5.4						70	10 25.56 N	I 151	35 33.89 W							
R0063	5.5						70	10 26.96 M	I 151	35 25.59 W							
R0064	5.9									01 12.56 W							
R0064	6.6									01 44.16 W							
R0064	6.1									02 20.66 W							
R0064	5.2									01 26.95 W							
R0064	7.1	207	0.207	11.9	0.00					02 31.25 W	1159.3	50,498,948	119,514,177	894,028,068	334	2,49	8 375
R0064	5.8						70	04 55.42 N	152	03 13.05 W							

											Lake v	olume	_		Usable volume
						Fish on	NA	D-27	Surfac	e Area			Volume	Volume	15% of Vol
	Depth	Conductivity	Conductivity T	emperature	Salinity	Depth	Latitude	Longitude			Volume	Volume	Below 7 Feet	Below 7 Feet	Below 7 feet
Lake	•	(µmhos/cm)	(mS/cm)	(°C)	(%)	•	dd mm ss.ss	ddd mm ss.ss	(acres)	(square ft)	(cubic ft)	(gallons)	(cubic ft)	(gallons)	(gallons)
R0064	6.0						70 05 40.32 N	152 02 23.44 W							
R0064	6.5					Yes	70 05 34.62 1	152 03 12.94 W							
R0064	5.8						70 05 32.12 M	152 03 45.84 W							
R0065	5.6							N 151 52 21.18 W							
R0065								151 52 04.69 W	300.4	13,085,534	28,351,990	212,087,596	6 0	0	0
R0065								151 52 39.39 W							
R0065								151 52 03.78 W							
R0065	6.2	112	0.112	11.4	0.00		70 09 46.10 N	N 151 53 08.18 W							
R0066	8.9						70 08 47.28	151 45 36.51 W							
R0066	7.1						70 08 42.58	151 44 44.21 W							
R0066	10.0	94	0.094	11.8	0.00		70 08 34.18	151 45 10.11 W	232.51	10,128,034	33,760,112	252,543,160	911,523	6,818,665	1,022,800
R0066	9.1						70 08 35.58 N	151 45 38.01 W							
R0066	9.4						70 08 57.18	151 45 57.60 W							
R0066	8.0						70 08 42.79	151 45 59.61 W							
R0066	7.8						70 08 58.98	151 45 22.90 W							
R0066	8.8						70 08 40.98 N	151 45 24.31 W							
R0067	7.4	162	0.162	11.6	0.00		70 08 34.39 1	151 47 10.91 W	78.387	3,414,556	8,422,572	63,005,210	1,330	9,951	1,493
R0067	7.2						70 08 28.89 1	151 47 29.01 W							
R0067	7.2						70 08 39.79 N	151 47 01.21 W							
R0068	4.0	180	0.180	10.7	0.00		70 11 17.18 N	V 151 48 04.56 W	62.893	2,739,619	3,652,825	27,325,030	0 0	0	0
R0069	8.8	169	0.169	11.7	0.00	Yes	70 11 11 99 1	151 49 20.66 W							
R0069		100	0.100		0.00	100		151 49 41.66 W							
R0069								151 49 49.76 W							
R0069								151 49 11.56 W	112.41	4.896.715	15.016.594	112.331.916	205,341	1,536,058	230,409
R0069								151 48 56.86 W		,, -	-,,	,,	,-	, ,	,
R0070	3.6	193	0.193	10.6	0.00		70 11 16.36 N	N 151 34 06.88 W	114.08	4,969,345	5,963,214	44,607,933	6 O	0	0
R0071	2.7	89	0.089	10.2	0.00		70 13 30.07 N	N 151 38 54.14 W	90.271	3,932,226	3,539,003	26,473,582	2 0	0	0
R0072	4.0	193	0.193	10.5	0.00		70 15 57.66 N	N 151 37 59.30 W	108.34	4,719,112	6,292,149	47,068,543	6 0	0	0
R0073 R0073	8.6 8.3	244	0.244	11.3	0.00			N 151 59 11.61 W N 151 59 34.91 W	355.82	15,499,511	44,431,931	332,373,903	286,128	2,140,383	321,057

										_	Lake v	olume	_		Usable volume
						Fish on	NAI	D-27	Surfac	e Area			Volume	/olume	15% of Vol
	Depth	Conductivity	Conductivity T	emperature	Salinity	Depth	Latitude	Longitude			Volume	Volume	Below 7 Feet I	Below 7 Feet	Below 7 feet
Lake	•	(µmhos/cm)	(mS/cm)	(°C)	(%)		dd mm ss.ss	ddd mm ss.ss	(acres)	(square ft)	(cubic ft)	(gallons)	(cubic ft)	gallons)	(gallons)
R0073	2.9						70 13 21.70 N	151 58 31.61 W							<u> </u>
R0073	8.2						70 13 17.20 N	151 58 49.81 W							
R0073	7.6						70 13 12.60 N	N 151 59 11.71 W							
R0073	8.3						70 13 32.20 N	151 58 54.41 W							
R0073	7.8						70 13 47.10 N	151 59 38.20 W							
R0073	8.6						70 13 44.00 N	151 59 52.90 W							
R0073	2.3						70 13 40.30 N	152 00 20.20 W							
R0074	8.0						70 13 33.50 N	152 01 42.10 W							
R0074	6.6	105	0.105	11.2	0.00			152 02 19.30 W							
R0074	5.5							152 01 13.80 W							
R0074								152 01 34.10 W	172.5	7,514,327	20,288,684	151,769,887	50,813	380,109	57,016
R0074	6.5						70 13 30.80 N	152 01 17.70 W							
R0075								N 151 47 10.05 W							
R0075	7.2	94	0.094	10.8	0.00		70 18 25.87 N	151 47 27.24 W	314.14	13,683,962	32,841,509	245,671,532	2 704	5,266	790
R0075								151 47 02.45 W							
R0075	5.4							151 46 57.54 W							
R0075	6.0						70 17 39.87 N	151 47 04.76 W							
R0076	7.2	92	0.092	10.8	0.00		70 17 42.78 N	N 151 49 45.05 W	330.9	14,413,939	34,593,454	258,776,992	2 741	5,546	832
R0076								151 49 33.85 W							
R0076								151 50 23.05 W							
R0076								151 49 17.35 W							
R0076	6.8						70 17 23.78 N	151 49 46.05 W							
R0077	7.4	81	0.081	10.8	0.00		70 16 54.17 N	151 47 39.37 W							
R0077	7.9						70 16 49.97 N	N 151 47 35.67 W	44.333	1,931,157	5,085,379	38,041,278	3 7,519	56,247	8,437
R0078	15.2						70 16 02.17 N	N 151 45 21.79 W							
R0078	16.5	102	0.102	11.5	0.00		70 16 10.37 N	151 46 01.58 W	111.83	4,871,367	26,792,518	200,421,938	5,113,668	38,252,889	5,737,933
R0078	13.7					Yes	70 15 52.27 N	151 45 58.19 W							
R0078	13.0						70 16 02.47 N	151 46 05.38 W							
R0078	14.0						70 16 12.77 N	151 46 40.38 W							
R0078	10.6						70 16 19.27 N	151 47 09.68 W							
R0079	12.4						70 15 47.07 N	151 43 29.49 W							
R0079								151 44 47.98 W							
R0079		115	0.115	11.4	0.00			151 44 52.18 W							

						Fish on			NAD	-27		Surfac	e Area	Lake v	olume	Volume	Volume	Usable volume 15% of Vol
	Depth	Conductivity	Conductivity 7	Temperature	Salinity	Depth	La	atitude	е		Longitude			Volume	Volume	Below 7 Fee	t Below 7 Feet	Below 7 feet
Lake	(feet)	(µmhos/cm)	(mS/cm)	(°C)	(%)		dd m	ım se	s.ss	ddd	mm ss.ss	(acres)	(square ft)	(cubic ft)	(gallons)	(cubic ft)	(gallons)	(gallons)
R0079	16.2			• •			70	16 21	1.77 N	151	43 41.98 W	123.81	5,393,203	29,123,297	217,857,378	5,334,07	3 39,901,637	5,985,246
R0079	15.2						70	16 08	3.77 N	151	43 14.19 W							
R0080	17.2						70	16 10).36 N	151	39 27.39 W	166.97	7,273,131	41,699,285	311,932,292	8,696,48	6 65,054,225	9,758,134
R0080	9.7	150	0.150	11.8	0.00		70	15 47	7.66 N	151	39 15.80 W							
R0080	10.4						70	15 42	2.26 N	151	40 01.10 W							
R0080	16.6						70	15 50).46 N	151	40 16.49 W							
R0080	14.0						70	15 59	9.86 N	151	39 58.69 W							
R0080	15.0						70	15 59	9.56 N	151	39 16.09 W							
R0081	11.0	138	0.138	11.5	0.00		70	17 29	9.65 N	151	31 25.98 W							
R0081	8.6						70	17 25	5.15 N	151	32 11.38 W							
R0081	8.5						70	17 32	2.54 N	151	30 55.57 W							
R0081	9.5						70	17 37	7.15 N	151	31 33.67 W							
R0081	11.3						70	17 21	1.25 N	151	31 21.68 W	293.82	12,798,832	48,208,934	360,627,850	2,656,42	5 19,871,438	2,980,716